
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Roto-translation equivariant convolutional networks: Application to
histopathology image analysis

Lafarge, M.W.; Bekkers, E.J.; Pluim, J.P.W.; Duits, R.; Veta, M.
DOI
10.1016/j.media.2020.101849
Publication date
2021
Document Version
Final published version
Published in
Medical Image Analysis
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Lafarge, M. W., Bekkers, E. J., Pluim, J. P. W., Duits, R., & Veta, M. (2021). Roto-translation
equivariant convolutional networks: Application to histopathology image analysis. Medical
Image Analysis, 68, [101849]. https://doi.org/10.1016/j.media.2020.101849

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.1016/j.media.2020.101849
https://dare.uva.nl/personal/pure/en/publications/rototranslation-equivariant-convolutional-networks-application-to-histopathology-image-analysis(fa356918-2e5f-46d6-8de0-35b77550a9a7).html
https://doi.org/10.1016/j.media.2020.101849


Medical Image Analysis 68 (2021) 101849 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Roto-translation equivariant convolutional networks: Application to 

histopathology image analysis 

Maxime W. Lafarge 

a , ∗, Erik J. Bekkers b , Josien P.W. Pluim 

a , Remco Duits b , Mitko Veta 

a 

a Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands 
b Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, the Netherlands 

a r t i c l e i n f o 

Article history: 

Received 4 December 2019 

Revised 3 June 2020 

Accepted 14 August 2020 

Available online 31 October 2020 

Keywords: 

Group convolutional neural network 

Roto-translation equivariance 

Computational pathology 

Mitosis detection 

Tumor detection 

Nuclei segmentation 

a b s t r a c t 

Rotation-invariance is a desired property of machine-learning models for medical image analysis and in 

particular for computational pathology applications. We propose a framework to encode the geometric 

structure of the special Euclidean motion group SE(2) in convolutional networks to yield translation and 

rotation equivariance via the introduction of SE(2) -group convolution layers. This structure enables mod- 

els to learn feature representations with a discretized orientation dimension that guarantees that their 

outputs are invariant under a discrete set of rotations. 

Conventional approaches for rotation invariance rely mostly on data augmentation, but this does not 

guarantee the robustness of the output when the input is rotated. At that, trained conventional CNNs 

may require test-time rotation augmentation to reach their full capability. 

This study is focused on histopathology image analysis applications for which it is desirable that the arbi- 

trary global orientation information of the imaged tissues is not captured by the machine learning mod- 

els. The proposed framework is evaluated on three different histopathology image analysis tasks (mitosis 

detection, nuclei segmentation and tumor detection). We present a comparative analysis for each problem 

and show that consistent increase of performances can be achieved when using the proposed framework. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Invariance to irrelevant factors of variability is a desirable prop- 

rty of machine learning models, in particular for medical image 

nalysis problems for which models are expected to generalize to 

nseen shapes, appearances, or to arbitrary orientations. For ex- 

mple, histopathology image analysis problems require processing 

 digital slide of a stained specimen whose global orientation is 

trictly arbitrary. Indeed, in the preparation workflow of histology 

lides, resection of the tissue is done arbitrarily and local struc- 

ures within the section can have any three-dimensional orienta- 

ion. In this context, models whose output varies with the orienta- 

ion of the input constitute a source of uncertainty. The output of 

uch image analysis systems should be rotation invariant, meaning 

hat the output of a model should not change when its input is 

otated. 
∗ Corresponding author. 
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Convolutional Neural Networks (CNNs) are the method of 

hoice to solve complex image analysis tasks, in part due to the 

ranslation co-variance induced by trainable R 

2 convolution opera- 

ors. In theory, this structure allows CNNs to learn features in any 

rientation given sufficient capacity. For example, if a specific edge 

etector is a relevant filter for the task at hand, it is expected 

hat the CNN learns this filter in all possible directions. Typical 

olutions to obtain rotation invariance consist in augmenting the 

ataset by generating additional randomly rotated samples, with 

he expectation that the model will learn the relevant features 

hat are artificially observed under these additional orientations. 

lthough data augmentation is a way to induce and encourage an 

nvariance prior, such approaches do not guarantee conventional 

NNs to be rotation-invariant. Furthermore, with such approaches 

t is common practice to average predictions of the trained model 

n a set of rotated inputs at test time: this can increase the robust- 

ess of the model, however it comes at the cost of a computational 

verhead. 

We propose to replace convolutions in R 

2 by group convolu- 

ions using representations of the special Euclidean motion group 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.media.2020.101849
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101849&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m.w.lafarge@tue.nl
https://doi.org/10.1016/j.media.2020.101849
http://creativecommons.org/licenses/by-nc-nd/4.0/


M.W. Lafarge, E.J. Bekkers, J.P.W. Pluim et al. Medical Image Analysis 68 (2021) 101849 

S

o

l

t

s

a

g

W

9

n

o

r

s

a

w

e

H

p

t

b

r

t  

s

b

C

a

s

a

c

2

2

a

s

d

N

p

s

t

d

t

a

g

a

a

t

a

w

a

a

t

f

o

a

t

a

m

l

s

c

1

v

l

e

r

(

i

t

a

s

C

2

2

i

l

t

f

s

C

t

t

e

G

i

W

t

B

i

T  

d

a

C

i

a

a

W

e

t

n

c

m

c

a

p

E(2) (roto-translation of a kernel) so as to explicitly encode the 

rientation of the learned features. This structure ensures that the 

earned representation is co-variant/equivariant with the orienta- 

ion of the input for rotations that lay on the pixel grid and to 

ome extent for rotations that are out of the pixel grid. This equiv- 

riance property implies that an oriented feature of interest will 

et extracted independently of the spatial orientation of the input. 

e achieve orientation encoding at resolution levels higher than 

0-degree via bi-linear interpolation of the SE(2) convolution ker- 

els. Finally rotation invariance can be achieved via a projection 

peration with respect to the encoded orientation of the learned 

epresentation. 

Contributions This work builds upon our previous work pre- 

ented at the MICCAI conference 2018 ( Bekkers et al., 2018a ). In 

ddition to a more detailed description of the proposed framework, 

e now present a comparative analysis of models with differ- 

nt angular discretization levels of the SE(2) -image representations. 

ere we focus on three types of histopathology image analysis 

roblems (mitosis detection, nuclei segmentation and tumor detec- 

ion), for which we conduct experiments on popular and realistic 

enchmark datasets. With this we also show that the SE(2) -image 

epresentations can be integrated in other classical CNN architec- 

ures such as U-net ( Ronneberger et al., 2015 ). Finally, in a new

eries of in-depth experimental analyses we show an increased ro- 

ustness of the proposed group convolutional neural networks (G- 

NNs) compared to standard CNNs with respect to rotational vari- 

tions in the data. This includes a quantitative and qualitative as- 

essment of rotational invariance of the trained networks, as well 

s a data regime analysis in which we investigate the effect of in- 

reased angular resolution when the data availability is reduced. 

. Rotation invariance, related work, and contributions 

.1. Rotation invariance via G-CNNs 

We distinguish between invariance and equivariance/covariance 

s follows. An artificial neural network (NN) is invariant with re- 

pect to certain transformations when the output of the network 

oes not change under transformations on the input. We call a 

N equivariant, or covariant 1 , when the output transforms in a 

redictable way when the input is transformed (we formalize this 

tatement in Section 3.2 ). The property of equivariance guarantees 

hat no information is lost when the input is transformed. Stan- 

ard CNNs are equivariant to translations: if the input is translated 

he output translates accordingly and we do not need to worry 

bout learning how to deal with translated inputs. It turns out that 

roup convolution layers are the only type of linear NN layers that 

re guaranteed to be equivariant (see e.g. ( Bekkers, 2019 , Thm. 1)) 

nd that the standard convolution layer is a special case that is 

ranslation equivariant. In this paper, we construct SE(2) equivari- 

nt group convolution layers and with it build G-CNNs with which 

e solve problems in histopathology that require rotation invari- 

nce. 

Nowadays, rotation invariance is often still dealt with via data 

ugmentations. In such an approach the data is rotated during 

raining time while keeping the target label fixed, thereby aiming 

or the network to learn how to classify input samples regardless 

f their orientation. Downsides of this approach are that 1) valu- 

ble network capacity is spend on learning geometric behavior at 

he cost of descriptive representation learning, 2) rotation invari- 

nce is not guaranteed, and 3) augmentation only captures geo- 

etric invariance globally. G-CNNs solve these problems by hard- 
1 Terminology changes between fields of study (mathematics, physics, machine 

earning) and often refer to the same. Following custom in machine learning re- 

earch we will use the term equivariance. 

w
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u

t

2 
oding geometric structure into the network architecture such that 

) geometric behavior does not have to be learned, 2) rotation in- 

ariance is guaranteed by construction, and 3) each group convo- 

ution layer achieves local equivariance on its own, so that global 

quivariance is still obtained when the layers are stacked. 

The local-to-global equivariance property means that G-CNNs 

ecognize both low-level features (e.g. edges), mid-level features 

e.g. individual cells), and high-level features (e.g. tissue structure) 

ndependent of their orientations. In this paper we experimen- 

ally show that SE(2) equivariant G-CNNs indeed solve all three 

forementioned problems and that in fact the added geometric 

tructures leads to networks that significantly outperform classical 

NNs trained with data-augmentation. 

.2. Related work on G-CNNs 

.2.1. G-CNN methods 

In the seminal work by Cohen and Welling (2016) a framework 

s proposed for group equivariant CNNs. In G-CNNs, the convo- 

ution operator is redefined in terms of actions of a transforma- 

ion group, and by consistent use of the group structure (rules 

or concatenating transformations) equivariance is ensured. They 

howed a significant performance gain of G-CNNs over classical 

NNs, however, the practical applicability was limited to discrete 

ransformation groups that leave the pixel grid intact (s.a. 90 ◦ ro- 

ations and reflections). Subsequent work in the field focused on 

xpanding the class of transformation groups that are suitable for 

-CNNs by: 

1. Working with a grid that has more symmetries than the stan- 

dard Cartesian grid ( Hoogeboom et al., 2018 ). 

2. Expanding convolution kernels in a special basis, tailored to the 

transformation group of interest, that enables to build steerable 

CNNs ( Worrall et al., 2017 ) 

3. Relying on interpolation methods to transform kernels 

Bekkers et al. (2018a) , or relying on analytic basis functions 

and sample the transformed kernels at arbitrary resolution 

( Weiler et al., 2017; Bekkers et al., 2018b ). 

Extensions to 3D transformation groups are described 

n Worrall and Brostow (2018) , Winkels and Cohen (2019) , 

eiler et al. (2018) , Andrearczyk et al. (2019) , generaliza- 

ion to equivariance beyond roto-translations are described in 

ekkers (2019) , Worrall and Welling (2019) , extension to spher- 

cal data are described in Cohen et al. (2018a) , Kondor and 

rivedi (2018) , Thomas et al. (2018) , Esteves et al. (2018a) , and ad-

itional theoretical results and further generalizations of G-CNNs 

re described in Cohen et al. (2018b) , Kondor and Trivedi (2018) , 

ohen et al. (2019) . Applications of G-CNN methods in medical 

mage analysis are discussed below in Section 2.2.4 . 

Although the first of the above generalizations elegantly en- 

bles an exact implementation of G-CNNs of roto-translations with 

 finer resolution than the 90 ◦ rotation angles of Cohen and 

elling (2016) , it is a very specific approach that does not gen- 

ralize well to other groups. The second approach does not require 

o sample transformed kernels at all, but works exclusively by ma- 

ipulations of basis coefficients in a similar way as standard 2D 

onvolutions (and translations) can be described in the Fourier do- 

ain. This approach however requires careful bookkeeping of the 

oefficients, only optimizes over kernels expressible by the basis, 

nd the choice for non-linear activation functions is limited. In this 

aper we rely on the third approach. We build upon our previous 

ork ( Bekkers et al., 2018a ) and use bi-linear interpolation to effi- 

iently transform (unconstrained) convolution kernels. This allows 

s to build SE(2) equivariant G-CNNs at arbitrary angular resolu- 

ions. 



M.W. Lafarge, E.J. Bekkers, J.P.W. Pluim et al. Medical Image Analysis 68 (2021) 101849 

2

g

p

t

G

c

u

i

c

h

O

(

2

fi

i

w

f

l

m

l

t

d

a

t

2

s

s

s

a

o

t

s  

c

L

e

i

n

2

(

i

s

l  

t

s

F

i

s

2

o

t

m

m

a

A

n

m

i

e

C

c

a

fi

m

(

t

l

2

3

h

s

fi

y

d

g

t

3

e

m

a

i

o

a

o

f

c

p

e

(

a

c

f

o

t

(

l

c

f

P

2

u

4

v

n

i

M

i

p

s

j

c

i

p

p

.2.2. Rotation equivariant machine learning 

Prior, and in parallel, to the above discussed G-CNN methods, 

roup convolution methods for pattern recognition have been pro- 

osed that, at the time, were not regarded as G-CNNs or not 

reated in the full generality of (end-to-end) deep learning. E.g., 

ens and Domingos (2014) redefine the convolution operator and 

onstruct sparse (approximative) group convolution layers that are 

sed to build what they called deep symmetry networks. Scatter- 

ng convolution networks, as proposed by Mallat (2012) , involve a 

oncatenation of separable group convolutions with well-designed 

and-crafted filters followed by the modulus as activation function. 

ther examples are orientation score based template matching 

 Bekkers et al., 2015 ), cyclic symmetry networks ( Dieleman et al., 

016 ), oriented response networks ( Zhou et al., 2017 ), and vector 

eld networks ( Marcos et al., 2017 ), which can all be considered 

nstances of roto-translation equivariant G-CNNs. 

Other techniques that focus on equivariance properties of CNNs 

ork via transformations on input feature maps, rather than trans- 

ormations of convolution kernels as in G-CNNs, and are closely re- 

ated to spatial transformer networks ( Jaderberg et al., 2015 ). These 

ethods include warped CNNs ( Henriques and Vedaldi, 2017 ), po- 

ar transformer networks ( Esteves et al., 2018b ), and equivariant 

ransformer networks ( Tai et al., 2019 ). Although these methods 

escribe elegant and efficient ways for achieving (global) equivari- 

nce, they often break translation equivariance and local symme- 

ries as the transformations act globally on the whole inputs. 

.2.3. Group theory in medical image analysis 

Equivariance constraints and group theory take a prominent po- 

ition in the mathematical foundations of ǣclassical ǥ image analy- 

is, e.g., in scale space and wavelet theory. In medical image analy- 

is, group theoretical algorithms enable to respect natural equiv- 

riance constraints and deal with context and the complex ge- 

metries that are abundant in medical images. Examples of group 

heoretical techniques, closely related to G-CNNs, are orientation 

core ( Duits et al., 2007; Janssen et al., 2018 ) methods such as

rossing preserving vessel enhancement based on gauge theory on 

ie groups ( Franken and Duits, 2009; Hannink et al., 2014; Duits 

t al., 2016 ), vessel and nerve fiber enhancement (in diffusion 

maging) via group convolutions with Gaussian (derivative) ker- 

els ( Duits and Franken, 2011; Zhang et al., 2015; Portegies et al., 

015 ), and anatomical landmark recognition via group convolutions 

 Bekkers, 2019 ). In other, non-convolutional methods in medical 

mage analysis, group theory provides a powerful tool to deal with 

ymmetries and geometric structure, such as in statistical shape at- 

ases ( Hefny et al., 2015 ), shape matching ( Hou et al., 2018 ), regis-

ration ( Arsigny et al., 2006; Ashburner, 2007 ) and in general in 

tatistics on non-Euclidean data structures ( Pennec et al., 2019 ). 

ollowing this successful line of geometry driven methods in med- 

cal image analysis, we propose in this paper to rely on G-CNNs to 

olve tasks in histopathology in an end-to-end learning setting. 

.2.4. G-CNNs in medical image analysis 

For many medical image analysis tasks, the location, reflection 

r orientation of objects of interest should not affect the output of 

he developed models. Although typical solutions rely on data aug- 

entation, several studies investigated G-CNNs in the context of 

edical image analysis to leverage this prior into building equiv- 

riant models that outperform classical CNNs. 

In Winkels and Cohen (2018) , Winkels and Cohen (2019) , 

ndrearczyk et al. (2019) , G-CNNs were used to detect pulmonary 

odules in CT scans. G-CNNs were also investigated for seg- 

entation tasks in dermoscopy images ( Li et al., 2018 ), retinal 

mages ( Bekkers et al., 2018a ) and microscopy images ( Bekkers 

t al., 2018a; Chidester et al., 2019a; Graham et al., 2019 ). 

hidester et al. (2019b) proposed a variation of G-CNNs for the 
3 
lassification of sub-cellular protein localization in microscopy im- 

ges. 

Rotation-equivariant models have shown to be particularly ef- 

cient for problems in histopathology images, at cell level for 

itosis detection ( Bekkers et al., 2018a ), nuclei segmentation 

 Chidester et al., 2019a ), and at higher tissue levels for tumor de- 

ection in lymph node sections ( Veeling et al., 2018 ) and gland- 

umen segmentation in colon histology images ( Graham et al., 

019 ). 

. Material and methods 

We evaluate the proposed framework on three relevant 

istopathology image analysis tasks: mitosis detection, nuclei clas- 

ification, and patch-based tumor detection. In this section, we 

rst describe the benchmark datasets corresponding to the anal- 

sis tasks, that we used to train and evaluate the models. We then 

escribe the relationship between the proposed framework and 

roup theory, and our proposed implementation via bi-linear in- 

erpolation of rotated convolution kernels. 

.1. Datasets 

We chose three popular benchmark datasets of hematoxylin- 

osin stained histological slides, in order to assess the perfor- 

ances of the proposed framework and its variants in a controlled 

nd reproducible setup. We chose datasets for which objects of 

nterest are observed at different scales, thus covering a range 

f problems that are typically addressed in histopathology image 

nalysis. In these datasets, we assume that the orientation of the 

bjects of interest is irrelevant for the classification task. There- 

ore we hypothesize that any bias in the orientation information 

aptured by a non-rotation-invariant CNN could be reflected in its 

erformance on the selected benchmarks. This hypothesis will be 

xperimentally confirmed in Section 5 . 

Mitosis detection We used the public dataset AMIDA13 

 Veta et al., 2015 ) that consists of high power-field (HPF) im- 

ges (resolution ∼0 . 25 μm/px) from 23 breast cancer cases. Eight 

ases (458 mitotic figures) were used to train the models and 

our cases (92 mitoses) for validation. Evaluation is performed 

n a test set of 11 independent cases (533 mitoses), following 

he evaluation procedure of the AMIDA13 challenge, for details see 

 Veta et al., 2015 ). 

Multi-organ nuclei segmentation We used the subset of the pub- 

ic multi-organ dataset introduced by Kumar et al. (2017) , that 

onsists of 24 HPF images (resolution ∼0 . 25 μm/px), selected 

rom WSIs of four different tissue types (Breast, Liver, Kidney and 

rostate), provided by The Cancer Genome Atlas ( Network et al., 

012 ), associated with mask annotations of nucleus instances. We 

sed the balanced dataset split proposed in Lafarge et al. (2019) : 

 ×3 HPF images for training (7337 nuclei), 4 ×1 HPF images for 

alidation (1474 nuclei) and 4 ×2 HPF images for testing (4130 

uclei). Given the high staining variability of the dataset, all the 

mages were stain normalized using the method described in 

acenko et al. (2009) . 

Patch-based tumor detection We used the public PCam dataset 

ntroduced by Veeling et al. (2018) , that consists of 327,680 image 

atches (resolution ∼1 μm/px), selected from WSIs of lymph node 

ections derived from the Camelyon16 Challenge ( Ehteshami Be- 

nordi et al., 2017 ). The patches are balanced across the two 

lasses (benign or malignant), based on the tumor area provided 

n Ehteshami Bejnordi et al. (2017) , and we used the dataset split 

roposed by Veeling et al. (2018) . 

Data regime analysis In order to study the behavior of the com- 

ared models when data availability is reduced, we analyzed the 
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(

(

erformances under different data regimes, by using reduced ver- 

ions of the training sets. We constructed: 

• Three variations of the mitosis dataset by sequentially removing 

two cases out of the original eight. 
• Two variations of the nuclei dataset by sequentially removing 

one HPF image per organ out of the original three HPF images 

per organ. 
• Four variations of the patch-based tumor dataset by randomly 

removing 25% , 50% , 75% and 90% in each class-subset of the 

training data. 

.2. Group representation in CNNs 

.2.1. The roto-translation group SE(2) 

A group is a mathematical structure that consists of a set G, for 

xample a collection of transformations, together with a binary op- 

rator · called the group product that satisfies four fundamental 

roperties: Closure : For all h, g ∈ G we have h · g ∈ G ; Identiy : There

xists an identity element e ; Inverse : for each g ∈ G there exists an

nverse element g −1 ∈ G such that g −1 · g = g · g −1 = e ; and Associa-

ivity : For each g, h, i ∈ G we have (g · h ) · i = g · (h · i ) . 

The group product essentially describes how two consecutive 

ransformations, e.g. by g, h ∈ G, result in a single net transforma- 

ion (g · h ) ∈ G . Here, we consider the group of roto-translations,

enoted 

2 by SE(2) = R 

2 
� SO (2) , which consists of the set of all

lanar translations (in R 

2 ) and rotations (in (SO (2) ), together with 

he group product given by 

 · g ′ = (x , R θ ) · (x 

′ , R θ ′ ) = (R θ x 

′ + x , R θ+ θ ′ ) , (1)

ith group elements g = (x , θ ) , g ′ = (x ′ , θ ′ ) ∈ SE(2) , with transla-

ions x , x ′ and planar rotations by θ, θ ′ . The group acts on the

pace of positions and orientations R 

2 × S 1 via 

 · (x 

′ , θ ′ ) = (R θ x 

′ + x , θ + θ ′ ) . 
ince (x , R θ ) · (0 , 0) = (x , θ ) , we can identify the group SE(2)

ith the space of positions and orientations R 

2 × S 1 . As such we 

ill often write g = (x , θ ) , instead of (x , R θ ) . Note that g −1 =
−R 

−1 
θ

x , −θ ) since g · g −1 = g −1 · g = (0 , 0) . 

.2.2. Group representations 

The structure of the group can be mapped to other mathemat- 

cal objects (such as 2D images) via representations. Representa- 

ions of a group G are linear transformations R g : L 2 (X ) → L 2 (X ) ,

arameterized by group elements g ∈ G that transform vectors, e.g. 

ignals/images f ∈ L 2 (X ) on a space X, and which share the group

tructure via 

R g ◦ R h )( f ) = R g·h ( f ) , with g, h ∈ G . 

We use different symbols for the representations of SE(2) on 

ifferent type of data structures. In particular, we write R = U for 

he left-regular representation of SE(2) on 2D images f ∈ L 2 (R 

2 ) ,

nd it is given by 

U g f )(x 

′ ) = f (R 

−1 
θ

(x 

′ − x )) , (2) 

ith g = (x , θ ) ∈ SE(2) , x ′ ∈ R 

2 . It corresponds to a roto-

ranslation of the image. We write R = L for the left-regular 

epresentation on functions F ∈ L 2 (SE(2)) on SE(2) , which we 

efer to as SE(2) -images, and it is given by 

L g F )(g ′ ) = F (g −1 · g ′ ) = F (R 

−1 
θ

(x 

′ − x ) , θ ′ − θ ) , (3)

ith g = (x , θ ) , g ′ = (x ′ , θ ′ ) ∈ SE(2) . In Section 3.3 we define the

-CNN layers in terms of these representations. 
2 It is the semi-direct product (denoted by � ) of the group of planar translations 

 

2 and rotations SO (2) , i.e., it is not the direct product since the rotation part acts 

n the translations in (1) in the group product of SE(2) . 

t

i

c

4 
.2.3. Equivariance 

Given the above definitions, we can formalize the notation of 

quivariance. An operator � : L 2 (X ) → L 2 (Y ) is equivariant with 

espect to a group G if 

(R g ( f )) = R 

′ 
g (�( f )) , (4) 

ith R g and R 

′ 
g representations of G on respectively functions the 

omains X and Y . I.e., if we transform the input by R g , then we

now that the output transforms via R 

′ 
g . To ensure that we main- 

ain the equivariance property (4) of linear operators � it is re- 

uired that we define such � in terms of representations of G, 

hat is, via group convolutions (see e.g. ( Bekkers, 2019 , Thm. 1), 

 Duits, 2005 , Thm. 21), or ( Cohen et al., 2018b , Thm. 6.1)). 

.3. SE(2) group convolutional network layers 

.3.1. Notation and 2D convolution layers 

In the following we denote the space of multi-channel feature 

aps on a domain X by (L 2 (X )) N , with N the number of channels. 

he feature maps themselves are denoted by f = ( f 1 , . . . , f N ) , with

ach channel f i ∈ L 2 (X ) . The inner product between such feature 

aps on X is denoted by 

 k , f ) (L 2 (X )) N := 

N ∑ 

c=1 

(k c , f c ) L 2 (X ) 

ith (k, f ) L 2 (X ) = 

∫ 
X k (x ′ ) f (x ′ )d x ′ the standard inner product be- 

ween real-valued functions on X . Then, with these notations we 

ote that the classical 2D cross-correlation 

3 operator can defined 

n terms of inner products of input feature map f with translated 

onvolution kernels k via 

 k � R 2 f )(x ) : = (T x k , f ) (L 2 (R 2 )) N 

= 

N ∑ 

c=1 

∫ 
R 2 

k c (x 

′ − x ) f c (x 

′ )d x 

′ , (5) 

ith T x the translation operator, the left-regular representation 

f the translation group (R 

2 , +) . It is well known that convolu- 

ion layers �, mapping between 2D feature maps (i.e. functions 

n X = Y = R 

2 ), are equivariant with respect to translations. I.e. in

q. (4) we let R 

′ 
g = R g = T x be the left-regular representation of 

he translation group with g = (x ) ∈ R 

2 . 

.3.2. Roto-translation equivariant convolution layers 

Next we define two types of convolution layers that are equiv- 

riant with respect to roto-translations. We do so simply by re- 

lacing the translation operator in Eq. (5) with a representation of 

E(2) . When the input is a 2D feature map f ∈ (L 2 (R 

2 )) N we need

o rely on the representation U g of SE(2) on 2D images, and define 

he lifting correlation : 

 k ̃ � f )(g) : = (U g k , f ) (L 2 (R 2 )) N 

= 

N ∑ 

c=1 

∫ 
R 2 

k c (R 

−1 
θ

(x 

′ − x )) f c (x 

′ ) d x 

′ . (6) 

hese correlations lift 2D image data to data that lives on the 3D 

osition orientation space R 

2 × S 1 ≡ SE(2) by matching convolu- 

ion kernels under all possible translations and rotations. 

We define the lifting layer , recall Fig. 1 , as an operator ˜ �(l) :

L 2 (R 

2 )) N l−1 → (L 2 (SE(2)) N l that maps a 2D feature map f 
(l−1) ∈ 

L 2 (R 

2 )) N l−1 with N l−1 channels to an SE(2) feature map F l ∈ 
3 In CNNs one can take a convolution or a cross-correlation viewpoint and since 

hese operators simply relate via a kernel reflection, the terminology is often used 

nterchangeably. We take the second viewpoint, our G-CNNs are implemented using 

ross-correlations. 
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Fig. 1. Illustration of the three types of layers investigated in our G-CNNs. The lifting layer uses a set of rotated kernels in R 2 to output an activation map that is an image 

on SE(2) . The SE(2) group convolution layer applies a shift-twist convolution via a set of rotated-and-shifted kernels in SE(2) to output a SE(2) -image activation map (red 

border highlights the kernel transformation, cyan border highlights the output of a SE(2) kernel). The projection layer transforms an input SE(2) -image onto R 2 via a rotation- 

invariant operation (pixel-wise maximum projection is used here). A 3-channel input is shown for the SE(2) group convolution layer and 1-channel outputs are shown for 

all the layers: this is done for illustrative purposes but more channels are used in practice. The example images used for the examples are extracted from a trained nuclei 

segmentation model with a 8-fold discretization of SE(2) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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L 2 (SE(2)) N l with N l channels via lifting correlations with a collec- 

ion of N l kernels, denoted with k 

(l) := ( k (l) 
1 

, . . . , k 
(l) 
N l 

) , each kernel

ith N l−1 channels, via 

 

(l) = 

˜ �(l) ( f 
(l−1) 

) := k 

(l) ˜ � f 
(l−1) 

, (7) 

here we overload the ˜ � symbol defined in Eq. (6) to also 

enote the lifting correlation between a set of convolution 

ernels and a vector valued feature map via k 

(l) ˜ � f 
(l−1) 

:= 

k 
(l) 
1 

˜ � f 
(l−1) 

, . . . , k 
(l) 
N l 

˜ � f 
(l−1) 

)
. Note that such operators are 

quivariant with respect to roto-translations when in (4) we let 

 g = U g and T ′ g = L g be the representations of SE(2) given respec-

ively in (2) and (3) , indeed 

˜ �(l) (U g f (l−1) ) = L g 
˜ �(l) ( f (l−1) ) . 

The lifting layer thus generates higher-dimensional feature 

aps on the space of roto-translations. An SE(2) equivariant 

ayer that takes such feature maps as input is then again ob- 

ained by taking inner products of the input feature map F with 

3D) roto-translated convolution kernels K , where the kernels are 

ransformed by application of the representation L g of SE(2) on 

 2 (SE(2) ). Group correlations are then defined as 

 K � F )(g) : = 

N c ∑ 

c=1 

(L g K c , F c ) L 2 (SE(2)) 

= 

N c ∑ 

c=1 

∫ 
SE(2) 

K c (g −1 · g ′ ) F c (g ′ )d g ′ . (8) 

ote here, that a rotation of an SE(2) convolution kernel is ob- 

ained via a shift-twist, a planar rotation and shift along the θ-axis, 
5 
ee Eq. (3) and Fig. 1 . The convolution kernels K are 3-dimensional 

nd they assign weights to activations at positions and orientations 

elative to a central position and orientation (relative to g ∈ SE(2) ). 

 set of SE(2) kernels K 

(l) := ( K 

(l) 
1 

, . . . , K 

(l) 
N l 

) then defines a group

onvolution layer , which we denote with �(l) , and which maps 

rom SE(2) feature maps F (l−1) at layer l − 1 , with N l−1 channels, 

o SE(2) -feature maps F (l) at layer l, with N l channels, via 

 

(l) = �(l) ( F (l−1) ) := K 

(l) � F (l−1) 
, (9) 

here we overload the group correlation symbol �, defined in 

8) , to also denote correlation between a set of convolution ker- 

els and a vector valued feature map on SE(2) via K 

(l) � F (l−1) := 

K 

(l) 
1 

� F (l−1) 
, . . . , K 

(l) 
N l 

� F (l−1) 
)
. 

Finally, we define the projection layer as the operator that 

rojects a multi-channel SE(2) feature map back to R 

2 via 

f 
(l) 

(x ) = P(F (l) )(x ) := mean 

θ∈ [0 , 2 π) 
F (l) (x , θ ) . (10) 

ere we define the projection layer as taking the mean over the 

rientation axis, however, we note that any permutation invariant 

perator (on the θ-axis) could be used to ensure local rotation in- 

ariance, such as e.g. the commonly used max operator ( Cohen and 

elling, 2016; Bekkers et al., 2018a ). 

.4. Discretized SE(2,N) group convolutional network 

Discretized 2D images are supported on a bounded subset of 

 

2 ⊂ R 

2 and the kernels live on a spatially rectangular grid of 

ize n × n in Z 

2 , with n the kernel size. We discretize the group
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Fig. 2. Illustration of the process generating a rotated set of effective kernels from 

a trainable vector of base weights via the introduction of fixed interpolation matrix 

in the computational pipeline. 
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E(2 , N) := R 

2 
� SO (2 , N) , with the space of 2D rotations in SO (2)

ampled with N rotation angles θi = 

2 π
N i, with i = 0 , . . . , N − 1 . 

The discrete lifting kernels k 

(l) at layer l, are used to map a 2D

nput image with N l−1 channels to an SE(2 , N) -image with N l chan-

els, and thus have a shape of n × n × N l−1 × N l (the discretiza- 

ion of k 

(l) is illustrated in Fig. 1 as a set of n rotated R 

2 kernels,

istributed on a circle). Likewise, the SE(2 , N) kernels K 

(l) have a 

hape of n × n × N × N l−1 × N l . 

The lifting and group convolution layers require rotating the 

patial part of the kernels and shift along the θ-axis for the SE(2) - 

ernels. We obtain the rotated spatial parts of each kernel via bi- 

inear interpolation. The discretization of a single lifting kernel k (l) 
i, j 

nd its N rotated versions is illustrated in the top-left part of Fig. 1 .

he discretization of a single group correlation kernel K 

(l) 
i, j 

and its 

rotated and θ-shifted versions is illustrated in the bottom part 

f Fig. 1 . 

In order to construct the rotated sets of effective kernels k 

(l) 

r K 

(l) we rely on bi-linear interpolation. We first define a set of 

rainable vectors containing base weights that are used to generate 

otated versions of the same base 2D kernel via bi-linear interpo- 

ation. We implemented this rotation process in the computational 

ipeline via the definition of non-trainable interpolation matrices, 

ach coding for a rotation step, and the introduction of respec- 

ive matrix multiplication operations. This process is illustrated in 

ig. 2 . 

Although these sets of rotated kernels are used in the computa- 

ional pipeline, only the base weights are updated during the net- 

ork optimization. By construction, the effective kernels are differ- 

ntiable with respect to their base weight, enabling their update in 

ack-propagation of gradients (since the matrix multiplication op- 

ration is differentiable). 

. Experiments 

In this section, we present the G-CNN architectures that we 

uild using the layers defined in Section 3.3 and we describe the 
6 
xperiments that we used to analyze and validate them. In the 

onstruction of the G-CNNs we adhere to the following principle 

f group equivariant architecture design. 

G-CNN design principle A sequence of layers starting with a lift- 

ng layer ( Eq. (7) ) and followed by one or more group convolu- 

ion layers ( Eq. (9) ), possibly intertwined with point-wise non- 

inearities, results in the encoding of roto-translation equivariant 

eature maps. If such a block is followed by a projection layer 

 Eq. (10) ) then the entire block results in a encoding of features 

hat is guaranteed to be rotationally invariant. Our implementation 

f the G-CNN layers is available at https://github.com/tueimage/ 

e2cnn . 

.1. Applications and model architectures 

For each task introduced in Section 3.1 we conducted two ex- 

eriments: first, we trained a set of variations of a baseline CNN, 

y changing the orientation sampling level N of their SE(2,N) lay- 

rs, while keeping the total number of weights of each model ap- 

roximately the same. Second, we trained each model with the re- 

uced data regime counterparts of the training sets introduced in 

ection 3.1 . For each task we opted for versions of straight-forward 

rchitectures with a low number of parameters that were in-line 

ith methods reported in the literature. This way, we propose new 

-CNN baselines that facilitate comparative experiments and that 

an be extended to more sophisticated architectures. 

Mitosis detection We used the mitosis classification model orig- 

nally described in Bekkers et al. (2018a) as a baseline: a 6-layer 

NN with three down-sampling steps, such that the overall recep- 

ive field is of size 68 × 68 . 

We designed the G-CNN variants of this baseline described in 

able 1 , by replacing the first convolution layer by a lifting layer, 

eplacing the following convolution layers by group convolution 

ayers and inserting a projection layer before the last fully con- 

ected layer. 

The models were trained with batches of size 64 balanced 

cross classes. Non-mitosis class patches were sampled based on a 

ard negative mining procedure ( Cire ̧s an et al., 2013 ) using a first

aseline model trained with random negative patches. The mod- 

ls were trained to minimize the cross-entropy of the binary-class 

redictions. 

Nuclei segmentation For the nuclei segmentation task, we opted 

or a 7-layer U-net that corresponds to two spatial down/up- 

ampling operations with an overall receptive field of size 44 × 44 . 

he sequence of operations defining this G-CNN architecture is 

iven in the first column of Table 2 . 

The label associated with each input image is a 3-class mask 

orresponding to the foreground, background and border of the 

uclei it contains (these masks can then be used to retrieve an in- 

ividual nucleus using a segmentation procedure such as described 

n Section 5 ). 

The models were trained with batches of size 16 balanced 

cross patients, to minimize the class-weighted cross-entropy of 

he softmax activated output maps corresponding to the three tar- 

et masks. 

Tumor detection The baseline architecture we used for the tu- 

or detection model is a 6-layer CNN with three down-sampling 

teps, such that the overall receptive field is of size 88 × 88 (see 

able 3 for the detailed architecture). 

The models were trained with batches of size 64 balanced 

cross classes. We refined both classes by running a hard negative 

ining procedure ( Cire ̧s an et al., 2013 ) using a first baseline model 

rained with the original dataset of the benchmark. The models 

ere trained to minimize the cross-entropy of the binary-class pre- 

ictions. 

https://github.com/tueimage/se2cnn
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Table 1 

Architecture of the investigated G-CNN models for mitosis detection. The left-most column indicates the operations applied in each layer. 

Max. Proj. indicates the projection operation on R 2 , achieved via maximum intensity projection along the orientations. 

SE(2,N) Groups Layers 

N = 1 ( R 2 ) N = 4 (p4) N = 8 N = 16 

Input 6 8 ×6 8 ×3 

Lifting Layer BN + ReLU MaxPool( 2 ×2 ) 1 ×42 ×42 ×16 (1040) 4 ×42 ×42 ×10 (650) 8 ×42 ×42 ×8 (520) 16 ×42 ×42 ×6 (390) 

Group Conv. BN + ReLU MaxPool( 2 ×2 ) 1 ×14 ×14 ×16 (5408) 4 ×14 ×14 ×10 (8420) 8 ×14 ×14 ×8 (10768) 16 ×14 ×14 ×6 (12108) 

Group Conv. BN + ReLU MaxPool( 2 ×2 ) 1 ×5 ×5 ×16 (5408) 4 ×5 ×5 ×10 (8420) 8 ×5 ×5 ×8 (10768) 16 ×5 ×5 ×6 (12108) 

Group Conv. BN + ReLU 1 ×1 ×1 ×64 (21632) 4 ×1 ×1 ×16 (13472) 8 ×1 ×1 ×8 (10768) 16 ×1 ×1 ×4 (8072) 

Group Conv. BN + ReLU 1 ×1 ×1 ×16 (1056) 4 ×1 ×1 ×16 (1056) 8 ×1 ×1 ×16 (1056) 16 ×1 ×1 ×16 (1056) 

Max. Proj. 1 ×1 ×16 

FC Layer Sigmoid 1 ×1 ×1 (17) 

Total Weights 34561 32035 33897 33751 

Table 2 

Architecture and weight counting of the G-CNN models for patch-based tumor detection. The left-most column indicates the operations in each layer. 

Concat(HL. x ) indicates the characteristic skip operation of the U-net architecture that consist in concatenating a centered crop of the output activation of the 

x th layer of the network. Max. Proj. indicates the projection operation on R 2 , achieved via maximum intensity projection along the orientations. 

SE(2,N) Groups Layers 

N = 1 ( R 2 ) N = 4 (p4) N = 8 N = 16 

Input 60 ×60 ×3 

Lifting Layer BN + ReLU MaxPool( 2 ×2 ) 1 ×28 ×28 ×16 (1040) 4 ×28 ×28 ×10 (650) 8 ×28 ×28 ×8 (520) 16 ×28 ×28 ×6 (390) 

Group Conv. BN + ReLU MaxPool( 2 ×2 ) 1 ×12 ×12 ×16 (5408) 4 ×12 ×12 ×10 (8420) 8 ×12 ×12 ×8 (10768) 16 ×12 ×12 ×6 (12108) 

Group Conv. BN + ReLU 1 ×8 ×8 ×16 (5408) 4 ×8 ×8 ×10 (8420) 8 ×8 ×8 ×8 (10768) 16 ×8 ×8 ×6 (12108) 

Up-sampling Concat(HL.2) Group Conv. BN + ReLU 1 ×12 ×12 ×16 (10784) 4 ×12 ×12 ×10 (16820) 8 ×12 ×12 ×8 (21520) 16 ×12 ×12 ×6 (24204) 

Up-sampling Concat(HL.1) Group Conv. BN + ReLU 1 ×20 ×20 ×64 (43136) 4 ×20 ×20 ×16 (26912) 8 ×20 ×20 ×8 (21520) 16 ×20 ×20 ×4 (16136) 

Group Conv. BN + ReLU 1 ×20 ×20 ×16 (1056) 4 ×20 ×20 ×16 (1056) 8 ×20 ×20 ×16 (1056) 16 ×20 ×20 ×16 (1056) 

Max. Proj. 20 ×20 ×16 

FC Layer Softmax 20 ×20 ×3 (54) 

Total Weights 66886 62332 66206 66056 

Table 3 

Architecture and weight counting of the G-CNN models for patch-based tumor detection. The left-most column indicates the operations in each 

layer. Mean. Proj. indicates the projection operation on R 2 , achieved via mean intensity projection along the orientations. 

SE(2,N) Groups 

Layers N = 1 ( R 2 ) N = 4 (p4) N = 8 N = 16 

Input 88 ×88 ×3 

Lifting Layer BN + ReLU MaxPool( 2 ×2 ) 1 ×42 ×42 ×32 (2080) 4 ×42 ×42 ×19 (1235) 8 ×42 ×42 ×14 (910) 16 ×42 ×42 ×10 (650) 

Group Conv. BN + ReLU MaxPool( 2 ×2 ) 1 ×19 ×19 ×32 (21568) 4 ×19 ×19 ×19 (30362) 8 ×19 ×19 ×14 (32956) 16 ×19 ×19 ×10 (33620) 

Group Conv. BN + ReLU MaxPool( 3 ×3 ) 1 ×5 ×5 ×32 (21568) 4 ×5 ×5 ×19 (30362) 8 ×5 ×5 ×14 (32956) 16 ×5 ×5 ×10 (33620) 

Group Conv. BN + ReLU 1 ×1 ×1 ×64 (43136) 4 ×1 ×1 ×16 (25568) 8 ×1 ×1 ×8 (18832) 16 ×1 ×1 ×4 (13448) 

Group Conv. BN + ReLU 1 ×1 ×1 ×16 (1056) 4 ×1 ×1 ×16 (1056) 8 ×1 ×1 ×16 (1056) 16 ×1 ×1 ×16 (1056) 

Mean Proj. 1 ×1 ×16 

FC Layer Sigmoid 1 ×1 ×1 (17) 

Total Weights 89425 88600 86727 82411 
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.2. Implementation details 

For all three baseline architectures, convolution kernels are of 

ize 5 × 5 with circular masking and fully connected layers are im- 

lemented as convolutional layers with kernels of shape 1 × 1 to 

nable dense application (the resulting models can efficiently be 

pplied on larger input sizes). 

Batch Normalization ( Ioffe and Szegedy, 2015 ) is used through- 

ut the networks. Batch statistics are normally computed across 

atch and spatial dimensions of the activations, but we also in- 

luded the orientation-axis of the SE(2,N) -image activation maps 

n the statistic computation to ensure their invariance with respect 

o the orientation of the input. 

All models were trained with Stochastic Gradient Descent with 

omentum (learning rate 0.01, momentum 0.9) and a epoch-wise 

earning rate decay using a factor of 0.5 was applied. Training was 

topped after convergence of the loss computed on the valida- 

ion sets. All models were regularized with decoupled weight de- 

ay (coefficient 5 × 10 −4 ). Baseline augmentation transformations 
m

7 
ere applied to the training image patches (random spatial trans- 

osition, random 90-degree-wise rotation, random channel-wise 

rightness shifting). 

.3. Experiment: orientation sampling 

In order to assess the effect of using the proposed SE(2,N) G- 

NN structure on the benchmark performances, we trained every 

odel with N ∈ { 1 , 4 , 8 , 16 } . In order to allow fair comparison we

djusted the number of channels in every layer involving SE(2,N) - 

mage representation such that the total number of weights in the 

odels stay close to the count of the corresponding baselines. The 

etailed distributions of the weights are shown in Tables 1–3 : for 

ach SE(2,N) group, the dimensions of the output of the layers are 

hown with the format N ×Height ×W idth ×C, with C the number of 

utput channels in the layer. 

Each model was trained three times with random initialization 

eeds. We report the mean and standard deviation of the perfor- 

ances across three random intializations. 
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Fig. 3. Example of mitosis-centered image patches selected from the test set. Below each, polar plots show model predictions (distance from origin) as a function of the 

orientation of the input (angle coordinate) using steps of π/ 8 rad. An ideal model would then produce a circle with maximum radius. Selected models are indicated with 

colors, and correspond to the best obtained models that were trained without reduced data regime over repeats (based on their F 1 -score). 

Fig. 4. Example of image patches selected from the test set of the PCam benchmark, for which pixels in the center area were classified as tumor tissue . Below each, polar 

plots show model predictions (distance from origin) as a function of the orientation of the input (angle coordinate) using steps of π/ 8 rad. Selected models are indicated 

with colors, and correspond to the best obtained models that were trained without reduced data regime over repeats (based on their accuracy). 
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.4. Experiment: data regime experiments 

In order to assess the effect of using the proposed SE(2,N) with 

arying sampling factor N when data is availability is reduced, 

e trained each model on the data-regime subsets presented in 

ection 3.1 . Likewise, each model was trained three times with 

andom initialization seeds so as to report the variability of the 

erformances. 

. Results 

This section summarizes the qualitative and quantitative results 

f the experiments we conducted. Each trained model was evalu- 

ted on the test set of its corresponding benchmark dataset based 

n standard performance metrics. 

Mitosis detection For the mitosis detection task, models were 

ensely applied on test images, followed by a smoothing opera- 

ion before extracting all local maxima to be considered candidate 

etections. We computed the F 1 -score of the set of detections us- 

ng an operating point that is optimized on the validation set, as 

escribed in the scoring protocol used in ( Veta et al., 2015 ). 

Nuclei segmentation To quantify the performances of the nu- 

lei segmentation model, generation of segmented candidate ob- 

ects is obtained by following the protocol used in ( Kumar et al., 

017; Lafarge et al., 2019 ). First, marker seeds are derived from 

hresholded foreground and background predictions, border pre- 

ictions are used as the watershed energy landscape. Then, candi- 

ate objects that overlap the nuclei ground-truth masks by at least 

0% of their area are considered hits, enabling object-level detec- 

ion quantification to be calculated using the F 1 -score. Thresholds 

o generate marker seeds were selected such that the F 1 -score is 

aximized on the validation set. 

Patch-based tumor detection To evaluate the tumor detection 

odel, we computed the class probability of every patch of the 

est dataset and calculated the accuracy of the model given the 

round-truth labels as in Veeling et al. (2018) after selection of the 

perating point that maximizes the accuracy on the validation set. 

.1. Qualitative results 

We qualitatively investigated the robustness of the prediction of 

ifferent models to controlled rotations of the input. We see that 
8 
he model predictions can be very inconsistent for our best base- 

ine model, in comparison to G-CNN models (see Figs. 3–5 ) in par- 

icular for cell or tissue morphologies that are typically asymmet- 

ic. For example, the mitotic figures (h) and (i) shown in Fig. 3 are

n telophase (directed separation of the pair of chromosomes) and 

he variance of the prediction of the baseline model is higher for 

hese cases (green curve) compared to the G-CNN models (blue 

nd red curves). We also observe that for the SE(2,4) model, pre- 

ictions that are obtained for an input image rotated with an angle 

elow π/ 2 rad also produce some variance, but present a π/ 2 rad- 

eriod cyclic pattern. 

.2. Quantitative results 

The performances of the trained models for both orientation 

ampling experiments and data regime experiments are summa- 

ized in the box plots of Figs. 6–8 . 

Notes on absolute performances For the mitosis detection bench- 

ark, the best result we obtained is in line with the re- 

ults previously reported in Lafarge et al. (2019) (best F 1 -score 

f 0 . 62 ±0 . 008 ). For the PCam benchmark, the best result we

btained is in line with the results previously reported in 

eeling et al. (2018) (best accuracy of 0.898). For the nuclei seg- 

entation task, we note that the performances we achieved are 

ignificantly lower than the performances previously reported in 

he literature (on the same test set, Lafarge et al. (2019) reported a 

 1 -score of 0 . 821 ±0 . 004 ). We explain these difference by the strict

onstraints we imposed in the design of the baseline segmenta- 

ion model of this study (lower receptive field, shallower network, 

ower weight capacity). 

Effect of orientation sampling For all three studied tasks, we ob- 

erved an increase of performance with the number of sampled 

rientations from N = 1 to N = 8 . For the full data regime of the

itosis detection experiments, the use of a SE(2,8) G-CNN improves 

he F 1 -score to 0 . 626 ±0 . 015 on average compared to 0 . 556 ±0 . 016

or the baseline model without test-time rotation augmentation 

see Fig. 6 ). A similar increase of performances is observed for the 

uclei segmentation experiments with an improvement of the F 1 - 

core from 0 . 754 ±0 . 006 to 0 . 771 ±0 . 06 (see Fig. 7 ), and for the tu-

or detection experiments with an improvement of the accuracy 

rom 0 . 863 ±0 . 003 to 0 . 892 ±0 . 004 (see Fig. 8 ). 
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Fig. 5. Example of image patches selected from the test set of the nuclei segmentation benchmark (column 1-2: breast tissue, column 3-4: prostate tissue, column 5: kidney 

tissue, column 6: liver). For each image, and a selection of models, the raw predictions of the nucleus boundary class were computed and stored for the set of rotated 

inputs using steps of π/ 8 rad. Predictions were re-aligned and their means were mapped to gray-scale and the standard deviations of the predictions were mapped to a 

white-to-red color scale. The overlap of these statistics is shown below each original image. Selected models are the best obtained models that were trained without reduced 

data regime over repeats (based on their F 1 -score). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Mean and Standard Deviation plots summarizing the F 1 -score of the mitosis 

detection models. Mean ± standard deviation is indicated. Color identifies the dif- 

ferent data regime (red: 8 cases; green: 4 cases; blue: 2 cases). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

a

a

Fig. 7. Mean and Standard Deviation plots summarizing the F 1 -score of the nuclei 

segmentation models. Mean ± standard deviation is indicated. Color identifies the 

different data regime (red: 6 HPFs/organ; green: 4 HPFs/organ; blue: 2 HPFs/organ). 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

e  

t

C

We remark that the performances of the SE(2,4) G-CNN models 

re better than the baseline with test-time rotation augmentation 

s was previously reported in literature for similar tasks ( Bekkers 
9 
t al., 2018a; Veeling et al., 2018 ). We also report that for all three

asks, SE(2,16) G-CNN models perform worse than the SE(2,8) G- 

NN models. 
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Fig. 8. Mean and Standard Deviation plots summarizing the accuracy of the tumor 

detection models. Mean ± standard deviation is indicated. Color identifies the dif- 

ferent data regime (red: 100%; lime: 75%; green: 50%; blue: 25%; purple: 10%). (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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Effect of reduced data regime with orientation sampling For all 

hree tasks, we see a global consistent decrease of performances 

hen less training data is available. In Fig. 8 , the performances of 

he SE(2,4) and SE(2,8) G-CNN models trained with the 25%, 50% 

nd 75% data regimes, are higher than for the baseline model at 

ull data regime using test-time rotation augmentation. This reveals 

hat under experimental conditions, data availability is not the only 

eason for limited performances since this experiment shows that 

he SE(2,N) G-CNN models enable achieving higher performances 

han the baseline models, even if less data is available. 

. Discussion and conclusions 

The presented study investigated the effects of embedding the 

E(2) group structure in CNNs, in the context of histopathology im- 

ge analysis, across multiple controlled experimental setups. 

The comparative analysis we conducted shows a consistent in- 

rease of performances for three different histopathology image 

nalysis tasks when using the proposed SE(2,N) G-CNN architec- 

ure compared to conventional CNNs acting in R 

2 evaluated with 

est-time rotation augmentation. This is in line with previously re- 

orted results when using G-CNNs with groups that lay on the 

ixel grid (p4, p4m) ( Cohen and Welling, 2016; Veeling et al., 

018 ), but we also show that these performances can be surpassed 

hen using groups with higher discretization levels of SE(2) . 

This confirms that conventional R 

2 CNNs struggle to learn a ro- 

ation equivariant representation based on data solely and that en- 

orcing equivariant representation learning enables reaching higher 

erformances. G-CNNs with SE(2,N) structure have the advantage 

o guarantee higher robustness to input orientation without requir- 

ng training-time or test-time rotation augmentation. Furthermore, 

he slight computational overhead for computing rotated convolu- 

ional operators and their gradient, at training time, can be can- 

eled at test-time by computing and fixing all final oriented SE(2,N) 

ernels, resulting in a model that is computationally equivalent to 

onventional R 

2 CNNs. 

We show that these performances can be surpassed when 

sing representations with higher angular resolution levels, as 

hown with experiments involving SE(2,8) G-CNNs and when the 

raining data is of sufficient amount. This conclusion corrobo- 
10 
ates the results we reported on other medical image analy- 

is tasks ( Bekkers et al., 2018a ) and in studies that investigated 

odels with rotated operators that lay outside of the pixel grid 

 Hoogeboom et al., 2018 ). 

However, we also identified consistent lower performances for 

E(2,16) G-CNNs compared to SE(2,8) G-CNNs at full data regime. 

e assume that this phenomenon is in part related to the model 

rchitectures we chose to enforce fixed model capacity, resulting in 

 number of channels in the representation of the SE(2,N) models 

eing reduced when N increases. This reduced number of channels 

ight affect the diversity of the features learned by the models, 

o the point that this limits their overall performances. Therefore, 

t appears there is a trade-off between performances and angular 

esolution at fixed capacity, further work would be necessary to 

onfirm this hypothesis. 

For the tumor detection task, we observed that the perfor- 

ances of the baseline models (with or without test-time rotation 

ugmentation) reached a plateau, whatever the regime of avail- 

ble training data was among 25%, 50%, 75% or 100%. This in- 

icates that in the conditions of the PCam dataset, the amount 

f available training data does not significantly influence the per- 

ormances. However, the rotation-equivariant models were able to 

chieve better performances with increased data regime. 

This behavior was not evidenced for the mitosis detection and 

uclei segmentation experiments. We assume this result may be 

ask-dependent or might be due to the fact that the plateau of 

erformances observed for the tumor detection models was not 

eached yet for the two other tasks. 

We qualitatively showed that in some cases, the predictions 

f conventional CNNs are inconsistent when inputs are rotated, 

hereas SE(2) G-CNNs show better stability in that sense. This sug- 

ests that the anisotropic learned features of conventional models 

nly get activated when the input is observed in a specific ori- 

ntation. On the shown examples ( Section 5.1 ), the SE(2) models 

re more robust to the input orientation since their SE(2) structure 

uarantees the features to be expressed in multiple orientations. 

e also see that SE(2) models with a limited angular resolution 

an yet produce some variance for rotation angles lower than this 

esolution. This is also supported by the fact that higher perfor- 

ances were obtained for the experiments that compare SE(2,4) 

odels to SE(2,8) models. 

Still, variation of performances for these models was also ob- 

erved when the input was rotated out of the pixel grid. We ex- 

lain this limit from the approximation errors caused by two of the 

perators we used, and that have a weaker rotation equivariance 

roperty. First, the interpolation-based computation of the rotated 

ernels can cause small variations in the output when the input is 

otated. Second, the pooling operators are not rotation equivariant 

y construction (since they lay on fixed down-sampled versions of 

he pixel grid), and so are another source of error. 

In conclusion, we proposed a framework for SE(2) group- 

onvolutional network and showed its advantages for histopathol- 

gy image analysis tasks. This framework enables the learned mod- 

ls to be invariant to the natural roto-translational symmetry of 

istology images. We showed that G-CNNs models whose repre- 

entation have a SE(2) structure yield better performances than 

onventional CNNs and our experiments suggest the ability of G- 

NNs models to fully exploit the data amount of large datasets. 

ur results suggest the existence of a trade-off between network 

apacity and the chosen angular resolution of the SE(2,N) opera- 

ors. We chose to experiment with light-weighted shallow model 

rchitectures in order to clearly show benefits of SE(2,N) equivari- 

nce: such light-weighted shallow model architectures allow for 

air and transparent comparisons (where we control and fix the 

verall network capacity, see Tables 1–3 ). The proposed framework 

an also be applied to more heavy-weighted and deeper models 
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W  
ia the replacement of conventional R 

2 convolutions by SE(2,N) 

onvolutions, but this is beyond the scope of this article and is left 

or future work. Likewise, the use of more sophisticated data aug- 

entation strategies that do not involve rotating the images can 

till be beneficial in practice. Other directions for future work in- 

lude further analysis of the relationship between the newly in- 

roduced architecture-related hyper-parameters and their effect on 

odel performances, as well as studying other prior structures that 

an improve model stability to other families of input transforma- 

ions. 
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