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Abstract. Mobile robot navigation has seen extensive research in the
last decades. The aspect of collaboration with robots and humans sharing
workspaces will become increasingly important in the future. Therefore,
the next generation of mobile robots needs to be socially-compliant to
be accepted by their human collaborators. However, a formal definition
of compliance is not straightforward. On the other hand, empowerment
has been used by artificial agents to learn complicated and generalized
actions and also has been shown to be a good model for biological be-
haviors. In this paper, we go beyond the approach of classical Reinforce-
ment Learning (RL) and provide our agent with intrinsic motivation us-
ing empowerment. In contrast to self-empowerment, a robot employing
our approach strives for the empowerment of people in its environment,
so they are not disturbed by the robot’s presence and motion. In our
experiments, we show that our approach has a positive influence on hu-
mans, as it minimizes its distance to humans and thus decreases human
travel time while moving efficiently towards its own goal. An interactive
user-study shows that our method is considered more social than other
state-of-the-art approaches by the participants.

Keywords: reinforcement learning · empowerment · human-robot interaction

1 Introduction

Recent advances in sensor and control technologies have allowed the develop-
ment of robots assisting people in domestic, industrial, and traffic environments.
One key challenge in such settings, where humans and robots share the same
workspace, is that the robot must plan safe, collision-free paths, which have to
be socially compliant for the humans to accept robots as collaborators in the
long run.

However, moving and thereby interacting with people requires robots to fol-
low specific unwritten social rules, for instance, politely keeping their distance
[29], which depends not only on the situation [27] but also the social context
and the people involved [23]. According to Kruse et al. [17], the three main
requirements for a robot to navigate in a socially compliant way are comfort,
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2 T. van der Heiden et al.

Fig. 1: Our social compliant robot (SCR) uses occupancy maps centered around each
human to compute human empowerment, so it minimally disturbs people to pursue
their goals.

naturalness, and sociability. Robots acting according to these rules will have a
higher chance of acceptance by human users.

Existing methods for social robot navigation either model social conventions
between agents explicitly [22], or implicitly learn them through Imitation Learn-
ing (IL) [26], or even through Reinforcement Learning (RL) [4]. However, ex-
plicitly defining rules or reward functions for social navigation is not straightfor-
ward, while generating a sufficiently large body of training examples for imitation
learning can be cumbersome or infeasible.

Empowerment [16] allows the agent to generate rewards by itself and of-
fers a useful alternative. It is the channel capacity between actions and future
states and maximizes an agent’s influence on its near future. In contrast to
self-empowerment, where a self-empowered agent will try to push others away
to maximize its future rewards, an agent who strives for others’ empowerment
maintains the influence of them on their futures [24].

In this paper, we propose a novel approach to social robot navigation employ-
ing a combination of Reinforcement Learning (RL) and human empowerment to
provide a robot with intrinsic motivation. An agent employing our approach
strives for people’s empowerment to minimize disturbance when pursuing their
goals and respect people’s personal space. Our contribution is to use the con-
cept of human empowerment introduced by Salge and Polani [24] as an intrinsic
reward function for RL for social navigation.

In an extensive evaluation in a simulation environment, we compare our
method with state-of-the-art robotic navigation methods. Inspired by [17], we use
two additional metrics, the distance between human and robot and robot’s jerk,
assessing social behavior to evaluate our approach. Additionally, we study the
robot’s influence on people and vice-versa by introducing two new metrics, the
travel time and distance of humans and the robot. Last, we assess our approach
in a user-study. Our experiments show that our approach can achieve socially
compliant robot navigation by using human empowerment. Finally, our method
applies to any multi-agent system that requires a robot to interact with humans
in a socially compliant way, since it does not require a cost function.
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2 Related work

Many approaches have designed interaction models to enhance social awareness
in robot navigation. We discuss these methods first and motivate the practicality
of Deep Reinforcement Learning (DRL). We proceed by describing empowerment
as a member of a family of intrinsic motivators for RL.

2.1 Social navigation

The goals for social navigation can be divided into three main categories: comfort,
naturalness and sociability [17]. Examples of comfort are respecting personal
space, avoiding erratic behavior, and not interfering with the other’s movement.
Naturalness is mostly related to how similar a robot’s motion is to human be-
havior, e.g., smooth and interpretable, while sociability is mainly associated with
social conventions and etiquettes. Previous works have tried to create naviga-
tion frameworks satisfying all of those requirements. Well-engineered methods
are the Social Force Model (SFM) [11], Interacting Gaussian Process (IGP) [30],
Optimal Reciprocal Collision Avoidance (ORCA) [12] and Reciprocal Velocity
Obstacles (RVO) [32]. Although all of these methods yield collision-free paths,
they rely on manually engineered models with limited additional social charac-
teristics.

In contrast to such model-based approaches, Deep Learning (DL) models
have shown to produce more human-like paths [10]. For instance, Deep Neural
Networks (DNNs) allow policies to better comply with humans’ social rules [7].
Early works separate the prediction of the environment and the policy’s planning
task into two neural networks [2], which could cause the freezing robot problem
since the predicted human motion could occupy all the available future space
[30].

Imitation Learning (IL) and Inverse Reinforcement Learning (IRL) obtain
policies directly from demonstrations [22], which requires an extensive data set
due to the uncertainty of human motion. Alternatively, DRL aims to learn coop-
erative strategies by interacting with the environment [6]. However, the definition
of a suitable cost function that encourages a robot to navigate socially is a chal-
lenging task. Even if a cost function might appear evident in some cases (e.g.,
collision-free and keeping distance to neighbors), it often has to be regularised
to achieve smooth and risk-averse behavior.

2.2 Empowerment

Instead of shaping the reward function to achieve the desired behavior, an emerg-
ing field within RL focuses on intrinsic motivation [21]. There are many dif-
ferent ways to motivate an agent intrinsically, and one possible technique is
called empowerment [15], [25]. Empowerment was applied to teach agents task-
independent behavior and training in settings with sparse rewards, such as sta-
bilizing an inverted pendulum, learning a biped to walk [13]. Aubret et al. [1]
provides a comprehensive survey of empowerment for RL.
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Earlier approaches were only applicable in discrete state-action spaces, but
recently [20] show efficient implementations for continuous settings. In our work,
we will build upon these models.

3 Methodology

Our goal is to teach an agent on how to navigate its target in a socially compliant
manner safely. A combination of two rewards can achieve these two objectives.
In this section, we describe our agent and the two types of rewards.

We consider the system to be Markovian, where each next state xt+1 de-
pends only on the current state xt and agent’s action ut and no prior history. A
value network model Vφ is trained to accurately approximate the optimal value
function V ∗ that implicitly encodes social cooperation between agents and the
empowerment of the people, see Equation 1.

V ∗(xt) =

T∑
t=0

γtRt(xt+1, π
∗(xt)) (1)

Rt(·) is the reward function and π∗ is the optimal policy that maximizes the
expected return, with discount factor γ ∈ (0, 1).

3.1 Reward for safe navigation

The first task of the agent is to reach its goal while avoiding collisions and
keeping a comfortable distance to humans. We consider the number of humans
in each episode to be fixed.

Equation 2 defines the environmental reward function Rt,e(xt, u
π
t ) for this

task with the robot’s state denoted as xt and its action with uπt . Similar to other
DRL methods for social navigation [5], [6], [4] we award task accomplishments
and penalize collisions or uncomfortable distances.

Rt,e(xt, u
π
t ) =


−.25 if di < 0.01

−0.1+di
2 else if 0.01 ≤ di ≤ 0.2

1 else if dg ≤ 0.01

0 otherwise

(2)

Here dg = ‖p − pg‖2 is the robot’s distance to the goal during a time interval
∆t and di = ‖p − pi‖2 is the robot’s distance to neighbor i. It gets rewarded
when its current position p reaches the position of the goal pg, but penalized if
its position is too close to another one’s position pi.

The robot’s own state, x, consists of a 2D position vector p = [px, py]
and 2D velocity vector v = [vx, vy]. The human states are denoted by X =
[X1, X2, ..., Xk], which is a concatenated vector of states of all k humans par-
ticipating in the scene. Each entry is similar to the robot’s state, namely, Xi =
[pi, vi]. The final state of the robot is the concatenation of the state of the humans
and robot, xt = [Xt,xt]. Its action is a desired velocity vector, uπt = vd
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3.2 Empowerment for social compliance

The robot’s second task is to consider people in its neighborhood and respond
to their intentions in a socially compliant manner. Designing a suitable reward
function is a challenging task, among other things, due to the stochasticity in
people’s behaviors. This is where we use empowerment [15], [25], an information-
theoretic formulation of an agent’s influence on its near future.

Human empowerment Empowerment in our case, motivates the robot to ap-
proach states in which its neighbors are most empowered. Now the robot aims to
maximize the empowerment of another person rather than its own, which Salge
and Polani [24] call human empowerment in contrast to robot empowerment. As
a result, the robot will prevent obstructing the human, for example, by getting
too close or by interfering with the human’s actions, both of which Kruse et al.
[17] defined as social skills.

Equation 3 describes the definition of empowerment ε being the maximal
mutual information I for a state zt [15]. It is the channel capacity between
action uωt and future state zt+1, maximized over source policy ω. Policy ω is
part of the human’s decision making system.

ε(zt) = max
ω

I(zt+1, u
ω
t |zt) = max

ω
H(uωt |zt)−H(uωt |zt, zt+1) (3)

The right part defines the empowerment with entropies H(·). It corresponds
to increasing the diversity of decisions, while at the same time limiting those
decision that have no effect. Intuitively, the empowerment of the person reflects
his or her ability to influence their future.

The human state zt takes an ego-centric parameterization [5]. Each state is
an occupancy grid map centered around the person, denoted with gk. It is a 3D
tensor with dimensions c× r×3, where c and r run over the height and width of
the grid. Each entry contains the presence and velocity vector of a neighbor j at
that location ej = [1, vx, vy]. The resulting state of the humans is a concatenated
vector denoted by zt = [g1,g2, ...,gk] and action are continuous values in R2.

Estimating empowerment with neural networks To compute empower-
ment, we consider the mutual information defined by the Kullback-Leibler di-
vergence [18] between the joint p (zt+1, ut|zt) and the product of the marginal
distributions p (zt+1|zt) and ω (ut|zt):

I = DKL(p (zt+1, ut|zt) ‖ p (zt+1|zt)ω (ut|zt))

=

∫∫
p (zt+1, ut|zt) ln

p (zt+1, ut|zt)
p (zt+1|zt)ω (ut|zt)

dz′du
(4)

The main problem in the formulation in Eq. 4 is the intractability due to the
integral of all future states. Since the introduction of empowerment [15], [25]
many have designed methods to deal with this. Recent works provide an efficient
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method to estimate a lower bound on empowerment Î, via variational methods
[13], [20], [3].

Î =

∫∫
p (zt+1, ut|zt) ln

q (ut|zt+1, zt)

ω (ut|zt)
dz′du (5)

Instead of p (zt+1|zt) a planning distribution p (ut|zt, zt+1) is used, which is ap-
proximated with the variational approximation q (ut|zt+1, zt) to obtain a lower
bound. Î can now be maximized over the parameters of the source, ω (ut|zt) and
variational q (ut|zt+1, zt) networks. p (ut|zt, zt+1) is a third neural network that
computes the future state zt+1 from zt and uωt

The gradient can be computed as follows, in which the joint parameters of
ω(·) and q(·) is denoted by θ:

∂

∂θ
Î =

∂

∂θ
Ep(zt+1,ut|zt)

[
ln
q (ut|zt+1, zt)

ω (ut|zt)

]
(6)

Using Monte-Carlo integration to estimate the continuous case, we can obtain
the following gradient:

∂

∂θ
Î ≈

N∑
n=1

∂

∂θ
[ln (q (ut|zt+1, zt))− ln(ω (ut|zt))] (7)

We are free to choose any type of distribution and since human movement is not
discrete, we model both q (ut|zt+1, zt) = N (µq, σ

2
q ), p(z′|u, z) = N (µp, σ

2
p) and

ω (ut|zt) = N (µω, σ
2
ω) as Gaussian distributions.

3.3 Training procedure

The robot with policy π learns to safely navigate to its goal and achieve human
empowered states. This is achieved by training a value network Vφ with the

reward function combining the mutual information Ît(·) and the environmental
reward Rt,e(·). The hyper-parameter β is used to regulate the trade-off between
social compliance and safety:

Rt(zt, xt, u
ω
t , u

π
t ) = (1− β) · It(zt+1, u

ω
t |zt) + β ·Rt,e(xt, uπt ) (8)

A set of demonstrations from the ORCA policy is used to give the robot a
head start. ORCA describes a deterministic control policy [32] and its demon-
strations speed up learning, because experiences in which the robot reaches the
goal are now part of the memory. Next, the behavior policy π collects samples
of experience tuples et = (zt, xt, u

π
t , rt,e, zt+1, xt+1) until a final state is reached.

Random actions are selected with probability ε. Once these are collected, our
hypothetical human policy ω together with q and p are used to estimate Ît.
Finally, the networks are trained with a random mini-batch obtained from the
memory (eb). The value network Vφ is optimized by the Temporal Difference
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Method (TDM) [28] with standard experience replay and fixed target network
techniques [5], [19], [6].

yt = r
(b)
e,t + Î

(b)
t + γtV̂φ̂(z

(b)
t+1, x

(b)
t+1)

φ← φ+ λ∇φ(yt − Vφ(zt, xt))
2

(9)

V̂φ̂ denotes the target network. The networks ωθ and qθ updated through
gradient ascent and pψ via gradient descent:

θ ← θ + λ∇θ Ît
ψ ← ψ + λ∇ψ(z

(b)
t+1 − p(ut, zt))2

(10)

The behavior policy π uses the joined state xt to navigate collision-free to its
goal. p, q and ω take the occupancy grids centered around each human zt as
states for the computation of Ît.

4 Experiments

We conduct three experiments to evaluate our proposed model. The first exper-
iment compares our model against four existing state-of-the-art methods. The
second experiment assess the social competences, based on the metrics defined
by Kruse et al. [17]. The final experiment consists human subjects that evaluate
the models in an interactive simulator.

4.1 Implementation details

The simulator used in this work is from [6]. It starts and terminates an episode
with five humans and the robot. The human’s decisions are simulated by van den
Berg et al. [31], which uses the ORCA policy [32] to calculate their actions.
ORCA uses the optimal reciprocal assumption to avoid other agents. In 4.4,
another simulator is used to control the position of one human manually and
terminates once the human reaches its goal. The code and videos can be found
online3.

We implemented the networks in PyTorch and trained them with a batch size
of 100 for 10 000 episodes. For the value network, the learning rate is λv = 0.001
and the discount factor γ is 0.9. The exploration rate of the ε decays linearly
from 0.5 to 0.1 in the first 5000 episodes and stays 0.1 for the remaining 5000
episodes. These values are the same as Chen et al. [6].

The parameter β is 0.25, because that gave the highest discomfort distance
rate and success rate. The learning rates for the other networks are similar. The
value network is trained with stochastic gradient descent, identical to Chen et
al. [6]. The planning, source, and transition networks are trained with Adam
[14], similar to [13].

3 https://github.com/tessavdheiden/SCR

https://github.com/tessavdheiden/SCR
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4.2 State-of-the-art navigation benchmark

Table 1 reports the rates of success, collision, the robot navigation time, dis-
comfort distance, and the average discounted cumulative reward averaged over
500 episodes. Success is the rate of robot reaching its goal within a time limit
of 20 s. Collision is the rate of the robot colliding with humans. Disc. dist.
is the rate in which the distance between the robot and a human was smaller
than 0.1. We compare our robot with four existing state-of-the-art methods,
ORCA [31], Collision Avoidance with Deep Reinforcement Learning (CADRL)
[5], Long Short Term Memory - Reinforcement Learning (LSTM-RL) [8] and
Socially Attentive Reinforcement Learning (SARL) [6]. As can be seen, our So-
cially Compliant Robot (SCR) and SARL both outperform other baselines on
the standard metrics. Next, we look more thoroughly into the performance of
SCR and SARL.

Table 1: Both SCR and SARL outperform the other baselines, which can be seen by
the best values (grey). ORCA does not have any collisions, because this is the central
idea behind the method (*). The numbers are computed for 500 different test scenarios.

Success Collision Robot Disc. Reward
rate % rate % time dist. %

ORCA 0.99 .000* 12.3 0.00* .284
CADRL 0.94 .035 10.8 0.10 .291
LSTM-RL 0.98 .022 11.3 0.05 .299
SARL 0.99 .002 10.6 0.03 .334
SCR (ours) 0.99 .001 10.9 0.03 .331

4.3 Influence of robot on humans and vice-versa

Table 2 shows travel times and distances of both humans and the robot. Robot
time and Human time are the average navigation times of the agents to reach
their goals. Keeping both low indicates that the robot does not disturb humans
and moves quickly to its target. The path length of the robot, Trav. distance, is
calculated to make sure that it moves without unnecessary detours. The simula-
tor allows making the robot invisible to the humans, which is called the Invisible
baseline (Invisible Baseline (IB)). This baseline serves as a testbed for validating
the other policies’ abilities in reasoning about the interactions with humans.

IB has the highest travel time and distance because it does not influence
humans. On the contrary, SARL has a low travel distance and time, but human
travel times are highest. SARL has learned that humans avoid it. The travel
times of SCR and that of the humans are nearly the same. These numbers
suggest that our method has learned to minimally disturb other people while
moving to its own goal efficiently due to human empowerment.

Next, we examine how we can evaluate social compliance further. Fong et al.
[9] and Kruse et al. [17] state that people judge robots negatively if the separation
distance between them is low and move non-smoothly. Sep. distance is the
distance between a human and the robot and Jerk is the jerk of the robot (ms3 ).
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Table 2: SCR moves efficiently to its target and doesn’t disturb people as their travel
times are low. SARL has learned that people avoid it, so the humans’ travel times are
higher than its own. The IB takes a considerable detour because people do not see it.
Moreover, SCR has the lowest jerk ( m

s3
), since it avoids being close to a person and

non-smooth behavior as this would lower the empowerment of its neighbors.

Robot Trav. Human Sep. Jerk
time distance time distance

IB 11.5 10.7 9.1 .85 .73
SARL 10.6 9.2 10.7 .41 .77
SCR (ours) 10.9 9.3 9.1 .43 .51

The reported numbers are in the last two columns of Table 2. Even though
on average SCR and SARL are close to humans, they do not exceed a minimum
distance of .1m, see collision rate in Table 1. The IB and SARL move with a high
jerk because their reward functions do not incorporate it. On the other hand,
SCR has the lowest jerk because it avoids erratic behavior as that would lower
humans’ empowerment.

4.4 Human evaluation

A successful navigation strategy can best be tested with real persons. To that
end, 30 persons interacted with the robot and controlled the position of one
human in the simulator 3. The robot and humans start at 90◦ from each other
and need to cross the center to reach their goals. The simulator terminates
once the human reaches his/her goal. After that, subjects are asked to rate the
social performance of the robot with a score from 1 to 10 (similar to the study
performed by [26]). A one-way repeated-measure analysis of variance (ANOVA)
was conducted to determine significance, and a significant effect was obtained
(f(2, 27) = 13.485, p < .01).

As can be seen in Fig. 2, both SARL and the IB have similar medians, but
the samples of the baseline deviate more from the median. The IB started to
move away from the human, even before the human started to move. SARL,
on the other hand, moves directly to its own goal. SCR hast the highest score,
which shows the potential of our method.

4.5 Qualitative results

Figure 3 shows SARL and SCR navigating through a crowd of five people. The
left figures shows SARL (a, b) and right SCR (c, d) at two different time steps.
The trajectories indicate that SARL goes directly to its goal, while SCR waits
at t = 6 (c). Moreover, at t = 9.2, SARL has reached its goal, but only two out
of five humans reach theirs (b, purple and light blue stars). In contrast, SCR
reaches its goal at t=10.5, but all people reached their final destinations (d).
SARL overtakes two people (a, red and green) and alters the path of another
(a, blue). On the contrary, SCR lets them pass (c, red, green and blue). SARL
uses occupancy maps to model the pairwise interaction between humans [6], so it
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Fig. 2: The box plots summarize human evaluation scores on three methods, the IB,
SARL and our method (SARL). Both the IB and SARL have almost the same median,
but for the IB the humans’ scores deviate more from the median. Our method obtains
the highest score.

cannot incorporate the robot’s influence on each human. On the contrary, SCR
uses empowerment maps for each human with high values in states in which it
does not block anyone.

(a) SARL t=6 (b) SARL t=9.2 (c) SCR t=6 (d) SCR t=10.5

Fig. 3: SARL (a, b) and SCR (c, e) in a scene with 5 humans. The humans’ destinations
are the opposite of the x, y-axis’ origin from their initial locations. SARL reaches its
destination quickly, but only two out of five humans reach it (b, 2 stars). Two persons
(red, blue) need to adjust their path to avoid the robot (orange). SCR waits at t=6
(c) and all humans reach their destination (d, 5 stars).

5 Conclusion and future work

This paper proposed a reinforcement learning method for social navigation with
intrinsic motivation using the empowerment of surrounding people. Our ap-
proach avoids the hard-coded reward signals and allows people nearby not to
be disturbed by the robot. Our experiments show that our policy outperforms
other methods on social characteristics. The influence of the robot’s motion is
difficult to evaluate by people in simulation. Thus, we also compared the meth-
ods in an interactive simulator and obtained positive results. For future work,
we would like to extend the model to deal with a variable amount of humans
and with different policies. It would also be interesting to extend the method to
incorporate the effect that (non-moving) objects have on humans.
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