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Multiplicative Normalizing Flows for Variational Bayesian Neural Networks

Christos Louizos 1 2 Max Welling 1 3

Abstract
We reinterpret multiplicative noise in neural net-
works as auxiliary random variables that aug-
ment the approximate posterior in a variational
setting for Bayesian neural networks. We show
that through this interpretation it is both efficient
and straightforward to improve the approxima-
tion by employing normalizing flows (Rezende
& Mohamed, 2015) while still allowing for lo-
cal reparametrizations (Kingma et al., 2015) and
a tractable lower bound (Ranganath et al., 2015;
Maaløe et al., 2016). In experiments we show
that with this new approximation we can sig-
nificantly improve upon classical mean field for
Bayesian neural networks on both predictive ac-
curacy as well as predictive uncertainty.

1. Introduction
Neural networks have been the driving force behind the
success of deep learning applications. Given enough train-
ing data they are able to robustly model input-output rela-
tionships and as a result provide high predictive accuracy.
However, they do have some drawbacks. In the absence of
enough data they tend to overfit considerably; this restricts
them from being applied in scenarios were labeled data are
scarce, e.g. in medical applications such as MRI classifica-
tion. Even more importantly, deep neural networks trained
with maximum likelihood or MAP procedures tend to be
overconfident and as a result do not provide accurate confi-
dence intervals, particularly for inputs that are far from the
training data distribution. A simple example can be seen at
Figure 1a; the predictive distribution becomes overly over-
confident, i.e. assigns a high softmax probability, towards
the wrong class for things it hasn’t seen before (e.g. an
MNIST 3 rotated by 90 degrees). This in effect makes them
unsuitable for applications where decisions are made, e.g.
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when a doctor determines the disease of a patient based on
the output of such a network.

A principled approach to address both of the aforemen-
tioned shortcomings is through a Bayesian inference pro-
cedure. Under this framework instead of doing a point es-
timate for the network parameters we infer a posterior dis-
tribution. These distributions capture the parameter uncer-
tainty of the network, and by subsequently integrating over
them we can obtain better uncertainties about the predic-
tions of the model. We can see that this is indeed the case
at Figure 1b; the confidence of the network for the unseen
digits is drastically reduced when we are using a Bayesian
model, thus resulting into more realistic predictive distri-
butions. Obtaining the posterior distributions is however
no easy task, as the nonlinear nature of neural networks
makes the problem intractable. For this reason approxima-
tions have to be made.

Many works have considered the task of approximate
Bayesian inference for neural networks using either
Markov Chain Monte Carlo (MCMC) with Hamiltonian
Dynamics (Neal, 1995), distilling SGD with Langevin
Dynamics (Welling & Teh, 2011; Korattikara et al.,
2015) or deterministic techniques such as the Laplace
Approximation (MacKay, 1992), Expectation Propaga-
tion (Hernández-Lobato & Adams, 2015; Hernández-
Lobato et al., 2015) and variational inference (Graves,
2011; Blundell et al., 2015; Kingma et al., 2015; Gal &
Ghahramani, 2015b; Louizos & Welling, 2016).

In this paper we will also tackle the problem of Bayesian
inference in neural networks. We will adopt a stochastic
gradient variational inference (Kingma & Welling, 2014;
Rezende et al., 2014) procedure in order to estimate the
posterior distribution over the weight matrices of the net-
work. Arguably one of the most important ingredients of
variational inference is the flexibility of the approximate
posterior distribution; it determines how well we are able
to capture the true posterior distribution and thus the true
uncertainty of our models. In Section 2 we will show how
we can produce very flexible distributions in an efficient
way by employing auxiliary random variables (Agakov &
Barber, 2004; Salimans et al., 2013; Ranganath et al., 2015;
Maaløe et al., 2016) and normalizing flows (Rezende &
Mohamed, 2015). In Section 3 we will discuss related
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(a) LeNet with weight decay (b) LeNet with multiplicative formalizing flows

Figure 1. Predictive distribution for a continuously rotated version of a 3 from MNIST. Each colour corresponds to a different class
and the height of the bar denotes the probability assigned to that particular class by the network. Visualization inspired by (Gal &
Ghahramani, 2015b).

work, whereas in Section 4 we will evaluate and discuss
the proposed framework. Finally we will conclude with
Section 5, where we will provide some final thoughts along
with promising directions for future research.

2. Multiplicative normalizing flows
2.1. Variational inference for Bayesian Neural

Networks

Let D be a dataset consisting of input output pairs
{(x1,y1), . . . , (xn,yn)} and let W1:L denote the weight
matrices of L layers. Assuming that p(Wi), qφ(Wi) are
the prior and approximate posterior over the parameters of
the i’th layer we can derive the following lower bound on
the marginal log-likelihood of the dataset D using varia-
tional Bayes (Peterson, 1987; Hinton & Van Camp, 1993;
Graves, 2011; Blundell et al., 2015; Kingma et al., 2015;
Gal & Ghahramani, 2015b; Louizos & Welling, 2016):

L(φ) = Eqφ(W1:L)

[
log p(y|x,W1:L)+

+ log p(W1:L)− log qφ(W1:L)
]
, (1)

where p̃(x,y) denotes the training data distribution and φ
the parameters of the variational posterior. For continu-
ous q(·) distributions that allow for the reparametrization
trick (Kingma & Welling, 2014) or stochastic backpropa-
gation (Rezende et al., 2014) we can reparametrize the ran-
dom sampling from q(·) of the lower bound in terms of
noise variables ε and deterministic functions f(φ, ε):

L = Ep(ε)
[
log p(y|x, f(φ, ε))+

+ log p(f(φ, ε))− log qφ(f(φ, ε))
]
. (2)

This reparametrization allow us to treat approximate pa-
rameter posterior inference as a straightforward optimiza-

tion problem that can be optimized with off-the-shelf
(stochastic) gradient ascent techniques.

2.2. Improving the variational approximation

For Bayesian neural networks the most common family for
the approximate posterior is that of mean field with inde-
pendent Gaussian distributions for each weight. Despite
the fact that this leads to a straightforward lower bound
for optimization, the approximation capability is quite lim-
iting; it corresponds to just a unimodal “bump” on the
very high dimensional space of the parameters of the neu-
ral network. There have been attempts to improve upon
this approximation with works such as (Gal & Ghahra-
mani, 2015b) with mixtures of delta peaks and (Louizos &
Welling, 2016) with matrix Gaussians that allow for non-
trivial covariances among the weights. Nevertheless, both
of the aforementioned methods are still, in a sense, limited;
the true parameter posterior is more complex than delta
peaks or correlated Gaussians.

There has been a lot of recent work on ways to improve
the posterior approximation in latent variable models with
normalizing flows (Rezende & Mohamed, 2015) and aux-
iliary random variables (Agakov & Barber, 2004; Salimans
et al., 2013; Ranganath et al., 2015; Maaløe et al., 2016)
being the most prominent. Briefly, a normalizing flow is
constructed by introducing parametrized bijective transfor-
mations, with easy to compute Jacobians, to random vari-
ables with simple initial densities. By subsequently opti-
mizing the parameters of the flow according to the lower
bound they can significantly improve the posterior approxi-
mation. Auxiliary random variables instead construct more
flexible distributions by introducing latent variables in the
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posterior itself, thus defining the approximate posterior as
a mixture of simple distributions.

Nevertheless, applying these ideas to the parameters in a
neural network has not yet been explored. While it is
straightforward to apply normalizing flows to a sample of
the weight matrix from q(W), this quickly becomes very
expensive; for example with planar flows (Rezende & Mo-
hamed, 2015) we will need two extra matrices for each step
of the flow. Furthermore, by utilizing this procedure we
also lose the benefits of local reparametrizations (Kingma
et al., 2015; Louizos & Welling, 2016) which are possible
with Gaussian approximate posteriors.

In order to simultaneously maintain the benefits of lo-
cal reparametrizations and increase the flexibility of the
approximate posteriors in a Bayesian neural network we
will rely on auxiliary random variables (Agakov & Bar-
ber, 2004; Salimans et al., 2013; 2015; Ranganath et al.,
2015; Maaløe et al., 2016); more specifically we will ex-
ploit the well known “multiplicative noise” concept, e.g. as
in (Gaussian) Dropout (Srivastava et al., 2014), in neural
networks and we will parametrize the approximate poste-
rior with the following process:

z ∼ qφ(z); W ∼ qφ(W|z), (3)

where now the approximate posterior becomes a compound
distribution, q(W) =

∫
q(W|z)q(z)dz, with z being a

vector of random variables distributed according to the
mixing density q(z). To allow for local reparametriza-
tions we will parametrize the conditional distribution for
the weights to be a fully factorized Gaussian. Therefore we
assume the following form for the fully connected layers:

qφ(W|z) =
Din∏
i=1

Dout∏
j=1

N (ziµij , σ
2
ij), (4)

where Din, Dout is the input and output dimensionality,
and the following form for the kernels in convolutional net-
works:

qφ(W|z) =
Dh∏
i=1

Dw∏
j=1

Df∏
k=1

N (zkµijk, σ
2
ijk), (5)

where Dh, Dw, Df are the height, width and number of
filters for each kernel. Note that we did not let z affect the
variance of the Gaussian approximation; in a pilot study we
found that this parametrization was prone to local optima
due to large variance gradients, an effect also observed with
the multiplicative parametrization of the Gaussian poste-
rior (Kingma et al., 2015; Molchanov et al., 2017). We
have now reduced the problem of increasing the flexibility
of the approximate posterior over the weights W to that of
increasing the flexibility of the mixing density q(z). Since

z is of much lower dimension, compared to W, it is now
straightforward to apply normalizing flows to q(z); in this
way we can significantly enhance our approximation and
allow for e.g. multimodality and nonlinear dependencies
between the elements of the weight matrix. This will in
turn better capture the properties of the true posterior dis-
tribution, thus leading to better performance and predictive
uncertainties. We will coin the term multiplicative normal-
izing flows (MNFs) for this family of approximate posteri-
ors. Algorithms 1, 2 describe the forward pass using local
reparametrizations for fully connected and convolutional
layers with this type of approximate posterior.

Algorithm 1 Forward propagation for each fully connected
layer h. Mw,Σw are the means and variances of each
layer, H is a minibatch of activations and NF(·) is the nor-
malizing flow described at eq. 6. For the first layer we have
that H = X where X is the minibatch of inputs.

Require: H,Mw,Σw

1: Z0 ∼ q(z0)
2: ZTf = NF(Z0)
3: Mh = (H� ZTf )Mw

4: Vh = H2Σw

5: E ∼ N (0, 1)
6: return Mh +

√
Vh �E

Algorithm 2 Forward propagation for each convolutional
layer h. Nf are the number of convolutional filters, ∗ is
the convolution operator and we assume the [batch, height,
width, feature maps] convention.

Require: H,Mw,Σw

1: z0 ∼ q(z0)
2: zTf = NF(z0)
3: Mh = H ∗ (Mw � reshape(zTf , [1, 1, Df ]))
4: Vh = H2 ∗Σw

5: E ∼ N (0, 1)
6: return Mh +

√
Vh �E

For the normalizing flow of q(z) we will use the masked
RealNVP (Dinh et al., 2016) using the numerically sta-
ble updates introduced in Inverse Autoregressive Flow
(IAF) (Kingma et al., 2016):

m ∼ Bern(0.5); h = tanh(f(m� zt))

µ = g(h); σ = σ(k(h))

zt+1 = m� zt+(1−m)� (zt � σ + (1− σ)� µ)
(6)

log

∣∣∣∣∂zt+1

∂zt

∣∣∣∣ = (1−m)T logσ,

where � corresponds to element-wise multiplication, σ(·)
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is the sigmoid function1 and f(·), g(·), k(·) are linear map-
pings. We resampled the mask m every time in order to
avoid a specific splitting over the dimensions of z. For the
starting point of the flow q(z0) we used a simple fully fac-
torized Gaussian and we will refer to the final iterate as
zTf .

2.3. Bounding the entropy

Unfortunately, parametrizing the posterior distribution as
eq. 3 makes the lower bound intractable as generally we do
not have a closed form density function for q(W). This
makes the calculation of the entropy −Eq(W)[log q(W)]
challenging. Fortunately we can make the lower bound
tractable again by further lower bounding the entropy in
terms of an auxiliary distribution r(z|W) (Agakov & Bar-
ber, 2004; Salimans et al., 2013; 2015; Ranganath et al.,
2015; Maaløe et al., 2016). This can be seen as if we are
performing variational inference on the augmented proba-
bility space p(D,W1:L, z1:L), that maintains the same true
posterior distribution p(W|D) (as we can always marginal-
ize out r(z|W) to obtain the original model). The lower
bound in this case becomes:

L(φ, θ) = Eqφ(z1:L,W1:L)

[
log p(y|x,W1:L, z1:L)+

+ log p(W1:L) + log rθ(z1:L|W1:L)−
− log qφ(W1:L|z1:L)− log qφ(z1:L)

]
, (7)

where θ are the parameters of the auxiliary distribution r(·).
This bound is looser than the previous bound, however the
extra flexibility of q(W) can compensate and allow for a
tighter bound. Furthermore, the tightness of the bound also
depends on the ability of r(z|W) to approximate the “aux-
iliary” posterior distribution q(z|W) = q(W|z)q(z)

q(W) . There-
fore, to allow for a flexible r(z|W) we will follow (Ran-
ganath et al., 2015) and we will parametrize it with inverse
normalizing flows as follows:

r(zTb |W) =

Dz∏
i=1

N (µ̃i, σ̃
2
i ), (8)

where for fully connected layers we have that:

µ̃i =
(
b1 ⊗ tanh(cTW)

)
(1�D−1out) (9)

σ̃i = σ

((
b2 ⊗ tanh(cTW)

)
(1�D−1out)

)
, (10)

and for convolutional:

µ̃i =
(
tanh(mat(W)c)⊗ b1

)
(1� (DhDw)

−1) (11)

σ̃i = σ

((
tanh(mat(W)c)⊗ b2

)
(1� (DhDw)

−1)

)
,

(12)

1f(x) = 1
1+exp(−x)

where b1,b2, c are trainable vectors that have the same
dimensionality as z, Dz , 1 corresponds to a vector of
1s, ⊗ corresponds to the outer product and mat(·) corre-
sponds to the matricization2 operator. The zTb variable
corresponds to the fully factorized variable that is trans-
formed by a normalizing flow to zTf or else the variable ob-
tained by the inverse normalizing flow, zTb = NF−1(zTf ).
We will parametrize this inverse directly with the proce-
dure described at eq. 6. Notice that we can employ local
reparametrizations also in eq. 9,10,11,12, so as to avoid
sampling the, potentially big, matrix W. With the standard
normal prior and the fully factorized Gaussian posterior of
eq. 4 the KL-divergence between the prior and the posterior
can be computed as follows:

−KL(q(W)||p(W)) =

= Eq(W,zT )[−KL(q(W|zTf )||p(W))+

+ log r(zTf |W)− log q(zTf )], (13)

where each of the terms corresponds to:

−KL(q(W|zTf )||p(W)) =

=
1

2

∑
i,j

(− log σ2
i,j + σ2

i,j + z2Tfi
µ2
i,j − 1) (14)

log r(zTf |W) = log r(zTb |W) +

Tf+Tb∑
t=Tf

log

∣∣∣∣∂zt+1

∂zt

∣∣∣∣
(15)

log q(zTf ) = log q(z0)−
Tf∑
t=1

log

∣∣∣∣∂zt+1

∂zt

∣∣∣∣. (16)

It should be noted that this bound is a generalization of the
bound proposed by (Gal & Ghahramani, 2015b). We can
arrive at the bound of (Gal & Ghahramani, 2015b) if we
trivially parametrize the auxiliary model r(z|W) = q(z)
(which provides a less tight bound (Ranganath et al., 2015))
use a standard normal prior for W, a Bernoulli q(z) with
probability of success π and then let the variance of our
conditional Gaussian q(W|z) go to zero. This will result
into the lower bound being infinite due to the log of the
variances; nevertheless since we are not optimizing over σ
we can simply disregard those terms. After a little bit of al-
gebra we can show that the only term that will remain in the
KL-divergence between q(W) and p(W) will be the ex-
pectation of the trace of the square of the mean matrix3, i.e.
Eq(z)[ 12 tr((diag(z)M))T (diag(z)M))] = π

2 ‖M‖
2
2, with

1− π being the dropout rate.

We also found that in general it is beneficial to “constrain”
the standard deviations σij of the conditional Gaussian pos-
terior q(W|z) during the forward pass for the computation

2Converting the multidimensional tensor to a matrix.
3The matrix that has M[i, j] = µij
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of the likelihood to a lower than the true range, e.g. [0, α]
instead of the [0, 1] we have with a standard normal prior.
This results into a small bias and a looser lower bound,
however it helps in avoiding bad local minima in the vari-
ational objective. This is akin to the free bits objective de-
scribed at (Kingma et al., 2016).

3. Related work
Approximate inference for Bayesian neural networks has
been pioneered by (MacKay, 1992) and (Neal, 1995).
Laplace approximation (MacKay, 1992) provides a deter-
ministic approximation to the posterior that is easy to ob-
tain; it is a Gaussian centered at the MAP estimate of the
parameters with a covariance determined by the inverse of
the Hessian of the log-likelihood. Despite the fact that it
is straightforward to implement, its scalability is limited
unless approximations are made, which generally reduces
performance. Hamiltonian Monte Carlo (Neal, 1995) is
so far the golden standard for approximate Bayesian in-
ference; nevertheless it is also not scalable to large net-
works and datasets due to the fact that we have to explicitly
store the samples from the posterior. Furthermore as it is
an MCMC method, assessing convergence is non trivial.
Nevertheless there is interesting work that tries to improve
upon those issues with stochastic gradient MCMC (Chen
et al.) and distillation methods (Korattikara et al., 2015).

Deterministic methods for approximate inference in
Bayesian neural networks have recently attained much at-
tention. One of the first applications of variational infer-
ence in neural networks was in (Peterson, 1987) and (Hin-
ton & Van Camp, 1993). More recently (Graves, 2011)
proposed a practical method for variational inference in
this setting with a simple (but biased) estimator for a
fully factorized posterior distribution. (Blundell et al.,
2015) improved upon this work with the unbiased esti-
mator from (Kingma & Welling, 2014) and a scale mix-
ture prior. (Hernández-Lobato & Adams, 2015) proposed
to use Expectation Propagation (Minka, 2001) with fully
factorized posteriors and showed good results on regression
tasks. (Kingma et al., 2015) showed how Gaussian dropout
can be interpreted as performing approximate inference
with log-uniform priors, multiplicative Gaussian posteri-
ors and local reparametrizations, thus allowing straight-
forward learning of the dropout rates. Similarly (Gal &
Ghahramani, 2015b) showed interesting connections be-
tween Bernoulli Dropout (Srivastava et al., 2014) networks
and approximate Bayesian inference in deep Gaussian Pro-
cesses (Damianou & Lawrence, 2013) thus allowing the
extraction of uncertainties in a principled way. Simi-
larly (Louizos & Welling, 2016) arrived at the same re-
sult through structured posterior approximations via ma-
trix Gaussians and local reparametrizations (Kingma et al.,

2015).

It should also be mentioned that uncertainty estimation
in neural networks can also be performed without the
Bayesian paradigm; frequentist methods such as Boot-
strap (Osband et al., 2016) and ensembles (Lakshmi-
narayanan et al., 2016) have shown that in certain scenarios
they can provide reasonable confidence intervals.

4. Experiments
All of the experiments were coded in Tensor-
flow (Abadi et al., 2016) and optimization was done
with Adam (Kingma & Ba, 2015) using the default hyper-
parameters. We used the LeNet 54 (LeCun et al., 1998)
convolutional architecture with ReLU (Nair & Hinton,
2010) nonlinearities. The means M of the conditional
Gaussian q(W|z) were initialized with the scheme pro-
posed in (He et al., 2015), whereas the log of the variances
were initialized by sampling from N (−9, 0.001). Unless
explicitly mentioned otherwise we use flows of length two
for q(z) and r(z|W) with 50 hidden units for each step
of the flow of q(z) and 100 hidden units for each step of
the flow of r(z|W). We used 100 posterior samples to
estimate the predictive distribution for all of the models
during testing and 1 posterior sample during training.

Table 1. Models considered in this paper. Dropout corresponds
to the model used in (Gal & Ghahramani, 2015a), Deep Ensem-
ble to the model used in (Lakshminarayanan et al., 2016), FFG to
the Bayesian neural network employed in (Blundell et al., 2015),
FFLU to the Bayesian neural network used in (Kingma et al.,
2015; Molchanov et al., 2017) with the additive parametrization
of (Molchanov et al., 2017) and MNFG corresponds to the pro-
posed variational approximation. It should be noted that Deep
Ensembles use adversarial training (Goodfellow et al., 2014).

Name Prior Posterior
L2 N (0, I) delta peak
Dropout N (0, I) mixture of zero and delta peaks
D. Ensem. - mixture of peaks
FFG N (0, I) fully factorized additive Gaussian
FFLU log(|W|) = c fully factorized additive Gaussian
MNFG N (0, I) multiplicative normalizing flows

4.1. Predictive performance and uncertainty

MNIST We trained on MNIST LeNet architectures using
the priors and posteriors described at Table 1. We trained
Dropout with the way described at (Gal & Ghahramani,
2015a) using 0.5 for the dropout rate and for Deep Ensem-
bles (Lakshminarayanan et al., 2016) we used 10 mem-
bers and ε = .25 for the adversarial example generation.
For the models with the Gaussian prior we constrained the
standard deviation of the conditional posterior to be ≤ .5

4The version from Caffe.
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during the forward pass. The classification performance of
each model can be seen at Table 2; while our overall fo-
cus is not classification accuracy per se, we see that with
the MNF posteriors we improve upon mean field reaching
similar accuracies with Deep Ensembles.

notMNIST To evaluate the predictive uncertainties of
each model we performed the task described at (Lakshmi-
narayanan et al., 2016); we estimated the entropy of the
predictive distributions on notMNIST5 from the LeNet ar-
chitectures trained on MNIST. Since we a-priori know that
none of the notMNIST classes correspond to a trained class
(since they are letters and not digits) the ideal predictive
distribution is uniform over the MNIST digits, i.e. a maxi-
mum entropy distribution. Contrary to (Lakshminarayanan
et al., 2016) we do not plot the histogram of the entropies
across the images but we instead use the empirical CDF,
which we think is more informative. Curves that are closer
to the bottom right part of the plot are preferable, as it de-
notes that the probability of observing a high confidence
prediction is low. At Figure 2 we show the empirical CDF
over the range of possible entropies, [0, 2.5], for all of the
models.

Figure 2. Empirical CDF for the entropy of the predictive distri-
butions on notMNIST.

It is clear from the plot that the uncertainty estimates from
MNFs are better than the other approaches, since the prob-
ability of a low entropy prediction is overall lower. The
network trained with just weight decay was, as expected,
the most overconfident with an almost zero median en-
tropy while Dropout seems to be in the middle ground. The
Bayesian neural net with the log-uniform prior also showed
overconfidence in this task; we hypothesize that this is due
to the induced sparsity (Molchanov et al., 2017) which re-
sults into the pruning of almost all irrelevant sources of
variation in the parameters thus not providing enough vari-

5Can be found at http://yaroslavvb.blogspot.
co.uk/2011/09/notmnist-dataset.html

ability to allow for uncertainty in the predictions. The spar-
sity levels6 are 62%, 95.2% for the two convolutional lay-
ers and 99.5%, 93.3% for the two fully connected. Similar
effects would probably be also observed if we optimized
the dropout rates for Dropout. The only source of random-
ness in the neural network is from the Bernoulli random
variables (r.v.) z. By employing the Central Limit Theo-
rem7 we can express the distribution of the activations as a
Gaussian (Wang & Manning, 2013) with variance affected
by the variance of the Bernoulli r.v., V(z) = π(1−π). The
maximum variance of the Bernoulli r.v. is when π = 0.5,
therefore any tuning of the Dropout rate will result into a
decrease in the variance of the r.v. and therefore a decrease
in the variance of the Gaussian at the hidden units. This will
subsequently lead into less predictive variance and more
confidence.

Finally, whereas it was shown at (Lakshminarayanan et al.,
2016) that Deep Ensembles provide good uncertainty es-
timates (better than Dropout) on this task using fully con-
nected networks, this result did not seem to apply for the
LeNet architecture we considered. We hypothesize that
they are sensitive to the hyperparameters (e.g. adversarial
noise, number of members in the ensemble) and it requires
more tuning in order to improve upon Dropout on this ar-
chitecture.

CIFAR 10 We performed a similar experiment on CIFAR
10. To artificially create the ”unobserved class” scenario,
we hid 5 of the labels (dog, frog, horse, ship, truck) and
trained on the rest (airplane, automobile, bird, cat, deer).
For this task we used the larger LeNet architecture8 de-
scribed at (Gal & Ghahramani, 2015a). For the models
with the Gaussian prior we similarly constrained the stan-
dard deviation during the forward pass to be≤ .4. For Deep
Ensembles we used five members with ε = .1 for the adver-
sarial example generation. The predictive performance on
these five classes can be seen in Table 2, with Dropout and
MNFs achieving the overall better accuracies. We subse-
quently measured the entropy of the predictive distribution
on the classes that were hidden, with the resulting empirical
CDFs visualized in Figure 3.

We similarly observe that the network with just weight de-
cay was the most overconfident. Furthermore, Deep En-
sembles and Dropout had similar uncertainties, with Deep
Ensembles having lower accuracy on the observed classes.
The networks with the Gaussian priors also had similar un-
certainty with the network with the log uniform prior, nev-
ertheless the MNF posterior had much better accuracy on

6Computed by pruning weights where log σ2 − logµ2 ≥
5 (Molchanov et al., 2017).

7Assuming that the network is wide enough.
8192 filters at each convolutional layer and 1000 hidden units

for the fully connected layer.

http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
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Figure 3. Empirical CDF for the entropy of the predictive distri-
butions on the 5 hidden classes from CIFAR 10.

the observed classes. The sparsity levels for the network
with the log-uniform prior now were 94.9%, 99.8% for the
convolutional layers and 99.9%, 92.7% for the fully con-
nected. Overall, the network with the MNF posteriors seem
to provide the better trade-off in uncertainty and accuracy
on the observed classes.

Table 2. Test errors (%) with the LeNet architecture on MNIST
and the first five classes of CIFAR 10.

Dataset L2 Dropout D.Ensem. FFG FFLU MNFG
MNIST 0.6 0.5 0.7 0.9 0.9 0.7
CIFAR 5 24 16 21 22 23 16

4.2. Accuracy and uncertainty on adversarial examples

We also measure how robust our models and uncertain-
ties are against adversarial examples (Szegedy et al., 2013;
Goodfellow et al., 2014) by generating examples using the
fast sign method (Goodfellow et al., 2014) for each of the
previously trained architectures using Cleverhans (Paper-
not et al., 2016). For this task we do not include Deep
Ensembles as they are trained on adversarial examples.

MNIST On this scenario we observe interesting results
if we plot the change in accuracy and entropy by varying
the magnitude of the adversarial perturbation. The result-
ing plot can be seen in Figure 4. Overall Dropout seems
to have better accuracies on adversarial examples; never-
theless, those come at an ”overconfident” price since the
entropy of the predictive distributions is quite low thus re-
sulting into predictions that have, on average, above 0.7
probability for the dominant class. This is in contrast with
MNFs; while the accuracy almost immediately drops close
to random, the uncertainty simultaneously increases to al-
most maximum entropy. This implies that the predictive
distribution is more or less uniform over those examples.
So despite the fact that our model cannot overcome adver-

sarial examples at least it “knows that it doesn’t know”.

Figure 4. Accuracy (solid) vs entropy (dashed) as a function of
the adversarial perturbation ε on MNIST.

CIFAR We performed the same experiment also on the
five class subset of CIFAR 10. The results can be seen
in Figure 5. Here we however observe a different picture,
compared to MNIST, since all of the methods experienced
overconfidence. We hypothesize that adversarial examples
are harder to escape and be uncertain about in this dataset,
due to the higher dimensionality, and therefore further in-
vestigation is needed.

Figure 5. Accuracy (solid) vs entropy (dashed) as a function of the
adversarial perturbation ε on CIFAR 10 (on the first 5 classes).

4.3. Regression on toy dataset

For the final experiment we visualize the predictive distri-
butions obtained with the different models on the toy re-
gression task introduced at (Hernández-Lobato & Adams,
2015). We generated 20 training inputs from U [−4, 4] and
then obtained the corresponding targets via y = x3 + ε,
where ε ∼ N (0, 9). We fixed the likelihood noise to its
true value and then fitted a Dropout network with π = 0.5
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(a) Dropout π = 0.5 (b) Dropout learned π (c) FFLU (d) MNFG

Figure 6. Predictive distributions for the toy dataset. Blue areas correspond to ±3 standard deviations around the mean.

for the hidden layer9, an FFLU network and an MNFG. We
also fitted a Dropout network where we also learned the
dropout probability π of the hidden layer according to the
bound described at section 2.3 (which is equivalent to the
one described at (Gal & Ghahramani, 2015b)) using RE-
INFORCE (Williams, 1992) and a global baseline (Mnih
& Gregor, 2014). The resulting predictive distributions can
be seen at Figure 6.

As we can observe, MNF posteriors provide more realistic
predictive distributions, closer to the true posterior (which
can be seen at (Hernández-Lobato & Adams, 2015)) and
with the network being more uncertain on areas where we
do not observed any data. The uncertainties obtained by
Dropout with fixed π = 0.5 did not diverge as much in
those areas but overall they were better compared to the
uncertainties obtained with FFLU. We could probably at-
tribute the latter to the sparsification of the network since
95% and 44% of the parameters were pruned for each layer
respectively.

Interestingly the uncertainties obtained with the network
with the learned Dropout probability were the most “over-
fitted”. This might suggest that Dropout uncertainty is
probably not a good posterior approximation since by opti-
mizing the dropout rates we do not seem to move closer to
the true posterior predictive distribution. This is in contrast
with MNFs; they are flexible enough to allow for optimiz-
ing all of their parameters in a way that does better approxi-
mate the true posterior distribution. This result also empiri-
cally verifies the claim we previously made; by learning the
dropout rates the entropy of the posterior predictive will de-
crease thus resulting into more overconfident predictions.

5. Conclusion
We introduce multiplicative normalizing flows (MNFs);
a family of approximate posteriors for the parameters of
a variational Bayesian neural network. We have shown
that through this approximation we can significantly im-
prove upon mean field on both predictive performance as

9No Dropout was used for the input layer since it is 1-
dimensional.

well as predictive uncertainty. We compared our uncer-
tainty on notMNIST and CIFAR with Dropout (Srivastava
et al., 2014; Gal & Ghahramani, 2015b) and Deep Ensem-
bles (Lakshminarayanan et al., 2016) using convolutional
architectures and found that MNFs achieve more realistic
uncertainties while providing predictive capabilities on par
with Dropout. We suspect that the predictive capabilities
of MNFs can be further improved through more appropri-
ate optimizers that avoid the bad local minima in the vari-
ational objective. Finally, we also highlighted limitations
of Dropout approximations and empirically showed that
MNFs can overcome them.

There are a couple of promising directions for future re-
search. One avenue would be to explore how much
can MNFs sparsify and compress neural networks under
either sparsity inducing priors, such as the log-uniform
prior (Kingma et al., 2015; Molchanov et al., 2017), or em-
pirical priors (Ullrich et al., 2017). Another promising di-
rection is that of designing better priors for Bayesian neural
networks. For example (Neal, 1995) has identified limi-
tations of Gaussian priors and proposes alternative priors
such as the Cauchy. Furthermore, the prior over the pa-
rameters also affects the type of uncertainty we get in our
predictions; for instance we observed in our experiments a
significant difference in uncertainty between Gaussian and
log-uniform priors. Since different problems require differ-
ent types of uncertainty it makes sense to choose the prior
accordingly, e.g. use an informative prior so as to alleviate
adversarial examples.
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