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ABSTRACT

Animal studies have shown that the prediction error (PE) signal that drives fear extinction learning is encoded by phasic activity of midbrain dopamine (DA) neurons.
Thus, the extinction PE resembles the appetitive PE that drives reward learning. In humans, fear extinction learning is less well understood. Using computational
neuroimaging, a previous study from our group reported hemodynamic activity in the left ventral putamen, a subregion of the ventral striatum (VS), to correlate
with a PE function derived from a formal associative learning model. The activity was modulated by genetic variation in a DA-related gene. To conceptually replicate
and extend this finding, we here asked whether an extinction PE (EPE) signal in the left ventral putamen can also be observed when genotype information is not
taken into account. Using an optimized experimental design for model estimation, we again observed EPE-related activity in the same striatal region, indicating
that activation of this region is a feature of human extinction learning. We further observed significant EPE signals across wider parts of the VS as well as in frontal
cortical areas. These results may suggest that the prediction errors during extinction learning are available to larger parts of the brain, as has also been observed in

human neuroimaging studies of reward PE signaling. Conclusive evidence that the human EPE signal is of DAergic nature is still outstanding.

1. Significance statement

When one repeatedly experiences a feared situation in the absence
of the anticipated negative consequences, one usually learns that one’s
fears were unfounded, and fear subsides. In the laboratory, this ‘extinc-
tion learning’ is modeled by first presenting some stimulus A together
with an aversive stimulus, to produce fear of A, and then presenting A
many times, but without the aversive stimulus. In mice, not receiving
the aversive stimulus leads to firing of midbrain dopamine neurons, and
this activity drives the subsequent reduction of fear. We here provide in-
direct evidence using neuroimaging that a similar learning mechanism
may be operating during extinction in humans. This sheds light on the
neurobiological processes putatively underlying the treatment of fear-
related disorders with exposure-based therapy.

2. Introduction

According to associative learning theories (Pearce and Hall, 1980;
Recorla and Wagner, 1972), the accumulation of new information is
driven by a prediction error (PE) — the difference between expected and
observed outcomes. In his seminal studies, Schultz (1998 for review)
found that phasic burst-firing of midbrain dopamine (DA) neurons cor-
responds to a reward prediction error (RPE), tracking unexpected re-
ward. Subsequently, O’Doherty et al. (2003) translated this finding to
humans by showing that the blood oxygenation-level dependent (BOLD)
signal measured with functional magnetic resonance imaging (fMRI) in
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a target region of midbrain DA neurons, the left ventral putamen, cor-
relates with a theoretically derived RPE function. Recently, two imag-
ing meta-analyses demonstrated that the RPE signal is widely scattered
across the whole striatum and also found an association between BOLD
activity and RPE signaling in many cortical areas, especially in cingulate
and medial and lateral frontal areas (Chase et al., 2015; Garrison et al.,
2013).

Fear extinction is a case of associative learning where a stimulus
(conditioned stimulus, CS), previously coupled with an aversive event
(unconditioned stimulus, UCS), is no longer accompanied by the feared
outcome. As a consequence, the conditioned fear reaction (CR) towards
the CS diminishes (Pavlov, 1927). The unexpected omission of an ex-
pected UCS during fear extinction is a better-than-expected outcome
and may be experienced as a pleasant surprise or relief. It has there-
fore been hypothesized that the extinction prediction error (EPE) is
analogous to the appetitive RPE and is mediated by the same neu-
ral substrate (Raczka et al., 2011; Abraham et al., 2014). In line with
this hypothesis, a study by our group (Raczka et al., 2011) found an
EPE signal in an identical subregion of the ventral striatum (VS) as
O’Doherty et al. (2003) that was, furthermore, modulated by a poly-
morphism of the DA transporter gene DAT1. Specifically, subjects with
a less effective transporter variant (and therefore theoretically higher
phasic DA peaks) learned extinction more quickly and exhibited larger
EPE-correlated BOLD activity.

Meanwhile, studies in the fruit fly have shown that the same DA
neuron population that mediates reward learning also mediates ex-
tinction, but not fear, learning (Felsenberg et al., 2018). Further,
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Salinas-Hernandez et al. (2018) showed in the mouse that midbrain DA
neuron firing also tracks EPEs, and optogenetic inhibition of DA neu-
rons precisely at the time of UCS omission was found to inhibit extinc-
tion learning (Luo et al., 2018; Salinas-Hernandez et al., 2018), sug-
gesting the DAergic EPE signal is necessary for fear extinction. Finally,
optogenetic activation of the neurons accelerated learning (Salinas-
Hernéandez et al., 2018), indicating the signal is also sufficient to drive
extinction (Kalisch et al., 2019).

While a DAergic EPE can now be considered established in rodents,
to date there is only one human imaging study (Raczka et al., 2011) link-
ing the EPE with activity in the major output region of the mesolimbic
DA system, the VS. Confirming EPE-related activity in this region, how-
ever, is a prerequisite for further pursuing the DAergic EPE hypothesis
in humans. This criterion should also be fulfilled independently from
the potential contribution of individual genetic differences to the sig-
nal, as were taken into account by Raczka et al. (2011). We therefore
here tried to conceptually replicate Raczka et al. (2011), by predicting
a simple EPE main effect (ignoring genotype) in the same VS subregion
(specifically, the left ventral putamen) that was found by them as well
as by the earlier RPE study by O’Doherty et al. (2003) (main analysis). If
confirmed, such a result would indicate consistency of the current find-
ings with one RPE study (O’Doherty et al., 2003) and one EPE study
where the EPE is considered of DAergic nature (modulated by DATI
genotype; Raczka et al.). In order to compensate for the large sample
sized used in Raczka et al., we optimized our EPE modeling procedures.

To extend these findings, we also searched for significant activation
in the wider striatal region meta-analytically linked with RPE signaling
(Garrison et al., 2013) (secondary analysis). Lastly, we explored potential
extra-striatal EPE signals (additional exploratory analyses).

3. Materials and methods
3.1. Experimental design

3.1.1. Participants

32 participants were recruited for the study. Inclusion criteria were:
(a) age between 18 and 39 years, (b) no self-reported physical, neurolog-
ical or psychiatric illness, (c) no use of illicit drugs, (d) no former partic-
ipation in fear conditioning experiments. Participants were screened for
psychiatric illnesses and drug consumption in a telephone interview and
with an extensive neuropsychiatric interview. We excluded one partici-
pant from all analyses because of technical issues with the scanner, lead-
ing to early termination and an incomplete dataset. The resulting sample
size for the analysis of fear rating data (see 2.1.5) was n=31 (average
age: 23.3 years, range: 19-39 yrs, 19 female). From this subsample, one
additional participant was excluded specifically from the SCR analysis
because he was a non-responder (see 2.1.4), reducing the final sample
size for SCR analysis to n=30 (23.4 yrs, 19-39 yrs, 19 fem.). From the
same subsample of n=31 participants, two participants were excluded
specifically from the fMRI analysis because of excessive head movement
during fMRI acquisition (see 2.1.6) (final sample size for fMRI analysis:
n=29, 23.2 yrs, 19-39 yrs, 18 fem.). Supplementary Table S1 gives an
overview.

The Ethics Committee of the State Medical Board in Rheinland-
Pfalz, Germany, approved the study, and all participants gave written
informed consent.

3.1.2. Experimental task

The experimental task was an fMRI task adapted from
Raczka et al. (2011) and was performed using Presentation® soft-
ware (Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA,
www.neurobs.com). It consisted of three phases that directly followed
each other without pause or announcement: fear acquisition, fear
extinction and fear reacquisition (see Figure S1 for schematic diagram).
Two geometric symbols (square and diamond) were each presented 12

Neurolmage 229 (2021) 117709

times per phase (8s trial duration, inter-trial intervals (ITIs) were jit-
tered between 11s and 14s with a mean of 12.5s) on a black background.
During fear acquisition and reacquisition, one of the two symbols (CS+)
was paired with a painful, but tolerable electric stimulation at the
right ankle (UCS) in 66% of trials. We thus lowered the reinforcement
ratio compared to Rackza et al., who had used an 80% ratio, with the
intention to thereby reduce initial EPEs and accordingly prolong the
time window in early extinction in which a substantial EPE signal can
be detected. The UCS was applied 50ms before the offset of the CS+.
The other symbol (CS-) was never paired with the UCS. Assignment of
symbols to CS+ and CS- was counter-balanced across participants. We
used two fixed trial orders, whereupon 50% of all participants were
assigned to the first and the other 50% to the second order. In both trial
orders, one symbol never occurred more than two times in a row; the
first two trials always contained one CS+ and one CS-; and the UCS was
always omitted at the 1%t, 3", 5™ and 8 CS+ trial of fear acquisition
and the 15, 2nd, 5th and 6th CS+ trial of fear reacquisition.

Participants were instructed to learn about the relationship between
the symbols and the pain stimulus. In Raczka et al.’s paradigm, partic-
ipants had provided a rating of their fear of the last experienced CS+
and CS- after every 12t trial. Thus, ratings in that previous study were
retrospective and infrequent. By contrast, in the present study, partici-
pants continuously indicated their level of fear in a moment-to-moment
manner throughout the entire experiment (during Cs and ITIs). For this
purpose, they used a button box that moved a cursor along a visual ana-
log scale (poles 0 = no fear and 100 = highest level of fear) that was
always present at the bottom of the screen. We reasoned that, by pro-
viding more frequent and momentaneous fear ratings as a basis for PE
model fitting in the task (see below), we would obtain more reliable
and accurate PE estimates. The cursor’s starting position at the first trial
was 50.

Taken together, the adapted version of the Raczka et al. task con-
tained potential improvements, which we expected to increase the sen-
sitivity of PE signal detection in fMRI.

3.1.3. UCS calibration

The UCS was adjusted individually before the experiment to ensure
maximum tolerable pain. Participants were given a series of stimuli of
increasing intensity, starting from the perceptual threshold. After every
stimulation, participants rated their individual pain level on a scale from
1 (very low level of pain) to 10 (the strongest pain one can imagine
given the applied electrode). The stimulation amplitude was increased
until participants did not want to receive higher stimulation (average
stimulation intensity: 13.6uS, SD: 9.7S; average pain level rating: 9.6,
SD: 0.9). Before the experiment, all participants agreed explicitly to the
stimulation amplitude.

3.1.4. Acquisition and preprocessing of skin conductance data

Skin conductance was recorded from self-adhesive Ag/AgACI elec-
trodes (EL-507, BIOPAC® Systems Inc., Goleta, California, USA) at-
tached to the palm of the left hand using a BIOPAC MP150 with
EDA100C device (BIOPAC® Systems Inc., Goleta, California, USA).
The raw signal was amplified and low-pass filtered with a cut-off
frequency of 1Hz. Custom-made scripts running on MATLAB2015b
and MATLAB 2017b (MathWorks, Inc., Natick, Massachusetts, United
States, www.matlab.com) were used for analysis. In deviation from
Raczka et al. (2011), we preprocessed SCRs following the updated anal-
ysis recommendations by Lonsdorf et al. (2019). SCRs were scored man-
ually with a custom-made script running on MATLAB 2015b as the
trough-to-peak difference between the first response onset (between 1s
to 4s following stimulus onset) and the successive response maximum.
Responses smaller than 0.01p were scored as zero. Non-responders were
defined as participants showing more than 50% zero-scored SCR re-
sponses towards the UCS. Using these criteria, one scored participant
had to be excluded from the SCR analysis. SCRs were log-transformed
and range-corrected before statistical testing.
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3.1.5. Preprocessing of fear rating data

Average fear ratings per trial were extracted with a custom-made
script running on MATLAB 2015b from the continuous rating time
courses (from stimulus onset until 50 ms before stimulus offset), result-
ing in trial-by-trial fear rating values.

3.1.6. Acquisition and preprocessing of imaging data

Imaging was conducted on a Siemens MAGNETOM Trio 3 Tesla MRI
system with a 32-channel head coil. FMRI data was acquired using gra-
dient echo, echo planar imaging (EPI) with a multiband sequence cover-
ing the whole brain (TR: 1850ms, TE: 34,6ms, multi-band acceleration
factor: 4, voxel size: 2.1 isotropic, flip angle: 90°, field of view: 210mm).
A high-resolution T1 weighted image was acquired after the end of the
functional sequence for anatomical visualization and normalization of
the EPI data (TR: 1900ms, TE: 2540ms, voxel size: 0.8mm isotropic, flip
angle: 9°, field of view: 260mm).

Preprocessing was carried out in SPM12
(www.fil.ion.ucl.ac.uk/spm) running on MATLAB 2015b (Math-
Works, Inc., Natick, Massachusetts, United States, www.matlab.com)
and was identical to Raczka et al. (2011). The first 5 initial EPI images
were discarded to account for the equilibration effect. Images were
realigned to the 6% volume. Two participants with head motion exceed-
ing a threshold of 3mm in translation respectively 2° in rotation were
excluded. Realigned EPI volumes were co-registered to the anatomical
image. The anatomical image was segmented and normalized to
MNI space. The normalization parameters were then applied to the
EPI volumes. Images were spatially smoothed using a 4mm with a
full-width-at-half-maximum Gaussian kernel. Based on a reviewer rec-
ommendation, we used the ArtRepair toolbox (Mazaika et al., 2009) to
scrub EPI images that correlate with vigorous head movements before
calculating activations. A frame-to-frame displacement threshold of
1mm was used as criterion to determine if a brain volume requires
scrubbing or not. The identified brain volumes were replaced by
interpolating neighboring volumes to remove spikes.

3.1.7. Data and Code Accessibility

The computational modeling and the analysis of the fear ratings and
SCRs and the fMRI analysis were conducted with custom-made Matlab
code optimized for MATLAB 2015b and MATLAB 2017b (MathWorks,
Inc., Natick, Massachusetts, United States, www.matlab.com) and (in
case of fMRI analysis) SPM12 (www.fil.ion.ucl.ac.uk/spm). All multi-
variate statistics were run with SPSS 23 (IBM Corp. Released 2016. IBM
SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp). All
code was run on a Linux Remote-desktop Server (Intel® Xenon® CPU
E5-2690 0, 2.90 GHz processor, 128GB RAM) running on Debian 8. The
code is freely available online (osf.io/qf4vj/; see Table S2 for detailed
explanations). Raw fMRI data files are not accessible due to data protec-
tion rules (GDPR). Statistical images from the single-subject level fMRI
models are available on request. The anatomical masks used for region
of interest (ROI) analyses (see below) are available at osf.io/qf4vj (see
Table S3).

3.2. Statistical analyses

3.2.1. Fear rating and skin conductance data

Fear ratings and skin conductance responses (SCRs) were used to
assess conditioned responding. While fear ratings are subjective and
explicit, SCRs have the advantage of being objective and implicit.
Although modeling was done on fear ratings only (see 2.2.2), SCRs
were acquired to provide important corroborating evidence for suc-
cessful learning and to comply with our laboratory standards. Separate
repeated-measures ANOVAs were used for the analysis of trial-wise fear
rating as well as SCR data, testing for effects of stimulus (CS+ vs. CS-),
time (early trials 1-6 vs. late trials 7-12) and their interactions, sepa-
rately per experimental phase. All univariate tests were performed with
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SPSS 23 (IBM Corp. Released 2016. IBM SPSS Statistics for Windows,
Version 23.0. Armonk, NY: IBM Corp).

3.2.2. Computational modeling of fear rating data

The same computational modeling procedure as in
Raczka et al. (2011) was applied with custom-made scripts run-
ning on MATLAB 2015b. The only exception was that we modeled
trial-by-trial fear ratings instead of retrospective ratings provided
intermittently (see above). Note that, in order to replicate Raczka et al.,
we did not model SCRs. Further, we consistently find in our studies
(including the Raczka et al. study as well as the current one) that SCRs
measured in the MRI scanner show too much trial-to-trial variability to
permit trial-wise modeling.

The modeling procedure is based on a simplified Rescorla-Wagner
(RW) model as an established associative learning model (Rescorla and
Wagner, 1972):

Ve =V + a*(R=-V,)

The model formalizes the expected aversive value V of a given CS
over trials t (V,) (see Fig. 1A). The expected value of a stimulus at the
next trial t+1 is a function of its current expected value modified by the
expectancy violation at the time of occurrence or non-occurrence of the
UCS (i.e., at CS offset) — the aversive prediction error (PE). In fear con-
ditioning, PE equals the difference between the actual aversive outcome
(R) and the current expectancy (V,) and is positive if R is unexpected
or worse than expected. If the UCS is unexpectedly omitted (such as in
unpaired CS+ trials during acquisition or during early extinction), the
aversive PE is negative. The extinction prediction error EPE according
to Raczka et al. is an appetitive signal mediated by the reward system
and opposing, or inhibiting, the aversive learning system that mediates
fear conditioning. It therefore carries an opposite sign to the aversive
PE and, consequently, is positive when a UCS is unexpectedly omitted
(see Fig. 1B, red dots). To update V for the next trial, the PE is weighted
by a learning rate («) that the model assumes to be constant across any
phase of learning. Because, in accordance with Raczka et al., we assume
different learning mechanisms for acquisition and extinction of fear, we
also assume different learning rates for the three experimental phases
(separate free parameters a,cq, dexs Freacq)-

Following Raczka et al., fear ratings were normalized to the average
of the first CS+ and CS- ratings and range-corrected to the minimum and
maximum of all ratings in the sample across all experimental phases.
As a result, the first CS+ and CS- ratings of all subjects became 0.41
(V1) (see Fig. 1A; cf. Raczka et al.: 0.36). R on reinforced CS+ trials
was operationalized on an individual basis as the participant’s last CS+
fear rating during fear acquisition scaled by the CS+ reinforcement ratio
(rating/0.66). This value accordingly represents the aversiveness of re-
ceiving a UCS for each participant individually. For unreinforced trials
(unpaired CS+, all CS-), R was set as the participant’s last CS- fear rat-
ing during acquisition. Thereby, the R term signaled whether a UCS was
delivered or not, providing the critical outcome information whose de-
viation from the expected aversive value V drives learning in the model.
We used individual R values (rather than always setting R at 1 for paired
and 0 for unpaired trials) to factor out any potential inter-individual dif-
ferences in learning that might in fact merely result from differences in
UCS processing.

To estimate the optimal individual learning rates for all phases in
one go, an exhaustive grid-search was performed on all combinations
of a values, ranging from 0.01 to 1 in steps of 0.01. The best indi-
vidual model was selected based on a sum of least-squares (SLS) ap-
proach (best SLS: 0.05). For a sample average of the resulting model,
see Fig. 1A.

3.2.3. Computational modeling of fMRI data
Analogous to Raczka et al. (2011), we set up separate fMRI models
with SPM12 running on MATLAB 2015 for acquisition, extinction and
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reacquisition. All results reported below are based on the same SPM
model. At the single-subject level of analysis, separate event-type re-
gressors (stick functions) for CS onsets, CS offsets (both irrespective
of CS+ or CS-), UCS presentation, and key presses on the button box
modeled the time course of events. The categorical CS onset regressor
was parametrically modulated by the individual’s trial-by-trial V esti-
mate, whereas the corresponding EPE estimate was used as parametric
modulator of the CS offset regressor (see Fig. 1C). V and EPE estimates
were derived from individual RW models using sample-averaged learn-
ing rates per phase (@,cq: M =0.16 (SD =.24), ac,: M =0.27 (SD = 0.31),
Oreacq: M=0.13 (SD = 0.2); cf. Raczka et al.: means 0.16 / 0.21 / 0.19).
By using sample-averaged learning rates, individual activation maps be-
come comparable between individuals. The correlation between the crit-
ical PE regressor and the V regressor was sufficiently small (R=0.17; cf.
Raczka et al.: 0.21) to permit robust estimation. The group-level design
was a flexible factorial design including the parameter estimate images
of the CS onset and offset regressors with their parametric modulators,
separately per phase. Given the focus of this paper, we here only report
results from the extinction phase.

3.2.4. Anatomical hypotheses

Our main hypothesis was EPE-related activation (EPE parametric
modulator of CS offsets) in an a priori region of interest (ROI) consist-
ing in a 6mm sphere centered around the peak voxel in the left ventral
putamen identified by Raczka et al. (Montreal Neurological Institute
(MNI) coordinates x,y,z = -32,8,-6; their Fig. 3b) in their own ROI anal-
ysis based on the RPE results by O’Doherty et al. (2003). See Fig. 2A,

—@ Vest
—— VvCs-

— 4 avrg fear rating CS+
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Fig. 1. Computational modeling results. A) Sample av-
erage of the aversive values (V) of CS+ (black dots) and
CS- (grey dots) derived from the computational model.
Crossed broken lines depict the measured sample-
average CS+ and CS- fear ratings. B) Sample average
of the aversive PEs towards the CS+ derived from the
computational modeling (black dots). Red dots illus-
trate the oppositely signed EPE, as employed for fMRI
analysis. PEs to the CS- are always minimal and are not
shown. C) Parametric modulator for the categorical CS
(CS+ and CS- combined) offset regressor from one trial
sequence, as used in the single-subject level fMRI anal-
ysis to predict EPE-related activity during extinction.

avrg fear rating CS-

—— Aversive PE
—@- EPE

—@— EPE (CS+)
—@®— EPE (CS-)

green voxels. To correct for multiple comparisons, we applied small-
volume correction (SVC) using the family-wise error method (FWE) at
an « threshold of 5% (voxel level).

For alternative, external validation of striatal EPE signaling in a sec-
ondary analysis (same SVC threshold), we used an ROI based on the
whole-brain meta-analysis of RPE imaging studies by Garrison et al.
(2013; their Fig. 4, yellow voxels). To restrict the ROI to striatal voxels,
the whole-brain RPE mask provided by the authors was overlapped with
the Harvard-Oxford masks for caudate, putamen, pallidum, and nucleus
accumbens (Desikan et al., 2006; Frazier et al., 2005; Goldstein et al.,
2007; Makris et al., 2006). This generated one single mask covering the
wider striatum (Fig. 2A, yellow voxels).

In their exploratory analyses, Raczka et al. had also reported EPE-
related BOLD activity in several extra-striatal regions (their supple-
ment). In additional exploratory analyses, we therefore also tested repli-
cability of major extra-striatal activations in 6mm spherical ROIs cen-
tered around voxels in left posterior superior frontal gyrus (-16,2,50),
left lateral anterior cingulate sulcus (-16,40,18), and left intra-parietal
sulcus (-16,-62,44). For one prominent midline activation reported by
Raczka et al. (left basal forebrain; -2,2,-10), the ROI was a midline-
centered box of dimensions 20mm x 16mm x 16mm around coordinates
0,2,-10, as practiced in previous work by our group (e.g., Lonsdorf et al.,
2014). See Fig. 2B. This exploratory analysis was complemented by an
ROI analysis using the extra-striatal voxels of Garrison et al.’s RPE
mask. See Fig. 2C. Extra-striatal activations from both sources do not
overlap.

All ROI masks are freely available (Table S3).
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A Striatal ROls for main and secondary analyses
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B Extra-striatal ROIs (Raczka et al.) for exploratory analysis

Fig. 2. A priori ROIs based on Raczka et al. (2011) and Garrison et al. (2013). A) Striatal ROIs. The green sphere is the left ventral putamen ROI based on Raczka
et al. for the main analysis, yellow voxels are the wider striatal ROI based on Garrison et al. for the secondary analysis. B) Extra-striatal ROIs based on Raczka et al.
(their supplement) for the additional exploratory analysis. C) Extra-striatal ROIs based on Garrison et al. for the additional exploratory analysis.

4. Results
4.1. Fear ratings and skin conductance

Fear rating data (Fig. 3A) showed successful acquisition, extinc-
tion and reacquisition of fear, as evidenced by significant main effects
of stimulus (CS+>CS-) and significant stimulus by time interactions
in all three experimental phases (acq: stimulus: F(1,30) = 17.65, p <
0.001; time: F(1,30) = 7.55, p = 0.010; stimulus by time interaction:
F(1,30) = 27.67, p < 0.001; ext: stimulus: F(1,30) = 18.89, p < 0.001;
time: F(1,30) = 9.64, p = 0.004; interaction: F(1,30) = 17.51, p < 0.001;
reacq: stimulus: F(1,30) = 18.76, p < 0.001; time: F(1,30) = 16.41, p <
0.001; interaction: F(1,3) = 25.6, p < 0.001; Fig. 3B). SCR data (Fig. 3C)
also showed significant stimulus effects in all three phases, indicating
presence of conditioned fear, but these differential CRs did not decline
over the course of extinction (no stimulus by time interaction). Instead,
there was a decline of SCRs to both CS+ and CS- (main effect of time)
(acq: stimulus: F(1,29) = 24.35, p < 0.001; time: F(1,29) = 16.91, p <
0.001; ext: stimulus: F(1,29) = 14.74, p = 0.001; time: F(1,29) = 5.68,
p = 0.024; reacq: stimulus: F(1,29) = 16.35, p < 0.001; Fig. 3D).

4.2. fMRI

Main analysis: conceptual replication of Raczka et al. (2011). The EPE
time course shown in Fig. 1B (red curve) was used to parametrically
modulate the categorical CS offset regressor, as shown in Fig. 1C. As
predicted, we observed significant BOLD activity related to this regres-
sor in our predefined left ventral putamen ROI based on the Raczka et al.
findings (see Methods and Fig. 2A) at peak coordinate x,y,z = -28,4,-8
(Z = 3.77; psyc = 0.01). The peak was part of a cluster located in the
ventral putamen (Fig. 4A left). Another significant peak at -36, 10, -6
(Z = 3.77; pgyc = 0.01) was located on the lateral border of the ROI and
was part of a cluster situated in the insula rather than the ventral puta-
men. It will not be considered in the further (Fig. 4A right). The main
analysis shows that the left ventral putamen is consistently activated to
both RPE (as in the original study by O’Doherty et al., 2003) and EPE
(Raczka et al., 2011, and present study).

Table 1

Results from the secondary analysis applying the striatal RPE ROI
based on Garrison et al. (see Fig. 2A). L/R, left/right; x,y,z, MNI
coordinates of peak activation; kE, number of voxels in cluster; Z,
Z-statistics; psvc, p-value with FWE correction at the voxel level,
using SPM’s SVC.

L/R  Brain region X,¥,2 kg z Psve

L Pallidum -14 6 -8 8 550  p<0.001
L Ventral putamen  -24 6 -2 21 4.60  0.001

L -26 6 -6 442  0.003

L -28 2 -8 4.15  0.009

R Ventral putamen 24 10-4 4 4.19  0.007

R 2280 3.68  0.049

R Caudate 14 6 12 2 3.70  0.046

Secondary analysis: wider striatal EPE signal. Using a striatal ROI de-
rived from a meta-analysis of RPE activation (Garrison et al., 2013; see
Methods and Fig. 2A), we found significant EPE-associated BOLD ac-
tivity in the left and right ventral putamen, the left pallidum and the
right caudate (Fig. 4B, Table 1). This indicates that wider parts of the
striatum, and in particular its ventral aspects, encode an EPE signal, as
has also been observed previously for the RPE (Garrison et al., 2013;
Chase et al., 2015). Note that the results of this and the previous analy-
sis were highly similar when calculating different models that included
either only odd or even CS+s (not shown).

Exploratory analysis: extra-striatal EPE signal. Using four extra-striatal
ROIs derived from Raczka et al. (see Methods and Fig. 2B), we ob-
served significant activity in the left anterior cingulate sulcus (-10,40,18;
Z = 3.93; pgyc = 0.005; and -12,38,14; Z = 3.79; p,,. = 0.008) only. Due
to the exploratory nature of the analysis, we did not correct for testing
multiple ROIs (four), but note that the observed activation would have
survived conservative Bonferroni correction at « = 0.05/4 = 0.0125.
Applying the extra-striatal ROI derived from the RPE meta-analysis by
Garrison et al. (2013) (see Methods and Fig. 2C) revealed significant
activation in midline and right frontal cortices (Table 2).

Fig. S2 and Table S4 report results of an exploratory whole-brain
analysis corrected at p<0.05 FWE, performed for the purpose of hy-
pothesis generation and to facilitate potential meta-analysis. Note that
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Fig. 3. Fear ratings and SCRs. Conditioned responses were assessed as fear ratings (A, trial-by-trial time course; B, early vs. late averages) and SCRs (C, time course;
D, averages). Both measures show stimulus main effects (CS+>CS-) in all phases; fear ratings also show stimulus by time interactions in the three phases. Black: CS+;
grey: CS-. Early: trials 1-6; late: trials 7-12 (as used for ANOVA). Error bars indicate SEM.

Table 2

Results from the exploratory analysis applying the extra-striatal RPE ROI
based on Garrison et al. (see Fig. 2C). L/R, left/right; x,y,z, MNI coordi-
nates of peak activation; kE, number of voxels in cluster; Z, Z-statistics;
psve, p-value with FWE correction at the voxel level, using SPM’s SVC.

L/R  Brain region X,Y,Z kg z Psve

R Supplementary motor area 412 54 14 4.67 0.001
L Supplementary motor area  -14-268 5 4.05 0.010
R Rostral dorsal ACC 8 26 38 8 3.91 0.017

428 40 3.54 0.064

R Inferior frontal gyrus 56 14 16 5 3.79 0.028

this analysis yielded significant activation at the whole-brain level in
the left pallidum peak at -14,6,-8 identified in above secondary analysis
(see Fig. 4B and Table 1), in a peak in the left putamen (-26,8,14), as
well as in numerous frontal, parietal and temporal areas.

5. Discussion

The aim of the present study was to investigate the neural correlates
of the extinction prediction error (EPE) in a task optimized for detecting
EPE signals in fMRI by employing continuous momentary instead of in-

termittent retrospective fear ratings. Using EPE estimates based on these
ratings, we observed that activity in the left ventral putamen follows an
EPE signal over the course of extinction learning. Thus, we conceptually
replicate Raczka et al.’s (2011) finding of EPE-related hemodynamic ac-
tivity in this region. Thereby, our results corroborate the existence of
an EPE signal in this part of the VS. Note that the left ventral putamen
is also the first region in which an RPE signal was detected using fMRI
(O’Doherty et al., 2003) and that it has recently been confirmed as the
area most consistently activated across fMRI studies modeling various
types of PE signals (Chase et al., 2015; their Fig. 5). Our aim to make an
analogy between neural RPE signals and a neural EPE signal correlat-
ing with the omission of an aversive event is based on studies showing
that RPEs and relief-related PEs depend on the same neural signal in the
VS, at least when primary reinforcing stimuli (e.g., pain or non-pleasant
food) are applied (O’Doherty et al., 2004; Seymour et al., 2005). Our re-
sults are clearly in accordance with this line of evidence, which further
confirms their robustness.

Our data further indicate that the EPE signal is not restricted to the
left ventral putamen but rather spreads widely across the VS. As such,
it resembles the RPE, for which a wide striatal representation has also
been demonstrated (Garrison et al., 2013; Chase et al., 2015). The ap-
parent anatomical overlap of EPE and RPE signals is consistent with the
appetitive nature of EPE signals, claimed by Raczka et al. (2011).
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There are no animal studies, to our knowledge, that have performed
a comparable mapping of the spatial distribution of either EPE or
RPE target regions. However, two recent studies in rats have mapped
fMRI activity following electrical and/or optogenetic stimulation of
the ventral tegmental area (VTA), the major source of DA neurons in
the mesolimbic DA system (Lohani et al., 2017; Brocka et al., 2018).
Both studies could not find the fMRI signal to be confined to any spe-
cific subregion of the striatum. This is consistent with the rather non-
specific striatal distribution of RPE and EPE signals in the human fMRI
studies.

Nevertheless, it must be noted that mapping RPE and EPE signals
with BOLD-fMRI represents a methodological challenge, due to the vas-
cular nature of the BOLD signal. So, Brocka et al. (2018) have argued
that BOLD signal increases in DA target regions in the context of pre-
sumed DA neuron activity may not necessarily reflect local neuronal
activity changes resulting from DA release, but may also be due to the
effects of other neurotransmitters released from non-DA cells or to the
effects of DA on the vasculature. This would mean that the BOLD signal
is not well suited to determine the precise location of the striatal region
that receives the DAergic RPE or EPE signal. In any case, the methods
used in the present study cannot establish the DAergic nature of stri-
atal, or other, BOLD signals related to the EPE. Future studies may use
pharmacological manipulations to approach this question.

Another interesting finding of the current study is the existence
of extra-striatal EPE-related BOLD response. This also corresponds
to recent RPE meta-analyses (Garrison et al., 2013; Chase et al.,
2015). The most prominent extra-striatal activation, replicated from
Raczka et al. (2011), was found in the anterior cingulate cortex, an-
other major output station of DA projections (Moore and Bloom, 1978).
It should thus be considered possible that PE processing in appetitive
learning also occurs outside the striatum. Areas like the anterior cingu-
late cortex may give the PE access to working memory space, perhaps
in the form of a consciously perceived surprise signal, and thereby in-
form higher-order or model-based (as opposed to model-free reinforce-
ment) learning systems presumably relying on neocortex (Dayan and
Berridge, 2014). Extra-striatal EPE signaling may also help transform
extinction learning experiences into memory traces of safety that can be
retrieved at later encounters with an extinguished CS and then inhibit
the return of conditioned fear responses (Bouton, 2004). It should be
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Fig. 4. EPE signals in the main and secondary
fMRI analyses. A) Main analysis testing for acti-
vation in the left ventral putamen ROI (derived
from Raczka et al., green mask). B) Secondary
analysis testing for activation in a wider stri-
atal ROI (derived from Garrison et al., yellow
mask). All peaks identified (haircrosses) are
corrected for multiple comparison using SPM’s
small volume correction (SVC), pyp<0.05 at
voxel level. Display threshold serving to illus-
trate the anatomical distribution of the signal:
p=0.001 unc.

noted, though, that the ventromedial prefrontal cortex, which appears to
be particularly important for consolidating and retrieving safety memo-
ries (Gerlicher et al., 2018), was not among the EPE target areas in our
study.

Further methodological limitations of our study are worth men-
tioning. First, the monotonous decrease predicted by our computa-
tional model for the time course of CS+ EPE events (Fig. 1C) raises
the possibility that the EPE fMRI regressor might also capture con-
founding time effects related, for instance, to fatigue or drift. This is
counteracted, however, by including CS- events into the same regres-
sor (Fig. 1C) and by fitting the model in one go across all experimental
phases, such that a series of unpaired CS+s (extinction phase) is pre-
ceded and followed by a series of mostly paired CS+s (acquisition and
reacquisition phases), thereby inducing some fluctuation in CS+ out-
comes. Second, the presence of continuous moment-to-moment fear rat-
ings probably improved detection of conditioned fear and prediction
error modeling, compared to the infrequent retrospective ratings used
in the Raczka et al. (2011) study. However, the ratings might also have
introduced confounding fMRI signal related to movement that might
not be fully captured by including the key presses in the fMRI model.
This means that both studies have complementary strengths and weak-
nesses. The consistency of findings across both studies therefore is the
main outcome of the present investigation and can be considered con-
verging evidence for a ventral striatal EPE signal. We emphasize again
that the present result is a conceptual, but not a direct replication.
Third, we here limited our investigations on the EPE, for which we as-
sumed an appetitive or reward-like nature, but did not address a po-
tential contribution of the aversive learning system and of aversive PE
signaling to extinction. We do not claim an exclusive role of the ap-
petitive system and consider it possible that deactivations of the aver-
sive system at the time of UCS omission in extinction (that is, aversive
PEs; see, e.g., Kroes et al., 2016) may be a parallel driver of extinction
learning.

Taken together, the present report advances the study of human ex-
tinction learning by replicating evidence for a role of the ventral puta-
men in extinction prediction error signaling. It thereby aligns human
extinction learning more closely with recent findings in animal extinc-
tion learning (Kalisch et al., 2019). A key challenge for future research
is to investigate the role of dopamine in these processes.
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