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Abstract. Malleable applications may run with varying numbers of
threads, and thus on varying numbers of cores, while the exact num-
ber of threads/cores is irrelevant for the program logic. Malleability is
a common property in data-parallel array processing, and with continu-
ously growing core counts we are increasingly faced with the problem of
how to choose the best number of threads/cores.

We propose a compiler-directed, almost automatic tuning approach for
the functional array processing language SaC. Our approach consists
of an offline training phase during which compiler-instrumented appli-
cation code systematically explores the design space and accumulates a
persistent database of profiling data. When generating production code
our compiler consults this database and augments each data-parallel op-
eration with a recommendation table. Based on these recommendation
tables the runtime system chooses the number of threads individually for
each data-parallel operation.

With energy/power efficiency becoming an ever greater concern, we ex-
plicitly distinguish between two application scenarios: aiming at best
possible performance or aiming at a beneficial trade-off between perfor-
mance and resource investment.

1 Introduction

SaC (aka Single Assignment C) is a purely functional, data-parallel array lan-
guage [17, 18, 14] with a C-like syntax (hence the name). SaC features homo-
geneous, multi-dimensional, immutable arrays and supports both shape- and
rank-generic programming: SaC functions may not only abstract from the con-
crete shapes of argument and result arrays, but even from their ranks (i.e. the
number of dimensions). A key motivation for functional array programming is
fully compiler-directed parallelization for various architectures starting from ex-
actly the same one source. Currently, the SaC compiler supports general-purpose
multi-processor and multi-core systems [13], CUDA-enabled GPGPUs [19], het-
erogeneous combinations thereof [8], the Amsterdam MicroGrid general-purpose
many-core processor [15] or, most recently, clusters of workstations [25].



For the purpose of this paper we focus on general-purpose multi-core systems
with cache-coherent shared memory. One of the advantages of a fully compiler-
directed approach to parallel execution is that compiler and runtime system are
technically free to choose any number of threads for execution, and by design
the choice cannot interfere with the program logic. We call this characteristic
property malleability. Malleability raises the central question of this paper: what
would be the best number of threads to choose for the execution of a data-parallel
operation? This choice depends on a number of factors, including but not limited
to

– the number of array elements to compute,
– the computational complexity per array element and
– architecture characteristics of the compute system used.

For a large array of computationally challenging values making use of all available
cores is a rather trivial choice on almost any machine. However, smaller arrays
or less computational complexity or both inevitably leads to the observation
illustrated in Fig. 1. While for a small number of threads/cores we often achieve
almost linear speedup, the additional benefit of using more of them increasingly
diminishes until some (near-)plateau is reached. Beyond this plateau using even
more cores often shows a detrimental effect on performance.

This common behaviour [26, 28, 29, 27] can be attributed to essentially two
independent effects. First, on any given system off-chip memory bandwidth is
limited, and some number of actively working cores is bound to saturate the
available bandwidth. Second, the organisational overhead for synchronisation,
communication workload scheduling, etc, typically grows super-linearly in prac-
tice.

We can distinguish two scenarios for choosing the number of threads. From a
pure performance perspective we would aim at the number of threads that yield
the highest speedup. In the example of Fig. 1 that would be 16 threads. However,
we typically observe a performance plateau around that optimal number. In the
given example we can observe that from 12 to 20 threads the speedup obtained
only marginally changes. Hence, finding a sub-optimal, but sufficiently near-
optimal, number of threads suffices in practice.

However, as soon as computing resources are not considered free of charge,
it does indeed make a big difference if we use 12 cores or 20 cores to obtain
extremely similar performance. The 8 additional cores clearly fail to deliver any
additional performance in the example of Fig. 1. Thus, they could more produc-
tively be used for other tasks. In the absence of any useful work, they could be
powered down to save energy. This observation leaves us with two possible usage
scenarios:

– aiming at best possible performance, the traditional HPC view, or
– aiming at a favourable trade-off between resource consumption and perfor-

mance delivered.

Outside extreme high performance computing (HPC) the latter policy becomes
more and more relevant. Here, we are looking at the gradient of the speedup
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Fig. 1. Typical speedup graph observed for multi-core execution

curve. If the additional performance benefit of using one more core/thread drops
below a certain threshold, we constitute that we have reached the optimal (with
respect to the chosen policy) number of threads. Where exactly this threshold
lies, is highly application- and situation-dependent.

In classical, high performance oriented parallel computing our issues have
hardly been addressed because in this area users have typically strived for solv-
ing the largest possible problem size that still fits the constraints of the com-
puting system used. In today’s ubiquitous parallel computing [3], however, the
situation has completely changed, and problem sizes are much more often de-
termined by problem characteristics than machine constraints. But even in high
performance computing some problem classes inevitably run into the described
issues: multi-scale methods. Here, the same function(s) is/are applied to arrays
of systematically varied shape and size. We illustrate multi-scale methods in
Fig. 2 based on the example of the NAS benchmark MG (multigrid) [2, 11]. In
this so-called vcycle algorithm (A glimpse at Fig. 2 should suffice to understand
the motivation behind this name.) we start the computational process with a
3-dimensional array of large size and then systematically reduce the size by half
in each dimension. This process continues until some predefined minimum size
is reached, and then the process is sort of inverted and array sizes now double
in each dimension until the original size is reached again. The whole process is
repeated many times until some form of convergence is reached.

Since the array’s size determines the break-even point of parallel execution
in a data parallel array comprehension, it is clear that the optimal number of
threads is different on the various levels of the vcycle. Regardless of the overall
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Fig. 2. Algorithmic vcycle structure of NAS benchmark MG as a representative of
multi-scale methods, reproduced from [11]

problem size started with, we will always reach problem sizes where using varying
fractions of the total number of threads will yield the best possible performance
before for very small data sets purely sequential execution is the best solution.

All the above examples and discussions lead to one insight: in most non-trivial
applications we cannot expect to find the one number of threads that is best
across all data-parallel operations. This is the motivation for our proposed smart
decision tool that aims at selecting the right number of threads for execution
on the basis of individual data-parallel operations and user-configurable general
policy in line with the two usage scenarios sketched out above. The smart decision
tool is meant to replace a much more coarse-grained solution that SaC shares
with many other high-level parallel languages, namely that based on heuristic
methods some data-parallel operations in an application program may be run
entirely sequential.

Our smart decision tool is based on the assumption that for many data-
parallel operations the effectively best choice in either usage scenario neither is
to use all cores for parallel execution nor to only use a single core for completely
sequential execution. We follow a two-phase approach that distinguishes between
offline training runs and online production runs of the same application. In train-
ing mode compilation our compiler instruments the generated code to produce
an individual performance profile for each individual data-parallel operation. In
production mode compilation we associate each data-parallel operation with an
oracle that based on the performance profiles gathered offline chooses the num-
ber of threads based on the array sizes encountered at application production
runtime.

The distinction between training and production mode has the disadvantage
that users need to explicitly and consciously use the smart decision tool for man-
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ual optimisation. One could think of a more seamless and transparent integration
where applications as silently as continuously produce profiling data stored in
a database and dynamically consult this database to make educated decisions.
We rejected such an approach because of its adverse effects on production run-
time performance. In contrast, our proposed approach inflicts minimal runtime
overhead in production mode.

The remainder of the paper is organised as follows. Section 2 provides some
background information on our functional array language SaC while Section 3
sketches out compilation into multithreaded code and the SaC runtime system
for multi-core machines. In Sections 4 and 5 we describe our proposed smart
decision tool in detail: training mode and production mode, respectively. In
Section 6 we outline necessary modifications of SaC’s runtime system. Some
preliminary experimental evaluation is discussed in Section 7. Finally, we sketch
out related work in Section 8 before we draw conclusions in Section 9.

2 Introducing SAC

As the name “Single Assignment C” suggests, SaC leaves the beaten track of
functional languages with respect to syntax and adopts a C-like notation. This
is meant to facilitate adoption in compute-intensive application domains, where
imperative concepts prevail. Core SaC is a functional, side-effect free variant of
C: we interpret assignment sequences as nested let-expressions, branches as con-
ditional expressions and loops as syntactic sugar for tail-end recursive functions;
details can be found in [17].

Despite the radically different underlying execution model (context-free sub-
stitution of expressions vs. step-wise manipulation of global state), all language
constructs adopted from C show exactly the same operational behaviour as ex-
pected by imperative programmers. This allows programmers to choose their
favourite interpretation of SaC code while the compiler exploits the benefits of
a side-effect free semantics for advanced optimisation and automatic parallelisa-
tion.

On top of this language kernel SaC provides genuine support for process-
ing truly multidimensional and truly stateless/functional arrays using a shape-
generic style of programming. Any SaC expression evaluates to an array. Arrays
may be passed between functions without restrictions. Array types include ar-
rays of fixed shape, e.g. int[3,7], arrays of fixed rank, e.g. int[.,.], and arrays
of any rank, e.g. int[*]. The latter include scalars, which we consider rank-0
arrays with an empty shape vector. For convenience and equivalence with C we
use int rather than the equivalent int[] as a type notation for scalars. The hier-
archy of array types induces a subtype relationship, and SaC supports function
overloading with respect to subtyping.

SaC only features a very small set of built-in array operations, among others
to query for rank and shape, or to select individual arry elements. Aggregate
array operations are specified in SaC itself using with-loop array comprehen-
sions:
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with {
( lower bound <= idxvec < upper bound) : expr;

...
( lower bound <= idxvec < upper bound) : expr;

}: genarray( shape, default)

Here, the keyword genarray characterises the with-loop as an array comprehen-
sion that defines an array of shape shape. The default element value is default,
but we may deviate from this default by defining one or more index partitions
between the keywords with and genarray.

Here, lower bound and upper bound denote expressions that must evaluate
to integer vectors of equal length. They define a rectangular (generally multidi-
mensional) index set. The identifier idxvec represents elements of this set, similar
to loop variables in for-loops. Unlike for-loops, we deliberately do not define
any order on these index sets. We call the specification of such an index set a
generator and associate it with some potentially complex SaC expression that
is in the scope of idxvec and thus may access the current index location. As an
example, consider the with-loop

A = with {

([1,1]<=iv <[4 ,5]): 10*iv[0]+iv[1];

([4,0]<=iv <[5 ,5]): 42;

}: genarray( [5,5], 99);

that defines the 5× 5 matrix

A =




99 99 99 99 99
99 11 12 13 14
99 21 22 23 24
99 31 32 33 34
42 42 42 42 42




With-loops in SaC are extremely versatile. In addition to the dense rectan-
gular index partitions show above SaC supports also strided generators. In ad-
dition to the genarray-variant used here, SaC features further variants, among
others for reduction operations. Furthermore, a single with-loop may define
multiple arrays or combine multiple array comprehensions with further reduc-
tion operations, etc. For a complete, tutorial-style introduction to SaC as a
programming language we refer the interested reader to [14].

3 Compiling SAC

Compiling SaC programs into efficiently executable code for a variety of parallel
architectures is a non-trivial undertaking. While this clearly is not the place to
explain the compilation process in any detail, we still sketch out a few areas
most relevant for our current work.
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It probably comes at no surprise to the experienced reader that with-loops,
as introduced in the previous section, play a central role in the compilation of
SaC programs. Any aggregate array operation in SaC, in one way or another,
is expressed by means of with-loops, may it be explicitly in the application pro-
gram or implicitly through composition of basic operations from the SaC stan-
dard array library. Thus, we can expect that almost any SaC program spends
almost all execution time in with-loops.

Many of our optimisations are geared towards the composition of multiple
with-loops into one [16]. These compiler transformations systematically improve
the ratio between productive computing and organisational overhead. Conse-
quently, when it comes to generating multithreaded code for parallel execution
on multi-core system, we can focus on individual with-loops. With-loops are
data-parallel by design. Thus, any with-loop can be executed in parallel. The
subject of our current work is: should it?

So far, the SaC compiler has generated two alternative codes for every with-
loop: a sequential and a multithreaded implementation. The choice which route
to take is made at runtime based on two criteria:

– If program execution is already in parallel mode, we evaluate nested with-
loops sequentially.

– If the size of an index set is below a configurable threshold, regardless of the
computational complexity per element, we evaluate the with-loop sequen-
tially.

Multithreaded program execution follows an offload model (or fork/join-model),
as illustrated in Fig. 3. Program execution always starts in single-threaded mode
and only if the execution reaches a with-loop for which both above criteria are
met, worker threads are created that join the master thread in the execution of
the data-parallel with-loop. A with-loop-scheduler assigns array elements for
computing to among the worker threads according to one of several policies that
range from static scheduling to dynamic self-scheduling with and without affinity
control. In fact, the SaC compiler implements various scheduling technique to be
selected by the programmer, but all this is irrelevant for our current work. When
no more work is available, the worker threads terminate and, having waited for
the last worker thread, the master thread resumes single-threaded execution.

The total number of threads, eight in the illustration of Fig. 3, is once deter-
mined at program startup and remains the same throughout program execution.
This number is typically motivated by the hardware resources of the deployment
system. Due to the malleability property of the data-parallel applications con-
cerned, application characteristics are mostly irrelevant. While it would be tech-
nically simple to determine the number of available cores at application start,
SaC for the time being expects this number to be provided by the user, either
through a command line parameter or through an environment variable.

As illustrated on the right hand side of Fig. 3 does not literally implement the
fork/join-model, but rather starts the worker threads right at the beginning and
before the first with-loop is encountered during program execution. All worker
threads are preserved until program termination. The conceptual fork/join model
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Fig. 3. Multithreaded execution models: conceptual fork-join model (left) and
start/stop barrier implementation (right)

is implemented through two dedicated barriers: the start barrier and the stop
barrier. At the start barrier worker threads wait for activation by the master
thread. At the stop barrier the master thread waits for all worker threads to
complete the parallel section while the worker threads immediately pass on to
the following start barrier. We use highly efficient tailor-made implementations
that exploit properties of the cache coherence protocol, but are essentially based
on spinning. All details about our barrier implementations in particular and
SaC’s multicore implementation in general can be found in [12, 13].

4 Smart decision training mode

The proposed smart decision tool consists of two modes: we first describe the
training mode in this section and then focus on the production mode in the
following section. When compiling for smart decision training mode, the SaC
compiler instruments the generated multithreaded code in such a way that
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– for each with-loop we systematically explore the entire design space regard-
ing the number of threads;

– we repeat each experiment sufficiently many times to ensure a meaningful
timing granularity while avoiding excessive training times;

– profiling data is stored in a custom binary database.

At the same time we aim at keeping the smart decision training code as orthog-
onal to the existing implementation of multithreading as possible, mainly for
general software engineering concerns. Fig. 4 shows pseudo code that illustrates
the structure of the generated code. To make the pseudo code as concrete as
possible, we pick up the example with-loop introduced in Section 2.

size = 5 * 5;

A = allocate_memory( size * sizeof(int));

spmd_frame.A = A;

num_threads = 1;

repetitions = 1;

init = 1;

do {

start = get_real_time ();

for (int i=0; i<repetitions; i++) {

StartThreads( num_threads ,

spmd_fun , spmd_frame );

spmd_fun( 0, num_threads , spmd_frame );

}

stop = get_real_time ();

repetitions , num_threads , init

= TrainingOracle (init , unique_id , size ,

repetitions , start , stop);

}

while (repetitions > 0);

Fig. 4. Compiled pseudo code of the example with-loop from Section 2 in smart deci-
sion training mode

The core addition to our standard code generation scheme is a do-while-loop
plus a timing facility wrapped around the original code generated from our with-
loop. Let us briefly explain the latter first. The pseudo function StartThreads

is meant to lift the start barrier for num threads-1 worker threads. They subse-
quently execute the generated function spmd fun that contains most of the code
generated from the with-loop, among others the resulting nesting of C for-
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loops, the with-loop-scheduler and the stop barrier. The record spmd frame

serves as a parameter passing mechanism for spmd fun. In our concrete exam-
ple, it merely contains the memory address of the result array, but in general
also all values referred to in the body of the with-loop would be made available
to all worker threads via spmd frame. After lifting the start barrier, the master
thread temporarily turns itself into a worker thread by calling spmd fun directly
via a conventional function call. Note that the first argument given to spmd fun

denotes the thread ID. All worker threads require the number of active threads
(num threads) as input for the with-loop-scheduler.

Coming back to the specific code for smart decision training mode, we im-
mediately identify the timing facility, which obviously is meant to profile the
code, but why do we wrap the whole code within another loop? Firstly, the
functional semantics of SaC and thus the guaranteed absence of side-effects in
the with-loop allow us to actually execute the compiled code multiple times
without affecting semantics. In a non-functional context this would immediately
raise a plethora of concerns whether running some piece of code repeatedly may
have an impact on application logic.

However, the reason for actually running a single with-loop multiple times is
motivated by creating more reliable timing data. Take into account that we have
very little a-priori insight into how long the with-loop is going to run. Shorter
runtimes often result in greater relative variety of measurements. To counter
such effects, we first run the with-loop once to obtain a rough estimate of its
execution time. Following this initial execution a training oracle decides about
the number of repetitions to follow in order to obtain meaningful timings while
keeping overall execution time at acceptable levels.

In addition to controlling the number of repetitions our training oracle sys-
tematically varies the effective number of threads employed. More precisely, the
training oracle implements a three step process:

Step 1: dynamically adjust the time spent on a single measurement iteration to
match a certain pre-configured time range. During this step the with-loop is
executed once by a single thread, and the execution time is measured. Based
on this time the training oracle determines how often the with-loop could
be executed without exceeding a configurable time limit, currently 500ms.

Step 2: measure the execution time of the with-loop while systematically vary-
ing the number of threads used. This step consists of many cycles, each run-
ning the with-loop as many times as determined in step 1. After each cycle
the execution time of the previous cycle is stored, and the number of threads
used during the next cycle is increased by one. Step 2 ends as soon as the
number of threads reaches the preset maximum.

Step 3: collect measurement data to create a performance profile that is stored
on disk. During this step all time measurements collected in step 2 are pack-
aged together with three characteristic numbers of the profile: a unique iden-
tifier of the with-loop, the size of the index set and the number of repetitions
in step 1. The packaged data is stored in the application-specific binary smart
decision database file on disk.
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Let us have a closer look into the last of the three steps. The SaC compiler
determines the unique identifier at compile time, if in training mode, by simply
counting all with-loops in the SaC module compiled. The resulting identifier is
compiled into the generated code as one argument of the training oracle. Here, it
is important to understand that we do not count the with-loops in the original
source code written by the user, but those in intermediate code after substantial
program transformations by the compiler.

The index set size may be known at compile time, as in our simple example, or
may only be computed at runtime. In case of a genarray or modarray with-loop
the size of the index set coincides with that of the array defined, and is already
required for the purpose of memory allocation independent of our current work.
However, in the case of a fold-with-loop we need to generate an expression
that symbolically describes the index set size based on the generators’ lower and
upper bound specifications (and possibly their strides).

The organisation of the binary database file in rows of data is illustrated
in Fig. 5. Each row starts with the three integer numbers that characterise
the measurement: with-loop id, index set size and number of repetitions, each
in 64-bit representation. What follows in the row are the time measurements
with different numbers of threads. Thus, the length of the row is determined
by the preset maximum number of threads. For instance, the first row in Fig. 5
contains a total of seven numbers: the three characteristic numbers followed by
profile data for one, two, three and four threads, respectively. The second row
in Fig. 5a accordingly stems from a training of the same application with the
maximum number of threads set to two.

!
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Fig. 5. Illustration of training database rows

The smart decision tool recognises a database file by its name. We use the
following naming convention:

stat.name.architecture.#threads.db

and store database files in a specific subdirectory of the .sac2c subdirectory
in the user’s home directory. Both name and architecture are set by the user
through corresponding compiler options when compiling for training mode. Oth-
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erwise, we use suitable default values. The name field #threads is the preset
maximum number of threads. The name option is mainly meant for experiment-
ing with different compiler options and/or code variants and thus keep different
smart decision databases at the same time. The architecture reflects the fact
that the system on which we run our experiments and later the production code
crucially affects our measurements. Profiling data obtained on different systems
are usually incomparable. With this option we can distinguish data obtained on
different execution systems, even if they end up on the same file system, e.g. a
file server with user directories mounted on various different machines. In the
long run, we would rather want to set this parameter automatically, but rather
is an engineering than a research concern and so we postpone it for now.

Users may choose to repeat the training of a SaC program. If name, architec-
ture and number of threads match those of an existing database, new measure-
ments are merged into that file. For every new measurement the smart decision
tool first checks if there are already similar measurements in the database file
based on with-loop identifier and problem size. In case of a match, existing and
new measurements are pairwise added, and the resulting values are written back
into the corresponding database row.

5 Smart decision production mode

Continuous training leads to a collection of database files. In an online approach
running applications would consult these database files in deciding about the
number of threads to use for each and any instance of a with-loop encoun-
tered during program execution. However, locating the right data base in the
file system, reading and interpreting its contents and then making a non-trivial
decision would incur considerable runtime overhead that we would need to com-
pensate first before realising any advantage through smarter decisions regarding
the effective number of threads.

Therefore, we decided to take a different route and actually consult the
database files created by training mode binaries when compiling production bi-
naries. This way we can move almost all overhead to production mode compile
time while keeping the actual production runtime overhead minimal. In produc-
tion mode the SaC compiler does three things with respect to the smart decision
tool:

1. it reads the relevant database files identified by name and architecture ;
2. it applies a merge operation to combine information from several database

files;
3. it creates a recommendation table for each with-loop.

These recommendation tables are compiled into the SaC code and used at run-
time component to decide for each instance of a with-loop how many threads
to actually.

The combination of name and architecture must match with at least one
database file, but it is well possible that a specific combination matches with
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several files, for example if the training is first done with a maximum of two
threads and later repeated with a maximum of four threads. In such cases we
read all matching database files for any maximum number of threads and merge
them. The merge process is executed for each with-loop individually. As in
training mode we identify each with-loop by a unique identifier. Since training
and production mode compilation does not lead to different intermediate code
representations otherwise, we are guaranteed to obtain the same unique identifier
for each with-loop in either mode. These unique identifiers are matched with
the identifiers in the database files to create subselections of database rows.
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Fig. 6. Illustration of database row merging

Database rows are merged pairwise, as illustrated in Fig. 6. First, a mini-
database is created in memory to store the merged rows. Second, the rows from
the sub selection are read one by one and prepared for merging: The index set
sizes of the row are copied in front of each time measurement (Fig. 6b). Rows
are padded with empty entries where needed to make all rows as long as the
one resulting from running the largest number of threads (Fig. 6c). Third, the
position of each row in the mini-database is determined using rank sort. The
problem size of each row is used as index for the rank sort algorithm. Rows
with the same index become new rows in the mini-database. If two or more rows
have the same index (e.g. they have the same problem size), they are merged by
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simply adding the problem sizes and time measurements of the corresponding
rows (Fig. 6d). Finally, all time measurements are divided by the corresponding
problem sizes to compute the average execution time of the with-loop, which
are likewise stored in the mini-database.

Following the merge process, the compiler creates a recommendation table,
based on the in-memory mini-database. This recommendation table consists of
two columns. The first column contains the different problem sizes encountered
during training. The second column holds the corresponding recommended num-
ber of threads. Recommendations are computed based on the average execution
times in relation to the problem sizes. Average execution times are turned into a
performance graph by taking the inverse of each measurement. The performance
graph is then normalized to the range zero to one. Then, we determine the gra-
dient between any two adjacent numbers of threads in the performance graph
and compared it with a configurable threshold gradient (default: 10 degrees).
The recommended number of threads is the highest number of threads for which
the gradient towards using one more thread is below the gradient threshold. In
other words, the gradient threshold is the crucial knob by which users control
whether to tune for performance or for performance/energy trade-offs. At last,
the entire recommendation table is compiled into the production SaC code, just
in front of the corresponding with-loop.

The runtime component of the smart decision production code is kept as
lean and efficient as possible. When reaching some with-loop during execution,
we compare the actual problem size encountered with the problem sizes in the
recommendation table. If we find a direct match, the recommended number of
threads is taken from the recommendation table. If the problem size is in between
two problem sizes in the recommendation table, we use linear interpolation to
estimate the optimal number of threads. If the actual problem size is smaller than
any one in the recommendation table, the recommended number of threads for
the smallest available problem size used. In case the actual problem size exceeds
the largest problem size in the recommendation table, the recommended number
of threads for the largest problem size in the table is used. So, we do interpolation,
but refrain from extrapolation beyond both the smallest and the largest problem
size in the recommendation table.

6 Smart decision runtime

In this section we describe the extensions necessary to actually implement the
decisions made by the smart decision tool at runtime. As outlined in Section 3, a
SaC program compiled for multithreaded execution alternates between sequen-
tial single-threaded and data-parallel multithreaded execution modes. Switching
from one mode to the other is the main source of runtime overhead, namely for
synchronisation of threads and communication of data among them. As illus-
trated in Fig. 7, start and stop barriers are responsible for the necessary syn-
chronisation and communication, but likewise for the corresponding overhead.
Hence, their efficient implementation is crucial.
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SaC’s standard implementations of start and stop barriers are based on ac-
tive waiting, or spinning. This choice is motivated by the low latency of spinning
barriers in conjunction with the expectation that SaC applications typically
spend most execution time within the multithreaded execution mode. Thus,
threads are expected to never wait long at a start barrier for their next activa-
tion while load balancing scheduling techniques make sure that waiting times at
stop barriers are kept low.

For the high performance application scenario of our work, we ignore all
energy-saving opportunities and stick to spinning barriers as outlined in Fig. 8.
Our implementation makes use of two counters: the local counter is stack-
allocated and private to each thread, whereas the volatile global counter is
shared by all threads. As long as their values coincide, execution is captured in
the while-loop. The master thread releases the worker threads by increment-
ing the global counter. For a more detailed discussion of this synchronisation
mechanism we refer the interested reader to [13].
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void BarrierWait( volatile unsigned int *global ,

unsigned int *local)

{

while (* global == *local) {

// spin

}

(* local )++;

}

void BarrierRelease( volatile unsigned int *global)

{

(* global )++;

}

Fig. 8. Start barrier implementation with thread spinning

For the purpose of our current work we introduce an additional high water-
mark for threads, as illustrated in Fig. 7. This high watermark achieves that only
the recommended number of threads is actually activated in the start barrier and
waited for in the stop barrier. We always use those threads with thread ID below
the high watermark. With minimal change of existing implementation this can
be achieved by using the changing high watermark instead of the fixed total
number of threads in all scheduling decisions, regardless of the actual scheduling
policy chosen. This way with-loop-schedulers do not assign any work to threads
with ID beyond the high watermark, and these threads then immediately hit the
stop barrier and subsequently the start barrier.

Spinning barriers are of course of little use for the performance/energy trade-
off scenario of our work. Therefore, we introduce three further non-spinning
barrier types to be selected by the user via a corresponding command line option
of the SaC compiler. These barriers suspend threads at the start barrier and
re-activate them as needed. The second barrier implementation is the built-in
PThread barrier, the third is based on condition variables and shown in Fig. 9
and the fourth barrier implementation is a variant solely based on mutex locks.

The thread suspending start barrier implementation shown in Fig. 9 takes in
principle the same approach as the spinning barrier of in Fig. 8, but additionally
uses a mutex lock and a condition variable. Instead of spinning on the equal-
ity condition of the two counters, we now call pthread cond wait to suspend.
Analogously, we call pthread cond broadcast to wake up the suspended worker
threads for action.

7 Experimental evaluation

We evaluate our approach with a series of experiments using two different ma-
chines of the DAS-4 research cluster. The smaller of our test systems is equipped
with two Intel Xeon quad-core E5620 processors with hyperthreading enabled.
These eight hyperthreaded cores run at 2.4 GHz and the entire system has 24GB
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void BarrierWait( volatile unsigned int *global ,

unsigned int *local)

{

pthread_mutex_lock( &barrier_mutex );

if (* global == *local) {

pthread_cond_wait( &barrier_condvar ,

&barrier_mutex );

}

pthread_mutex_unlock( &barrier_mutex );

(* local )++;

}

void BarrierRelease( volatile unsigned int *global)

{

pthread_mutex_lock( &barrier_mutex );

(* global )++;

pthread_cond_broadcast( &barrier_condvar );

pthread_mutex_unlock( &barrier_mutex );

}

Fig. 9. Start barrier implementation with thread suspension

of memory. The larger of our test system features four AMD 6100 12-core pro-
cessors and has 128GB of memory. Both systems are operated in batch mode
giving us exclusive access for the duration of our experiments. In the sequel we
will refer to these systems as the Intel or as the AMD system, respectively.

Before exploring the actual smart decision tool, we investigate the runtime
behaviour of the four barrier implementations sketched out in the previous sec-
tion. In Fig. 10 we show results obtained with a synthetic micro benchmark that
puts maximum stress on the barrier implementations. We systematically vary
the number of cores and show actual wall clock execution times of the micro
benchmark.

Two insights can be gained from this initial experiment. Firstly, from our
three non-spinning barrier implementations the one based on condition vari-
ables clearly performs best across all levels of concurrency. Therefore, we restrict
all further experiments to this implementation as the representative of thread-
suspending barriers and relate its performance to that of the spinning barrier
implementation. Secondly, we observe a substantial performance difference be-
tween the spinning barrier on the one hand side and all three non-spinning
barriers on the other hand side. Positively, this experiment nicely demonstrates
how well tuned the SaC synchronisation primitives are. Nevertheless, the ex-
periment also shows that the performance/energy trade-off scenario we sketched
out earlier is not easy to address.

Before exploring the effect of the smart decision tool on any complex ap-
plication programs, we need to better understand the basic properties of our
approach. Therefore we use a very simple, almost synthetic benchmark through-
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Fig. 10. Scalability of our four barrier implementations on the 8-core hyperthreaded
Intel system and on the 48-core AMD system

out the remainder of this section: repeated element-wise addition of two matrices.
We explore two different problem sizes, 50× 50 and 400× 400, that have proven
to yield representative results for spinning and non-spinning barrier implemen-
tations, respectively. We first present experimental results obtained on the AMD
system with spinning barriers in Fig. 11 and with suspending barriers in Fig. 12.

Frankly speaking, we cannot be happy with the results reported. For the
larger problem size of 400x400 the human eye easily identifies that no funda-
mental speedup limit is reached up to the 48 cores available. Nonetheless, an
intermediate plateau around 26 cores makes the smart decision tool (or not so
smart decision tool) choose to limit parallel activities at this level.

For the smaller problem size of 50x50 we indeed observe the expected perfor-
mance plateau, and the smart decision decides to limit parallelisation to 24 core.
Subjectively, this appears to to be on the high side as 12 core already achieve a
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Fig. 11. Performance on AMD 48-core system with and without the proposed smart
decision tool for two different problem sizes and spinning barrier implementation; smart
decision tool recommendations: 26 and 24

speedup of 2.5, which is very close to the maximum. Trouble is we cannot realise
the expected performance for higher thread numbers. Our expectation would be
to keep a speedup of about 2.5 even if the maximum number of threads is chosen
at program start to be higher.

We attribute this to the fact that our implementations of the start barrier
always activate all threads, regardless of what the smart decision tool suggests.
Its recommendation merely affects the with-loop-scheduler, which divides the
available work evenly among a smaller number of active threads. We presume
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that this implementation choice inflicts two much overhead in relation to the
fairly small problem size, and synchronisation cost dominate our observations.
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Fig. 12. Performance on AMD 48-core system with and without the proposed smart
decision tool for two different problem sizes and suspending barrier implementation;
smart decision tool recommendations: 24 and 1

When using suspending barriers instead of spinning barriers, as shown in
Fig. 12, we see a similar picture. Only the considerably higher overhead of sus-
pending barriers, as already observed in Fig. 10, makes the 400x400 graph for
suspending barriers resemble the 50x50 graph for spinning barriers. Accordingly,
running the 50x50 experiment with suspending barriers results in a major slow-
down due to parallel execution. Still, we can observe that our original, motivating
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assumption indeed holds: the best possible performance is neither achieved with
one core nor with 48 cores, but in this particular case with two cores.

A general observation across all experiments so far is that the runtime be-
haviour with up to four threads is rather unexpected. This can best be seen in the
graphs for the 400x400 matrices (top). With up to three threads we see expected
speedups, but with four threads performance considerably goes down. From the
low basis of four thread performance we can then observe an continuous incline
again. This behaviour appears to be related to the system configuration of four
processors with 12 cores each, but we do not have a plausible explanation of the
concrete behaviour observed.

What is clear, however, is that the reproducible local performance maximum
at low thread counts irritates our heuristics in constructing recommendation
tables. To cope with such training data we decided not to take the angle as
mentioned in Section 5 literal, but rather as a rough indication.

We now present experimental results obtained on the Intel system with spin-
ning barriers in Fig. 13 and with suspending barriers in Fig. 14. Overall these
figures confirm the results obtained on the 48-core AMD system. In the 400x400
experiments we can clearly identify the hyperthreaded nature of the architec-
ture. For example in the 400x400 experiment with spinning barriers speedups
continuously grow up to eight threads, dramatically diminish for nine threads
and then again continuously grow up to 16 threads.

8 Related Work

It is a well known fact that not every parallelisable loop should indeed be run
in parallel for optimal performance. Successful parallelisation not only depends
on functional properties of the loop body, which may be known at compile time,
but to a large extent on runtime parameters such as data set sizes or even data
values themselves. Therefore, many parallel programming approaches provide
basic means to switch off parallel execution in generally parallelised loops based
on runtime values.

An example of this kind of mechanism is the if-clause of OpenMP [7],
which allows programmers to postpone the decision whether or not to execute
a parallel section of code actually in parallel by multiple worker threads or still
sequentially by the single master thread until runtime. The if-clause contains a
predicate that may be based on runtime variables of the programmer’s choice.
Analogous to our own motivation, the if-clause reflects the fact that parallel
execution may not always be beneficial for runtime performance, but whether or
not it actually is depends on information only available at application runtime.

Another similar example is the --dataParMinGranularity command line
option of Chapel [4, 5], which likewise allows the user to exercise control over
the mostly implicit data parallel constructs of the Chapel language. Unless in-
structed otherwise, Chapel automatically uses all available cores for implicit
parallelisation. The above command line option is automatically added to ev-
ery Chapel compiled code and allows the user of an application to a-posteriori
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Fig. 13. Performance on Intel 8-core hyperthreaded system with and without the pro-
posed smart decision tool for two different problem sizes and spinning barrier imple-
mentation; smart decision tool recommendations: 9 and 9

predicate the decision to parallelise or not to parallelise on the size of the index
space (or domain in Chapel speak) of each data-parallel operation. In contrast
to the if-clause of OpenMP only one value can be set across the entire appli-
cation, whereas the optimal value obviously depends on the compute intensity
per element of each individual data-parallel operation.

Prior to our current work, the SaC compiler has adopted a similar strategy
as Chapel: at compile time the user may set a minimum index size for par-
allelisation, and the generated code at runtime decides between sequential and
parallel execution based on the given size [12, 13]. The sac compiler makes use
of a suitable default minimum index set size if the user does not provide specific
information.
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Fig. 14. Performance on Intel 8-core hyperthreaded system with and without the pro-
posed smart decision tool for two different problem sizes and suspending barrier im-
plementation; smart decision tool recommendations: 9 and 1

All approaches mentioned so far share a fundamental shortcoming: any data-
parallel operation can only either be executed using all available worker threads
or completely sequential by a single thread: a classical all-or-nothing decision.

The latest versions of OpenMP [] go one step beyond and introduce the
num threads-clause, which allows programmers to precisely specify the number
of threads to be used for each parallelised loop, if they wish so. Like in the if-
clause, the num threads-clause contains an arbitrary C or Fortran expression
that may access all program variables in scope. While the num threads-clause is
mainly motivated as a vehicle to express nested parallelism, it could also be used
to explicitly set the number of threads in relation to problem set sizes or similar
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runtime parameters of an application. However, programmers are completely on
their own when using this feature of OpenMP.

This gap is filled by a multitude of performance analysis and tuning tools as
for example Intel’s VTune [21]. Corresponding guidelines [20, 9] explain the issues
involved. These tools and methodologies indeed allow performance engineers to
manually adapt effective parallelism in individual data-parallel operations to
data set sizes and machine characteristics, but the process is highly labour-
intensive if not to say painful. Furthermore, it needs to be repeated for every
new architecture and data set size.

In contrast, our proposed approach for compiler-directed parallelisation in
SaC works almost entirely automatically with the sole exception that users must
explicitly compile their source for training and production mode and run training
codes on representative input data. We would also like to remind the reader
that our implicit approach works on the data-parallel operations in intermediate
code after far-reaching code restructuring compiler optimisation. In contrast,
any manual tuning approaches operate on the level of source code and either
restrict the effectiveness and scope of compiler transformations or suffer from
any decoupling between source and binary code.

In this sense, feedback-driven threading proposed by Suleman et al goes even
one step further as a completely implicit compiler-based solution [29]. In an
OpenMP-parallelised loop they peel off up to 1% of the initial iterations. They
are executed by a single thread while hardware performance monitoring counters
collect information regarding off-chip memory bandwidth and cycles spent in
critical section. After this initial training phase the generated code evaluates the
hardware counters and predicts the optimal number of threads to be used for
the remaining bulk of iterations based on a simple analytical model. Apart from
the obvious beauty of being completely transparent to users, this approach has
some disadvantages. Considerable overhead is introduced at production runtime
for choosing the (presumably) best number of threads. This needs to be offset
first by more efficient parallel execution before any total performance gains can
be realised. Peeling off and sequential execution of up to 1% of the loop iterations
restricts potential gains of parallelisation according to Amdahl’s law. This is a
(high) price to be paid for every data-parallel operation, including all those that
would otherwise perfectly scale.

In contrast to our approach that continuously accumulates insight into the
scaling behaviour of individual data-parallel operations with every program run
in training mode, Suleman et al do not carry over any information from one pro-
gram run to the next and, thus, cannot reduce the overhead of feedback-driven
threading. Last not least, they rely on the assumption that the initial iterations
of a parallelised loop are representative in runtime behaviour for all remaining
iterations, whereas we always measure the entire data-parallel operation. There-
fore, we only reach the limits of reproducibility and predictability if the runtime
behaviour critically depends on varying data being processed instead of data set
sizes. But even in this adverse scenario increasing the number of training runs in
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conjunction with the accumulation and averaging of profile data, we may come
to meaningful conclusions.

Pusukuri et al proposed ThreadReinforcer [27]. While their motivation is sim-
ilar, their proposed solution again differs in many aspects from what we propose.
Most importantly, they treat any application as a black box and determine one
single number of threads to be used consistently throughout the application’s
life time. In contrast, we approach the problem on the granularity of individual
data-parallel operations and systematically vary the number of threads during
an application’s execution. Similar to Suleman et al, ThreadReinforcer integrates
learning and analysis into application execution. This choice creates overhead,
that only pays off for long-running applications. At the same time, having the
analysis on the critical path of application performance immediately creates a
performance/accuracy trade-off dilemma. In contrast, we deliberately distinguish
between training mode and production mode in order to train an application as
long as needed and to accumulate statistical information in persistent storage
without affecting application production performance.

Another approach in this area is ThreadTailor [23]. Here, the emphasis lies
on weaving threads together in order to reduce synchronisation and communica-
tion overhead where available concurrency cannot efficiently be exploited. This
scenario differs from our setting in that we explicitly look into malleable data-
parallel applications. Therefore, we are able to set the number of active threads
to our liking and even differently from one data-parallel operation to another.

Much work on determining optimal thread numbers on multi-core processors,
such as [22] or [1], stems from the early days of multi-core computing and are
limited to the small core counts of that time. Furthermore, there is a significant
body of literature studying power-performance trade-offs, among others [24, 6].
In a sense we also propose such a trade-off, but in our model performance and
energy consumption are not competing goals. Instead, we aim at achieving run-
time performance within a margin of the best performance observable with the
least number of threads.

Coming back to SaC at last, we mention the work by Gordon and Scholz
[10]. They aim at adapting the number of active threads in a data-parallel oper-
ation to varying levels of competing computational workload in an interactively
configured multi-core system. The goal is to avoid thread context switches and
thread migration and rather vacate cores that turn out to be oversubscribed by
unrelated applications at program runtime. For this purpose they continuously
monitor execution times of data-parallel operations, and upon observing signif-
icant changes in the performance level they adapt the number of threads of the
running SaC application accordingly. Their work differs from our’s not only in
the underlying motivation, but likewise in the pure online approach. In contrast,
we distinguish between training and production mode, focus on our own applica-
tion’s characteristics and assume that we face no significant external competing
computational workload on our system, i.e. we rather look at batch-operated
machines.
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9 Conclusions and Future Work

Malleable data-parallel application programs offer interesting opportunities for
compilers and runtime systems alike to adapt the effective number of threads
separately for each data-parallel operation in order to achieve best runtime per-
formance. Alternatively, a favourable trade-off between runtime performance and
resource investment appears equally relevant these days. We explore this oppor-
tunity in the context of the functional data-parallel array language SaC and
propose a combination of offline training that builds up a persistent profiling
database, production code that incorporates gathered profiling data into recom-
mendation tables and a runtime system extension that actually implements such
recommendations during parallel program execution.

We are particularly concerned with data-parallel operations that turn out
to be too small to make efficient use of all available cores on the system while
their purely sequential execution still foregoes considerable performance gains.
There are two variations of this scenario. Firstly, we see entire applications that
could successfully exploit a certain number of cores in parallel execution but not
the tens and hundreds of cores that computer architecture roadmaps promise
for the foreseeable future. Secondly, data-parallel operations that only benefit
from a limited number of cores could make part of larger applications that as
a whole scale much better. Here, executing certain data-parallel operation with
a single thread just as with too many threads reduces parallelisation gains on
the whole application level. Our approach to control the number of threads on
a per-operation basis is exactly geared at such cases.

Following our experimental evaluation in Section 7, we must admit that we
are not there yet. While we are still convinced by our general approach, not to
mention the relevance of the underlying problem, additional research is need to
make our approach succeed. We have identified the following directions to take
immediate action. We must make our approach more robust to training data
that does not expose the shape shown in Fig. 1 as characteristically as we would
wish. In particular we must develop robust methods to detect outliers.

Furthermore, we must refine our barrier implementations to activate worker
threads more selectively. And we plan to explore how we can speed up suspension-
based barriers in comparison to spinning barriers. A likely option to this effect
would be to use hybrid barriers that spin for some configurable time interval
before they suspend.

A particular problem that we underestimated at the beginning of our work is
the by nature short execution time of the data-parallel operations for which our
work is particularly relevant. Consequently, overall performance is disproportion-
ately affected by synchronisation and communication overhead, thus pushing our
second research direction sketched out above. In addition, short parallel execu-
tion times likewise incur a large relative variation. Although our offline training
approach does take this into account, there are still practical limits to execution
times in training mode and thus to averaging over many measurements. More-
over, a large variation also means that the average or median often is not a good
representative of actual behaviour.
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