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a b s t r a c t

In many forensic psychiatric hospitals, patients’ mental health is monitored at regular intervals.
Typically, clinicians score patients using a Likert scale on multiple criteria including hostility. Having
an overview of patients’ scores benefits staff members in at least three ways. First, the scores may
help adjust treatment to the individual patient; second, the change in scores over time allows an
assessment of treatment effectiveness; third, the scores may warn staff that particular patients are
at high risk of turning violent, either before or after release. Practical importance notwithstanding,
current practices for the analysis of mental health scores are suboptimal: evaluations from different
clinicians are averaged (as if the Likert scale were linear and the clinicians identical), and patients are
analyzed in isolation (as if they were independent). Uncertainty estimates of the resulting score are
often ignored. Here we outline a quantitative program for the analysis of mental health scores using
cultural consensus theory (CCT; Anders and Batchelder, 2015). CCT models take into account the ordinal
nature of the Likert scale, the individual differences among clinicians, and the possible commonalities
between patients. In a simulation, we compare the predictive performance of the CCT model to the
current practice of aggregating raw observations and, as an alternative, against often-used machine
learning toolboxes. In addition, we outline the substantive conclusions afforded by the application of
the CCT model. We end with recommendations for clinical practitioners who wish to apply CCT in
their own work.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Forensic psychiatric hospitals monitor the mental health and
orensic risk factors of their patients at regular intervals, typically
sing a method such as Routine Outcome Monitoring (de Beurs
t al., 2011). A clinician, psychiatrist, or another staff member,
enceforth a rater, scores a patient on historical, clinical, and
rospective criteria. For example, a rater evaluates a patient’s
isk factors and behavior on a variety of criteria that relate to
ggressiveness and the risk of recidivism. Such evaluations are
tored so they may be used to inform future decisions. The
ecisions informed by these ratings can vary widely. For instance,

∗ Correspondence to: University of Amsterdam, Department of Psychological
ethods, Nieuwe Achtergracht 129, 1001 NK Amsterdam, The Netherlands.
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the scores may help adjust treatment to individual patients, the
change in scores over time allows for an assessment of treatment
effectiveness, and the scores may warn staff that particular pa-
tients are at high risk of turning violent. Moreover, these ratings
are key for a quantitative approach to monitoring and forecasting
patients’ behavior.

Current practices for aggregating the scores are suboptimal.
Evaluations from different raters are often averaged as if they
are exchangeable. For example, personal communication with the
staff of a forensic psychiatric hospital suggested that clinicians are
more lenient in their ratings than psychiatrists, but this informa-
tion is not used to weigh their ratings. Furthermore, patients are
analyzed in isolation, as if they are independent of one another.
For example, consider a random sample consisting of patients
with a schizophrenic disorder and patients with an addictive
disorder. The patients are clearly not independent of each other;
patients with the same disorder will most certainly resemble each
other more. Any background information about patients, such as
a patient’s criminal record, is not accounted for and is only seen
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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as static baseline information. In addition, uncertainty estimates
of the resulting score are usually ignored.

Here we address these issues using Cultural Consensus Theory
(CCT; Batchelder & Anders, 2012; Batchelder & Romney, 1988;
Romney, Weller, & Batchelder, 1986). The defining characteristic
of CCT is that it aims to estimate the consensus knowledge shared
by raters. Hence, CCT is a promising framework for analyzing data
of forensic psychiatric hospitals, where the true state of a patient
is unknown and needs to be estimated from the scores given
by the raters. CCT models capture individual differences between
raters and items, and pool information while accounting for these
differences. However, currently available CCT models can only be
applied to the data of a single patient; a limitation addressed in
this paper.3

The focus of this paper is to outline a quantitative program
for the analysis of mental health scores using CCT. First, a CCT
model for ordinal data is introduced (Anders & Batchelder, 2015).
Next, this model is expanded step by step, to allow a more sophis-
ticated account of the data, for instance by describing multiple
patients. We showcase the model in three simulation studies.
First, we illustrate the benefits of this approach by analyzing
two fictitious patients. Second, we show that model parame-
ters are retrieved accurately. Third, we compare the predictive
performance of the CCT model to the current practice of aggre-
gating raw observations and against often-used machine learning
toolboxes such as Random Forest (Breiman, 2001) and Boosted
Regression Trees (Friedman, 2002). We highlight the substantive
conclusions obtained from applying the CCT model and conclude
the paper with recommendations for clinical practitioners who
wish to apply CCT in their own work.

1. Cultural consensus theory and three extensions

The next sections introduce Cultural Consensus Theory (CCT).
First, a brief introduction to CCT is given. Next, the CCT model
developed in Anders and Batchelder (2015, henceforth AB) is in-
troduced, which serves as the simplest model for a single patient.
Subsequently, we generalize the model in three ways. First, the
model is expanded to describe multiple patients simultaneously.
Next, latent constructs are added to the model. Finally, the model
is adapted to include background information on patients and
raters.

1.1. Cultural consensus theory

Cultural Consensus Theory, also known as ‘‘test theory without
an answer key’’ (Batchelder & Romney, 1988), is a statistical tool
that can be used to retrieve the unknown ‘‘truth’’ for an item
by examining the consensus among the responses. For example,
given a political questionnaire, there are no objectively correct
answers. Instead, one could administer the questionnaire to left-
oriented respondents and use CCT to find out what the consensus
is among left-oriented respondents. CCT models can capture that
some responders have a higher competency and will strictly
answer according to the cultural consensus. Likewise, items can
differ in their difficulty, i.e., the competence required to answer
according to the consensus. For a political questionnaire, this
implies that only extremely left-oriented respondents agree with
the most left-oriented political statements. Note that competence
and difficulty parameters are relative to the consensus and do
not refer to absolute competence or difficulty. Instead compe-
tence captures the extent to which a rater evaluates according

3 To be precise, currently available CCT models can only describe two
ierarchical structures, i.e., for data of patients and raters, patients and items,
r items and raters. However, existing CCT models treat the third hierarchical
tructure as non-hierarchical.
to the group consensus; likewise, difficulty captures how high a
rater’s competence must be to be expected to answer an item
according to the group consensus. In addition, CCT models can
be expanded to allow for multiple consensus truths, that is, there
can be multiple unknown truths that vary across subgroups of
respondents (Anders & Batchelder, 2012). For a political ques-
tionnaire, the different consensuses (e.g., left, right, center, etc.)
and respondents membership to these groups would be esti-
mated from the data. The property of CCT models to estimate
the consensus truth from the data is ideal for psychiatric data,
where a patient’s true state is unknown and a consensus from
the raters is desired. CCT models can be applied to continuous
data (e.g., the LTM;Batchelder & Anders, 2012), categorical data
(e.g., the General Condorcet model; Batchelder & Romney, 1986),
and ordinal data (AB). Since ratings are usually given on a Likert
scale, we focus on a CCT model for ordinal data.

1.2. The latent truth rater model

As a starting point, consider the Latent Truth Rater Model
(LTRM), a cultural consensus model for ordinal data introduced
by AB. Fig. 1 shows a graphical model of the LTRM and Table 1
provides an overview of the parameters. The LTRM captures
differences among raters and items and may be viewed as the
simplest model for a single patient.

The rating of rater r on item i is denoted xri and takes on
discrete values from 1 through C . AB formalize the core ideas of
the LTRM with 6 axioms, which are briefly repeated here. There is
an unknown latent shared cultural truth among the raters, which
is captured by the item location parameters θi (AB’s axiom 1).
Since raters are not perfect measurement instruments, they infer
a noisy version of the cultural truth for each item, called a latent
appraisal and defined as yi = θi+ϵri, where ϵri ∼ Logistic (0, ζr/κi)

AB’s axiom 2). The logistic density with location l and scale s is
efined as

ogistic (x; l, s) =
exp

(
−

x−l
s

)
s
(
1 + exp

(
−

x−l
s

))2 where s > 0.

The scale of the logistic distribution for the latent appraisals
consists of two components. Differences in item difficulty are cap-
tured by κi and differences in rater competence are captured by ζr
AB’s axiom 3). The ratio of item difficulty over rater competence
s the variance of the latent appraisal. For example, if an item is
ifficult then the variance of the latent appraisals is high, which
eads to a spread-out probability distribution over observed rat-
ngs. Likewise, if the rater competence is high, then the variance
f the latent appraisals is low and the probability distribution
ver observed ratings is concentrated. Latent appraisals yri are
ssumed to be conditionally independent given the latent truth
i, the item difficulty κi, and the rater competence ζr (i.e., their
oint distribution can be factored into a product of univariate
istributions that only depend on the three aforementioned pa-
ameters; AB’s axiom 4). So far, the axioms describe a continuous
atent process that underlies each observation. To translate these
ontinuous latent appraisals to categorical responses, it is as-
umed that there exist C − 1 ordered thresholds δrc , such that
each xri is generated deterministically in the following way (AB’s
axiom 5):

xri =

{1 if yri ≤ δr1
c if δr,c−1 < yri ≤ δrc
C if yri > δr,C−1

where c = 1, . . . , C . The appraisal yri is latent and thus we con-
sider the probability that an appraisal falls between two thresh-
olds to obtain the probability of an observed score. This makes the
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Fig. 1. Graphical model corresponding to the LTRM; a CCT model for a single patient. xri is an observed response, yri is the underlying continuous latent appraisal, θi
is the underlying latent appraisal, and ϵri is the appraisal error. Furthermore, κi and ζr capture the item difficulty and rater competence respectively. The unbiased
thresholds are denoted γc , the scale and shift parameters are αr and βr respectively. The transformed thresholds are denoted δrc . The group-level means and standard
deviations are denoted µ and σ respectively. The priors on the group-level parameters are omitted. Gamma distributions are parametrized with shape and scale so
that the group-level parameters correspond to the mean and standard deviation of the distribution.
Table 1
Overview of the parameters in the LTRM. The first column indicates the parameter, the second the parameter
bounds, and the third provides the definition or prior distribution of that parameter. The last column provides a
brief description of the parameter.
Parameter Domain Definition/prior Meaning

yri R θi + ϵri Appraisal of rater r on item i.

γc [0, 1] logit (c/C) Unbiased thresholds for outcome c .

δrc R αrγc + βr Transformed thresholds for rater r on outcome c.

ϵri R Logistic (0, κi/ζr ) Residual of appraisal.

θi R Normal
(
µθ , σ 2

θ

)
Location of item i.

κi R+ Gamma
(
µ2

κ/σ2
κ , µκ/σ2

κ

)
Difficulty of item i.

αr R+ Gamma
(
µ2

αr/σ2
αr ,

µαr/σ2
αr

)
Scale-bias of rater r .

βr R Normal
(
µβr , σ 2

βr

)
Shift-bias of rater r .

ζr R+ Gamma
(
µ2

ζr/σ2
ζr ,

µζr/σ2
ζr

)
Competence of rater r .
a
0
t
u
p
c

i
m
κ

d
a
t
p
T
o
e
r
o
s
c
m
u
t
T
0

generating process of xri probabilistic and described by an ordered
logistic distribution,4 which gives:

P(xri | yri, δr ) =

⎧⎪⎨⎪⎩
1 − F (yri − δr1) if xri = 1,
F

(
yri − δr,c−1

)
− F (yri − δrc) if 1 < xri < C,

F
(
yri − δr,C−1

)
if xri = C .

here F (x) =
(
1 + e−x

)−1, the cumulative distribution function
f the standard logistic distribution. The thresholds δrc accommo-
ate the response biases of the raters. AB do so by estimating
− 1 ordered thresholds γ and defining δrc = αrγc + βr (AB’s
xiom 6). This translation of thresholds is called the Linear in Log
dds function and is a useful tool for capturing bias in probability
stimation (Anders & Batchelder, 2015; Fox & Tversky, 1995; Gon-
alez & Wu, 1999). Specifically, the scale parameter concentrates
he thresholds closer together or farther apart, and thus can yield
flat or peaked probability distribution, respectively. The shift
arameter β moves all thresholds up and down relative to the
tem location and thus captures the fact that some raters give
igher overall ratings than others.
Fig. 2 provides an intuition for how the ordered logistic dis-

ribution can model different outcomes by varying only the rater

4 The choice for an ordered logistic distribution is arbitrary and an ordered
probit distribution could also be used, as was done by AB. We use a logistic
distribution rather than a normal distribution because its cumulative distribution
function has an analytic expression.
parameters. The latent appraisal y is fixed to 0, the thresholds γ

re equal to logit (c/C) such that P(xri | y = 0, γ , αr = 1, βr =

) is uniform, and the scale αr and shift βr vary. In the left panel,
here is no response bias, αr = 1 and βr = 0, which yields a
niform distribution over the predicted Likert scores. In the right
anel, an increase in response scale and shift, βr = .5 and αr = 2,
oncentrates the predicted Likert scores around 2 and 3.
The LTRM is a complex model and unfortunately suffers from

dentification issues, as AB already pointed out. For example,
ultiplying the rater competences ζ and the item difficulties
by a constant c yields an identical variance for the appraisal
istribution since cζ/cκ = ζ/κ. Such identification problems are
voided by restricting the mean of the respective parameters
o 1 (as suggested in Appendix C in AB). Another identification
roblem originates from estimating the thresholds individually.
he number of thresholds, C − 1, increases with the number
f response options. This introduces a large number of param-
ters that can be difficult to estimate, in particular when some
esponse options are not observed (i.e., when there are ceiling
r floor effects). In addition, the model is only identified if the
um of thresholds is zero (

∑C
c=1 γc = 0; otherwise adding a

onstant to θ i and δc yields an identical likelihood). Rather than
odeling each threshold individually, we describe the thresholds
sing only two parameters per rater. Specifically, we model the
hresholds as deviances from an initial guess, γc = logit (c/C).
his yields a set of thresholds such that if the latent appraisal is
then P(x ) is uniform. Response biases are incorporated in the
ri
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Fig. 2. The ordered logistic distribution relates latent appraisals yri to response categories γ = 1, . . . , 5 via category thresholds δ1, . . . , δ4 . The implied probability
istribution over response categories is shown inside each panel. In the left panel, there is no response bias, αr = 1, βr = 0. As a consequence, the distribution over
he predicted Likert scores is uniform. In the right panel, the thresholds are shifted right, βr = 0.5, and the scale increased slightly, αr = 2, such that the distribution
ver predicted Likert scores is peaked on outcomes 2 and 3. In both panels, the item location parameter θi is 0.
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ame manner: δrc = αr logit (c/C)+βr . This simplification can still
apture a wide variety of data sets (Selker, van den Bergh, Criss,
Wagenmakers, 2019).

.3. Three extensions

The LTRM as described above has many desirable properties;
or instance, it captures individual differences among both raters
nd items. However, many properties of psychiatric data are not
aptured by the model. Three extensions generalize the LTRM to
mprove its capacity to describe the data at hand.

.3.1. Extension I: Multiple patients
The first extension allows the model to describe multiple

atients instead of a single patient. Since even patients with the
ame disorder can have different ratings for the same item, the
atent truth for an item varies across patients to reflect this.
ikewise, it can be more difficult for raters to answer specific
tems according to the consensus, but only for some patients. To
escribe parameters that vary across patients we introduce the
ubscript p for patient. Both these changes can be achieved by
llowing the item truth θip and item difficulty κip to vary across
atients, so that the latent appraisal yrip varies across patients.
ote that item difficulty is no longer specific to items, but also
aptures the interaction between patients and items. Modeling
his interaction is useful when, for example, a patient barely
ooperates with a question about his or her feelings; as a result, it
s hard to score this item according to the consensus, but only for
his patient. As in Fig. 1, we assume that the patient parameters
re drawn from a group-level distribution with unknown mean
nd variance, for instance, the item difficulty could follow a
amma distribution with unknown mean and variance (i.e., κip ∼

amma
(
µ2

κ/σ2
κ , µκ/σ2

κ

)
).

.3.2. Extension II: Latent constructs
Often, we are not just interested in the latent truth of a

ingle item, but also in a construct that is measured by multiple
tems. For instance, the latent construct aggressiveness could be
easured with multiple items. To allow the model to measure
onstructs, we introduce a latent variable ηpl that represents
he score of patient p on latent variable l. Items can load on
ifferent latent variables, which introduces a factor model over
he items. The relation between the latent construct l and the
tem consensus i is given by the factor loading λil, such that
ip ∼ Normal

(
λilηpl, σ 2

ηp

)
. The measurement model, i.e., which
tems load on what latent construct, is assumed to be known. v
As prior distribution on the latent constructs ηpl we used a
ormal distribution with mean 0 and variance 1, which reflects
hat the mean and variance of a latent variable are typically
nidentified. In addition, simulations showed that the estimated
egressions weights and the estimated patients’ scores on the
atent constructs exhibited label switching. For example, multi-
lying both the latent constructs η and the factor loadings λ by
1 yields the same distribution over the item truths. To avoid

abel switching, we restricted the factor loadings to be positive.
ince we assume the factor structure to be approximately known,
tems that will have a negative loading on the latent construct
an be reverse-scored. Here, approximately implies that if an item
oads on a scale, we know whether it correlates positively or
egatively with the scale although the magnitude is unknown.

.3.3. Extension III: Patient and rater information
The third extension adds background information about raters

nd patients to the LTRM. This helps the model to capture that,
or instance, patients with a pedophilic disorder are typically
ess aggressive than murderers. Discrete patient characteristics,
uch as criminal record, and rater characteristics are captured by
ntroducing separate parameters of the group-level distributions
or each level of the discrete characteristic. For example, the mean
f the group-level distribution of the aggressiveness scale is es-
imated separately for murderers and patients with a pedophilic
isorder. More formally, background information is represented
y a categorical indicator wp that takes on values 1 through D for
ach patient p. The group-level distribution for factor scores then
ecomes ηpl ∼ Normal

(
µwp l, σwp l

)
.

Rater characteristics are denoted zr and are incorporated in
imilar manner. Rater characteristics influence the group-level
istributions of rater-specific parameters, which yields βr ∼

ormal
(
µzr , σzr

)
. For instance, this could capture that clinicians

ive more lenient ratings than psychiatrists. Similarly, the group-
evel distribution of αr could also be modeled as a function of
ater characteristics. However, we did not include this in the
odel as there was no empirical observation that implies the
cale parameters differ across groups of raters.
In the simulation studies, we restrict the analysis to discrete

ackground information. However, continuous background in-
ormation could also be used. Consider for instance the time a
atient is committed to a psychiatric hospital, Timep. This infor-
ation can be added as a regression on the mean of the group-

evel distribution. Thus, ηpl ∼ Normal
(
µwp l + ν Timep, σwp l

)
,

here ν is the regression coefficient from the time a patient is
ommitted Timep on the mean of the group-level distribution.
It is important to consider that the influence of background
ariables can differ across latent constructs. For instance, the
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Fig. 3. Graphical model corresponding to the CCT model for multiple patients. The data xrip , latent appraisals yri , latent truths θip , and item difficulty κip now vary
across patients, as indicated by the subscript p. Furthermore, for raters, competence, scale and shift are captured by ζr , αr , and βr respectively. The unbiased and
biased thresholds are denoted γc and δrc . Rater and patient covariates are represented by zr and wpl , whereas their effects are captured by the vectors µβ and µη

respectively. The prior distributions are shown on the right for modified parameters. Priors not shown can be found in Fig. 1. The prior distributions for the extended
LTRM were chosen to be weakly informative.
Table 2
Overview of the parameters in the extended LTRM. The first column indicates the parameter, the second the
parameter bounds, and the third provides the definition or prior distribution of that parameter. The last column
provides a brief description of the parameter.
Parameter Domain Definition/prior Meaning

yrip R θip + ϵri Appraisal of rater r on item i and patient p.
γc [0, 1] logit (c/C) Unbiased thresholds for outcome c .
δrc R αrγc + βr Transformed thresholds for rater r on outcome c.
ϵrip R Logistic (0, κip/ζr ) Residual of appraisal.
θip R Normal

(
λilηpl, 1

)
Location of item i for patient p.

κip R+ Gamma
(
µ2

κ/σ2
κ , µκ/σ2

κ

)
Difficulty of item i for patient p.

αr R+ Gamma
(
µ2

αr/σ2
αr ,

µαr/σ2
αr

)
Scale-bias of rater r .

βr R Normal
(
µzrβ , σ 2

βr

)
Shift-bias of rater r .

ζr R+ Gamma
(
µ2

ζr/σ2
ζr ,

µζr/σ2
ζr

)
Competence of rater r .

λil R+ Normal+ (0, 10) loading of θip on factor ηpl .
ηpl R Normal

(
µwp l, σ 2

p

)
latent construct underlying θip .

µβ R Normal (0, 10) Rater group effects.
µη R Normal (0, 10) Latent construct group effects.
wp {0, 1, . . . } Data Indicator variable that groups patients.
zr {0, 1, . . . } Data Indicator variable that groups raters.
effect of a patient’s crime varies across latent constructs, allowing
the model to capture that patients with a pedophilic disorder
and murderers differ in aggression, but not on depression. This
is accomplished by estimating the effect of a patient’s crime
separately for each latent construct.

Fig. 3 graphically summarizes the extended LTRM and Table 2
rovides an overview of the parameters. The extended LTRM
irst separates the rater-specific influences from the data xrip,
hereby accounting for different groups of raters. This results in
a latent consensus for each item and patient θip. This consensus
is subsequently used as an indicator for a latent construct for
all patients and constructs ηpl. The relation between the latent
construct and the items is given by the factor loadings λil, such
that θip ∼ Normal

(
λilηpl, 1

)
. The factor scores also incorporate

patient-specific background information, such as the crime a
patient committed.

2. Implementation

The next sections illustrate the LTRM in a variety of scenarios.
First, we demonstrate the benefit of the LTRM over the rawmeans
in an example analysis of two fictitious patients. Second, we
demonstrate that the parameters of the LTRM can be accurately
recovered. Last, we compare the predictive performance of the
LTRM to the unweighted mean of the observations and two
machine learning toolboxes.

We estimate the parameters of the LTRM and the extended
LTRM using a Bayesian approach. Therefore, we are interested in
the posterior distributions of the model parameters. All models
were written in Stan and approximated the posterior distribu-
tions with variational inference (Carpenter et al., 2017). We opted
to use variational inference over traditional Markov chain Monte
Carlo because it was computationally fast while providing similar
results in terms of parameter retrieval and model predictions. All
data were simulated using R (R Core Team, 2019) and Stan models
were run using the R package RStan (Stan Development Team,
2019). R files and Stan models are available in the online appendix
at https://osf.io/jkv38/.

3. Example analysis

Here we showcase the benefits of a CCT analysis by examining
results for two patients that are part of a sample of 50 fictitious
patients. This example demonstrates how misleading the sam-
ple mean can be. We simulated a data set of 50 patients, 10
raters, 20 items, and 5 answer categories. The items loaded on
3 latent constructs, further referred to as aggressiveness, anxi-
ety, and depression. A patient-specific covariate consisting of 5
categories was added to mimic the effect of a patient’s criminal
offense. Similarly, two categories were of raters (e.g., clinicians
and psychiatrists) were simulated. Next, we selected two pa-
tients whose differences in observed means were small relative
to their differences in posterior means on the latent constructs.
The means for items of each construct are shown in Table 3. The
aggregates of the raw scores suggests that these two patients
might differ in aggressiveness and depression but not in anxiety.
However, after fitting the extended LTRM to the data it becomes
apparent that there is more to the data than what is shown by
these averages. Using the extended LTRM, we can visualize the

https://osf.io/jkv38/
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Fig. 4. Approximate posterior densities for the ηpl of two patients with similar response patterns. The panels show different latent constructs. The posterior
istributions suggest these patients differ on all three latent constructs, unlike what the raw means in Table 3 would suggest. This demonstrates that more information
an be obtained from the ratings than what may be obvious from the raw scores. The squares underneath the density indicate the true values used to simulate the

ata.
Fig. 5. True value used for data simulation (x-axis) and posterior mean of that parameter (y-axis), for all parameters of the LTRM. Above each panel is indicated
which parameter is shown.
Table 3
Raw means of the observed ratings for the two patients with similar mean
responses. The standard errors of the means are shown in parentheses. The
means and standard errors are computed for each scale.

Construct

Aggressiveness Anxiety Depression

Patient 1 3.86 (0.14) 3.04 (0.19) 3.65 (0.18)
Patient 2 3.29 (0.17) 3.00 (0.18) 2.93 (0.21)

posterior distributions of the latent constructs for both patients,
shown in Fig. 4.

The posterior distributions tell a different story than Table 3.
emarkably, for Anxiety where the raw means are approximately
qual, the posterior distributions differ. This difference can be
uantified by computing the posterior probability that patient 1
as a larger value on a latent trait than patient 2. This probability
s approximated by counting how often the posterior samples of a
atent construct are larger for patient 1 than for patient 2. For all
hree constructs, the probability that patient 1 has a higher score
s larger than 0.99 (Fig. A.1 visualizes these probabilities).

Altogether, this example shows that there is more informa-
ion in the data than what the averages convey. Examining the
arameters of the data generating model more closely reveals
wo reasons for this discrepancy. The first reason is that the item
ifficulty parameter κ differed among the patients for the anxiety
tems (the average item difficulty for anxiety was 1.42 for patient
1 and 0.88 for patient 2). The second reason is that the ficti-
tious patients differed in background information, that is, they
committed different crimes. This means that the population level
distributions for the latent constructs differ for these patients.

In this example, all raters rated both patients. In practice, the
ratings of different patients are likely given by different raters,
which introduces a third source of bias. The discrepancy between
the sample mean and posterior mean is shown for all patients in
Fig. A.2, which further emphasizes that the sample mean is an
inadequate description of the patients’ scores.

Naturally, the sample mean need not always perform this
poorly. The more the data from different raters, items, and pa-
tients are exchangeable, the closer the predictions of the LTRM
will be to that of the sample mean.

3.1. Parameter retrieval

A key step in developing a model is to assess if the model
parameters can be retrieved accurately. For this purpose, we
simulated data as in the previous example; the simulated data
set consisted of 50 patients, 10 raters, 20 items, and 5 answer
categories. The items loaded on 3 different latent constructs. A
patient-specific covariate, consisting of 5 categories was added
to mimic the effect of a patient’s criminal offense. Similarly, two
different categories of raters were assumed. These simulation
settings resemble data sets often obtained in clinical practice (e.g.,
Kamphuis, Dijk, Spreen, & Lancel, 2014). Fig. 5 displays the true

values against the posterior means for each parameter. Details
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and code to replicate the simulation can be found at https://osf.
io/jkv38/.

All parameters are retrieved adequately. An exception is the
item difficulty κ whose estimates appear more variable as the
true item difficulty increases. The spread in posterior means
of the item difficulty is similar to that in Figure 6 in AB. The
item truths θ seem underestimated as their absolute magnitude
increases. The hierarchical structure of the extended LTRM likely
shrinks the item truths towards the mean. Typically, there is more
shrinkage if the values of the parameter are larger, as is the case
here. The bias in the item truths does not appear to influence
the retrieval of any other parameters, for example, the latent
construct scores η are retrieved accurately.

Although it is good to know when the parameters of the
extended LTRM can be recovered, it may be more useful to
know when the data are not sufficiently informative to apply the
extended LTRM. This is likely the case when there are few items
and raters. Exact numbers, however, may vary depending on the
specific situation at hand. For most purposes, it is straightforward
to adjust the number of raters, items, and patients, and then
repeat the simulation. As an exercise, we also recovered the
parameters for AB’s LTRM. Code for the simulation is available in
the online appendix and parameter recovery is shown in Fig. B.1.

3.2. Predictive performance

Here, we compare the predictive performance of the LTRM to
that of the sample mode, the sample median, the sample mean
rounded towards the nearest integer, and, as a more informa-
tive comparison, to Random Forest and Boosted Regression Trees
(Boosting). The sample mode is the most often observed out-
come (since the data are discrete). Random Forest and Boosting
analyses were done using the R packages ranger and gbm re-
spectively (Greenwell, Boehmke, & Cunningham, 2019; Wright &
Ziegler, 2017). We used the default settings for the hyperparam-
eters in both R packages. Each method made predictions on the
level of the raw data, that is, the observed ratings. Performance
is assessed by quantifying the distance between the predicted
ratings and the simulated true ratings.

Here we briefly introduce Random Forest (Breiman, 2001) and
gradient boosted regression trees (Friedman, 2001). Random For-
est and Boosting are tree-based machine learning methods that
learn from a training data set in order to predict out-of-sample
observations. Both methods can be used across a wide range
of applications. The methods make no parametric assumptions
and their predictions tend to generalize extremely well to new
observations.5 However, both Random Forest and Boosting also
have downsides. Both models are so-called black boxes, that is,
their parameters are statistically unidentified and do not have
a meaningful interpretation. So although their predictions are
often on point, they cannot answer the how or the why of the
phenomena they predict. Furthermore, these models cannot be
simulated from and they do not provide uncertainty estimates.

We simulated two data sets each consisting of 20 raters, 30
items, 50 patients, and thus in total 30,000 observations. Pa-
tients were scored on a 5-point Likert scale. The first data set
represented a dense design, where all raters scored all patients.
The second data set represented a sparse design, where each
rater scored 10 patients, which mimics the practically plausible
situation where ratings of different patients are given by different
raters. Raters were pseudo-randomly assigned to patients so that

5 On kaggle, an online platform for machine learning competitions, Ran-
om Forest and Boosting are among the most successful machine learning
echniques, see https://www.kaggle.com/bigfatdata/what-algorithms-are-most-
uccessful-on-kaggle.
Table 4
Prediction accuracy for the Extended LTRM, the LTRM, Random Forest, Boosting,
the sample mean, the sample median, and the sample mode. The LTRM
outperforms all other methods, but Random Forest and Boosting perform worse
than the sample mode. Since the data are simulated the choices for the
simulation settings are somewhat arbitrary, and different settings could yield a
very accurate or very inaccurate predictive performance (e.g., by adjusting item
difficulty and rater competence). Therefore, the absolute prediction error cannot
be interpreted and only a relative comparison should be made. Since there were
5 possible outcomes, an accuracy of 0.2 corresponds to chance performance.
Method Dense Sparse

Extended-LTRM 0.52 0.41
LTRM 0.46 0.34
Sample mode 0.43 0.33
Random Forest 0.42 0.36
Boosting 0.41 0.35
Sample median 0.33 0.32
Sample mean 0.23 0.27

the number of obtained scores was about equal for all patients. To
simulate a sparse data set, we first simulated a dense data set and
subsequently removed a score if the rater did not rate a patient.
This remaining sparse data set consisted of 6000 observations.
Next, both data sets were split into a training set (80%) and a
test set (20%). The performance of the six methods was evaluated
by training the models on the training set and using the trained
model to predict the outcomes for a test set. For the LTRM and
the extended LTRM, we used the mode of the posterior predic-
tive distribution as a point-prediction.6 Predictions for Random
Forest and Boosting were obtained by taking the majority vote of
the trained classification trees.7 For the observed sample mean,
median, and mode we used all observations for the same rater,
item, or patient. 8

We quantified predictive performance by computing the con-
fusion matrix between observations in the test set and predicted
values; a contingency table with correct predictions on the diag-
onal. Prediction accuracy is defined as the proportion of correct
predictions (see Table 4).

Given that the data were generated by the Extended LTRM,
it comes as no surprise that it predicts more accurately than
the other methods. However, even though data generated from
the Extended LTRM is likely a gross simplification of reality, the
results show that black-box machine learning methods perform
somewhat adequately. This is somewhat surprising because the
data at hand are ill-suited for black-box machine learning meth-
ods, as these have difficulty capturing the hierarchical structure of
the data which contains most of the information (but see Hajjem,
Bellavance, & Larocque, 2014). Instead, if a lot of background
information about patients and raters is available, this could likely
improve their performance. However, machine learning methods
do not provide interpretable models, which may be undesirable
in practice because it makes it difficult to substantiate decisions.

6 In this particular example, model predictions could also be interpreted as
imputing missing values. If these are regarded as missing observations rather
than predictions, they should be modeled as unknown discrete parameters of the
model (Ch. 8; Gelman et al., 2014). That way, uncertainty about these missing
observations is propagated into the parameters. Although we did not sample
the missing observations from the joint posterior distribution, the code in the
online appendix does show how to do this.
7 In random Forest and Boosting, a large number of classification trees are

fit to (subsets) of the data. To make a prediction, each tree makes a prediction
and the most frequently predicted outcome is the final prediction.
8 Predictions for the mode, median, and mean are obtained in the following

manner. Let a negative subscript refer to all observations except that particular
one, e.g., x−r,ip refers to x1,ip, x2,ip, . . . , xr−1,ip, xr+1,ip, . . . , xR,ip; all observations
for item i and patient p but not observation rip. Then predictions for the mode,
median, or mean are obtained by taking respectively the mode, median, or mean
of x , x , and x .
−r,ip r,−i,p ri,−p

https://osf.io/jkv38/
https://osf.io/jkv38/
https://osf.io/jkv38/
https://www.kaggle.com/bigfatdata/what-algorithms-are-most-successful-on-kaggle
https://www.kaggle.com/bigfatdata/what-algorithms-are-most-successful-on-kaggle
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4. Discussion

In this paper, we extended the Cultural Consensus model
developed by Anders and Batchelder (2015) to apply to mental
health scores of patients in forensic psychiatric hospitals. The
original model was suited for data from a single patient and we
extended this to multiple patients, latent constructs, and patient-
and rater-specific covariates. The benefit of this approach is that
we can obtain estimates for, for example, a patient’s aggressive-
ness while accounting for rater bias, item-specific measurement
error, and the nature of a patient’s previous criminal offense. We
have shown in a simulation that the parameters of the extended
LTRM can be retrieved accurately.

Although the LTRM provided better predictions than black-box
machine learning approaches, this is likely because the data were
simulated from the LTRM. In practice, it might be advantageous
to combine the results from the LTRM with a machine learning
method, as this may improve prediction accuracy. For example,
augmenting a Random Forest model with features based on psy-
chological theories resulted in a model with better predictions of
human decisions than naive machine learning models and mod-
els based on psychological theories alone (Plonsky et al., 2019;
Plonsky, Erev, Hazan, & Tennenholtz, 2017). However, machine
learning approaches, despite their predictive power, may result in
uninterpretable models which may be undesirable in psychiatric
practice where decisions need to be motivated and possibly de-
fended (e.g., when determining whether a treatment is effective
or when deciding if a patient should be released). In addition,
the LTRM provides richer information. For example, clinicians or
psychiatrists may want to know if they rate very leniently or
not. On the other hand, management might be interested in what
covariates determine, for instance, the aggressiveness of patients.

Ideally, patients are monitored over some time and data from
multiple measurement occasions is obtained and analyzed using
the extended LTRM. Rather than applying the LTRM repeatedly
to data from individual measurement occasions, all observations
should be analyzed simultaneously. That way, a patient’s progress
may be monitored over time and predictions for the future time
points could be obtained along with uncertainty estimates. To
extend the LTRM to incorporate time-varying components is con-
ceptually straightforward, but the exact properties of the time-
varying components should depend on the data at hand. For
example, one can imagine that the factor scores of a patient
vary over time as described by a dynamic factor model (Forni,
Hallin, Lippi, & Reichlin, 2000; Molenaar, 1985). However, when
patients are rated only rarely – say every six months – then the
application of a sophisticated time series model is not feasible.
Instead, simply estimating the difference between consecutive
time points with an intercept may suffice. For these reasons, we
did not explore a time series extension of the LTRM.

4.1. Limitations

In the LTRM, we assumed that the factor structure is known.
In practice, however, this need not be the case. Estimating the
factor structure from the data is possible, although such an en-
deavor shifts the focus of the LTRM to model selection rather
than assessing the progress of patients. Furthermore, we ensured
that the factor structure is identified by fixing all loadings to be
positive. Strictly speaking, this restriction is stronger than needed
to ensure that the model is identified. An alternative way is
to fit the model without constraints and afterward relabel such
that a factor solution that corresponds to one posterior mode is
obtained (e.g., Erosheva & Curtis, 2017). Another more flexible
approach is to view the latent true scores of the items as a
network rather than a latent variable model and estimate the
relations among the items (but see Epskamp, Kruis, & Marsman,
2017 for possible drawbacks).

Since the posterior distributions were approximated with vari-
ational inference, the obtained posterior distributions may be bi-
ased. In general, these biases rarely affect the estimated posterior
means, but the posterior variance can be underestimated (Blei,
Kucukelbir, & McAuliffe, 2017). As a consequence, uncertainty
intervals may be too narrow. To alleviate this problem, it is rel-
atively straightforward to modify the Stan code in the appendix
to use MCMC instead of variational inference (e.g., in the code in
the appendix change vb(model) to sampling(model) to use
MCMC). However, note that MCMC algorithms for the models
discussed run for hours to obtain a reasonable number of poste-
rior samples, whereas variational inference finishes after several
minutes.

In the extended LTRM, extreme location parameters θip are
nderestimated (e.g., see Fig. 5). From a Bayesian perspective,
here is little to worry about. Given the priors and the data, the
osterior follows automatically. From a frequentist perspective,
his bias may be worrying. This bias can be mitigated in several
ays. However, we want to stress that addressing bias should be
onsidered in light of the decisions made based on the estimates.
urthermore, bias should not be considered in isolation of the
ias–variance tradeoff, that is, reducing the bias may increase the
ariance of an estimator, which harms generalization. For exam-
le, one straightforward approach to reduce bias is to tune the
rior to minimize shrinkage. On the other hand, there are many
uccess stories of shrinkage, Stein’s paradox being a well-known
xample (Efron & Morris, 1977). Rather than interpreting point
stimates one could instead consider the uncertainty intervals,
ssuming these have frequentist coverage (e.g., given enough data
oints or by using a procedure similar to Yu and Hoff (2018)
r Hoff and Yu (2019)).

.2. Recommendations for clinical practice

To successfully apply the extended LTRM in practice, the data
hould meet several minimum requirements. For instance, it
hould be recorded which rater gave what rating, and patient
nd rater covariates should contain as few missing observations
s possible. Furthermore, although the model accounts for dif-
erences between raters, it is best to minimize these differences,
or instance through clear scoring instructions. Minimizing differ-
nces between raters ensures that rater bias is minimal and helps
o ensure validity. In addition, there should be overlap among
groups of) raters and the patients they score. That is, patients
hould be scored by multiple raters in such a way that there are
o isolated groups of raters and patients, where one group of
aters only rates one group of patients and another group of raters
ates a different group of patients. A lack of overlap between two
roups complicates a comparison between raters and patients
etween them. A lack of overlap can be avoided by having rater 1
core patients 1 through 5, having rater 2 score patients 3 through
, etc. Additional information about patients should be added to
he model, such as the reason for incarceration. That should help
he extended LTRM to distinguish between groups of patients
hat differ on these covariates. This also holds for the raters; if
ertain background variables are suspected of causing rater bias
hen these should be included in the model.

An important step in applying any model is assessing its fit
o the data. There are at least two options for doing so with the
xtended LTRM. First, a traditional approach is to take the resid-
als of the extended LTRM and examine these for any leftover
tructure. As in linear models, there should be no structure in the
esiduals if the model accurately describes the data. Second, one
ould compare the predictive performance of the LTRM to that
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Fig. A.1. Approximate posterior densities for the differences in latent constructs of two fictitious patients with response pattern. The probability that the difference
s larger than 0 is above 0.99 for all constructs.
Fig. A.2. The left panel plots the means of the observed ratings against the posterior means of the latent variables. The right panel shows for each combination of
patients i, j the absolute difference in means, |x̂i − x̂j|, against the absolute difference in posterior means of the latent variables, |η̂i − η̂j|. Note that in the left panel,
here is a difference in intercept because the responses are on a scale from 1 to 5, whereas the latent variables are assumed to have a mean of 0. The large spread
n the right panel demonstrates that the sample mean is an unreliable indicator of the truth underlying the data.
Fig. B.1. Parameter recovery for the Latent Truth Rater model displayed in Fig. 1. The data set consisted of 1 patient, 200 items, and 300 raters. Items had 5 possible
outcomes.
of a machine learning toolbox (e.g., Random Forest or Boosting).
The data set is split into a training set and a validation set.
Subsequently, the models are fitted to the training set and are
evaluated on the validation set. This provides an idea of how
much fit is lost by using a parametric model (the extended LTRM)
as opposed to a nonparametric alternative (a machine learning
toolbox).
5. Conclusion

We extended the Latent Truth Rater model (LTRM) introduced
by Anders and Batchelder (2015) to a model that can be applied
to patients’ mental health scores in forensic psychiatric hospitals.
The model accounts for individual differences between raters,
items, and patients. We demonstrated that the extended LTRM
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can provide more information about the data at hand than the
raw means for two fictitious patients. In addition, we have shown
that the parameters of the extended LTRM can be adequately
retrieved and that the LTRM outperforms the observed mode
and several machine learning toolboxes in terms of predictive
power. Finally, we have provided recommendations for clinical
practitioners who wish to apply the LTRM in practice. Altogether,
we believe the extended LTRM constitutes a promising approach
for the analysis of mental health scores in forensic psychiatric
hospitals.

Appendix A. Example analysis

See Figs. A.1 and A.2.

Appendix B. Parameter recovery

See Fig. B.1.
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