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Abstract: Fokker–Planck PDEs (including diffusions) for stable Lévy processes (including Wiener
processes) on the joint space of positions and orientations play a major role in mechanics, robotics,
image analysis, directional statistics and probability theory. Exact analytic designs and solutions
are known in the 2D case, where they have been obtained using Fourier transform on SE(2). Here,
we extend these approaches to 3D using Fourier transform on the Lie group SE(3) of rigid body
motions. More precisely, we define the homogeneous space of 3D positions and orientations R3 o
S2 := SE(3)/({0} × SO(2)) as the quotient in SE(3). In our construction, two group elements
are equivalent if they are equal up to a rotation around the reference axis. On this quotient, we
design a specific Fourier transform. We apply this Fourier transform to derive new exact solutions
to Fokker–Planck PDEs of α-stable Lévy processes on R3 o S2. This reduces classical analysis
computations and provides an explicit algebraic spectral decomposition of the solutions. We compare
the exact probability kernel for α = 1 (the diffusion kernel) to the kernel for α = 1

2 (the Poisson
kernel). We set up stochastic differential equations (SDEs) for the Lévy processes on the quotient and
derive corresponding Monte-Carlo methods. We verified that the exact probability kernels arise as
the limit of the Monte-Carlo approximations.

Keywords: fourier transform; rigid body motions; partial differential equations; Lévy processes;
Lie Groups; homogeneous spaces; stochastic differential equations

1. Introduction

The Fourier transform has had a tremendous impact on various fields of mathematics including
analysis, algebra and probability theory. It has a broad range of applied fields such as signal and
image processing, quantum mechanics, classical mechanics, robotics and system theory. Thanks to
Jean-Baptiste Joseph Fourier (1768–1830), who published his pioneering work “Théory analytique de
la chaleur” in 1822, the effective technique of using a Fourier transform to solve linear PDE-systems
(with appropriate boundary conditions) for heat transfer evolutions on compact subsets Ω of Rd was
born. The Fourier series representations of the solutions helped to understand the physics of heat
transfer. Due to the linearity of the evolution operator that maps the possibly discontinuous square
integrable initial condition to the square integrable solution at a fixed time t > 0, one can apply a
spectral decomposition which shows how each eigenfunction is dampened over time. Thanks to
contributions of Johann Peter Gustav Lejeune Dirichlet (1805–1859), completeness of the Fourier basis
could then be formalized for several boundary conditions. Indeed, separation of variables (also known
as “the Fourier method”) directly provides a Sturm–Liouville problem [1] and an orthonormal basis of
eigenfunctions for L2(Ω), which is complete due to compactness of the associated self-adjoint kernel
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operator. When dilating the subset Ω to the full space Rd, the discrete set of eigenvalues start to fill
R and the discrete spectrum approximates a continuous spectrum (see, e.g., [2]). Then, a diffusion
system on Rd can be solved via a unitary Fourier transform on L2(Rd) (cf. [3]).

Nowadays, in fields such as mechanics/robotics [4–7], mathematical physics/harmonic
analysis [8], machine learning [9–13] and image analysis [14–19], it is worthwhile to extend the
spatial domain of functions on M = Rd (or M = Zd) to groups G = M o T that are the semi-direct
product of an Abelian group M and another matrix group T. This requires a generalization of the
Fourier transforms on the Lie group (Rd,+) towards the groups G = Rd o T. Then, the Fourier
transform gives rise to an invertible decomposition of a square integrable function into irreducible
representations. This is a powerful mechanism in view of the Schur’s lemma [20,21] and spectral
decompositions [22,23]. However, it typically involves regularity constraints ([22], ch:6.6, [24], ch:3.6)
on the structure of the dual orbits in order that Mackey’s imprimitivity theory [25] can be applied to
characterize all unitary irreducible representations (UIRs) of G. This sets the Fourier transform on the
Lie group G [22,24,26]. Here, we omit technicalities on regularity constraints on the dual orbits and
the fact that G may not be of type I (i.e., the quasi-dual group of G may not be equal to the dual group
of G (cf. [22], thm.7.6, 7.7, [24], ch:3, [27]), as this does not play a role in our case of interest.

We are concerned with the case M = R3 and T = SO(3) where G = SE(3) = M o SO(3) is the
Lie group of 3D rigid body motions. It is a (type I) Lie group with an explicit Fourier transform FG
where the irreducible representations are determined by regular dual orbits (which are spheres in the
Fourier domain indexed by their radius p > 0) and an integer index s ∈ Z (cf. [4,26]).

In this article, we follow the idea of Joseph Fourier: we apply the Fourier transformFG on the rigid
body motion group G = SE(3) to solve both non-degenerate and degenerate (hypo-elliptic) heat flow
evolutions, respectively, on the Lie group G. More precisely, we design a Fourier transform FG/H on
the homogeneous space of positions and orientations G/H with H ≡ {0} × SO(2) to solve degenerate
and non-degenerate heat flow evolutions on the homogeneous space G/H. We also simultaneously
solve related PDEs (beyond the diffusion case), as we explain below. For general Fourier theory and
harmonic analysis on homogeneous spaces, see the works by Ghaani Farashahi [28–31], of which the
work in [31] applies to our setting G/H = R3 o S2. In contrast to ([31], ch:5.2), we consider the
subgroup H ≡ {0} × SO(2) instead of {0} × SO(3), and we include an extra projection in our design
of FG/H .

The idea of applying Fourier transforms to solve linear (degenerate) PDEs on non-commutative
groups of the type Rd o T is common and has been studied by many researchers. For example, tangible
probability kernels for heat transfer (and fundamental solutions) on the Heisenberg group were derived
by Gaveau [32]. They can be derived by application ([23], ch:4.1.1) of the Fourier transform on the
Heisenberg group ([22], ch:1). This also applies to probability kernels for degenerate, hypo-elliptic
diffusions on SE(2) = R2 o SO(2), where three different types (a Fourier series, a rapidly decaying
series, and a single analytic formula that equals the rapidly decaying series) of explicit solutions to
probability kernels for (convection-)diffusions were derived in previous works by Duits et al. [33–36].
For a concise review, see ([37], ch:5.1). Here, the two fundamental models for contour perception by,
respectively, Mumford [38], Petitot [39] and Citti and Sarti [15] formed great sources of inspiration to
study the degenerate diffusion problem on SE(2).

The degenerate (hypo-elliptic) diffusion kernel formula in terms of a Fourier series representation
was generalized to the much more wide setting of unimodular Lie groups by Agrachev, Boscain,
Gauthier and Rossi [23]. This approach was then pursued by Portegies and Duits to achieve explicit
exact solutions to (non-)degenerate (convection-)diffusions on the particular SE(3) case (see [40]).

The idea of using Fourier transform on SE(3) to represent solutions to the linear heat equations on
SE(3) has been considered by other authors in a wide variety of applications in the last decade. For a
concise theoretical survey, see the recent work of Chirikjian [41]; for related articles with convincing
applications, see [42,43]. In the recent work by Portegies and Duits [40], exact solutions are expressed
in terms of an explicit, converging, eigenfunction decomposition in spheroidal wave-functions via
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technical, classical analysis techniques. This provides exact, analytic and converging series expressions
that hold (and allow for analysis) prior to any numerical approximation. They can be used to
compare different numerical techniques, as was done by Zhang and Duits et al. in the SE(2) case [37].
In numerical implementations, the exact series must be truncated, and, as the spectrum is derived
analytically, it is easy to control and reduce approximation errors to a neglectable level [44] (as in the
SE(2)-case ([37], ch:5.1.4, thm 5.2 and 5.3, ch:6) with comparisons to an alternative single formula by
Duits ([36], thm 5.2)).

Here, we aim to simplify and generalize the explicit spectral decompositions [40] of degenerate
diffusions on R3 o S2 = SE(3)/H, and to put this in the algebraic context of Fourier transform on
G = SE(3) [4,26,41], or more efficiently on the algebraic context of a Fourier transform on G/H. To this
end, we first propose a specific Fourier transform on G/H in Theorem 1. Then, we use it to derive
explicit spectral decompositions of the evolution operator in Theorem 2, from which we deduce explicit
new kernel expressions in Theorem 3. Finally, we generalize the exact solutions to other PDE systems
beyond the diffusion case: We simultaneously solve the Forward-Kolmogorov PDEs for α-stable Lévy
processes on the homogeneous space of positions and orientations. Next, we address their relevance in
the fields of image analysis, robotics and probability theory.

In image analysis, left-invariant diffusion PDEs on SE(3) have been widely used for
crossing-preserving diffusion and enhancement of fibers in diffusion-weighted MRI images of brain
white matter [45–50], or for crossing-preserving enhancements of 3D vasculature in medical images [18].
They extend classical works on multi-scale image representations [51–54] to Lie groups [55].

In robotics, they play a role via the central limit theorem [56] in work-space generation of robot
arms ([4], ch.12) and they appear indirectly in Kalman-filtering on SE(3) for tracking [57], motion
planning of robotic devices [42], and camera motion estimation [58].

In probability theory, diffusion systems on Lie groups describe Brownian motions [59,60] and
they appear as limits in central limit theorem on Lie groups [56].

Both in probability theory [61] and in image analysis [62–65], the spectral decomposition of
the evolution operator also allows simultaneously dealing with important variants of the diffusion
evolution. These variants of the heat-evolution are obtained by taking fractional powers −(−∆)α

(cf. [66]) of the minus Laplacian operator ∆ = div ◦ grad that generates the heat flow (due to Fick’s
law and the Gauss divergence theorem), where α ∈ (0, 1].

This generalization allows for heavy tailed distributions of α-stable Lévy processes, which arise
in a fundamental generalization [61] of the central limit theorem where one drops the finite variance
condition. Here, we note that recently an extension of the central limit on linear groups (such as
SE(3)) has been achieved for finite second-order moments [56]. In engineering applications, where
(iterative group-)convolutions are applied ([4], ch.12 and 13, [9,12,13,67–71]), the “kernel width”
represents the spread of information or the scale of observing the signal. In the case the applications
allow for an underlying probabilistic model with finite variances, variance is indeed a good measure
for “kernel width”. However, often this is not the case. Probability kernels for stochastic Lévy
processes (used in directional statistics [72], stock market modeling [73], natural image statistics [65]),
and modeling of point-spread functions in acquired images (e.g., in spectroscopy [74])) do require
distributions with heavier tails than diffusion kernels. Therefore, “full width at half maximum” is a
more generally applicable measure for kernel width than variance, as it applies to all α-stable Lévy
processes. The probability distributions for α < 1 encode a longer range of interaction via their heavy
tails and still allow for unlimitedly sharp kernels.

Finally, regarding entropy, we show that for α ∈ { 1
2 , 1} we have monotonic increase of entropy

Eα(t) over evolution time t > 0 of our α-stable Lévy processes. For α = 1, one arrives at a diffusion
system, and a previous result by Chirikjian on Lie groups [75], also applies to the Lie group quotient
G/H = R3 o S2. Thereby, E′1(t) = trace{D · F1(t)} > 0, where F1(t) is the Fisher information matrix
and D is the diffusion matrix. We show that for α = 1

2 one arrives at a Poisson system where entropy
also increases monotonically over time, again relative to a corresponding Fisher matrix. It is also
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intriguing, from the perspective of geometric theory of information and heat [76], to study optimal
entropy on R3 o S2 and (Fourier) Cramér Transforms building on results [77,78] on Rn. However, such
investigations first require a good grip on the spectral decompositions of the PDE-evolution operators
for α-stable Lévy processes via a Fourier transform on R3 o S2, which is our primary focus here.

1.1. Structure of the Article

The structure of the article is as follows. In the first part of the Introduction, we briefly discuss
the history of the Fourier transform, and its generalization to other groups that are the semi-direct
product of the translation group and another matrix group, where we provide an overview of related
works. Then, we specify our domain of interest—the Fourier transform on the homogeneous space
G/H of positions and orientations, which is a Lie group quotient of the Lie group G = SE(3) with a
subgroup H isomorphic to {0} × SO(2). Then, we address its application of solving PDE systems on
G/H, motivated from applications in image analysis, robotics and probability theory.

There are four remaining subsections of the Introduction. In Section 1.2, we provide basic facts
on the homogeneous space G/H of positions and orientations and we provide preliminaries for
introducing a Fourier transform on G/H. In Section 1.3, we formulate the PDEs of interest on G/H
that we solve. In Section 1.4, we formulate the corresponding PDEs on the group G. In Section 1.5, we
relate the PDE for α = 1

2 to a Poisson system and quantify monotonic increase of entropy for α ∈ { 1
2 , 1}.

In Section 1.6, we provide a roadmap on the spectral decomposition of the PDE evolutions.
In Section 2, based on previous works, we collect the necessary prior information about the PDEs

of interest and the corresponding kernels. We also describe how to extend the case α = 1 (the diffusion
case) to the general case α ∈ (0, 1].

In Section 3, we describe the Fourier transform on the Lie group SE(3), where we rely on UIRs of
SE(3). In particular, by relating the UIRs to the dual orbits of SO(3) and by using a decomposition
with respect to an orthonormal basis of modified spherical harmonics, we recall an explicit formula for
the inverse Fourier transform.

In Section 4, we present a Fourier transform FG/H on the quotient G/H = R3 o S2.
Our construction requires an additional constraint—an input function must be bi-invariant with
respect to subgroup H, as explained in Remark 3. This extra symmetry constraint is satisfied by the
PDE kernels of interest. We prove a theorem, where we present: (1) a matrix representation for the
Fourier transform on the quotient; (2) an explicit inversion formula; and (3) a Plancherel formula.

In Section 5, we apply our Fourier transform on the quotient to solve the PDEs of interest.
The solution is given by convolution of the initial condition with the specific kernels (which are the
probability kernels of α-stable Lévy process). We find the exact formulas for the kernels in the frequency
domain relying on a spectral decomposition of the evolution operator (involved in the PDEs). We show
that this result can be obtained either via conjugation of the evolution operator with our Fourier
transform on R3 o S2 or (less efficiently) via conjugation of the evolution operator with the Fourier
transform acting only on the spatial part R3. Then, we present a numerical scheme to approximate
the kernels via Monte-Carlo simulation and we provide a comparison of the exact solutions and their
approximations. Finally, in Section 6, we summarize our results and discuss their applications. In the
appendices, we address the probability theory and stochastic differential equations (SDEs) regarding
Lévy processes on R3 o S2.

The main contributions of this article are:

• We construct FR3oS2—the Fourier transform on the quotient R3 o S2, in Equation (43).
• The matrix representations for FR3oS2 , explicit inversion and Plancherel formulas are shown in

Theorem 1.
• The explicit spectral decompositions of PDE evolutions for α-stable Lévy process on R3 o S2,

in the Fourier domains of both R3 o S2 and R3, are shown in Theorem 2; here, the new
spectral decomposition in the Fourier domain of R3 o S2 is simpler and involves ordinary
spherical harmonics.
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• The quantification of monotonic increase of entropy of PDE solutions for α-stable Lévy processes
on R3 o S2 for α ∈ { 1

2 , 1} in terms of Fisher information matrices is shown in Proposition 1.
• the exact formulas for the probability kernels of α-stable Lévy processes on R3 o S2, in Theorem 3.

This also includes new formulas for the heat kernels (the case α = 1), that are more efficient than
the heat kernels presented in previous work [40].

• Simple formulation and verifications (Monte-Carlo simulations) of discrete random walks for
α-stable Lévy processes on R3 o S2 in Proposition 3. The corresponding SDEs are in Appendix A.

1.2. Introduction to the Fourier Transform on the Homogeneous Space of Positions and Orientations

Let G = SE(3) denote the Lie group of rigid body motions, equipped with group product:

g1g2 = (x1, R1)(x2, R2) = (R1x2 + x1, R1R2), with gk = (xk, Rk) ∈ G, k = 1, 2. (1)

Here, xk ∈ R3 and Rk ∈ SO(3). Note that SE(3) = R3 oSO(3) is a semi-direct product of R3

and SO(3).

Definition 1. Let B(H) denote the vector space of bounded linear operators on some Hilbert spaceH.
Within the space B(H), we denote the subspace of bounded linear trace-class operators by

B2(H) =
{

A : H → H | A linear and |||A|||2 := trace(A∗A) < ∞
}

.

Definition 2. Consider a mapping σ : G → B(Hσ), where Hσ denotes the Hilbert space on which each σg

acts. Then, σ is a Unitary Irreducible Representation (UIR) of G if

1. σ : G → B(Hσ) is a homomorphism;
2. σ−1

g = σ∗g for all g ∈ G; and
3. there does not exist a closed subspace V ofHσ other than {0,Hσ} such that σgV ⊂ V.

We denote by Ĝ the dual group of G. Its elements are equivalence classes of UIRs, where one
identifies elements via σ1 ∼ σ2 ⇔ there exists a unitary linear operator υ, s.t. σ1 = υ ◦ σ2 ◦ υ−1. Note
that G = SE(3) is a unimodular Lie group of type I, which means that the left and right-invariant
Haar measure coincide, and that its dual group and its quasi dual group coincide. Thereby it admits a
Plancherel theorem [22,24].

Definition 3. The Fourier transform FG( f ) = ((FG f )(σ))σ∈Ĝ of a square-integrable, measurable and
bounded function f on G is a measurable field of bounded operators indexed by unitary irreducible representations
(UIR’s) σ. Now, Ĝ can be equipped with a canonical Plancherel measure ν and the Fourier transform FG admits
an extension unitary operator from L2(G) to the direct-integral space

∫ ⊕
Ĝ B2(Hσ)dν(σ). This unitary extension

([22], 4.25) (also known as “Plancherel transform” ([24], thm.3.3.1)) is given by

FG( f ) =
⊕∫̂
G

f̂ (σ) dν(σ), with

f̂ (σ) = (FG f ) (σ) =
∫
G

f (g) σg−1dg ∈ B2(Hσ), for all σ ∈ Ĝ,
(2)

for all f ∈ L1(G) ∩L2(G).

The Plancherel theorem states that ‖FG( f )‖2
L2(Ĝ)

=
∫

Ĝ |||FG( f )(σ)|||2dν(σ) =
∫

G | f (g)|2dg =

‖ f ‖2
L2(G) for all f ∈ L2(G), and we have the inversion formula f = F−1

G FG f = F ∗GFG f . For details,
see [22,24], and, for detailed explicit computations, see [4].
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In this article, we constrain and modify the Fourier transform FG on G = SE(3) such that we
obtain a suitable Fourier transform FG/H defined on a homogeneous space

R3 o S2 := G/H with subgroup H = {0} × StabSO(3)(a) (3)

of left cosets, where StabSO(3)(a) = {R ∈ SO(3) | Ra = a} denotes the subgroup of SO(3) that
stabilizes an a priori reference axis a ∈ S2, say a = ez = (0, 0, 1)T . In the remainder of this article, we
set this choice a = ez.

Remark 1. Although the semi-direct product notation R3 o S2 is formally not correct as S2 is not a Lie group,
it is convenient: it reminds that G/H denotes the homogeneous space of positions and orientations.

Remark 2. (notation and terminology)
Elements in Equation (3) denote equivalence classes of rigid body motions g = (x, Rn) ∈ SE(3) that map

(0, a) to (x, n):
[g] =: (x, n) ∈ R3 o S2 ⇔ g� (0, a) = (x, n),

under the (transitive) action

g� (x′, n′) = (Rx′ + x, Rn′), for all g = (x, R) ∈ SE(3), (x′, n′) ∈ R3 o S2. (4)

Therefore, we simply denote the equivalence classes [g] by (x, n). This is similar to the conventional
writing n ∈ S2 = SO(3)/SO(2). Throughout this manuscript, we refer to G/H as “the homogeneous space of
positions and orientations” and henceforth Rn denotes any rotation that maps the reference axis a into n.

The precise definition of the Fourier transformFG/H on the homogeneous space G/H is presented
in Section 4. It relies on the decomposition into unitary irreducible representations in Equation (2), but
we must take both a domain and a range restriction into account. This is explained in Section 4. Next,
we address an a priori domain constraint that is rather convenient than necessary.

Remark 3. We constrain the Fourier transform FG/H to

Lsym
2 (G/H) :=

{
f ∈ L2(G/H) | ∀R∈StabSO(3)(a) : f (x, n) = f (Rx, Rn)

}
. (5)

This constraint is convenient in view of the PDEs of interest (and the symmetries of their kernels)
that we formulate in the next subsection, and that solve via Fourier’s method in Section 5.

1.3. Introduction to the PDEs of Interest on the Quotient R3 o S2

Our main objective is to use the Fourier transform FG/H to solve the following PDEs on R3 o S2:


∂

∂t
Wα(x, n, t) = QαWα(x, n, t),

Wα(x, n, 0) = U(x, n),
(6)

where (x, n) ∈ R3 o S2, t ≥ 0, α ∈ (0, 1] and the generator

Qα := −(−Q)α (7)

is expressed via
Q = D11‖n×∇R3‖2 + D33(n · ∇R3)2 + D44∆S2

n ,

with D33 > D11 ≥ 0, D44 > 0, and with ∆S2
n the Laplace–Beltrami operator on S2=

{
n ∈ R3

∣∣ ‖n‖ = 1
}

.
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Note that the generator Q is a self-adjoint unbounded operator with domain

D(Q) := H2(R3)⊗H2(S2),

where H2 denotes the Sobolev space W2
2.

The semigroup for α = 1 is a strongly continuous semigroup on L2(R3 o S2) with a closed
generator, and by taking the fractional power of the generator one obtains another strongly continuous
semigroup, as defined and explained in a more general setting in the work by Yosida ([66], ch:11).
The fractional power is formally defined by

QαW = −(−Q)αW :=
sin απ

π

∫ ∞

0
λα−1(Q− λI)−1(−QW)dλ for all W ∈ D(Q). (8)

In Section 1.6, we show that the common technical representation Equation (8) is not really
needed for our setting. In fact, it is very easy to account for α ∈ (0, 1] in the solutions; by a spectral
decomposition, we only need to take fractional powers of certain eigenvalues in the Fourier domain.
For the moment, the reader may focus on the case α = 1, where the system in Equation (6) becomes an
ordinary elliptic diffusion system which is hypo-elliptic (in the sense of Hörmander [79]) even in the
degenerate case where D11 = 0.

The PDEs in Equation (6) have our interest as they are Forward-Kolmogorov equations for
α-stable Lévy processes on G/H. See Appendix A for a precise formulation of discrete and continuous
stochastic processes. This generalizes previous works on such basic processes [61,64] with applications
in financial mathematics [80] and computer vision [65,78,81,82], from Lie group R3 to the Lie group
quotient R3 o S2.

See Figure 1 for a visualization of sample paths from the discrete stochastic processes explained
in Appendix A. They represent “drunk man’s flights” rather than “drunk man’s walks”.

Figure 1. Various visualization of the diffusion process (α = 1) on Rd o Sd−1, for d = 2 and d = 3.
(Top) random walks (or rather “drunk man’s drives”) and an iso-contour of the limiting diffusion
kernel, for the case d = 2 studied in previous works (see, e.g., [15,37,83]); and (Bottom) random walks
(or rather “drunk man’s flights”) and a visualization of the limiting distribution for the case d = 3. This
limiting distribution is a degenerate diffusion kernel (x, n) 7→ Kα=1

t (x, n) that we study in this article.
We visualize kernel Kα=1

t by a spatial grid of surfaces, where all surfaces are scaled by the same µ > 0.



Entropy 2019, 21, 38 8 of 38

1.4. Reformulation of the PDE on the Lie Group SE(3)

Now, we reformulate and extend our PDEs in Equation (6) to the Lie group G = SE(3) of rigid
body motions, equipped with group product in Equation (1). This helps us to better recognize
symmetries, as we show in Section 2.1. To this end, the PDEs are best expressed in a basis of
left-invariant vector fields {g 7→ Ai|g}6

i=1 on G. Such left-invariant vector fields are obtained by
push forward from the left-multiplication Lg1 g2 := g1g2 as

Ai|g = (Lg)∗Ai ∈ Tg(G),

where Ai := Ai|e form an orthonormal basis for the Lie algebra Te(G). We choose such a basis typically
such that the first three are spatial generators A1 = ∂x, A2 = ∂y, A3 = ∂z = a · ∇R3 and the remaining
three are rotation generators, in such a way that A6 is the generator of a counter-clockwise rotation
around the reference axis a. For all Ũ ∈ C1(G) and g ∈ G, one has

AiŨ(g) = lim
t↓0

Ũ(g etAi )− Ũ(g)
t

, (9)

where A 7→ eA denotes the exponent that maps Lie algebra element A ∈ Te(G) to the corresponding
Lie group element. The explicit formulas for the left-invariant vector fields in Euler-angles (requiring
two charts) can be found in Appendix B, or in [4,84].

Now we can re-express the PDEs in Equation (6) on the group G = SE(3) as follows:


∂

∂t
W̃α(g, t) = Q̃αW̃α(g, t), g ∈ G, t ≥ 0

W̃α(g, 0) = Ũ(g), g ∈ G,
(10)

where the generator
Q̃α := −(−Q̃)α (11)

is again a fractional power (α ∈ (0, 1]) of the diffusion generator Q̃ given by

Q̃ = D11(A2
1 +A2

2) + D33A2
3 + D44(A2

4 +A2
5), (12)

where A2
i = Ai ◦ Ai for all i ∈ {1, . . . , 5}. The initial condition in Equation (10) is given by

Ũ(g) = Ũ(x, R) = U(x, Ra).

Similar to the previous works [40,85], one has

W̃α(x, R, t) = Wα(x, Ra, t), (13)

that holds for all t ≥ 0, (x, R) ∈ SE(3).

Remark 4. Equation (13) relates the earlier PDE formulation in Equation (6) on the quotient G/H to the PDE
formulation in Equation (10) on the group G. It holds since we have the relations

A6W̃α(x, R, t) = 0,
(A2

5 +A2
4)W̃α(x, R, t) = ∆S2

Wα(x, Ra, t),

A3W̃α(x, Rn, t) = n · ∇R3Wα(x, n, t),(
A2

1 +A2
2
)

W̃α(x, R, t) =
(

∆R3 −A2
3

)
W̃α(x, R, t) = ‖n×∇R3‖2 Wα(x, Ra, t)
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so that the generator of the PDE in Equation (10) on G and the generator of the PDE in Equation (6) on G/H
indeed stay related via

Q̃αW̃α(x, R, t) = QαWα(x, Ra, t) for all t ≥ 0. (14)

1.5. Increase of Entropy for the Diffusion System (α = 1) and the Poisson System (α = 1
2 ) on G/H

The PDE-system in Equation (6) on G/H relates to the PDE-system in Equation (10) on G via
Equation (14). Next, we show that for α = 1

2 the PDE-system boils down to a Poisson system. For α = 1
the PDE-system in Equation (10) is a diffusion system on Lie group G, for which one has monotonic
increase of entropy [75]. The next theorem quantifies the monotonic increase of entropy for α ∈ { 1

2 , 1}
in terms of Fisher matrices.

Definition 4. Let α ∈ (0, 1]. Let W̃α be the solution to Equation (10) with positive initial condition Ũ > 0
with Ũ ∈ L2(G) and

∫
G Ũ(g)dg = 1. Then, we define the entropy Eα(t) at evolution time t ≥ 0 as

Eα(t) := −
∫
G

W̃α(g, t) log W̃α(g, t)dg. (15)

Proposition 1. For α = 1
2 , the PDE system in (10) yields the same solutions as the following Poisson system:

(
∂2

∂t2 + Q̃
)

W̃1
2
(g, t) = 0 g ∈ G, t ≥ 0, with ∀t≥0 : W̃1

2
(·, t) ∈ L2(G)

W̃1
2
(g, 0) = Ũ(g) > 0, g ∈ G.

(16)

The entropy in Equation (15) equals Eα(t) = −2π
∫

G/H
Wα(x, n, t) log Wα(x, n, t)dxdµS2(n).

For all t > 0, one has

E′1(t) = trace{D · F1(t)} > 0,

E′′1
2
(t) < −trace{D · F 1

2
(t)} < 0 and E′1

2
(t) =

∞∫
t

trace{D · F 1
2
(τ)}+ F(τ) dτ > 0,

(17)

for the diffusion matrix D = diag{Dii}6
i=1 > 0, where D11 = D22, D33 and D44 = D55 are the coefficients in

Q̃, and with Fisher matrix Fα(t) = diag{
∫
G

|AiW̃α(g,t)|2
W̃α(g,t)

dg}6
i=1, and F(t) =

∫
G

|∂τW̃1/2(g,t)|2
W̃1/2(g,t)

dg ≥ 0.

Proof. For α = 1
2 , one has by the square integrability constraint in Equation (16) and application

of the unitary Fourier transform on G that
(

∂2

∂t2 + Q̃
)

W̃1
2
=
(

∂
∂t −

√
−Q̃

) (
∂
∂t +

√
−Q̃

)
W̃1

2
= 0 ⇒(

∂
∂t +

√
−Q̃

)
W̃1

2
= 0 and thereby the PDE system in Equation (10) can be replaced by the Poisson

system in Equation (16) on G×R+. The formula for the entropy follows from a product decomposition
of the (bi-invariant) haar measure on G into measure on the quotient G/H and a measure on the
subgroup H ≡ {0} × SO(2) and the fact that W̃α(gh, t) = W̃α(g, t) for all h ∈ H, α ∈ (0, 1], due to
Equation (14). For α = 1

2 , we have that W̃α satisfies Equation (16) and

E′′1
2
(t) = −

∫
G

(∂tW̃ 1
2
(g,t))2

W̃ 1
2
(g,t)

− (log(W̃1
2
(g, t) + 1)) ∂2

t W̃1
2
(g, t)dg

<
∫
G
(log W̃1

2
(g, t) + 1) Q̃W̃1

2
(g, t) dg =

∫
G
(log W̃1

2
(g, t)) Q̃W̃1

2
(g, t) dg

= −
∫
G

6
∑

i=1

Dii |AiW̃ 1
2
(g,t)|2

W̃ 1
2
(g,t)

dg = −trace(D · F 1
2
(t)),
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where we use integration by parts and short notation with ∂t := ∂
∂t . Now, E′′1

2
< 0 and E′1

2
is continuous

(due to the Lebesgue dominated convergence principle and continuity of each mapping t 7→ ∂tW̃(g, t)

indexed by g ∈ G) and E 1
2
(t)→ 0 when t→ ∞, from which we deduce that E′1

2
(t) = −

∞∫
t

E′′1
2
(τ)dτ > 0.

For α = 1, we follow ([75], Thm.2) and compute (again using the PDE and integration by parts)

E′1(t) = −
∫
G

(∂tW̃1(g, t)) log W̃1(g, t)+ W̃1(g, t)dg =
∫
G

6

∑
i=1

Dii
|AiW̃1(g, t)|2

W̃1(g, t)
dg = trace(D ·F1(t)) > 0.

Regarding the strict positivity in Equation (17), we note that Ũ > 0⇒ W̃α > 0 and if E′α(t) = 0
then this would imply that W̃α(·, t) is constant, which violates W̃α(·, t) ∈ L2(G) as G is not compact.

1.6. A Preview on the Spectral Decomposition of the PDE Evolution Operator and the Inclusion of α

Let U be in the domain of the generator Qα given by Equation (7), of our evolution Equation (6).
For a formal definition of this domain, we refer to ([86], Equation 9). Let its spatial Fourier transform
be given by

U(ω, n) = [FR3U(·, n)] (ω) :=
1

(2π)
3
2

∫
R3

U(x, n) e−iω·x dx. (18)

To the operator Qα, we associate the corresponding operator −(−B)α in the spatial Fourier
domain by

− (−B)α =
(
FR3 ⊗ 1L2(S2)

)
◦Qα ◦

(
F−1
R3 ⊗ 1H2α(S2)

)
. (19)

Then, direct computations show us that

− (−B)αU(ω, n) =
[
−(−Bω)

αU(ω, ·)
]
(n), for all n ∈ S2, (20)

where, for each fixed ω ∈ R3, the operator −(−Bω)α : H2α(S2)→ L2(S2) is given by

− (−Bω)
α = −

(
−D44∆S2

n + D11‖ω× n‖2 + D33(ω · n)2
)α

. (21)

In this article, we employ Fourier transform techniques to derive a complete orthonormal basis
(ONB) of eigenfunctions {

Φl,m
ω | l ∈ N0, m ∈ Z with |m| ≤ l

}
, (22)

in L2(S2) for the operator −(−Bω) := −(−Bω)α=1. Then, clearly, this basis is also an ONB of
eigenfunctions for −(−Bω)α, as we only need to take the fractional power of the eigenvalues. Indeed,
once the eigenfunctions in Equation (22) and the eigenvalues

BωΦl,m
ω = λl,m

r Φl,m
ω , with r = ‖ω‖, (23)

are known, the exact solution of Equation (6) is given by (shift-twist) convolution with a probability
kernel on R3 o S2. More precisely, the solutions of Equation (6) can be expressed as follows:

Wα(x, n, t) = (Kα
t ∗U)(x, n) :=

∫
S2

∫
R3

Kα
t (R

T
n′ (x− x′), RT

n′n)U(x′, n′) dx′dµS2 (n′)

=
∫
R3

∞
∑

l=0

l
∑

m=−l

〈
U(ω, ·) , Φl,m

ω (·)
〉
L2(S2)

Φl,m
ω (n) e−(−λl,m

r )αteix·ωdω,

with the probability kernel given by

Kα
t (x, n) =

[
F−1
R3

(
Kα

t (·, n)
)]

(x),

with Kα
t (ω, n) =

∞
∑

l=0

l
∑

m=−l
Φl,m

ω (a)Φl,m
ω (n) e−(−λl,m

r )αt.

(24)
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Here, the inner product in L2(S2) is given by

〈y1(·), y2(·)〉L2(S2) :=
∫
S2

y1(n) y2(n)dµS2(n). (25)

where µS2 is the usual Lebesgue measure on the sphere S2.

Remark 5. The eigenvalues λl,m
r only depend on r = ‖ω‖ due to the symmetry Φl,m

Rω(Rn) = Φl,m
ω (n) that

one directly recognizes from Equations (21) and (23).

Remark 6. The kernels Kα
t are the probability density kernels of stable Lévy processes on R3 o S2, see

Appendix A.1. Therefore, akin to the Rn-case [61,65], we refer to them as the α-stable Lévy kernels on R3 o S2.

2. Symmetries of the PDEs of Interest

Next, we employ the PDE formulation in Equation (10) on the group G = SE(3) to summarize
the symmetries for the probability kernels Kα

t : R3 o S2 → R+. For details, see [40,87].

2.1. PDE Symmetries

Consider the PDE system in Equation (10) on the group G = SE(3). Due to left-invariance
(or rather left-covariance) of the PDE, linearity of the map Ũ(·) 7→ W̃α(·, t), and the Dunford–Pettis
theorem [88], the solutions are obtained by group convolution with a kernel K̃α

t ∈ L1(G):

W̃α(g, t) =
(
K̃α

t ∗ Ũ
)
(g) :=

∫
G

K̃α
t (h
−1g) Ũ(h) dh, (26)

where we take the convention that the probability kernel acts from the left. In the special case, U = δe

with unity element e = (0, I) we get W̃α(g, t) = K̃α
t (g).

Thanks to the fundamental relation in Equation (13) that holds in general, we have in
particular that

∀t≥0 ∀(x,R)∈G : K̃α
t (x, R) = Kα

t (x, Ra). (27)

Furthermore, the PDE system given by Equation (10) is invariant under Ai 7→ −Ai, and, since
inversion on the Lie algebra corresponds to inversion on the group, the kernels must satisfy

∀t≥0 ∀g∈G : K̃α
t (g) = K̃α

t (g−1), (28)

and for the corresponding kernel on the quotient this means

∀t≥0 ∀(x,n)∈G/H : Kα
t (x, n) = Kα

t (−RT
nx, RT

na). (29)

Finally, we see invariance of the PDE with respect to right actions of the subgroup H. This is due to
the isotropy of the generator Q̃α in the tangent subbundles span{A1,A2} and span{A4,A5}. This due
to Equation (A11) in Appendix B. Note that invariance of the kernel with respect to right action of
the subgroup H and invariance of the kernel with respect to inversion in Equation (28) also implies
invariance of the kernel with respect to left-actions of the subgroup H, since (g−1(h′)−1)−1 = h′g for
all h′ ∈ H and g ∈ G. Therefore, we have

∀t≥0 ∀g∈G∀h,h′∈H : K̃α
t ( g h ) = K̃α

t (g) = K̃α
t (h
′g),

∀t≥0 ∀(x,n)∈G/H∀α∈[0,2π) : Kα
t (x, n) = Kα

t (Ra,αx, Ra,αn).
(30)

Remark 7. (notations, see also the list of abbreviations at the end of the article)
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To avoid confusion between the Euler angle α and the α indexing the α-stable Lévy distribution, we put an
overline for this specific angle. Henceforth, Rv,ψ denotes a counter-clockwise rotation over axis v with angle ψ.
This applies in particular to the case where the axis is the reference axis v = a = (0, 0, 1)T and ψ = α. Recall
that Rn (without an angle in the subscript) denotes any 3D rotation that maps reference axis a onto n.

We write the symbol ·̂ above a function to indicate its Fourier transform on G and G/H; we use the
symbol · for strictly spatial Fourier transform; the symbol ·̃ above a function/operator to indicate that it is
defined on the group G and the function/operator without symbols when it is defined on the quotient G/H.

2.2. Obtaining the Kernels with D11 > 0 from the Kernels with D11 = 0

In ([40], cor.2.5), it was deduced that for α = 1 the elliptic diffusion kernel (D11 > 0) directly
follows from the degenerate diffusion kernel (D11 = 0) in the spatial Fourier domain via

K1,elliptic
t (ω, n) = e−r2D11tK1,degenerate

t

(√
D33 − D11

D33
ω, n

)
, with r = ‖ω‖, 0 ≤ D11 < D33.

For the general case α ∈ (0, 1], the transformation from the case D11 = 0 to the case D11 > 0 is

achieved by replacing −(−λl,m
r )α 7→ −(−λl,m

r + r2D11)
α and r 7→ r

√
D33−D11

D33
in Equation (24) for the

kernel. Henceforth, we set D11 = 0.

3. The Fourier Transform on SE(3)

The group G = SE(3) is a unimodular Lie group (of type I) with (left- and right-invariant) Haar
measure dg = dxdµSO(3)(R) being the product of the Lebesgue measure on R3 and the Haar measure
µSO(3) on SO(3). Then, for all f ∈ L1(G) ∩L2(G), the Fourier transform FG f is given by Equation (2).
For more detailsm see [22,24,26]. One has the inversion formula:

f (g) = (F−1
G FG f )(g) =

∫
Ĝ

trace
{
(FG f ) (σ) σg

}
dν(σ) =

∫
Ĝ

trace
{

f̂ (σ) σg

}
dν(σ). (31)

In our Lie group case of SE(3), we identify all unitary irreducible representations σp,s having
non-zero dual measure with the pair (p, s) ∈ R+ × Z. This identification is commonly applied (see,
e.g., [4]). Using the method ([26], Thm. 2.1, [25]) of induced representations, all unitary irreducible
representations (UIRs) of G, up to equivalence, with non-zero Plancherel measure are given by:

σ = σp,s : SE(3)→ B(L2(p S2)), p > 0, s ∈ Z,(
σ

p,s
(x,R)

φ
)
(u) = e−i u·x φ

(
R−1u

)
∆s

(
R−1

u
p

RR R−1u
p

)
, u ∈ pS2, φ ∈ L2(pS2),

(32)

where pS2 denotes a 2D sphere of radius p = ‖u‖; ∆s is a unitary irreducible representation of SO(2)
(or rather of the stabilizing subgroup StabSO(3)(a) ⊂ SO(3) isomorphic to SO(2)) producing a scalar.

In Equation (32), R u
p

denotes a rotation that maps a onto u
p . Thus, direct computation

R−1
u
p

RR R−1u
p

a = R−1
u
p

RR−1
(

u
p

)
= a

shows us that it is a rotation around the z-axis (recall a = ez), e.g. about angle α. This yields character

∆s

(
R−1

u
p

RR R−1u
p

)
= e−isα, for details, see ([4], ch.10.6). Thus, we can rewrite Equation (32) as

(
σ

p,s
(x,R)

φ
)
(u) = e−i (u·x+sα) φ(R−1u), where (x, R) ∈ G, u ∈ pS2, φ ∈ L2(pS2).
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Mackey’s theory [25] relates the UIR σp,s to the dual orbits pS2 of SO(3). Thereby, the dual measure
ν can be identified with a measure on the family of dual orbits of SO(3) given by {pS2 | p > 0}, and(

F−1
G f̂

)
(g) =

∫
Ĝ

trace
{

f̂ (σp,s) σ
p,s
g

}
dν(σp,s) =

∫
R+

trace
{

f̂ (σp,s) σ
p,s
g

}
p2dp,

for all p > 0, s ∈ Z. For details, see ([24], ch. 3.6.).
The matrix elements of f̂ = FG f with respect to an orthonormal basis of modified spherical

harmonics {Yl,m
s (p−1·)}, with |m|, |s| ≤ l (see ([4], ch.9.8)) for L2(pS2) are given by

f̂ p,s
l,m,l′ ,m′ :=

∫
G

f (g)
〈

σ
p,s
g−1Yl′ ,m′

s (p−1 ·) , Yl,m
s (p−1 ·)

〉
L2(pS2)

dg, (33)

where the L2 inner product is given by 〈 y1(·) , y2(·) 〉L2(pS2) := 〈 y1(p·) , y2(p·) 〉L2(S2) (recall Equation (25)).

For an explicit formula for the modified spherical harmonics Yl,m
s see [4], where they are denoted

by hl
m,s. The precise technical analytic expansion of the modified spherical harmonics is not important

for this article. The only properties of Yl,m
s that we need are gathered in the next proposition.

Proposition 2. The modified spherical harmonics Yl,m
s have the following properties:

(1) For s = 0 or m = 0, they coincide with standard spherical harmonics Yl,m, cf. ([89], eq.4.32):

Yl,m
s=0 = Yl,m and Yl,0

s = (−1)s Yl,s, where Yl,m(n(β, γ)) = εm√
2π

Pm
l (cos β) eimγ,

with n(β, γ) = (cos γ sin β, sin γ sin β, cos β)T , with spherical angles β ∈ [0, π], γ ∈ [0, 2π),

with Pm
l the normalized associated Legendre polynomial and εm = (−1)

1
2 (m+|m|).

(2) They have a specific rotation transformation property in view of Equation (32):

σ
p,s
(0,R)

Yl,m
s =

l
∑

m′=−l
Dl

m′m(R) Yl,m′
s , where Dl

m′m(·) denotes the Wigner D-function [90].

(3) For each s ∈ Z fixed, they form a complete orthonormal basis for L2(S2) :〈
Yl,m

s (·), Yl′ ,m′
s (·)

〉
L2(S2)

= δl,l′δm,m′ for all m, m′ ∈ Z, l, l′ ∈ N0, with |m| ≤ l, |m′| ≤ l′, l, l′ ≥ |s|.

For details and relation between different Euler angle conventions, see ([4], ch:9.4.1). In our
convention of ZYZ-Euler angles (see Appendix B), one has

Dl
m′m(Rez ,αRey ,βRez ,γ) = e−im′αPl

m′m(cos β)e−imγ, (34)

with Pl
m′m a generalized associated Legendre polynomial given in ([4], eq.9.21).

Moreover, we have inversion formula ([4], Equation 10.46):

f (g) =
1

2π2 ∑
s∈Z

∞

∑
l′=|s|

∞

∑
l=|s|

l′

∑
m′=−l′

l

∑
m=−l

∞∫
0

f̂ p,s
l,m,l′ ,m′

(
σ

p,s
g

)
l′ ,m′ ,l,m

p2dp, (35)

with matrix coefficients (independent of f ) given by(
σ

p,s
g

)
l′ ,m′ ,l,m

=
〈

σ
p,s
g Yl,m

s (p−1·) , Yl′ ,m′
s (p−1·)

〉
L2(pS2)

. (36)

Note that σp,s is a UIR so we have(
σ

p,s
g−1

)
l′ ,m′ ,l,m

=
(

σ
p,s
g

)
l,m,l′ ,m′

. (37)
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4. A Specific Fourier Transform on the Homogeneous Space R3 o S2 of Positions and Orientations

Now that we have introduced the notation of Fourier transform on the Lie group G = SE(3),
we define the Fourier transform FG/H on the homogeneous space G/H = R3 o S2. Afterwards, in
the subsequent section, we solve the Forward-Kolmogorov/Fokker–Planck PDEs in Equation (6) via
application of this transform, or, more precisely, via conjugation with Fourier transform FG/H .

4.1. The Homogeneous Space R3 o S2

Throughout this manuscript, we rely on a Fourier transform on the homogeneous space of
positions and orientations that is defined by the partition of left-cosets: R3 o S2 := G/H, given by
Equation (3).

Note that subgroup H can be parameterized as follows:

H = {hα := (0, Ra,α) | α ∈ [0, 2π)}, (38)

where we recall that Ra,α denotes a (counter-clockwise) rotation around the reference axis a = ez.
The reason behind this construction is that the group SE(3) acts transitively on R3 o S2 by (x′, n′) 7→
g� (x′, n′) given by Equation (4). Recall that by the definition of the left-cosets one has

H = {0} × SO(2), and g1 ∼ g2 ⇔ g−1
1 g2 ∈ H.

The latter equivalence simply means that for g1 = (x1, R1) and g2 = (x2, R2) one has

g1 ∼ g2 ⇔ x1 = x2 and ∃α∈[0,2π) : R1 = R2Ra,α.

The equivalence classes [g] = {g′ ∈ SE(3) | g′ ∼ g} are often just denoted by (x, n) as they
consist of all rigid body motions g = (x, Rn) that map reference point (0, a) onto (x, n) ∈ R3 o S2 :

g� (0, a) = (x, n), (39)

where we recall Rn is any rotation that maps a ∈ S2 onto n ∈ S2.

4.2. Fourier Transform on R3 o S2

Now we can define the Fourier transform FG/H on the homogeneous space G/H. Prior to this,
we specify a class of functions where this transform acts.

Definition 5. Let p > 0 be fixed and s ∈ Z. We denote

Lsym
2 (pS2) =

{
f ∈ L2(pS2)

∣∣∣ ∀α∈[0,2π) σ
p,s
hα

f = f
}

the subspace of spherical functions that have the prescribed axial symmetry, with respect to the subgroup H
(recall Equation (38)).

Definition 6. We denote the orthogonal projection from L2(pS2) onto the closed subspace Lsym
2 (pS2) by Psym

p .

Definition 7. To the group representation σp,s : SE(3) → B(L2(pS2)) given by Equation (32), we relate a
“representation” σp,s : R3 o S2 → B(L2(pS2)) on R3 o S2, defined by

σ
p,s
[g] :=

1
(2π)2

2π∫
0

2π∫
0

σ
p,s
hα̃ghα

dαdα̃ = Psym
p ◦ σ

p,s
g ◦ P

sym
p . (40)
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Definition 8. A function Ũ : G → C is called axially symmetric if

Ũ(x, R) = Ũ(x, RRa,α) for all α ∈ [0, 2π) and all (x, R) ∈ G. (41)

To each function U : G/H → C, we relate an axially symmetric function Ũ : G → C by

Ũ(x, R) := U(x, Ra). (42)

Definition 9. We define the Fourier transform of function U on G/H = R3 o S2 by

Û(σp,s) = (FG/HU) (σp,s) := Psym
p ◦ FGŨ(σp,s) ◦ Psym

p . (43)

Standard properties of the Fourier transform FG on SE(3) such as the Plancherel theorem and
the inversion formula [4,26] naturally carry over to FG/H with “simpler formulas”. This is done by a
domain and range restriction via the projection operators Psym

p in Equation (43). The reason for the
specific construction Equation (43) becomes clear from the next lemmas, and the “simpler formulas”
for the Plancherel and inversion formulas are then summarized in a subsequent theorem, where we
constrain ourselves to the case m = m′ = 0 in the formulas. The operator Psym

p that is most right
in Equation (43) constrains the basis Yl,m

s to m = 0, whereas the operator Psym
p that is most left in

Equation (43) constrains the basis Yl′ ,m′
s to m′ = 0.

Lemma 1. (axial symmetry) Let Ũ : G → C be axially symmetric. Then,

1. it relates to a unique function U : G/H → C via U(x, n) = Ũ(x, Rn);
2. the matrix coefficients

Ûp,s
l,m,l′ ,m′ =

[
FGŨ(σp,s)

]
l,m,l′ ,m′ of linear operator FGŨ(σp,s)

relative to the modified spherical harmonic basis {Yl,m
s } vanish if m 6= 0; and

3. the matrix coefficients

Ûp,s
l,m,l′ ,m′ = [FG/HU(σp,s)]l,m,l′ ,m′ of linear operator FG/HU(σp,s)

relative to the modified spherical harmonic basis {Yl,m
s } vanish if m 6= 0 or m′ 6= 0.

Conversely, if Ũ = F−1
G (Û) and

∀p>0∀l∈N0∀s∈Z, with |s|≤l ∀m′∈Z, with |m′ |≤l ∀m 6=0 : Ûp,s
l,m,l′ ,m′ = 0, (44)

then Ũ satisfies the axial symmetry in Equation (41).

Proof. Item 1: Uniqueness of U follows by the fact that the choice of Rn of some rotation that maps a
onto n does not matter. Indeed, U(x, n) = Ũ(x, RnRa,α) = Ũ(x, Rn).
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Item 2: Assumption Equation (41) can be rewritten as Ũ(g) = Ũ(ghα) for all hα ∈ H, g ∈ G.
This gives:

Ûp,s
l,m,l′ ,m′ =

〈
(FGŨ)(Yl′ ,m′

s (p−1·)) , Yl,m
s (p−1·)

〉
L2(pS2)

=
∫
G

Ũ(g)
〈

σ
p,s
g−1Yl′ ,m′

s (p−1·) , Yl,m
s (p−1·)

〉
L2(pS2)

dg

=
∫
G

Ũ(g)
〈

Yl′ ,m′
s (p−1·) , σ

p,s
g Yl,m

s (p−1·)
〉
L2(pS2)

dg

=
∫
G

Ũ(ghα)
〈

Yl′ ,m′
s (p−1·) , σ

p,s
ghα

Yl,m
s (p−1·)

〉
L2(pS2)

d(ghα)

=
∫
G

Ũ(g)
〈

Yl′ ,m′
s (p−1·) , σ

p,s
g ◦ σ

p,s
hα

Yl,m
s (p−1·)

〉
L2(pS2)

d(ghα)

= e−imα Ûp,s
l,m,l′ ,m′ for all α ∈ [0, 2π),

(45)

where we recall that σ is a UIR and that the Haar measure on G is bi-invariant. In the first step, we used
the third property, whereas in the final step we used the second property of Proposition 2 together with

Dl
m′m(Ra,α) = e−imαδm′m so that σ

p,s
hα

Yl,m
s (p−1·) = e−imαYl,m

s (p−1·). (46)

We conclude that (1− e−imα)Ûp,s
l,m,l′ ,m′ = 0 for all α ∈ [0, 2π) so m 6= 0⇒ Ûp,s

l,m,l′ ,m′ = 0.
Item 3: Due to the second property in Proposition 2, we have

σ
p,s
(0,R)

Yl,m
s (p−1·) =

l

∑
m′=−l

Dl
m′m(R) Yl,m′

s (p−1·).

Thereby, the projection Psym
p is given by

Psym
p

(
∞

∑
l=0

l

∑
m=−l

αl,mYl,m
s

)
=

∞

∑
l=0

αl,0Yl,0
s . (47)

Now, the projection Psym
p that is applied first in Equation (43) filters out m = 0 as the only possible

nonzero component. The second projection filters out m′ = 0 as the only possible nonzero component.
Conversely, if Equation (44) holds, one has by inversion Equation (35) that

Ũ(g) =
1

2π2 ∑
s∈Z

∞

∑
l=|s|

∞

∑
l′=|s|

l′

∑
m′=−l′

∞∫
0

Ûp,s
l,0,l′ ,m′

(
σ

p,s
g

)
l′ ,m′ ,l,0

p2dp,

so then the final result follows by the identity(
σ

p,s
ghα

)
l′ ,m′ ,l,0

=
(

σ
p,s
g

)
l′ ,m′ ,l,0

. (48)

Thus, it remains to show why Equation (48) holds. It is due to σ
p,s
(x,R)

= σ
p,s
(x,I) ◦σ

p,s
(0,R)

and Equation (46),
as one has

σ
p,s
ghα

= σ
p,s
(x,R)(0,Ra,α)

= σ
p,s
(x,RRa,α)

= σ
p,s
(x,R)
◦ σ

p,s
(0,Ra,α)

, and Yl,0
s (p−1R−1

a,α·) = Yl,0
s (p−1·) (49)

and thereby Equation (48) follows by Equation (36).

Lemma 2. If K̃ ∈ L2(G) is real-valued and satisfies the axial symmetry in Equation (41), and moreover the
following holds

K̃(g−1) = K̃(g) (50)
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then the Fourier coefficients satisfy K̂p,s
l,m,l′ ,m′ = K̂p,s

l′ ,m′ ,l,m and they vanish for m 6= 0 and for m′ 6= 0.

Proof. The proof follows by Equation (37) and inversion invariance of the Haar measure on G
(see [86]).

The next lemma shows that Equation (50) is a sufficient but not a necessary condition for the
Fourier coefficients to vanish for both the cases m′ 6= 0 and m 6= 0.

Lemma 3. Let K̃ ∈ L2(G) and K ∈ L2(G/H) be related by Equation (42). Then, we have the following equivalences:

K(x, n) = K(Ra,αx, Ra,αn), for all α ∈ [0, 2π), (x, n) ∈ G/H
m

K̃(gh) = K̃(g) = K̃(hg), for all g ∈ G, h ∈ H
m

The Fourier coefficients K̂p,s
l,m,l′ ,m′ vanish for m 6= 0 and for m′ 6= 0.

(51)

Proof. We show a⇒ b⇒ c⇒ a to get a⇔ b⇔ c.
a⇒ b: Denoting h = hα = (0, Ra,α), g = (x, R), we have

∀α,α′∈[0,2π)∀x∈R3∀R∈SO(3) : K̃(ghα) = K̃(x, RRa,α) = K(x, RRa,αa) = K(x, Ra) = K̃(x, R) = K̃(g)
= K(Ra,αx, Ra,αRa) = K̃(Ra,αx, Ra,αR) = K̃(hαg).

b⇒ c: By Lemma 1, we know that the Fourier coefficients vanish for m 6= 0. Next, we show they also
vanish for m′ 6= 0. Similar to Equation (49) we have

σ
p,s
hαg = σ

p,s
(Ra,αx,Ra,αR)

= σ
p,s
(Ra,αx,I) ◦ σ

p,s
(0,Ra,αR)

, (52)

which gives the following relation for the matrix-coefficients:

(
σ

p,s
g=(x,R)

)
l′ ,m′ ,l,m

=
l

∑
j=−l

〈
σ

p,s
(x,I)Y

l,j
s (p−1·) , Yl′ ,m′

s (p−1·)
〉
L2(pS2)

Dl
jm(R) ⇒(

σ
p,s
hα g

)
l′ ,m′ ,l,m

=
l

∑
j=−l

e−i(m′−j)α
〈

σ
p,s
(x,I)Y

l,j
s (p−1·) , Yl′ ,m′

s (p−1·)
〉
L2(pS2)

e−i jαDl
jm(R)⇒(

σ
p,s
hαg

)
l′ ,m′ ,l,m

= e−im′α
(

σ
p,s
g

)
l′ ,m′ ,l,m

.

(53)

The implication can be directly verified by Proposition 2, Equations (34) and (52), and〈
Yl′ ,m′

s (p−1·) , σ
p,s
(Ra,αx,I)Y

l,j
s (p−1·)

〉
L2(pS2)

=
∫

pS2
e−ip(x·RT

a,αu) Yl,j
s (u) Yl′ ,m′

s (u)dµpS2 (u)

=
∫

pS2
e−ip(x·v)Yl,j

s (Ra,αv) Yl′ ,m′
s (Ra,αv)dµpS2 (v).

From Equation (53), we deduce that:

K̂p,s
l,m,l′ ,m′ =

∫
G

K̃(g)
〈

σ
p,s
g Yl,m

s (p−1·) , Yl′ ,m′
s (p−1·)

〉
L2(pS2)

dg

=
∫
G

K̃(hαg)
〈

σ
p,s
hαgYl,m

s (p−1·) , Yl′ ,m′
s (p−1·)

〉
L2(pS2)

d(hαg)

=
∫
G

K̃(g)
〈

σ
p,s
g Yl,m

s (p−1·) , σ
p,s
h−1

α

Yl′ ,m′
s (p−1·)

〉
L2(pS2)

dg = e+im′ α K̂p,s
l,m,l′ ,m′ ,

which holds for all α ∈ [0, 2π). Thereby, if m′ 6= 0, then K̂p,s
l,m,l′ ,m′ = 0.
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c⇒ a: By inversion of Equation (35), where the only contributing terms have m = 0 and m′ = 0,
we see that K̃(gh) = K̃(hg) = K̃(g) for all h = (0, Ra,α). Thereby, K̃ is axially symmetric and by
Lemma 1 it relates to a unique kernel on G/H via K(x, n) = K̃(x, Rn) and the result follows by
Equation (30).

Now that we have characterized all functions K ∈ L2(G/H) for which the Fourier coefficients
K̂p,s

l,m,l′ ,m′ vanish for m 6= 0 and m′ 6= 0 in the above lemma, we considerably simplify the inversion and
Plancherel formula for Fourier transform FG on the group G = SE(3) to the Fourier transform FG/H
on the homogeneous space G/H = R3 o S2 in the next theorem. This is important to our objective of
deriving the kernels for the linear PDEs in Equation (6) that we address in the next section.

Theorem 1. (matrix-representation for FG/H , explicit inversion and Plancherel formula)
Let K ∈ Lsym

2 (G/H) and K̃ ∈ L2(G) be related by Equation (42). Then, the matrix elements of FG/HK
are given by

K̂p,s
l′ ,0,l,0 =

∫
G

K̃(g)
(

σ
p,s
g−1

)
l′ ,0,l,0

dg ,

with
(

σ
p,s
g

)
l′ ,0,l,0

=
l

∑
j=−l

[l′, 0 | p, s |l, j] (x) Dl
j0(R) for all g = (x, R) ∈ G.

The constants [l′, 0 | p, s |l, j] (x) :=
〈

σ
p,s
(x,I)Y

l,j
s (p−1·) , Yl′ ,0

s (p−1·)
〉
L2(pS2)

admit an analytic

expression in terms of elementary functions ([4], Equation10.34) and the Wigner D-functions in Equation (34).
Furthermore, we have the following Plancherel and inversion formula:

‖K‖2
L2(G/H) = ‖FG/HK‖2 = ∑

s∈Z

∫
R+

‖| (FG/HK) (σp,s)‖|2 p2dp =
∫
R+

∞
∑

s=−∞

∞
∑

l′=|s|

∞
∑

l=|s|
|K̂p,s

l,0,l′ ,0|
2 p2dp,

K(x, n) =
(
F−1

G/HFG/HK
)
(x, n) = ∑

s∈Z

∫
R+

trace
{
(FG/HK)(σp,s) σ

p,s
(x,n)

}
p2dp

= 1
2π2 ∑

s∈Z

∞
∑

l′=|s|

∞
∑

l=|s|

∫
R+

K̂p,s
l,0,l′ ,0

(
σ

p,s
(x,n)

)
l′ ,0,l,0

p2dp,

with matrix coefficients given by (for analytic formulas, see ([4], eq.10.35))(
σ

p,s
(x,n)

)
l′ ,0,l,0

=
(

σ
p,s
g

)
l′ ,0,l,0

=
〈

σ
p,s
g Yl,0

s (p−1·) , Yl′ ,0
s (p−1·)

〉
L2(pS2)

=
〈

σ
p,s
g Yl,s(p−1·) , Yl′ ,s(p−1·)

〉
L2(pS2)

for g = (x, Rn).
(54)

Proof. The above formulas are a direct consequence of Lemma 3 and the Plancherel and inversion
formulas (see [4], ch:10.8, [26]) for Fourier transform on SE(3). Recall that a coordinate-free definition
of σp,s is given in Equation (40). Its matrix coefficients are given by Equation (54), where we recall the
first item of Proposition 2 and where we note that they are independent on the choice of Rn ∈ SO(3)
mapping a onto n.

Corollary 1. Let K1, K2 ∈ Lsym
2 (G/H). Then, for shift-twist convolution on G/H = R3 o S2 given by

(K1 ∗ K2)(x, n) =
∫
S2

∫
R3

K1(RT
n′(x− x′), RT

n′n)K2(x′, n′) dx′dµS2(n′)

we have FG/H(K1 ∗ K2) = (FG/HK1) ◦ (FG/HK2).
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Proof. Set K̃1(g)=K1(g� (0, a)). Standard Fourier theory [5] gives FG(K̃1 ∗ K2)=FG(K̃1 ∗ K̃2), so

FG/H(K1 ∗ K2)
def
= Psym

p ◦ FG(K̃1 ∗ K2) ◦ P
sym
p

= Psym
p ◦ FG(K̃1) ◦ FG(K̃2) ◦ P

sym
p

= Psym
p ◦ FG(K̃1) ◦ P

sym
p ◦ Psym

p ◦ FG(K̃2) ◦ P
sym
p

= (FG/HK1) ◦ (FG/HK2),

where the first equality is given by Equation (43) and the third equality follows by Lemma 3 and
Equation (47).

5. Application of the Fourier Transform on R3 o S2 for Explicit Solutions of the Fokker–Planck
PDEs of α-stable Lévy Processes on R3 o S2

Our objective is to solve the PDE system in Equation (6) on the homogeneous space of positions
and orientations G/H. Recall that we extended this PDE system to G in Equation (10). As the cases
D11 > 0 follow from the case D11 = 0 (recall Section 2.2), we consider the case D11 = 0 in this section.
From the symmetry consideration in Section 2, it follows that the solution of Equation (10) is given by
W̃α(g, t) = (K̃α

t ∗ Ũ)(g) with a probability kernel K̃α
t : G → R+, whereas the solution of Equation (6) is

given by

Wα(x, n, t) = (Kα
t ∗U)(x, n) :=

∫
S2

∫
R3

Kα
t (R

T
n′(x− x′), RT

n′n) U(x′, n′) dx′dµS2(n′),

where the kernels Kα
t are invariant with respect to left-actions of the subgroup H (recall Equation (30)).

This invariance means that the condition for application of the Fourier transform FG/H on R3 o S2 is
satisfied (recall Lemma 3) and we can indeed employ Theorem 1 to keep all our computations, spectral
decompositions and Fourier transforms in the 5D homogeneous space R3 o S2 = G/H rather than a
technical and less direct approach [40] in the 6D group G = SE(3).

Remark 8. For the underlying probability theory, and sample paths of discrete random walks of the α-Stable
Lévy stochastic processes, we refer to Appendix A. To get a general impression of how Monte Carlo simulations
of such stochastic processes can be used to approximate the exact probability kernels Kα

t , see Figure 1. In essence,
such a stochastic approximation is computed by binning the endpoints of the random walks. A brief mathematical
explanation follows in Section 5.2.

For now, let us ignore the probability theory details and let us first focus on deriving exact analytic
solutions to Equation (6) and its kernel Kα

t via Fourier transform FG/H on G/H = R3 o S2.

5.1. Exact Kernel Representations by Spectral Decomposition in the Fourier Domain

Let us consider the evolution in Equation (6) for α-stable Lévy process on the quotient G/H =

R3 o S2. Then, the mapping from the initial condition W(·, 0) = U(·) ∈ L2(G/H) to the solution
W(·, t) at a fixed time t ≥ 0 is a bounded linear mapping. It gives rise to a strongly continuous
(holomorphic) semigroup [66]. We conveniently denote the bounded linear operator on L2(G/H)

as follows:
Wα(·, t) = (etQα U)(·), for all t ≥ 0. (55)

In the next main theorem, we provide a spectral decomposition of the operator using both a direct
sum and a direct integral decomposition. Note that definitions of direct integral decompositions (and
the underlying measure theory) can be found in ([24], ch:3.3 and 3.4).
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5.1.1. Eigenfunctions and Preliminaries

To formulate the main theorem, we need some preliminaries and formalities. First, let us define
FR3 : L2(R3 o S2)→ L2(R3 o S2) by

(FR3U)(ω, n) := [FR3U(·, n)] (ω). (56)

Recalling Equation (19), we re-express the generator in the spatial Fourier domain:

−(−B)α = FR3 ◦Qα ◦ F
−1
R3 ⇒

− (−Bω)
α = −

(
−D33 (iω · n)2 − D44 ∆S2

n

)α

= −
(

D33 r2
(

a · (RT
r−1ω

n)
)2
− D44 ∆S2

n

)α

= −
(

D33 r2 cos2(βω)− D44 ∆S2
n

)α
, with r = ‖ω‖, α ∈ (0, 1],

(57)

where βω denotes the angle between n and r−1ω (see Figure 2). This re-expression is the main reason
for the following definitions.

Instead of the modified spherical Harmonics Yl,m
s in Proposition 2, which are commonly used

as a standard basis to represent each operator in the Fourier transform on SE(3), we use our
generalized spherical harmonics, depending on a spatial frequency vector, as this is in accordance with
Equation (57).

Definition 10. Let l ∈ N0. Let m ∈ Z such that |m| ≤ l. Let ω ∈ R3 be a frequency vector. We define

Yl,m
ω (n) = Yl,m(RT

r−1ω
n), with r = ‖ω‖, n ∈ S2, (58)

where we take the rotation which maps a onto r−1ω whose matrix representation in the standard basis is:

Rr−1ω =
(

(ω×a)×ω
||(ω×a)×ω||

ω×a
||ω×a|| r−1ω

)
for r−1ω 6= a, and Ra = I, and R0 = I.

Recall the standard spherical angle formula n(β, γ) = (sin β cos γ, sin β sin γ, cos β)T from
Proposition 2. These are Euler-angles relative to the reference axis a = ez. For the Euler-angles
relative to the (normalized) frequency r−1ω one has (see also Figure 2):

nω(βω, γω) = Rr−1ωn(βω, γω). (59)

Definition 11. Let l ∈ N0. Let m ∈ Z such that |m| ≤ l. We define the functions Φl,m
ω ∈ L2(S2) by

Φl,m
ω (n) =

∞

∑
j=0

dl,m
j (r)

‖dl,m (r) ‖
Y|m|+j,m

ω (n), (60)

where r = ‖ω‖ and dl,m (r) :=
(

dl,m
j (r)

)∞

j=0
are coefficients such that

Φl,m
ω (nω(βω, γω)) = Sl,m

ρ (cos βω)
eimγω

√
2π

, with ρ = r

√
D33

D44
,

where Sl,m
ρ (·) denotes the L2-normalized spheroidal wave function.
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Remark 9. The spheroidal wave function arises from application of the method of separation on operator Bω in
Equation (57) where basic computations (for details, see [40]) lead to the following singular Sturm-Liouville problem:

(Ly)(x) =
d

dx

[
p(x)

dy(x)
dx

]
+ q(x)y(x) = −λ(r) y(x), x = cos βω ∈ [−1, 1]. (61)

with p(x) = (1− x2), q(x) = −ρ2x2− m2

1−x2 , and again ρ = r
√

D33/D44. In this formulation, p(x) vanishes
at the boundary of the interval, which makes our problem a singular Sturm–Liouville problem. It is sufficient
to require boundedness of the solution and its derivative at the boundary points to have nonnegative, distinct,
simple eigenvalues λl,m

r and existence of a countable, complete orthonormal basis of eigenfunctions {yj}∞
j=0 [91]

for the spheroidal wave equation.
As a result, standard Sturm–Liouville theory (that applies the spectral decomposition theorem for compact

self-adjoint operators to a kernel operator that is the right-inverse of L) provides us (for each ω fixed) a complete
orthonormal basis of eigenfunctions {Φl,m

ω } in L2(S2) with eigenvalues of our (unbounded) generators:

− (−Bω)
α Φl,m

ω = −(−λl,m
r )α Φl,m

ω , for all |m| ≤ l. (62)

Remark 10. Define Yl,m(β, γ) := Yl,m(n(β, γ)). Then, Equations (58) and (59) imply Yl,m
ω (nω(βω, γω)) =

Yl,m(βω, γω).

Remark 11. The matrix-representation of− (−Bω)
α with respect to orthonormal basis

{
Y|m|+j,m

ω

}
j∈N0,m∈Z

equals

⊕
m∈Z
−(D33r2Mm + D44Λm)α,

where Λm := diag{l(l + 1)}∞
l=|m| = diag{(|m| + j)(|m| + j + 1)}∞

j=0, r = ‖ω‖ and where Mm is the
tri-diagonal matrix (that can be computed analytically ([40], eq. 106)) given by

(cos β)2Y|m|+j,m(n(β, γ)) =
∞

∑
j′=0

(
(Mm)T

)
j,j′

Y|m|+j′ ,m(n(β, γ)). (63)

As a result, we see from Equations (60) and (62) that the coefficients dl,m (r) for our eigenfunctions are
eigenvectors of a matrix

−
(

D33r2Mm + D44Λm
)

dl,m(r) = λl,m
r dl,m(r), for l ≥ |m|. (64)

This matrix (and its diagonalization) play a central role for our main spectral decomposition theorem both
in the spatial Fourier domain and in the Fourier domain of the homogeneous space of positions and orientations.

Figure 2. For ω 6= a, we parameterize every orientation n (green) by rotations around r−1ω (orange)
and ω×a

||ω×a|| (blue). In other words, nω(βω, γω) = Rr−1ω,γω R ω×a
||ω×a|| ,β

ω (r−1ω).
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5.1.2. The Explicit Spectral Decomposition of the Evolution Operators

In Theorem 2, we present the explicit spectral decompositions both in the spatial Fourier domain
and in the Fourier domain of the homogeneous space of positions and orientations.

Prior to this theorem, we explain the challenges that appear when we apply FG/H to the PDE
of interest in Equation (6) on the quotient G/H. To get a grip on the evolution operator and the
corresponding kernel, we set the initial condition equal to a delta distribution at the origin, i.e.,
we consider

U = δ(0,a) ⇒Wα(·, t) = etQα U = e−t(−Q)α
δ(0,a) = Kα

t .

In this case, the necessary condition in Equation (51) in Lemma 3 for application of FG/H is indeed
satisfied, due to the symmetry property of the kernel, given by Equation (30). Now, due to linearity

FG/H ◦ etQα ◦ F−1
G/H = et (FG/H ◦ Qα ◦ F−1

G/H),

we just need to study the generator in the Fourier domain.
For the moment, we set α = 1 (the degenerate diffusion case) and return to the general case later

on (recall Sections 1.6 and 2.2). Then, it follows that (for details, see ([40], App.D))(
FG/H ◦Q ◦ F−1

G/HK̂1
t

)
(σp,s) =

(
−D33 (a · u)2 + D44 ∆pS2

u

)
K̂1

t (σ
p,s),

with the kernel K̂1
t := FG/HK1

t (·).
(65)

Here, ∆pS2

u denotes the Laplace–Beltrami operator on a sphere pS2 = {u ∈ R3
∣∣‖u‖ = p} of

radius p > 0.
We recall that u ∈ pS2 is the variable of the functions on which σp,s acts. Recalling Equation (32),

the first part in the righthand side of Equation (65) denotes a multiplier operatorM given by

(Mφ)(u) := − (a · u)2φ(u), for all φ ∈ L2(pS2), and almost every u ∈ pS2.

As a result, we obtain the following PDE system for K̂α
t (now for general α ∈ (0, 1]):

 ∂
∂t K̂α

t (σ
p,s) = −

(
−D33M− D44 ∆pS2

u

)α
K̂α

t (σ
p,s)

K̂α
0 (σ

p,s) = 1L2(pS2).

Remark 12. There is a striking analogy between the operators FG/H ◦Qα ◦ F−1
G/H and FR3 ◦Qα ◦ F

−1
R3 given

by Equation (57), where the role of rRT
ω/rn corresponds to u. This correspondence ensures that the multipliers

of the multiplier operators in the generator coincide and that the roles of p and r coincide:

u = rRT
r−1ω

n⇒ (a · u)2 = r2(RT
r−1ω

a · n)2 = (ω · n)2 and ‖u‖ = p = r = ‖ω‖.

Lemma 4. Let t ≥ 0 and p > 0 be fixed. The matrix-representation of operator

et(D33M+D44 ∆pS2
u ) : L2(pS2) → L2(pS2) with respect to the orthonormal basis of spherical harmonics{

Yl=|s|+j , s(p−1·)
}

j∈N0 , s∈Z
equals

⊕
s∈Z

e−t (D33 p2Ms+D44Λs) . (66)
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Proof. Recall Equation (63) that defines matrix Mm (for analytic formulas of this tri-diagonal matrix,
see [40]). This may be re-written as follows:

(a · n)2Y|m|+j,m(n) =
∞

∑
j′=0

(
(Mm)T

)
j,j′

Y|m|+j′ ,m(n).

Now, fix s ∈ Z and set m = s and n = p−1u and we have:〈(
D33M+ D44 ∆pS2

u

)
Yl,s(p−1·) , Yl′ ,s(p−1·)

〉
L2(pS2)

= −p2 D33 (Ms)j′ ,j − D44l(l + 1)δjj′ ,

where again l = |s|+ j, l′ = |s|+ j′ and j, j′ ∈ N0.

Finally, we note that operator D33M+ D44 ∆pS2

u is negative definite and maps each subspace
span

{
{Yl,s(p−1·)}∞

l=|s|

}
for fixed s ∈ Z onto itself, which explains direct sum decomposition in

Equation (66).

Next, we formulate the main result, where we apply a standard identification of tensors a⊗ b
with linear maps:

x 7→ (a⊗ b)(x) = 〈x , b〉 a. (67)

Theorem 2. We have the following spectral decompositions for the Forward-Kolomogorov evolution operator of
α-stable Lévy-processes onthe homogeneous space G/H = R3 o S2:

• In the Fourier domain of the homogeneous space of positions and orientations, we have:

FG/H ◦ e−t(−Q)α ◦ F−1
G/H

=
⊕∫

R+

⊕
s∈Z

∞
∑

l,l′=|s|

[
e−(D33 p2Ms+D44Λs)αt

]
l,l′

(
Yl,s(p−1·)⊗Yl′ ,s(p−1·)

)
p2dp

=
⊕∫

R+

⊕
s∈Z

∞
∑

l=|s|
e−(−λl,s

p )αt
(

Φl,s
pa(p−1·)⊗Φl,s

pa(p−1·)
)

p2dp

(68)

• In the spatial Fourier domain, we have

(
FR3 ◦ e−t(−Q)α ◦ F−1

R3 U
)
(ω, ·) = W(ω, ·, t)

= ∑
m∈Z

∞
∑

l,l′=|m|

[
e−(D33r2Mm+D44Λm)αt

]
l,l′

(
Yl,m

ω ⊗Yl′ ,m
ω

)
(U(ω, ·))

= ∑
m∈Z

∞
∑

l=|m|
e−(−λl,m

r )αt
(

Φl,m
ω ⊗Φl,m

ω

)
(U(ω, ·))

(69)

where W(ω, ·, t) = FR3W(ω, ·, t) and U(ω, ·) = FR3U(ω, ·) (recall Equation (56)).

In both cases, the normalized eigenfunctions Φl,m
ω are given by Equation (60) in Definition 11.

The eigenvalues λl,m
r are the eigenvalues of the spheroidal wave equation, as explained in Remark 9.
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Proof. The first identity in Equation (68) follows by:

FG/H ◦ e−t(−Q)α ◦ F−1
G/H = et(FG/H◦−(−Q)α◦F−1

G/H)

([40], App.D) and Theorem 1
=

⊕∫
R+

e
−t
(
−D33M+D44∆pS2

u

)α

p2dp

Lemma 4 and Theorem 1
=

⊕∫
R+

⊕
s∈Z

∞
∑

l,l′=|s|

[
e−t(D33 p2Ms+D44Λs)

α]
l,l′

(
Yl,s(p−1·)⊗Yl′ ,s(p−1·)

)
p2dp

(60)
=

⊕∫
R+

⊕
s∈Z

∞
∑

l=|s|
e−(−λl,s

p )αt
(

Φl,s
pa(p−1·)⊗Φl,s

pa(p−1·)
)

p2dp .

In the last equality, we use the fact that Φl,m
a = Yl,m. By applying the identification in Equation (67),

one observes that Equation (69) is a reformulation of Equation (24), was already been derived for α = 1
in previous work by the first author with J.M. Portegies ([40], Thm.2.3 and Equation31). The key idea
behind the derivation, the expansion and the completeness of the eigenfunctions {Φl,m

ω } is summarized
in Remark 9. The general case α ∈ (0, 1] then directly follows by Section 1.6.

Recently, exact formulas for the (degenerate) heat-kernels on G = SE(3) and on G/H = R3 o S2

(i.e., the case α = 1) have been published in [40]. In the next theorem:

• We extend these results to the kernels of PDE in Equation (6), which are Forward-Kolmogorov
equations of α-stable Lévy process with α ∈ (0, 1].

• We provide a structured alternative formula via the transform FG/H characterized in Theorem 1.

Theorem 3. We have the following formulas for the probability kernels of α-stable Lévy processes on R3 o S2:

• Via conjugation with FR3oS2 :

Kα
t (x, n) =

1
(2π)2

∞∫
0

∑
s∈Z

∞

∑
l=|s|

e−(−λl,s
p )αt

[
σ

p,s
(x,n)

]
l,0,l,0

p2dp, (70)

where
[
σ

p,s
(x,n)

]
l,0,l,0

=
〈

σ
p,s
(x,Rn)

Φl,s
pa(p−1·) , Φl,s

pa(p−1·)
〉
L2(pS2)

can be derived analytically (see ([86], Rem. 16)).

• Via conjugation with FR3 :

Kα
t (x, n) =

1
(2π)3

∫
R3

(
∞

∑
l=0

l

∑
m=−l

e−(−λl,m
‖ω‖)

αt Φl,m
ω (a)Φl,m

ω (n)

)
eix·ω dω. (71)

Proof. Equation (70) follows by

Kα
t (x, n) = (etQα δ(0,a))(x, n) =

(
F−1

G/H ◦ etFG/H◦Qα◦F−1
G/H ◦ FG/Hδ(0,a)

)
(x, n).

Now, (FG/Hδ(0,a))(σ
p,s) = 1L2(pS2) implies ((FG/Hδ)(σp,s)(0,a))(σ

p,s))l,0,l′ ,0 = δll′ so that the
result follows by setting U = δ(0,a) (or, more precisely, by taking U a sequence that is a bounded
approximation of the unity centered around (0, a)) in Theorem 2, where we recall the inversion formula
from the first part of Theorem 1.

Equation (71) follows similarly by

Kα
t (x, n) =

(
etQα δ(0,a)

)
(x, n) =

(
F−1

R3 ◦ etFR3◦Qα◦F
−1
R3 ◦ FR3 δ(0,a)

)
(x, n).
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Now,
(
FR3 δ(0,a)

)
(σp,s) = 1

(2π)
3
2

δa and the result follows from the second part of Theorem 1 (again

by taking U a sequence that is a bounded approximation of the unity centered around (0, a)).

Remark 13. There also exist Gaussian estimates for the heat kernel Kα=1
t that use a weighted modulus on

the logarithm on G, [92]. Such Gaussian estimates can account for the quotient structure G/H [87], and
can be reasonably close (cf. [44], Figure 4.4, [93]) to the exact solutions for practical parameter settings in
applications [48,94,95].

5.2. Monte-Carlo Approximations of the Kernels

A stochastic approximation for the kernel Kα
t is computed by binning the endpoints of discrete

random walks simulating α-stable processes on the quotient R3 o S2 that we explain next. Let us first
consider the case α = 1. For M ∈ N fixed, we have the discretization

XM = X0 +
M
∑

k=1

√
tD33

M εkNk−1,

NM =

(
M
∏

k=1
Ra,γk R

ey ,βk

√
tD44

M

)
N0 =

(
Ra,γM R

ey ,βM

√
tD44

M

◦ . . . ◦ Ra,γ1 R
ey ,β1

√
tD44

M

)
N0 ,

(72)

with εk ∼ GR
t=1 ∼ N (0, σ =

√
2) stochastically independent Gaussian distributed on R with t = 1;

with uniformly distributed γk ∼ Unif (R/(2πZ) ≡ [−π, π)); and βk ∼ g, where g : R→ R+ equals

g(r) = |r|
2 e−

r2
4 in view of the theory of isotropic stochastic processes on Riemannian manifolds by

Pinsky [96]. By the central limit theorem for independently distributed variables with finite variance it
is only the variances of the distributions for the random variables g and GR

t=1 that matter. One may
also take

εk ∼
√

3 Unif
[
− 1

2 , 1
2

]
and βk ∼

√
6 Unif

[
− 1

2 , 1
2

]
or εk ∼ GR

t=1 and βk ∼ GR
t=2.

These processes are implemented recursively; for technical details and background, see
Appendix A.

Proposition 3. The discretization of Equation (72) can be re-expressed, up to order 1
M for M� 0, as follows:

(XM, NM) ∼ GM � (0, a), with GM =

 M

∏
k=1

e

5
∑

i=3

√
t Dii

M εi
k Ai

G0, (73)

with εi
k ∼ GR

t=1 stochastically independent normally distributed variables with t = 1
2 σ2 = 1, and D44 = D55.

Proof. In our construction, βk and γk can be seen as the polar radius and the polar angle (on a
periodic square [−π, π]× [−π, π]) of a Gaussian process with t = 1 on a plane spanned by rotational
generators A4 and A5 . The key ingredient to obtain Equation (73) from Equation (72) is given by the
following relation:

eu cos vA5−u sin vA4 = evA6 euA5 e−vA6 , for all u, v ∈ R, (74)

which we use for u = βk

√
tD44

M and v = γk

√
tD44

M .
The second ingredient is given by the Campbell–Baker–Hausdorff–Dynkin formula:

for all ai = O(
1√
M

) and for M large, we have ea3 A3 ea4 A4 ea5 A5 = e(a3 A3+a4 A4+a5 A5)(1+O( 1
M )),

that allows to decompose the stochastic process in SE(3) into its spatial and angular parts.
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For the binning, we divide R3 into cubes cijk, i, j, k ∈ Z, of size ∆s× ∆s× ∆s:

cijk :=
[
(i− 1

2
)∆s, (i +

1
2
)∆s
]
×
[
(j− 1

2
)∆s, (j +

1
2
)∆s
]
×
[
(k− 1

2
)∆s, (k +

1
2
)∆s
]

. (75)

We divide S2 into bins Bl , l = {1, . . . , b} for b ∈ N, with surface area σBl and maximal surface
area σB. The number of random walks in a simulation with traveling time t that have their end
point xM ∈ cijk with their orientation nM ∈ Bl is denoted with #ijkl

t . Furthermore, we define the
indicator function

1cijk ,Bl (x, n) :=

{
1 x ∈ cijk, n ∈ Bl ,

0 otherwise.

When the number of paths N → ∞, the number of steps in each path M→ ∞ and the bin sizes
tend to zero, the obtained distribution converges to the exact kernel:

lim
N→∞

lim
∆s,σB→0

lim
M→∞

p∆s,σB ,N,M
t (x, n) = Kα=1

t (x, n),

with p∆s,σB ,N,M
t (x, n) =

b
∑

l=1
∑

i,j,k∈Z
1ci,j,k ,Bl (x, n) #ijkl

t
M(∆s)3σBl

.
(76)

The convergence is illustrated in Figure 3.

Monte-Carlo Simulation for α ∈ (0, 1].

Let qt,α : R+ → R+ be the temporal probability density given by the inverse Laplace transform

qt,α(τ) = L−1
(

λ→ e−tλα
)
(τ), with in particular:

for α = 1
2 it is qt, 1

2
(τ) = t

2τ
√

πτ
e−

t2
4τ ,

for α ↑ 1 we find qt,α(·)→ δt in distributional sense .

(77)

For explicit formulas in the general case α ∈ (0, 1], see [66]. Then, one can deduce from Theorem 3 that

Kα
t (x, n) =

∞∫
0

qt,α(τ) Kα=1
τ (x, n) dτ. (78)

This allows us to directly use the Monte-Carlo simulations for the diffusion kernel α = 1 for
several time instances to compute a Monte-Carlo simulation of the α-stable Lévy kernels for α ∈ (0, 1].
To this end, we replace the Monte Carlo approximation in Equation (76) for α = 1 in the above

Equation (78). See Figure 4, where we compare the diffusion kernel Kα=1
t to the Poisson kernel Kα= 1

2
t .

See also Appendix A.2.1.
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Figure 3. (Top) Spatial projections in R3 of N sample paths of the discrete random walks (or rather
“drunk man’s flights”) in R3 o S2 for α = 1, given by Equation (72), for increasing N (with σ = 4π

252 ,
∆s = 1, M = 40); and (Bottom) convergence of the Monte-Carlo simulation kernel in Equation (76) for
α = 1 and N → ∞. As N increases, the Monte-Carlo simulation converges towards the exact solution.
For a comparison of the exact diffusion kernel in Equation (70) and its Monte-Carlo approximation in
Equation (76), see Figure 5.

5.3. Comparison of Monte-Carlo Approximations of the Kernels to the Exact Solutions

In this section, we compute the probability density kernels Kα
t via the analytic approach of

Section 5.1.2 (Equation (71), Theorem 3) and via the Monte-Carlo approximation of Section 5.2.
The kernels are computed on a regular grid with each (xi, yj, zk) at the center of the cubes cijk of
Equation (75) with i, j = −3, . . . , 3, k = −5, . . . , 5, and ∆s = 0.5. The Monte-Carlo simulations also
require spherical sampling which we did by a geodesic polyhedron that sub-divides each mesh triangle
of an icosahedron into n2 new triangles and projects the vertex points to the sphere. We set n = 4 to
obtain 252 (almost) uniformly sampled points on S2.

The exact solution is computed using (truncated) spherical harmonics with l ≤ 12. To obtain
the kernel, we first solve the solution in the spatial Fourier domain and then do an inverse spatial
Fast Fourier Transform. The resulting kernel Kα

t (where we literally follow Equation (71)) is only
spatially sampled and provides for each (xi, yj, zk) an analytic spherical distribution expressed in
spherical harmonics.

For the Monte-Carlo approximation, we follow the procedure described in Section 5.2. The kernel
Kα

t is obtained by binning the end points of random paths on the quotient R3 o S2 (cf. Equation (72))
and thereby approximate the limit in Equation (76). Each path is discretized with M = 40 steps and in
total N = 1010 random paths were generated. The sphere S2 is divided into 252 bins with an average
surface area of σBl ≈

4π
252 .
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Figure 4. (Left) The degenerate diffusion kernel (Equation (70) for α = 1 and t = 2); and
(Right) the degenerate Poisson kernel (Equation (70) for α = 1

2 and t = 3.5). Parameters settings:
D44 = 0.2, D33 = 1, D11 = 0.

In Figures 1 and 3–5, we set D33 = 1, D44 = 0.2. In the comparison between the kernels Kα=1
t with

Kα=0.5
t , we set t = 2 and t = 3.5, respectively, to match the full width at half maximum value of the

distributions. In Figures 1, 3 and 5, we set α = 1 and t = 2. In Figures 1, 3 and 4, we sample the grid in
Equation (75) with |i|, |j| ≤ 4, |k| ≤ 8.

Figure 5 shows that the Monte-Carlo kernel closely approximates the exact solution and since the
exact solutions can be computed at arbitrary spherical resolution, it provides a reliable way to validate
numerical methods for α-stable Lévy processes on R3 o S2.

Figure 5. The exact kernel Kα
t and its Monte-Carlo approximation for t = 2, α = 1, D33 = 1, D44 = 0.2.
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6. Conclusions

We set up a Fourier transform FG/H on the homogeneous space of positions and orientations.
The considered Fourier transform acts on functions that are bi-invariant with respect to the action of
subgroup H. We provide explicit formulas (relative to a basis of modified spherical harmonics) for the
transform, its inverse, and its Plancherel formula, in Theorem 1.

Then, we use this Fourier transform to derive new exact solutions to the probability kernels of
α-stable Lévy processes on G/H, including the diffusion PDE for Wiener processes, which is the special
case α = 1. They are obtained by spectral decomposition of the evolution operator in Theorem 2.

New formulas for the probability kernels are presented in Theorem 3. There, the general case
0 < α < 1 follows from the case α = 1 by taking the fractional power of the eigenvalues. In comparison
to previous formulas in [40] for the special case α = 1 obtained via a spatial Fourier transform, we
have more concise formulas with a more structured evolution operator in the Fourier domain of G/H,
where we rely on ordinary spherical harmonics, and where we reduce the dimension of the manifold
over which it is integrated from 3 to 1 (as can be seen in Theorem 3).

We introduce stochastic differential equations (or rather stochastic integral equations) for the
α-stable Lévy processes in Appendix A.1, and we provide simple discrete approximations where we
rely on matrix exponentials in the Lie group SE(3) in Proposition 3.

We verified the exact solutions and the stochastic process formulations, by Monte-Carlo
simulations that confirmed to give the same kernels, as shown in Figure 5. We also observed the
expected behavior that the probability kernels for 0 < α < 1 have heavier tails, as shown in Figure 4.

The PDEs and the probability kernels have a wide variety of applications in image analysis
(crossing-preserving, contextual enhancement of diffusion-weighted MRI, cf. [45,46,49,94,97,98] or in
crossing-preserving diffusions in 3D scalar images [18]), robotics [4,5,57] and probability theory [56,61].
The generalizations to α ∈ (0, 1] allow for longer range interactions between local orientations (due to
the heavy tails). This is also of interest in machine learning, where convolutional neural networks on
the homogeneous space of positions and orientations [9,12] can be extended to 3D [67,68], which may
benefit from the PDE descriptors and the Fourier transform presented here.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

UIR Unitary Irreducible Representation
G The rigid body motions group SE(3) Equation (1)
a The reference axis a = ez = (0, 0, 1)T Equation (3)
H The subgroup that stabilizes (0, a) Equation (3)
G/H The homogeneous space of positions and orientations R3 o S2 Equation (3)
U The spatial Fourier transform of U Equation (18)
Û The Fourier transform Û = FG/HU Equation (43)
α Parameter of the α-Stable processes (indexing fractional power of the generator) Equation (10)
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α Rotation angle around reference axis a = ez = (0, 0, 1) Remark 7
σp,s UIR of G = SE(3) Equation (32)
σp,s the action on the quotient corresponding to σp,s Definition 7
K̃α

t The probability kernel on G Equation (26)
Kα

t The probability kernel on G/H Equation (27)
W̃α Solution of the PDE on G Equation (10)
Wα Solution of the PDE on G/H Equation (6)
Q̃α Evolution generator of the PDE on G Equation (11)
Qα Evolution generator of the PDE on G/H Equation (7)
Rn Any rotation that maps a onto n Remark 2
Rv,φ A counter-clockwise rotation about axis v with angle φ Remark 2
Pt Lévy Processes on G/H Definition A1
Pt Lévy Processes on R3 ×R3 Equation (A4)
qt,α The kernel relating Kα

t and K1
t Equation (77)

Yl,m The ordinary spherical harmonics Proposition 2
Yl,m

s The modified spherical harmonics according to [4] Proposition 2
Yl,m

ω The generalized spherical harmonics according to [40] Definition 10
Φl,m

ω The spheroidal wave basis function for L2(S2) Definition 11
(α, β, γ) ZYZ Euler angles. Equation (A12)

Appendix A. Probability Theory

Appendix A.1. Lévy Processes on R3 o S2

In the next definition, we define Lévy processes on our manifold of interest G/H = R3 o S2.
Recall, that the action of G = SE(3) on G/H is given by Equation (4). As a prerequisite, we define the
“difference” of two random variables P1 = (X1, N1) and P2 = (X2, N2) in R3 o S2:

G−1
2 � P1 = (X2, RN2)

−1 � (X1, N1) = (RT
N2

(X1 − X2), RT
N2

N1), (A1)

where we relate random variables on G/H and in G via P = G� (0, a), according to Equation (39).
We assume that P1 and P2 are chosen such that the distribution of G−1

2 � P1 is invariant under
the choice of rotation variable RN2 ∈ SO(3), which maps reference axis a onto N2. This is done in view
of the homogeneous space structure in Equation (3) and the fact that Lévy processes on Lie groups
such as G = SE(3) require Lie group inversion in their definition (see, e.g., [99]).

Definition A1. A stochastic process {Pt : t ≥ 0} on G/H is a Lévy process if the following conditions hold:

1. For any n ≥ 1 and 0≤ t0 < t1< . . .< tn, the variables Pt0 , G−1
t0
� Pt1 , . . ., G−1

tn−1
� Ptn are independent.

2. The distribution of G−1
s � Ps+t does not depend on s ≥ 0.

3. P0 = (0, a) almost surely.
4. It is stochastically continuous, i.e. lims→t P[d(Ps, Pt) > ε] = 0, ∀ε > 0.

Here, d((x1, n1), (x2, n2)) = |x1 − x2|2 + arccos2(n1 · n2).

Let us consider the solutions

Wα(x, n, t) = (Kα
t ∗U)(x, n)

of our linear PDEs of interest in Equation (6) for α ∈ (0, 1] fixed. Let us consider the case where
U ∼ δ(0,a), so that the solutions are the probability kernels Kα

t themselves. We consider the random
variables Pα

t such that their probability densities are given by

P(Pα
t = (x, n)) = Kα

t (x, n) for all t ≥ 0, (x, n) ∈ R3 o S2. (A2)

Proposition A1. The stochastic process {Pα
t : t ≥ 0} is a Lévy processes on R3 o S2.
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Proof. We first address Items 1 and 2. On G = SE(3), one has for two stochastically
independent variables:

P(G1G2 = g) =
∫
G

P(G2 = h−1g)P(G1 = h) dh.

In particular, for G1 = Gt ∼ K̃α
t and G2 = Gs ∼ K̃α

s , we have

GsGt ∼ K̃α
t ∗ K̃α

s = K̃α
t+s and G−1

s Gt+s = Gt ∼ K̃α
t ,

which is due to etQ̃α ◦ esQ̃α = e(t+s)Q̃α (recall Equation (55)). Similarly, on the quotient G/H, we have

G−1
s � Ps+t = Pt ∼ Kα

t .

Furthermore, the choice of Gs such that Gs � (0, a) = (0, a) does not matter, since

P((0, Ra,ᾱ)
−1G−1

s � Ps+t = (x, n)) = Kα
t ((0, Ra,ᾱ)� (x, n)) = Kα

t (x, n)

(recall Equation (30)). Item 3 is obvious since we have P0 = δ(0,a). Item 4 follows by strong continuity
of the semigroup operators ([64], Thm. 2), [66].

Lemma A1. The kernels Kα
t are infinitely divisible, i.e.

Kα
t ∗ Kα

s = Kα
t+s for all s, t ≥ 0.

Proof. The infinite divisibility directly follows from Corollary 1 and FG/H(Kα
t ∗ Kα

s ) = FG/H(Kα
t ) ◦

FG/H(Kα
t ) = FG/H(Kα

t+s), which is clear due to Equation (70).

Remark A1. Recall that on Rn a Lévy process Xt is called α-stable if

a−
1

2α Xat ∼ Xt for all a > 0. (A3)

This convention and property applies to all n ∈ N, cf. [61]. Next, we come to a generalization of α-stability
but then for the processes Pt. Here, an embedding of R3 o S2 into R6 = R3 ×R3 is required to give a meaning
to α-stability and a scaling relation on Pt = (Xt, Nt) that is similar to Equation (A3).

Appendix A.2. SDE Formulation of α-Stable Lévy Processes on R3 o S2

Consider the Lévy processes {Pt : t ≥ 0} on R3 o S2 given by Equation (A2). They give rise to
the Forward Kolmogorov PDEs in Equation (6) in terms of their stochastic differential equation (SDE)
according to the book of Hsu on Stochastic Analysis on Manifolds [60].

We apply ([60], Prop.1.2.4) on the embedding map Φ : R3 ×R3 → R3 o S2 given by

Φ : (x, n) 7→ Φ(x, n) =
(

x,
n
‖n‖

)
= (x, n).

Note that Φ∗ = DΦ =
(

I, 1
‖n‖

(
I − n

‖n‖ ⊗
n
‖n‖

))
. Here, I denotes the identity map on R3.

Let us first concentrate on α = 1. In this case, our PDE in Equation (6) becomes a diffusion PDE
that is the forward Kolmogorov equation of a Wiener process Pt = (Xt, Nt) on R3 o S2. Next, we relate

this Wiener process to a Wiener process (W(1)
t , W(2)

t ) in the embedding space R3×R3. We write down
the stochastic differential equation (SDE) and show that Equation (72) boils down to discretization of
the stochastic integral (in Îto sense) solving the SDE.

Next, we define Pt = (Xt, Nt) by the SDE in the embedding space:
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dPt = s|Pt
◦ dWt, (A4)

where Wt = (W(1)
t , W(2)

t ), with W(1)
t and W(2)

t being Wiener processes in R3; and where

s|P(dx, dn) =

(
s(1)|P (dx, dn)
s(2)|P (dx, dn)

)
=

( √
D33

N
‖N‖

(
N
‖N‖ · dx

)
√

D44 dn

)
.

Here, Index (1) stands for the spatial part and Index (2) stands for the angular part.
Now, we define a corresponding process on R3 o S2:

Pt = Φ(Pt).

Then, the SDE for Pt = (Xt, Nt) becomes (see ([60], Prop.1.2.4))

dPt = d
(
Φ ◦ Pt

)
⇔

dXt = s(1)
∣∣∣
Pt
◦ dW(1)

t ,

dNt = P〈Nt〉⊥ s(2)
∣∣∣
Pt
◦ dW(2)

t ,

where Nt =
Nt
‖Nt‖

; and where P〈Nt〉⊥ = (I −Nt ⊗Nt) denotes the orthogonal projection to the tangent
plane perpendicular to Nt.

Therefore, we have the following SDE on R3 o S2:{
dXt =

√
D33 Nt(Nt · dW(1)

t ),

dNt =
√

D44 P〈Nt〉⊥dW(2)
t

(A5)

Thus, integrating the SDE, we obtain the following stochastic integral (in Îto form):
Xt = X0 +

√
D33

t∫
0

Ns(Ns · dW(1)
s ) = X0 +

√
D33 ms-lim

M→∞

M
∑

k=1
Ntk−1

(
Ntk−1 ·

(
W(1)

tk
−W(1)

tk−1

))
,

Nt = ms-lim
M→∞

M
∏

k=1
expS2

(√
D44

(
I −Ntk−1 ⊗Ntk−1

) (
W(2)

tk
−W(2)

tk−1

))
N0.

(A6)

Here, expS2(V)n0 denotes the exponential map on a sphere, i.e., its value is the end point (for
t = 1) of a geodesic starting from n0 ∈ S2 with the tangent vector V ∈ Tn0 S2. Note that, in the formula
above, the symbol ∏ denotes the composition

M

∏
k=1

expS2(Vk)n0 =
(
expS2(VM) ◦ . . . ◦ expS2(V1)

)
n0.

Note that
√

D33

(
W(1)

tk
−W(1)

tk−1

)
=
√

D33W(1)
tk−tk−1

=
√

tD33
M εk, where εk ∼ W(1)

1 , i.e., εk ∼ Gt=1.
For M ∈ N fixed, we propose a discrete approximation for the stochastic integrals in Equation (A6):

XM = X0 +
M
∑

k=1

√
tD33

M εkNk−1,

NM =

(
M
∏

k=1
Ra,γk R

ey ,βk

√
tD44

M

)
N0,

(A7)

with εk ∼ GR
t=1 ∼ N (0, σ =

√
2) stochastically independent Gaussian distributed on R with t = 1;

with uniformly distributed γk ∼ Unif (R/(2πZ) ≡ [−π, π)); and with βk ∼ g, where g : R → R+
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equals g(β) = |β|
2 e−

β2
4 . The choice of g is done by application of the theory of isotropic stochastic

processes on Riemannian manifolds by Pinsky [96], where we note that

GR2

t (β cos γ, β sin γ) = g(β) Unif ([−π, π)) (γ), β ∈ R, γ ∈ [−π, π).

Now, in the numerical simulation, we can replace g by GR
t=2 due to the central limit theorem on

R and

Var(β) =

∞∫
−∞

β2g(β)dβ = 2
∞∫

0

β2g(β)dβ = 2.

Appendix A.2.1. From the Diffusion Case α = 1 to the General Case α ∈ (0, 1]

For the case α ∈ (0, 1], we define the (fractional) random processes by their probability densities

P(Pα
t = (x, n)) =

∞∫
0

qt,α(τ) P(Pτ = (x, n))dτ,

P(Pα
t = (x, n)) =

∞∫
0

qt,α(τ) P(Pτ = (x, n))dτ.
(A8)

Recal that the kernel qt,α(τ) is given by Equation (77). For Monte-Carlo simulations, one can

use Equation (78), or alternatively use Pα
tM
≈

M
∏
i=1

GTi � P0, for M � 0, where P0 is almost surely

(0, a), with Ti a temporal random variable with P(Ti = τ) = qti ,α(τ), with ti =
i

M t and Gti given by
Equation (73).

Appendix A.2.2. α-Stability of the Lévy Process

Due to the absence of suitable dilations on G/H, we resort to the embedding space where
α-stability is defined. The Lévy process {Pα

t = (Xα
t , Nα

t ) | t ≥ 0} associated to the Lévy process
{Pα

t = (Xα
t , Nα

t ) | t ≥ 0} in R3 o S2 is α-stable, i.e., for all a, t > 0 we have (by Equations (A5) and (78))

a−
1

2α Xα
at ∼ Xα

t and a−
1

2α Nα
at ∼ Nα

t .

Appendix B. Left-Invariant Vector Fields on SE(3) via Two Charts

We need two charts to cover SO(3). When using the following coordinates (ZYZ-Euler angles) for
SE(3) = R3 o SO(3) for the first chart:

g = (x, y, z, Rez ,γRey ,βRez ,α), with β ∈ (0, π), α, γ ∈ [0, 2π), (A9)

Equation (9) yields the following formulas for the left-invariant vector fields:

A1|g = (cos α cos β cos γ− sin α sin γ)∂x + (sin α cos γ + cos α cos β sin γ)∂y − cos α sin β ∂z

A2|g = (− sin α cos β cos γ− cos α sin γ)∂x + (cos α cos γ− sin α cos β sin γ)∂y + sin α sin β ∂z

A3|g = sin β cos γ ∂x + sin β sin γ ∂y + cos β ∂z,

A4|g = cos αcotβ ∂α + sin α ∂β − cos α
sin β ∂γ,

A5|g = − sin αcotβ ∂α + cos α ∂β +
sin α
sin β ∂γ,

A6|g = ∂α.

(A10)

We observe that

Aghα
≡ (Rez ,α ⊕ Rez ,α)

TAg, where Ag =
(
A1|g, . . . ,A6|g

)
. (A11)
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The above formulas do not hold for β = π or β = 0. Thus, we even lack expressions for our
left-invariant vector fields at the unity element (0, I) ∈ SE(3) when using the standard ZYZ-Euler
angles. Therefore, one formally needs a second chart, for example the XYZ-coordinates in [84,87,100]:

g = (x, y, z, Rex ,γ̃Rey ,β̃Rez ,α), with β̃ ∈ [−π, π), α ∈ [0, 2π), γ̃ ∈ (−π/2, π/2), (A12)

Equation (9) yields the following formulas for the left-invariant vector fields (only for |β̃| 6= π
2 ):

A1|g = cos α cos β̃ ∂x + (cos γ̃ sin α + cos α sin β̃ sin γ̃) ∂y + (sin α sin γ̃− cos α sin β̃ cos γ̃) ∂z

A2|g = − sin α cos β̃ ∂x + (cos α cos γ̃− sin α sin β̃ sin γ̃)∂y + (sin α sin β̃ cos γ̃ + cos α sin γ̃) ∂z

A3|g = sin β̃ ∂x − cos β̃ sin γ̃ ∂y + cos β̃ cos γ̃ ∂z,

A4|g = − cos αtanβ̃ ∂α + sin α ∂β̃ +
cos α
cos β̃

∂γ̃,

A5|g = sin αtanβ̃ ∂α + cos α∂β̃ −
sin α
cos β ∂γ̃,

A6|g = ∂α.

(A13)
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