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ABSTRACT: Scatterometry is an optical metrology technique in which light scattered from a specifically designed grating stack
(overlay target) is measured in the far-field. Using 1D periodic overlay target designs, the technique has been shown to have
nanometer-scale sensitivity to spatial misalignments of subsequent patterned layers, which are also known as overlay errors.
However, while scatterometry is highly sensitive to overlay errors, multiple sources of systematic errors hinder its absolute accuracy.
Here, we investigate how an extended version of scatterometry called Fourier scatterometry, in combination with more complex
overlay target designs, can help addressing those challenges. To this end, we developed a statistical method that can determine the
influence of 2D overlay targets on the overlay measurement uncertainty. We study periodic and deterministic aperiodic designs as
well as designs that emerged from simulated annealing optimizations. Our results suggest that current overlay target designs could be
augmented by more complex 2D designs to fulfill specific purposes, such as fabrication robustness and high sensitivity over a large
overlay range.

KEYWORDS: scatterometry, uncertainty analysis, optical nanometrology, optimization, Mie theory, dielectric metasurface

Current semiconductor manufacturing relies on highly
accurate, real-time process monitoring techniques to

achieve a high yield in modern integrated circuit fabrication,
despite hundreds of necessary processing steps. One important
type of metrology involves the measurement of spatial
misalignments of subsequent patterned layers, which are also
known as overlay (OV) errors. To ensure working devices, the
OV error has to be smaller than a fraction of the minimum
feature size. Continuously shrinking node sizes and increasing
product stack complexity have reduced OV error tolerances
down to only a few nanometers, which is why OV metrology
could become a limiting factor for further progress of the
industry.1,2 A widely used OV metrology technique is
diffraction-based overlay scatterometry (DBO),3−5 in which
diffraction patterns backscattered from two gratings that are
stacked on top of each other are analyzed to infer the OV
error. The idea is that for perfect alignment the OV target
possesses a symmetric scattering signature, similar to a single

grating. A spatial misalignment (|OV| > 0) results in an
unbalanced Fourier-plane intensity distribution in the direction
of the misalignment, as indicated in Figure 1a. Indeed,
interference of light backscattered by the bottom and top
gratings transduce the misalignment into an intensity differ-
ence between diffraction orders. For simple line gratings, for
instance, the intensity in the 1st and −1st diffraction orders I+1
and I−1 can be used to construct the asymmetry signal ΔI = I+1
− I−1 that, for OV values much smaller than the grating pitch
p, possesses a linear dependence on the OV error with a
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proportionality factor K, see Figure 1b. The exact value of K
depends on the target structure and implementation of the
type of scattering signature measurement and is, in practice,
calibrated by measuring the asymmetry signal of two grating
pairs with a programmed overlay offset.4 Over the years,
several types of scattering signature measurements have been
demonstrated, including also spectroscopic and ellipsometric
signals.6−10

In this work, we focus on Fourier scatterometry10−14 in
which a cone of light is scattered off a sample and collected by
a microscope objective. Relaying the image of the objective
back focal plane onto a 2D pixelated detector provides a direct
mapping of scattering angles to image positions in a single shot
measurement.15 Notably, Fourier scatterometry is fast since no
angle or frequency scanning is required and can be further
enhanced to include polarization and phase resolution.12−14

The fact that the full angle-dependent diffraction pattern is
collected removes the limitation to only periodic OV target
designs and allows the characterization of more complex
(nonperiodic) 2D geometries. The purpose of this work is to
explore whether 2D OV targets provide advantages for Fourier
scatterometry in terms of OV accuracy, range of OV sensitivity
and robustness in the face of measurement and fabrication
noise. Figure 1c,e and d,f illustrate the rationale for this switch,
demonstrating the diffraction patterns of a 2D periodic and a
deterministic aperiodic OV target as calculated using a

generalized Mie scattering modeling approach. Evidently 2D
arrays offer a larger design space as compared to line gratings.
The fact that many diffraction features appear means that there
may be richer information in them, as compared to the simple
asymmetry signal ΔI arising from the first diffraction orders.
The 2D designs that we investigate borrow ideas from the
branches of nanophotonics for photovoltaics, metasurfaces,
and sensing16−18 and, in particular, the study of deterministic
aperiodic scattering structures.19−22 In addition to periodic and
deterministically aperiodic geometries, we considered geo-
metries that emerged from numerical optimizations based on
simulated annealing.23 We followed a similar design search
strategy, as described in ref 24. In general, numerical
optimization is a popular tool to improve device performance
in a wide range of fields, including mechanical design,
nanophotonics, and optical metrology.25−28

In this paper we introduce a library-based Monte Carlo
method, which aims to numerically characterize the perform-
ance of different OV target designs. To do this, we first build
data sets containing calculated scattering patterns for a range of
OV values and different OV target designs. For this we use
generalized Lorentz-Mie Theory (GLMT) as a method that
can deal with finite clusters of scatterers at very low
computation time, yet exact position accuracy. Next, a low
dimensional feature extraction is performed on the data sets by
means of singular value decomposition (SVD). This type of
approach originated in the field of face recognition, where it is
referred to as “eigenface” technique.29,30 The SVD results are
used to construct libraries, which capture the effect of OV
variation on the diffraction patterns of the different OV target
types using only a few essential signatures. In subsequent
Monte Carlo simulations we make use of these libraries to
retrieve the OV values of new sampling data sets, which
contain measurement or fabrication errors. Importantly, the
prior knowledge that goes into building the library means that
this OV retrieval is ultimately not limited by the optical
resolution limit, but rather by the nonuniqueness of the inverse
scattering problem or by unfitted fabrication and measurement
fluctuations.2,31 The merit of this paper thus includes both the
analysis method and the provided comparison of OV target
designs.
The paper is structured as follows. In the first part we

present our numerical framework, which involves three main
operations, namely, far-field scattering simulations, library
creation, and Monte Carlo analysis. The following section
deals with the OV target optimization procedure and its
outcome. After this, we present our results on the dependence
of OV measurement uncertainty on shot and fabrication noise.
Finally, in Conclusion and Outlook we highlight the
effectiveness of our technique and comment on how this
kind of methodologies can help push the field of semi-
conductor metrology forward.

■ SIMULATION AND UNCERTAINTY ESTIMATION
Far-Field Scattering Simulation. Fourier-plane distribu-

tions of light backscattered from an OV target were simulated
using the semianalytic Generalized Lorenz-Mie Theory
(GLMT). This method allows us to compute scattered far-
fields of finite-sized grating stacks at a high speed, while taking
multiple scattering interactions into account to all orders and
dealing with scatterer positions exactly, that is, without any
discretization step. Although the method has the disadvantage
that only assemblies of spheroidal scatterers in a homogeneous

Figure 1. (a) Schematic of the measurement configuration in Fourier
scatterometry, where scattered light is measured in the upper
hemisphere above the sample. The spatial misalignment (OV error)
between the top and bottom grating of the OV target causes an
asymmetric backscattering signal. (b) This asymmetry signal ΔI,
which is comprised of the difference between the 1st and −1st
diffraction orders, has a linear dependence (shown in red) on OV at
small OV values. (c, d) Square and aperiodic (Rudin-Shapiro) lattice
designs. (e, f) Diffraction patterns generated by grating stacks with
designs from (c) and (d) at OV = 0.
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background medium can be dealt with, it offers large
advantages over other approaches. In particular, RCWA
(rigorous coupled wave analysis), which relies on a Fourier
expansion of the dielectric constant, is a commonly used
simulation method in scatterometry.32,33 While it is known to
be computationally efficient, it can not deal with finite
truncations of infinite lattices or with aperiodic systems.
Since in OV metrology one typically has targets of just 10
wavelengths across, the RCWA is of limited use unless one
resorts to complex extensions to finite structures.34 More
computationally intensive mesh/grid discretization-based
techniques like the Finite Element Method (FEM) and Finite
Difference Time Domain (FDTD) method have been used for
detailed studies of the signal formation process in scatterom-
etry and have the advantage that more complex systems can be
dealt with.25,35,36 However, we have found that discretization is
inherently problematic for OV metrology simulations, since
the error in determining sub-nm OV from simulated data and
libraries is limited by this discretization and not by the OV
target, fabrication noise, or measurement scenario that one
wishes to explore. While GLMT has not been used in the
context of OV metrology it has the advantages of speed,
accuracy, and requires no discretization of real space.37,38

To further decrease computation time, we only include up to
dipolar electric and magnetic interactions into the Mie
scattering model, which means that the spherical Bessel
functions of the first kind in the Mie scattering formalism are
expanded up to order 1. This approximation is tantamount to
evaluating a fully retarded electrodynamic multiple scattering
model for the overlay targets that takes into account electric

and magnetic dipole responses of each particle but that
neglects multipole corrections. Such approximations are
typically used for small particles. We verified that an increase
of the expansion order did not cause noticeable changes to the
far-field radiation patterns of the OV targets. The arrays are
excited by normally incident monochrome excitation of
wavelength λ = 467.5 nm and polarized in the y direction.
Both of the arrays consist of spherical amorphous silicon (α-Si)
particles, which we model using dielectric data from ref 39,
which leads to a refractive index of nα‑Si = 4.47 + i1.37 at λ =
467.5 nm. The background medium is assumed to be glass-like
with a uniform refractive index of nSiO2 = 1.5. These parameters
have by no means been chosen to, for example, optimize the
scattering cross section of the particles, with the rationale that
OV metrology generally operates not with optimally chosen
grating materials and dimensions, but within customer
constraints. Since in modern technology nodes the available
footprint for OV targets is limited, we chose an array design
that takes up a total area of 4.8 × 4.8 μm2. This is done by
limiting our design space to a 10 × 10 grid with a pitch p =
500 nm, where every site can be filled or not filled by a
nanoparticle with a radius r = 150 nm. Figure 1c,d shows two
possible particle arrangements following this design constraint.
The complete OV target consists of two identical gratings in
the bottom and top layer, which are t = 400 nm apart. Any
value of OV is introduced by shifting the top grating in the x-
direction, as indicated in Figure 1a.
To mimick a practical optical set up scenario, a binary ring

mask is applied to limit the scattering pattern to the angular
range between NA = 0.225 and 1.42, where NA = nSiO2

sin(θ)

Figure 2. Library generation. (a, b) Normalized Fourier intensity maps for the Rudin-Shapiro OV target at an OV error of 0 and 10 nm. (c)
Difference between (a) and (b). (d) Eigenbasis vectors and singular values obtained from the SVD of 101 far-field intensities with an OV value
range of −10 to 10 nm. (e) The singular values Sjj are plotted in blue on a log-scale. The sum of the singular values is normalized to one. The red
curve indicates the cumulative singular values Scum in percent. (f) Projected coordinates of the library images in the SVD eigenspace as a function of
OV. Note that the color scales in (a)−(c) are saturated at 80% of the maximum reflected intensity.
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is the numerical aperture and θ the polar angle. This is
equivalent to using a high NA objective for capturing the first
grating diffraction orders, with a beam block to remove directly
reflected light, that is, zero-order light. Figure 2a shows such a
masked Fourier-plane image for an example design studied in
this work, a so-called Rudin−Shapiro target. Note that the full
design space will be discussed later, and this design is merely
an example. To make the comparison of the different array
designs independent of the number of scatterers, we normalize
the far-field intensity |Esim|

2 to a constant photon count in the
detected angular region. This normalization is computed as
follows

=
|

∑ | |
I

C E
E

(OV)
(OV)
(OV )k k m

norm
tot sim

2

, sim
2

x y (1)

where Ctot is the total photon count in the masked region and
OVm is the OV value producing the largest integrated photon
count. Ctot can also be expressed using the average photon
count Cavg as Ctot = CavgNpx, where Npx = 27636 is the number
of pixels of the ring mask. It should be noted that the choice of
any particular normalization will affect the outcome of studies
related to measurement noise. The normalization with a
constant integrated photon count roughly assumes that the
detected signal will be limited by a total source photon budget
used for the measurements, as opposed to, for instance,
normalizing images to a maximum count rate, which would be
applicable if measurements were limited by the dynamic range
of a detector. Figure 2a,b shows examples of normalized
Fourier images Inorm of the Rudin−Shapiro target design at OV
shifts of 0 and 10 nm. In the OV = 10 nm case, a slight
asymmetry between the main grating orders on the left and
right side arises due to the spatial misalignment of the two
gratings. This asymmetry becomes more visible when we plot
the difference between the two intensity patterns in Figure 2c.
Further, Figure 2c shows that also many other Fourier plane
components of lesser amplitude, introduced by the a-periodic
nature of the target, show asymmetries and hence carry
information relevant for OV error determination.
Library Generation Using SVD. Given a complex

Fourier-plane distribution that varies with OV, as in Figure
2c, it is not obvious how to quantify the performance of a
target in terms of OV metrology. To accomplish this task, we
use a library search approach in combination with a feature
extraction via singular value decomposition (SVD). Library-
based techniques are known to be robust solutions to the
scatterometry inverse problem with an OV accuracy that only
depends on the library step size.40 Here, to solve the Fourier
scatterometry inverse problem, we construct a library using a
series of Fourier images featuring the scattering of targets with
a range of OV shifts, which we refer to as library images. To
make the library more efficient, we perform a feature extraction
via SVD, which is a technique well-known for its ability to
greatly reduce the dimension of correlated data sets.29 The
SVD-based dimension reduction works by finding a new
optimal orthonormal basis for the subspace containing all the
library images of a particular OV target. Using this library
eigenbasis, any new diffraction pattern of the OV target having
an OV shift within the library range can be expressed by a
linear combination without the loss of valuable information.
This fact will subsequently allow the retrieval of OV values
even if these values are not contained in the original data set.

In a first step, for each OV target, a series of Nsim library
images are calculated featuring linearly increasing OV values
within two different OV ranges, namely, [−10, 10] nm and [0,
125] nm. The images have a width and height of n = 201
pixels, from which Npx = 27636 pixels are used after a binary
masking step, as described in the previous section. For the
purpose of SVD, each of the Nsim library images is flattened to
a column vector fi and centered around their mean fi

c = fi − f,
where f = 1/Nsim∑i

Nsimfi is the average library image and i = 1,
..., Nsim is the library OV index. The centered vectors fi

c form
the columns of matrix A = [f1

c , f2
c , ..., fNsim

c ]. The SVD technique
performs a factorization of matrix A (n2 × Nsim) of the form:

= · ·A U S VT (2)

where T denotes the transpose operation. The orthonormal
matrices U (n2 × n2) and VT (Nsim × Nsim) contain the left-
hand and right-hand singular vectors, and S (n2 × Nsim) is a
rectangular matrix consisting of the singular values arranged in
decreasing order along its diagonal.
Figure 2d,e shows an example of the SVD results for the

Rudin−Shapiro target design in the OV range of [−10−10]
nm. The first four singular vectors are shown in Figure 2d.
Figure 2e shows the first nine singular values on a logarithmic
scale (in blue), where the sum of all Nsim singular values is
normalized to unity. By calculating the cumulative normalized
singular values Scum (shown in red and on a linear scale in
Figure 2e), we can determine how accurately the first few
components represent the signal. In this case, with only the
first five eigenbasis components, the representation error of the
full library data set is on the order of 10−6%. In other words,
the main OV-dependent behavior of the far-field scattering
signal is almost fully captured by a few singular vectors, which
suggests a high degree of correlation in the library data. This
allows us to truncate the eigenbasis U without loss of valuable
information, while greatly reducing computation load in
subsequent analysis steps. The truncated eigenbasis Ũ has a
size of (n2 × L). The truncation indices L and the resulting
errors (for the Rudin−Shapiro target) at both OV ranges are
given in Table 1.

An important property of the SVD is that the column
vectors constituting Ũ form an orthonormal basis of the
column space of matrix A. This allows to define a new
coordinate space, wherein any diffraction pattern has as
coordinate the linear expansion coefficients required to express
fi
c in Ũ. Thus, the eigenbasis coordinates of all the library
images can be computed by projecting the centered images fi

c

onto a library eigenspace for every library OV index i = 1, ...,
Nsim as

= ̃ ·x U fi
T

i
c

(3)

Table 1. Library Parametersa

OV range
(nm) Ninterp Nsim

OVsim,step
(nm) L

1 − Scumm(L)
(%)

[−10, 10] 20001 101 0.2 5 9.9 × 10−7

[0, 125] 125001 126 1 10 1.1 × 10−6

aThis table summarizes the number of interpolated and simulated OV
shifts Ninterp and Nsim, the simulated OV step size OVsim,step, the
singular value truncation index L, and the remaining commutative
error due to truncation 1 − Scumm(L) for the two investigated OV
ranges.
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The projected coordinates xi form the columns of matrix
X(Nsim × L). The rows of matrix X will be referred to as yj.
They reveal the OV-dependent behavior of the library images
at the different eigenbasis indices j = 1, ..., L and can be seen as
an analogy to the asymmetry signal used in regular DBO. As an
example, Figure 2f shows the first 4 rows of X for the Rudin−
Shapiro data set, where yj, with j > 1, were magnified for clarity.
Interestingly, y1, which contains projections onto the first and
most significant SV component, shows a linear behavior as
function of OV (shown in blue in Figure 2f). This observation
is in line with the simple analytic expectation for DBO based
on the asymmetry of the main first diffraction orders.5 The fact
that complex targets with more complex Fourier patterns carry
more information is evident from the fact that also higher
order eigenbasis coordinates show variations with overlay (see
yj, with j = 2, 3, and 4 in Figure 2f). These nonlinear
contributions, such as y2, aid OV sensitivity primarily at higher
OV values, where their slope as a function of OV increases.
Finally, the continuous nature of yj as a function of OV

allows an interpolation to a much finer OV step size, which will
greatly improve the accuracy of the library-based technique
without the need of additional simulation runs. To this end, we
perform cubic spline interpolations in MATLAB with a step
size of OVinterp,step = 0.001 nm for the libraries of both OV
ranges. For the resulting number of interpolated OV shifts
Ninterp, see Table 1. A completed library for a particular OV

target consists of the truncated eigenbasis Ũ(n2 × L), the
interpolated projected library coordinates Xinterp(Ninterp × L)
and the average library image f.

Uncertainty Estimation Using Monte Carlo Method.
This section specifies how we use SVD libraries, which contain
characteristic features extracted from the scattering profiles of
particular OV targets, to directly map new scattering profiles
(sample images) to specific OV values, provided that these OV
values are within the library OV range. Further, we outline how
to set up a Monte Carlo analysis to provide a numerical
estimate of the OV retrieval uncertainty. In the context of
metrology, Monte Carlo methods are often employed to
determine measurement uncertainties.41,42 More specifically,
we use this method to study the robustness of a particular OV
target design to shot noise and process variations in simulated
Fourier scatterometry measurements. For this purpose, we first
simulate Nsample Fourier images at randomly chosen sampling
OV values. We refer to these as sampling images and ask how
one would retrieve the OV corresponding to each sampling
image. Figure 3a shows three sampling images and the
parameters used for their simulation. The sampling OV values
were drawn randomly according to the Latin-Hypercube
Sampling (LHS) method.43 We chose this sampling method,
since LHS has been shown to have a superior convergence
speed compared to other sampling techniques and has been
successfully applied in the field of scatterometry.44,45 An inset

Figure 3. Monte Carlo method. (a) A 3D sketch showing a part of the Rudin−Shapiro target design and the parameters used in the sampling
simulations. The histogram shows the distribution of the OV values, which follow a Latin-hypercube sampling. Below, sample images at three
different OV values are shown. (b) The SVD library consisting of the eigenbasis vectors U and the interpolated OV-dependent library image
projections yi. The library is created using the same parameters as the sampling data but with OV values varying linearly within the OV range of
−10 to 10 nm. (c) RSS between projected sample image and the projected library images as a function of OV. (d) Histogram containing |ΔOV|
values of 200 sample images. A fitted half-normal distribution (in red) with a standard deviation of σΔOV = 0.19 ± 0.01 nm (indicated in orange).
(e) σΔOV (in blue) and its error (in red) for a varying number of included sampling simulations. (f) σΔOV as a function of average photon count Cavg
(bottom) and total photon count Ctot (top). The red dashed line indicates the inverse square root of Cavg. The sample images used for (a) and (c)−
(e) contain shot noise corresponding to Cavg = 32.
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in Figure 3a shows the LHS distributed OV values we used for
the [−10, 10] nm OV range as a histogram.
Once an SVD library is created, determining the OV value of

a sampling image can be treated as a feature recognition task.
Figure 3b depicts the main ingredients of such a library, which
is simulated with identical parameters as the sampling images,
but with equidistant OV values spanning in total the same
range as the sampling image set. The way the OV value
recognition works is by projecting the sample image onto the
library eigenspace and comparing this projection to each of the
projections stored library. For this, the sample images are
projected into the Ũ subspace by calculating

= ̃ ·x U fk
T

k
c

(4)

where fk
c = fk − f are the flattened and centered sample images

with k = 1, ..., Nsample. Then, the OV estimation is performed by
calculating the residual sum of squares (RSS) between the
sample coordinate vector xk and the library coordinate vectors
xi with i = 1, ..., Ninterp as

∑= −
=

x xRSS ( )i k
j

L

k j i j,
1

, ,
2

(5)

The index i, which minimized eq 5, determines our OV
estimate OVguess. This approach corresponds to finding the
library element with the minimal Euclidean distance to the
sample image in the L-dimensional SVD coordinate space. An
example RSS result as a function of OV is shown in Figure 3c.
For this plot, a sampling image corrupted by shot noise
corresponding to Cavg = 32 and with a “true” OV value of
OVtrue = −2.48 nm was used, which resulted in an OV estimate
of OVguess = −2.06 nm. Based on this estimate, we can
calculate an OV estimate error as ΔOV = |OVguess − OVtrue|,
which in this example is 0.42 nm. Repeating this OV
estimation for each of the Nsample sampling images allows to
construct a histogram of such OV estimate errors, as shown in
Figure 3d. The variance σΔOV of this histogram is indicated in
Figure 3d. It characterizes the accuracy of the OV estimation
and is obtained by fitting a half-Gaussian to the ΔOV data.
The fit also returns a standard deviation of σΔOV, which is a
measure for the quality of the fit and to which we refer to as
ΔσΔOV. According to the central limit theorem ΔσΔOV should
shrink with increasing sample size Nsample, and σΔOV should
converge for a large enough Nsample. To test this behavior and
to determine an appropriate sample size, we performed
convergence studies, as suggested in ref 46. Figure 3e shows
such a convergence test, where σΔOV and its standard deviation
are plotted in blue as a function of sample size in the case of
the Rudin−Shapiro target design and a photon budget set by
Cavg = 32. In addition, Figure 3e shows ΔσΔOV in red (right y-
axis) to demonstrate how it decreases with an increasing
sample size. For studies with a varying photon budget, we
found the results to converge sufficiently for a sample size of
Nsample = 200 for the [−10, 10] nm OV range and Nsample = 300
for the [0, 125] nm OV range. For the fabrication noise
studies, we used Nsample = 300.
In the results part, we will use the Monte Carlo technique

described here to quantify the accuracy of OV determination
for different OV target designs in the presence of noise in the
sampling data, which will give us a measure for its noise
robustness. For this we generate sampling data sets containing
a variety of measurement and fabrication errors. As an example
of such a study, Figure 3(f) shows the dependence of σΔOV on

shot noise for the Rudin-Shapiro target. The shot noise is
controlled by varying the photon budget of the sample images.
An increasing photon budget leads to less shot noise and
therefore decreased σΔOV. Additionally, we can see that σΔOV
scales similarly to the inverse square root of the average photon
budget Cavg (red dashed line).

Overlay Target Optimizations. In this section, we use
the simulated annealing approach to find target designs that
allow for the greatest OV sensitivity. In simulated annealing
one needs to minimize a merit or cost function that ideally can
be quickly evaluated to reduce total computation time. As the
full SVD-based approach described in the last section requires
significant computation time, we chose a cost function based
on the correlation of the complex-valued far-fields at two
different OV values. The cost function is calculated as follows

Φ =
⟨ ⟩

⟨ ⟩ + ⟨ ⟩
E E

E E E E

2 ,

, ,
OV OV

OV OV OV OV

1 2
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represents the cross-correlation of the far-field responses for
two different OV values, namely, OV1 = 0 nm and OV2 = 5 nm
along the positive x direction. The idea behind this cost
function is, that target designs minimizing Φ will cause the
most changes of the scattering signature as a function of OV
and, therefore, enhance OV sensitivity. The spatial misalign-
ment in the OV target generating EOV2

causes a phase shift
between the scattered waves originating from the bottom and
top grating, which in turn alters their Fourier plane
interference pattern. Since this spatial misalignment is only 5
nm (1/100 of the pitch), the observable effect on the
interference pattern is expected to be relatively small.
Therefore, we expect that EOV1

and EOV2
are highly correlated,

which is why, even for the globally optimum scattering target,
the value of the cost function should be only slightly reduced
from 1. We note that the performance of the Monte Carlo
technique for finding global minimums is in itself not
dependent on the cost-function contrast.
We constrain ourselves to identical particle arrangements in

both particle planes and start from a random distribution of
particles given a particular lattice fill fraction. We generate new
designs by randomly permuting filled and empty lattice sites.
For each design, we compute the far-field response for the two
OV values and evaluate the cost function according to eq 6.
The probability of accepting a new configuration depends on
the change in the cost function ΔΦ caused by the
rearrangement of one particle. While in the case of ΔΦ ≤ 0
the new configuration is automatically accepted, for ΔΦ > 0,
the acceptance probability is calculated as follows:

ΔΦ = −ΔΦP e( ) T/ (8)

where the control parameter T is referred to as the annealing
temperature and is used to tune the acceptance probability of
new candidate solutions with higher cost functions.
We choose a fixed number of iterations Niter over which we

quench the temperature from Tmax to Tmin, so that at iteration
step n the temperature reads
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To find the optimal values for Tmax and Tmin, we follow the
parameter-selection strategy used in ref 24. To this end, we
perform the temperature study shown in Figure 4a, where we
run 12 optimizations (superimposed light blue lines) with Npart
= 50 particles per layer and Niter = 104. The average cost
function is shown in dark blue. The temperature is
exponentially decaying in the range between Tmax = 10−1 and
Tmin = 10−10. We see that, for large temperatures (T > 10−3),
any change in the OV target design is accepted, and the cost
function fluctuates around the same higher values. For
intermediate temperatures (10−7 ≤ T ≤ 10−3), the cost
function is effectively minimized, with a probability of
converging to the global minimum. For temperatures T <
10−7, the algorithm can only converge to local minima. After
selecting the temperature extremes to be Tmax = 10−3 and Tmin
= 10−7, we investigate the role of the cooling rate. We do this
by varying the maximum number of iterations Niter while
keeping the temperature extremes Tmax and Tmin fixed. In
Figure 4b, we show the final cost function values of 36
optimization runs for each Niter, where the red line represents
the median value. Following this, we selected a cooling rate
associated with Niter = 8000 iterations and performed 150

optimizations using the chosen parameter settings, see Figure
4c for a convergence history of all solutions. We find that the
results converge to two optimal particle distribution families,
diagonal and alternating lattices, which account for about 85%
and 15% of the results, respectively, see geometries A and B in
Figure 4e. While we do observe small variations from these
optimal lattices, associated with the misplacement of a few
particles, we found a clear distinction between the two
solutions in terms of cost function.
Next, we investigate whether these solutions also emerge for

different numbers of particles by performing optimizations
with a particle number Npart varying from 22 to 49, while using
the same optimization parameters as for the study in Figure 4c.
At each Npart, 36 optimizations are completed. In Figure 4d, all
final cost function values are shown as a function of Npart,
including the 150 results obtained for Npart = 50. In order to
group similar geometries of particle arrangements, we perform
a weighted-average distance hierarchical clustering of the
absolute value of the 2D fast Fourier transform (FFT) of the
particle positions. This cluster analysis was able to identify
three different design families, which we colored in blue, red,
and green in Figure 4d. We refer to these solution families as
diagonal, alternating, and rectangular lattices, see Figure 4e,
geometries D, B, and C, respectively. The dendrogram in
Figure 4f depicts the results of the cluster analysis. For clarity,

Figure 4. Overlay target optimizations. (a) Selection of optimal temperatures for a simulated annealing approach by considering 12 optimizations
with Npart = 50. The averaged cost function is shown in dark blue. (b) Selection of an optimal cooling rate for target optimizations with Npart = 50,
where 36 optimizations were run per Niter. The solid red line represents the median value. (c) Cost function evolution, for optimal optimization
settings with Npart = 50. The light blue lines show 150 superimposed optimizations and the dark blue line shows their average. (d) Converged cost
function as a function of Npart. The results are color-coded with respect to a 2D FFT-based hierarchical clustering we used to identify different
lattice types. (e) Examples of a randomly initiated geometry with Npart = 50 and optimized results for Npart = 50 and 34, respectively. Designs A and
D are diagonal-type arrays. Designs B and E are alternating-type arrays. Design C is a rectangular array. (f) Dendrogram of the 2D FFT-based
hierarchical clustering performed on the optimization results (the subtree line colors match the corresponding design families in (d)). The
horizontal dashed line indicates the cutoff distance we used.
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we limited the number of leaves to 70. The horizontal dashed
line indicates the employed cutoff distance of 1.2. As can be
seen in Figure 4d, the three solution families persist for a
varying number of particles, whereby the rectangular design is
only found up to a particle number of Npart = 34, see Figure 4e,
geometry C. When going from low to high particle numbers,
the grid is gradually filled. In the case of the diagonal lattice for
Npart > 34, the optimization introduces defects to the optimal
solution in order to accommodate more particles, see Figure
4e, geometry A. The alternating lattice design shows a similar
behavior, where for Npart = [30−50], suboptimal solutions
emerge, which are characterized by a higher cost function and
a more irregular particle arrangement. The global optimum of
the optimizations in Figure 4d, which corresponds to an OV
target with minimal correlations between the far-fields at OV
values OV1 = 0 nm and OV2 = 5 nm, is a diagonal lattice with
Npart = 34 particles, see Figure 4e, geometry D.

■ UNCERTAINTY ANALYSIS RESULTS

Design Overview. Figure 5 gives an overview of all the
overlay designs and their scattering patterns that we consider
in this work. The designs are classified as being essentially 1D-
like, 2D-periodic, and 2D-aperiodic. The class of 1D designs
includes the 1D line grating, which was approximated using a
very dense arrangement of Mie spheres with a distance of 150

nm in the y direction and the same pitch p = 500 nm in the x
direction. Furthermore, this class of gratings includes the
rectangular and diagonal designs that emerged from the
optimization study. Compared to geometry C in Figure 4e, the
rectangular lattice was completed to fill the whole grid. While
the 1D line grating generates just two diffraction orders, all
other designs in Figure 5 result in more complex Fourier-plane
light distributions, generally showing a multitude of (quasi)-
diffraction orders. Qualitatively, the smallest and largest
interparticle distances determine the largest and smallest
diffraction angles respectively. This behavior can be easily
observed in case of the rectangular and diagonal target
diffraction patterns.
In addition to 2D-periodic designs, which include the square

(all lattice sites occupied), the alternating (from optimization),
and the diamond design, we have considered 2D-aperiodic
targets generated from deterministic design rules. Deterministi-
cally aperiodic plasmonic and dielectric arrays have been
studied in the context of scattering, fluorescence control, and
lasing.19−22 On the basis of a square lattice, one can generate
designs according to, for example, the Fibonacci, Rudin−
Shapiro, and Thue−Morse number sequences, as described in
ref 19. The limitation to a finite size of only 10 × 10 scatterers
prevents the full development of the Fourier patterns one
would expect for their nearly infinitely-sized counterparts.
Furthermore, we require the targets to maintain a 180°
rotational symmetry, which is commonly utilized for
calibration purposes. This calibration makes use of the fact
that, upon a 180° target rotation, only the sign of the OV shift
is flipped to remove any additional tool-induced errors, for
example, lens or illumination imperfections from the scattering
signature.33 In case of the deterministically aperiodic designs,
the 180° symmetry was achieved though a careful choice of the
10 × 10 truncation region from a larger aperiodic lattice.
Surprisingly, the completed optimization designs already obey
this rotational symmetry constraint, without the need of
enforcing it during the optimization.

Shot Noise Robustness. In Figure 6a, we examine the
effect of shot noise on the variance σΔOV for the OV range of
[−10, 10] nm. The amount of shot noise is controlled by
normalizing the sample images to a certain photon budget,
which here is specified as the average count per pixel Cavg = 2l,
where l = 5, 6, ..., 20, and applying Poisson noise to the Fourier
images. A lower photon count results in more shot noise,
which leads to higher σΔOV values. For large enough photon
counts, all lattice geometries converge toward an essentially
zero σΔOV (limited by the OV library step size of OVinterp, step =
0.001 nm). The colored curves in Figure 6a correspond to
different target designs and are sorted according to their σΔOV
values at Cavg = 128. The idea behind this comparison is that a
faster convergence speed implies a better robustness to shot
noise. The results in Figure 6c, which show the σΔOV values at
Cavg = 128, suggest that the line grating design has a vastly
superior shot noise performance compared to the other
designs. This outcome is not surprising from the viewpoint
that the Fourier intensity signal of the line grating is
concentrated to a fewer pixels as compared to other target
designs, which decreases the impact of shot noise. The three
optimized designs (rectangular, diagonal, and alternating)
follow on positions 2−4 after the 1D line grating (which itself
is not captured by the design space of the optimization). Figure
6b depicts a similar shot noise robustness study, but for a
scenario where OV tolerances are much more relaxed and one

Figure 5. Designs overview. Overview of investigated OV target
designs with the corresponding masked and normalized Fourier
intensity profiles.
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aims to determine OV in a 125 nm range. These type of
tolerances can occur during lithography steps of noncritical
wafer layers. This time the results at Cavg = 128 in Figure 6d
feature overall larger and less-distributed σΔOV values. In
addition, the line target does not show the best performance
anymore. Instead, the diagonal target design is superior for
large overlay ranges.
An additional factor causing the overall low σΔOV values

presented here is the noise reducing ability of the SVD
algorithm. This is due to the fact that the noisy part of the data
tends to be encoded in the higher eigenvectors, which were
truncated during the library creation step. This property of the
SVD is often employed for noise filtering in the digital signal
and image processing applications.47 At the same time, as
mentioned in the library generation section, the SVD-based
approach does allow the leverage of information encoded in
multiple basis functions, as opposed to only looking at the
asymmetry between first diffraction orders, which benefits the
OV detection at larger OV values.
Fabrication Noise Robustness. The overall high OV

detection accuracy (low σΔOV values) in the shot noise study
can be primarily attributed to the large amount of a priori
information on, for example, the array pitch, layer distance,
radius, and refractive indices that is assumed in the library
generation. In an experimental setting, uncertainties in these
parameters, that is, fabrication noise instead of detection shot
noise, is often the dominating error source. In this section, we
examine the impact of three different sources of fabrication
noise on the OV estimation accuracy. Process variability and

imperfections of the product stack are reported to be the
dominating source of error in scatterometry.1,5 Mitigating
these systematic error sources is therefore of high interest for
the semiconductor industry. To distinguish between the
different detrimental effects, we perform separate studies for
the three different fabrication noise sources and do not
introduce shot noise. As in the shot noise study, the fabrication
noise is introduced to the sampling data, while we use the same
libraries with the OV range of [−10, 10] nm and OV as its only
input parameter.
Figure 7a depicts OV uncertainty results in case the distance

between the two lattices is fluctuating with a variance of σt = 20
nm, which corresponds to 5% of the average layer distance t =
400 nm. Next, Figure 7b shows OV uncertainty results with
particle position variations σΔx = 2.5 nm, which corresponds to
0.5% of the lattice pitch. The schematics in the inset of Figure
7b show such position fluctuations, but exaggerated by a factor
of 15 for visual clarity. Note, in the case of the line grating,
instead of fluctuating the position of every particle, we
fluctuated the positions of the 10 complete lines. Lastly,
Figure 7c shows OV uncertainty results in case of particle
radius variations with σΔr = 7.5 nm, which corresponds to 5%
of the radius. The result of the radius variation study for the
diamond design is σΔOV = 2.4 ± 0.1 nm, which is surprisingly
high. It is omitted from the plot in Figure 7c, as it otherwise
would skew the plot range for this data set. Figure 7d−f show
histograms of the 300 layer distance, position error, and
particle radius values used for these fabrication robustness
studies.

Figure 6. Shot noise robustness. (a, b) Photon count-dependent OV error variance (σΔOV) for the OV range of [−10−10] nm and [0−125] nm.
The error bars denote the standard deviation of the variance (ΔσΔOV) obtained from a half-Gaussian fit. (c, d) σΔOV and ΔσΔOV values of the
different OV targets at Cavg = 128 for the OV range of [−10−10] nm and [0−125] nm, respectively.
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The results carry several messages. First, different fabrication
error sources can be partially mitigated by using a particular
target design, whereby the most suited design is different for
each error type. Out of the three fabrication error sources
investigated here, the 5% layer distance fluctuations have
resulted in the most severe impact on OV determination.
Therefore, the rectangular lattice might be the most suited
target design for OV metrology applications, where other types
of errors are negligible. A second message is that, when one
wants to be robust against multiple fabrication error sources at
the same time, combining the scatterometry measurements
with multiple target designs, that is, rectangular, square, and
diagonal target designs, could be advantageous. Furthermore,
by expanding the library parameter space, one could
simultaneously determine overlay and dimensional variations
(CD metrology; here, radius variations are the “critical
dimension”). A third observation is that it is not obvious
from the results by which mechanism a given target is more
advantageous than another and why optimality depends on the
source of error considered.
While it is not our ambition to explain for each scattering

structure the origin of its robustness to a given disorder, we can
provide a generic insight on how to leverage the SVD analysis
approach for optimizing robustness/sensitivity. To exemplify
this, we have performed simulation sweeps, where we
continuously varied the layer thickness t in a range of [300,
500] nm and OV in a range of [−100, 100] nm for the
rectangular and square geometry that are, respectively, optimal
and quite poor in robustness. Using SVD, we first determine
the optimal eigenbasis for the t = 400 nm data set before
projecting the complete data set into this eigenspace. As an
example, we show the first two projected coordinates yj for the

rectangular and square lattice in Figure 8 as a function of OV
and t. A large sensitivity to overlay comes with a large |∂yj/
∂OV|, that is, a large left−right gradient in the projected
coordinate. At the same time, robustness against fabrication
error requires a flat dependence on t, that is, no derivative |∂yj/
∂t|. Examining y1 in Figure 8a,b, we conclude that the higher
robustness to t fluctuations of the rectangular lattice traces
back to the more flat distribution of y1 as a function of t in the
parameter region t = [350, 450] nm. Further, Figure 8e,f shows
the same plots but for the second projected coordinate y2,
which in our suggested OV determination method is expected
to provide additional information on top of just the first
coordinate. For both target designs at hand, y1 is most
important for OV determination at small OV values (|OV| <
50 nm), while y2 becomes more important at larger OV values.
In general, the |∂yj/∂OV| plots show which parameter ranges
have the highest OV sensitivity. In particular, one can identify
parameter regions, which have zero OV sensitivity (|∂yj/∂OV|
= 0) and should therefore be avoided, since the solution of the
inverse Fourier scatterometry problem is not unique.
Returning to our survey of structures in Figure 7, we note

that the results with a fixed choice of target and illumination
parameters presented here by no means imply that any of the
proposed structures are working at their optimum in parameter
space. While outside of the scope of this work, such optimal
parameters can be found by performing separate multi-
parametric SVD analysis, as shown in Figure 8 for each target
design and each parameter combination. Thus, the presented
results on performance variability between structures are to
some degree incidental. However, the results highlight the
importance of target design, which is often neglected in other
OV metrology studies. Note that, in practice, there are several

Figure 7. Fabrication noise robustness. (a−c) OV error variance results of different OV targets in case of layer distance fluctuations with a variance
of σt = 20 nm (a), particle position fluctuations with a variance of σΔx = 2.5 nm (b), and radius fluctuations with a variance of σr = 7.5 nm (c). The
insets in (a)−(c) depict the respective situations schematically. The position fluctuations in the inset of panel (b) were increased by a factor of 15
for visual clarity. (d−f) Histograms displaying the distribution of the fluctuations of layer distance (d), particle positions (e), and radius (f). The red
line in the histograms is a Gaussian fit.
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ways to decrease the impact of systematic errors, such as
fabrication imperfections, to achieve lower σΔOV numbers than
the ones reported in Figure 7. One common way to mitigate
imperfections is to include them in the library as an input and,
therefore, a fitting parameter for the sampling data. This
would, in turn, increase the complexity of the library creation
and library search process. Another approach to mitigate
systematic OV errors is the fabrication and measurement of
two neighboring OV targets with known programmed overlay.4

In addition, while we assumed single shot measurements,
combining several measurements with a varying angle of
incidence, polarization, or wavelength can offer benefits for OV
metrology. Such approaches are reported to not only increase
the amount of available information, but also improve process
robustness.48

■ CONCLUSION AND OUTLOOK
In summary, we presented a new method for characterizing the
performance of overlay metrology based on nonperiodic 2D
Fourier scatterometry target designs, three of which resulted

from simulated annealing optimizations, and others were
chosen as quasiperiodic motifs. The workflow consists of SVD
analysis in order to convert a library of simulated “reference”
diffraction patterns at known overlays into an optimal basis
onto which one should project measurements at an unknown
overlay for the most efficient determination of OV. We
demonstrated, based on rigorous electromagnetic simulations,
in combination with a statistical Monte Carlo method, how
one can assess an overlay estimation uncertainty in the face of
measurement noise and robustness against nanofabrication
disorder. The results suggest that 2D OV target designs might
be a promising alternative to line gratings regarding some of
the OV metrology challenges, such as systematic errors due to
fabrication variations. One possible way to take advantage of
the findings would be to perform OV measurements with
multiple target designs, which have complementary fabrication
noise robustness properties. Combinations would allow to
simultaneously optimize robustness, sensitivity, range of OV
detection, and multiplexing OV and CD detection.
In real-world conditions, the reported levels of uncertainty

would likely be difficult to achieve because of the large amount
of required measurements and precision with which the “true”
OV needs to be known to construct the library. This
underlines the importance of simulations for library con-
struction. Our work demonstrates the strength of semi-
analytical calculations for proof-of-principle metrology studies
as compared to discretization-based full-wave solvers. Our tests
have shown that, for instance, FDTD tends to introduce
meshing-based errors that far exceed the diffraction pattern
variations that are induced by the overlay values of interest.
While in this work we used the generalized Mie theory
approach that is limited to spherical particles in free space, we
foresee a large role for multipole multiple scattering methods
for scatterers in stratified media,49 and the boundary element
method in layered systems50 in order to increase the realism of
the simulations, yet avoiding impractically difficult gridding in
FDTD/FEM.
As an outlook, the OV target design space used in this work

could be further extended. For instance, we chose identical
designs for the bottom and top gratings, whereas in fact the
strength of, for example, quasicrystal motifs is that different
tiles cut out from a quasicrystal share similar diffraction
patterns in terms of amplitude, but have differences in phase. It
could, hence, be advantageous to, for example, choose different
tiles from the same lattice family as the lower and upper
grating. Also, instead of using a fixed periodic lattice as the
underlying template on which to place particles, one could
consider continuous particle placements to optimize diffraction
pattern correlations, in the vein of work on plasmonic Vogel
spirals and hyperuniform designs.51−53 Regarding numerical
optimizations to generate designs, an outstanding challenge is
to define the most effective cost function and optimization
approaches, so as to optimize sensitivity, OV range, to
multiplex OV and CD sensitivity, and to multiplex sensitivity
to OV in both directions. Finally, using the presented
uncertainty estimation approach, one could study more
complex measurement schemes that involve capturing signals
at multiple wavelengths, multiple polarizations, or introducing
phase sensitivity, which would increase the captured
information content and allow a more elaborate mitigation of
systematic error sources.

Figure 8. Parameter sweep. (a, b) Eigenbasis projection y1 as a
function of layer distance t for the rectangular and square target,
respectively. (c, d) Absolute valued partial derivative of (a) and (b)
with respect to OV. (e−h) Same as (a)−(d) but for the second
eigenbasis projection y2.
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