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Candida tropicalis is the most prevalent
yeast species causing candidemia in
Algeria: the urgent need for antifungal
stewardship and infection control measures
Youcef Megri1†, Amir Arastehfar2,3*†, Teun Boekhout2,3, Farnaz Daneshnia2, Caroline Hörtnagl4, Bettina Sartori4,
Ahmed Hafez5, Weihua Pan6*, Cornelia Lass-Flörl4 and Boussad Hamrioui1

Abstract

Background: Despite being associated with a high mortality and economic burden, data regarding candidemia are scant in
Algeria. The aim of this study was to unveil the epidemiology of candidemia in Algeria, evaluate the antifungal susceptibility
pattern of causative agents and understand the molecular mechanisms of antifungal resistance where applicable. Furthermore,
by performing environmental screening and microsatellite typing we sought to identify the source of infection.

Methods:We performed a retrospective epidemiological-based surveillance study and collected available blood yeast
isolates recovered from the seven hospitals in Algiers. To identify the source of infection, we performed environmental
screening from the hands of healthcare workers (HCWs) and high touch areas. Species identification was performed by
API Auxa-Color and MALDI-TOF MS and ITS sequencing was performed for species not reliably identified by MALDI-
TOF MS. Antifungal susceptibility testing followed CLSI M27-A3/S4 and included all blood and environmental yeast
isolates. ERG11 sequencing was performed for azole-resistant Candida isolates. Microsatellite typing was performed for
blood and environmental Candida species, where applicable.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: a.arastehfar.nl@gmail.com; panweihua@smmu.edu.cn
†Youcef Megri and Amir Arastehfar contributed equally to this work.
2Yeast Department, Westerdijk Fungal Biodiversity Institute, Utrecht, The
Netherlands
6Shanghai Key Laboratory Molecular Medical Mycology, Shanghai 200003,
China
Full list of author information is available at the end of the article

Megri et al. Antimicrobial Resistance and Infection Control            (2020) 9:50 
https://doi.org/10.1186/s13756-020-00710-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13756-020-00710-z&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:a.arastehfar.nl@gmail.com
mailto:panweihua@smmu.edu.cn


(Continued from previous page)

Results: Candida tropicalis (19/66) was the main cause of candidemia in these seven hospitals, followed by Candida
parapsilosis (18/66), Candida albicans (18/66), and Candida glabrata (7/66). The overall mortality rate was 68.6% (35/51)
and was 81.2% for C. tropicalis-infected patients (13/16). Fluconazole was the main antifungal drug used (12/51); 41% of
the patients (21/51) did not receive any systemic treatment. Candida parapsilosis was isolated mainly from the hands of
HCWs (7/28), and various yeasts were collected from high-touch areas (11/47), including Naganishia albida, C.
parapsilosis and C. glabrata. Typing data revealed interhospital transmission on two occasions for C. parapsilosis and C.
glabrata, and the same clone of C. parapsilosis infected two patients within the same hospital. Resistance was only
noted for C. tropicalis against azoles (6/19) and fluconazole-resistant C. tropicalis isolates (≥8 μg/ml) (6/19) contained a
novel P56S (5/6) amino acid substitution and a previously reported one (V234F; 1/6) in Erg11p.

Conclusions: Collectively, our data suggest an urgent need for antifungal stewardship and infection control strategies
to improve the clinical outcome of Algerian patients with candidemia. The high prevalence of C. tropicalis joined by
fluconazole-resistance may hamper the therapeutic efficacy of fluconazole, the frontline antifungal drug used in Algeria.

Keywords: Candidemia, Microsatellite typing, Algeria, Antifungal susceptibility testing, MALDI-TOF MS, ERG11
sequencing, Environmental screening

Introduction
Bloodstream infections caused by Candida species, i.e.,
candidemia, are attributable to the annual high rate of
mortality worldwide [1] and significant hospital costs of
$1.4 billion in the US each year [2]. The five most preva-
lent gut mycobiota constituents, i.e., Candida albicans,
Candida tropicalis, Candida parapsilosis, Candida
glabrata, and Pichia kudriavzveii (C. krusei) [3] are the
major causes of candidemia [4]. Historically, C. albicans is
known to be the most prevalent cause of candidemia, but
the changing landscape of candidemia epidemiology showed
that the prevalence of non-albicans Candida (NAC) species
is increasing [4] and in some cases surpassing that of C. albi-
cans [5]. Unfortunately, some of the NAC species, such as C.
glabrata [6] and Pichia kudriavzveii [7], intrinsically have
higher minimum inhibitory concentration (MIC) values to-
ward azoles, and C. glabrata rapidly acquires resistance to
echinocandins [6], the frontline antifungal recommended for
the treatment of candidemia [8]. Presently, numerous studies
in different countries reported the emergence of C. parapsi-
losis [9] and C. tropicalis [10] blood isolates resistant to flu-
conazole, the frontline antifungal drug used to treat
candidemia in developing countries [5, 11]. Most troubling,
the emergence of multidrug-resistant strains of C. glabrata
[6] and, more recently, C. auris [12] has led to worrisome
therapeutic challenges. Azole resistance mechanisms in C.
albicans, C. parapsilosis, and C. tropicalis is mediated mainly
by the occurrence of specific amino acid substitutions in
ERG11, resulting in reduced affinity of azoles to the drug
target, in addition to overexpression of efflux pumps [7].
Candida species differ in their mode of transmission

in the clinical setting. For instance, C. albicans candidemia
is acquired mostly endogenously [13], while C. parapsilosis is
known for being transferred from the hands of healthcare
workers (HCWs) resulting in clonal outbreaks in healthcare
settings [14]. On the other hand, controversies exist

regarding the mode of transmission of C. tropicalis, with
some believing that it might be horizontally transferred in
hospitals [15], while others suggest it is acquired from envir-
onmental origins outside of the hospital setting [10]. Regard-
ing C. glabrata, although its infection source is generally
endogenous, some studies have found horizontal transfer for
this species [16]. As a result, resolutive typing techniques,
such as microsatellite typing, are of paramount importance
to identify the source of infection [14].
Despite compelling evidence about its importance, a

comprehensive study of candidemia in Algeria is lacking.
Therefore, we conducted the current study to fill this gap.
Yeast isolates collected from 2016 to 2019 from seven
hospitals in Algiers were identified and subjected to anti-
fungal susceptibility testing (AFST). The contribution of
ERG11 mutations to fluconazole resistance was assessed
by ERG11 sequencing of fluconazole-resistant isolates.
Environmental screening followed by microsatellite typing
was performed to understand the molecular epidemiology
of C. parapsilosis, C. tropicalis, and C. glabrata.

Methods
Settings and study design
This study was approved by the ethical committee of
Mustapha Pasha University Hospital. Yeast isolates col-
lected from 2016 to 2019 regardless of age, sex, underlying
conditions, and wards were included in this study. Isolates
belonged to seven hospitals in Algiers, namely Mustapha
Pacha, Beni Messous, Tizi Ouzou, Parnet, and Blida, EPH
Médéa, and EPH Zemirli. Blood isolates were obtained
from positive blood bottle cultures incubated in Bactec
Device (BD BACTEC™ FX Series, Le Pont-de-Claix,
France), from which 100 μl was transferred onto Sabour-
aud chloramphenicol agar (SCA) and chromogenic plates
(CandiSelect™ 4, Bio-Rad, Marnes-la-Coquette, France),
followed by incubation at 37 °C for 24–48 h.
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Environmental sampling and identification strategy
Environmental sampling was performed using sterile cotton
swabs moistened with sterile normal saline. Forty-seven
swab samples were taken from high touch spots and re-
usable devices and 28 from the hands of HCWs. Swab sam-
ples were streaked onto two SDA plates, one containing
chloramphenicol and one without, and incubated at 37 °C
for 48–72 h. Plates without growth of yeasts and those with
filamentous fungi were excluded from this study. Yeasts
were initially identified by API Auxa-Color (Bio-Rad,
Marnes-la-Coquette, France) and further characterized by
the MALDI Biotyper system (Bruker Daltoniks, Bremen,
Germany) using the full-extraction method [17]. Some rare
yeast species belonging to the genera of Aureobasidium
and Naganishia were further confirmed using internal tran-
scribed spacer ribosomal DNA (ITS rDNA) sequencing via
the ITS1 and ITS4 primers [18]. DNA samples were ex-
tracted using a CTAB-based buffer and following the sug-
gested protocol [17].

Antifungal susceptibility testing (AFST)
To determine the MIC values of each species, the broth
microdilution method using CLSI-M27/A3 was followed
[19]. AFST included the following antifungals; fluconazole
(FLZ) (Sigma-Aldrich, St. Louis, MO, USA), voriconazole
(VRZ) (Sigma-Aldrich, St. Louis, MO, USA), itraconazole
(ITZ) (Sigma-Aldrich, St. Louis, MO, USA) anidulafungin
(AND) (Pfizer, NY, USA), micafungin (MFG) (Astellas,
Munich, Germany), and amphotericin B (AMB) (Sigma-
Aldrich, St. Louis, MO, USA). MIC values were visually
read after 24 h of incubation at 35 °C, and Pichia kudriavz-
veii (ATCC 6258) and C. parapsilosis (ATCC 22019) were
used for quality control purposes. MIC data were inter-
preted in a species-specific manner as suggested [20].

ERG11 sequencing
Candida tropicalis isolates showing fluconazole resist-
ance were subjected to ERG11 sequencing using a
defined protocol [21]. The genome of C. tropicalis MYA-
3404 (AAFN00000000.2) was considered the reference
wild-type [22]. ERG11 sequences were analysed and curated
by SeqMan Pro software (DNASTAR, Madison, WI, USA)
and aligned by MEGA software v7.0 [23] in the presence of
the wild-type sequence (AAFN00000000.2) (sequences
available at the end of the Supplementary files).

Multilocus microsatellite typing
Environmental and blood C. parapsilosis [24] and C. glab-
rata [25] isolates and all blood isolates of C. tropicalis [26]
were subjected to respective multilocus microsatellite typ-
ing techniques using published methods [24–26]. Different
genotypes were defined when two given strains differed in
more than one microsatellite marker tested [24–26]. Micro-
satellite data were analyzed using Bionumerics software

v7.6 (Applied Math, Sint-Martens-Latem, Belgium) and
dendrograms were constructed using the unweighted-pair
group method by average linkages. Microsatellite data were
considered categorical values.

Statistical analysis
Data included in this study were analyzed using SPSS
software v27 (PSS Inc. Chicago, IL, USA).

Availability of sequence data
ITS sequences of Aureobasidium melanogemum, Naga-
nishia albidus, and Naganishia liquefaciens (MN717161-
MN717166) and the ERG11 sequences obtained for FLZR
C. tropicalis isolates (MN723553-MN723558) were depos-
ited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/).

Results
Patient characteristics
In total, 66 yeast isolates were isolated from blood samples
of 51 patients (male (28/51; 54.9%), female (19/51; 37.2%)
(no data for four patients). Adults (26/51; 51%) and children
(23/51; 45.1%) almost equally acquired candidemia (no data
for two patients). The vast majority of the patients were hos-
pitalized in Mustapha Pacha (n= 38/51; 74.5%), followed by
Beni Messous (n= 4; 7.8%) and Tizi Ouzou (each n= 4;
7.8%), Parnet (n= 2; 3.9%), and Blida, EPH Médéa, and EPH
Zemirli (each n= 1; 1.96%). Patients were admitted mainly to
pediatric (18/51; 35.3%) and ICU wards (15/51; 29.4%),
followed by neurology (5/51; 9.8%), gastroenterology (3/51;
5.8%), and other wards (n = 10/51; 19.6). Neutropenia (n= 9/
51; 17.6%), leukemia (n= 8/51; 15.7%), abdominal surgery
and cancer (each n= 4/51; 7.8%) were the most prevalent
underlying conditions. Antifungal treatment data were avail-
able for only 33 patients (no data for 18 patients), among
whom FLZ (n= 12/51; 23.5%) and caspofungin (n= 7/51;
13.7%) were the most widely used systemic antifungals,
followed by AMB (n= 3/51; 5.6%) (some patients were
treated with more than one antifungal); 41% of the patients
(n= 21/51) did not receive any antifungals. The mortality
rate was 68.6% (n= 35) (no data for three patients). The
overall mortality rate was 66.6% (35/51), and per species, pa-
tients infected with C. glabrata showed the highest mortality
rate (5/6; 83.3%), followed by C. tropicalis (13/16; 81.2%), C.
parapsilosis (9/13; 69.2%, no data for one patient), and C.
albicans (7/11; 63.6%, no data for patient). Additionally, the
only patient infected with C. dubliniensis died. The rest of
the patients infected with rare yeasts all survived (n= 3).

Identification of yeast isolates and species distributions
and prevalence
Candida tropicalis was the most prevalent species (16
patients, 19 isolates), followed by C. parapsilosis (14 pa-
tients, 18 isolates), C. albicans (12 patients, 18 isolates),
C. glabrata (6 patients, 7 isolates), Clavispora lusitaniae
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(n = 1), Meyerozyma elongisporous (n = 1), and Aureoba-
sidium melanogenum (n = 1) (Supplementary Table 1).
Multiple isolates of the same species were recovered from
nine patients as follows: C. albicans (n= 11 from four pa-
tients), C. parapsilosis (n= 6 from two patients), C. tropicalis
(n= 5 from two patients), and C. glabrata (n= 2 from one
patient). Almost one third of the hands of HCWs (9/28)
were positive for yeasts, among which 77.7% were C. para-
psilosis (n= 7), followed by C. orthopsilosis and Prototheca
wickerhamii (one isolate each) (Fig. 1, Supplementary
Table 1). Approximately 24% of the high-touch areas were
positive for yeasts (n= 11), including Naganishia albida
(Cryptococcus albidus var. albidus) (n= 3; 27.2%) and C.
parapsilosis and C. glabrata (each n= 2; 18.1%) (Fig. 1, Sup-
plementary Table 1). Phylogenetic analysis using the
neighbor-joining algorithm and 1000 bootstraps was per-
formed to unequivocally identify isolates of A. melanogenum,
N. albida, and N. liquefaciens (Supplementary Fig. 1).

Antifungal susceptibility testing
Candida albicans, C. parapsilosis, and C. glabrata were
susceptible to all antifungal drugs tested. Candida dubli-
niensis, L. elongisporous, and Clavispora lusitaniae showed
MIC values lower than ECV toward all antifungal drugs
studied (Table 1 and Supplementary Table 2). FLZR was

noted for 31.5% of C. tropicalis isolates (n= 6; MIC≥8μg/ml),
and 50% were cross-resistant to the three azole drugs tested:
83.3% to FLZ and ITZ (n= 5; MIC> 0.5μg/ml), and 66.6% to
FLZ and VRZ (n= 4; MIC≥1μg/ml) (Tables 1 and Supple-
mentary Table 2). Exploring the medical histories of patients
infected with fluconazole-resistant (FLZR) isolates showed that
three patients received fluconazole (no data for one patient),
while one of them did not receive any antifungals in general
or azoles in particular during his hospitalization. Isolates from
the hands of HCWs were all susceptible to all antifungals
tested (Supplementary Table 2). Yeasts isolated from the high
touch areas, N. albida (n= 2), N. liquefaciens (n=1), and Rho-
dotorula mucilaginosa (n=1), showed elevated MIC values
for fluconazole (4–64μg/ml), MFG (8μg/ml), and AND
(8μg/ml) (Supplementary Table 2).

ERG11 sequencing
Six C. tropicalis blood isolates resistant to FLZ were sub-
jected to ERG11 sequencing. Isolate #50 did not carry any
nonsynonymous mutations in ERG11, and the remaining
of five isolates (#58, 61–64) carried nonsynonymous mu-
tation of P56S corresponding to the nucleotide mutation
C166T. Moreover, isolate #58 carried an extra nonsynon-
ymous mutation, V234F, corresponding to the nucleotide
mutation G700T.

Fig. 1 Environmental screening study included 75 swab samples from hands of healthcare workers and high touch areas
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Typing analysis
C. parapsilosis isolates obtained from the hands of
HCWs (n = 7), ECG monitors and buttons (n = 2), and
blood (n = 18) were subjected to microsatellite typing
and revealed 20 genotypes (G1-G20) and six main clus-
ters (C1-C6) (Fig. 2). Among isolates forming defined
clusters (n = 21; 78%) 61.9% of them (n = 13) were identi-
fied in intensive care units and 22.7% in pediatric wards
(n = 5) (Fig. 2). C6 (n = 3, hands; n = 4, blood) and C2
(n = 3, hands; n = 1, blood) contained a mixture of blood
and hand and/or ECG monitor origins, while those from
C4, C3, and C1 were all obtained from blood (Fig. 2).
Clonality was observed only for blood isolates collected
from Mustapha Pacha hospital (n = 7), among which
four isolates formed two distinct clones recovered from
two patients in 2019 (isolates # 15, 16, and 18 from one
patient, and isolate # 10 from another patient, ICU) and
the other three isolates (isolates # 2, 3, and 4, pediatric
wards) were from another patient in 2018 (Fig. 2). Inter-
estingly, one of the isolates (#13) recovered from a blood
sample in TiziOuzou hospital shared the same genotype
as those obtained from three other blood samples from

Mustapha Pacha hospital (Fig. 2). Candida tropicalis
isolates formed six clusters representing 18 genotypes
and the vast majority of them were obtained from
pediatrics (n = 8; 42.1%) and ICU wards (n = 7; 36.8%)
(Fig. 3), among which isolates belonging to C1 (4/4)
and C2 (2/2) were from pediatric wards, whereas C6
(6/6) was identified in ICU wards. Clonality was ob-
served only for two FLZR isolates obtained from the
same patients (#61 and 62), which were distinct from
the first FLZS isolate of the same patient (#60) (Fig.
3). Regarding Candida glabrata isolates (7 blood and
2 environmental), 57.1% of the blood isolates (4/7)
were recovered from ICU wards (Fig. 4). Candida
glabrata isolates showed two clusters (C1, n = 2; C2,
n = 3) (Fig. 4). Surprisingly, one of the C. glabrata
isolates in C1 obtained from a patient bed showed
the same genotype as a isolate obtained from a blood
sample (Fig. 4). Two patients, one from Mustapha
Pacha and one from Beni Messous, were infected with
C. glabrata isolates that were 100% clonal (#70 and
73) and the two isolates from the same patient (#68
and 73) had the same genotype (Fig. 4).

Table 1 Classification of the minimum inhibitory concentration of blood isolates identified in this study based on epidemiological
cut-off values and clinical breakpoints

Species Susceptibility MIC values (μg/ml)

FLZ VRZ ITZ AMB MFG ANF

Candida tropicalis (n = 19) <ECV 12 10 13 19 19 19

>ECV 7 9 5 0 0 0

S 13 15 NA NA 19 19

R 6 4 NA NA 0 0

Candida albicans (n = 18) <ECV 17 17 18 18 18 18

>ECV 1 1 0 0 0 0

S 18 18 NA NA 18 18

R 0 0 NA NA 0 0

Candida parapsilosis (n = 18) <ECV 18 18 18 18 18 18

>ECV 0 0 0 0 0 0

S 18 18 NA NA 18 18

R 0 0 NA NA 0 0

Candida glabrata (n = 7) <ECV 7 7 7 7 6 7

>ECV 0 0 0 0 1 0

S 7 NA NA NA 7 7

R 0 NA NA NA 0 0

Candida dubliniensis (n = 1) <ECV 1 1 1 1 1 1

>ECV 0 0 0 0 0 0

Clavispora lusitaniae (n = 1) <ECV 1 1 1 1 1 1

>ECV 0 0 0 0 0 0

Lodderomyces elongiporous (n = 1) NA ≤0.125 ≤0.03 0.03 0.06 ≤0.0156 ≤0.0156

Aureobasidium melanogenum (n = 1) NA 16 0.06 0.06 0.125 1 1

ECV Epidemiological cut-off value, R Resistant, S Susceptible, NA Not applicable MIC Minimum inhibitory concentration
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Discussion
Candida tropicalis with an 81.2% mortality rate showed
the highest rate of FLZ resistance, and microsatellite typ-
ing highlighted clusters enriched in ICU and pediatric
wards. The high prevalence of C. tropicalis together with
fluconazole resistance is a serious threat hampering the
therapeutic efficacy of fluconazole, the frontline antifungal
drug used in Algeria. Typing analysis underscored an on-
going C. parapsilosis outbreak without an obvious source
of infection, as well as inter-hospital transmission of C.
glabrata and C. parapsilosis. A novel amino acid substitu-
tion in Erg11p was shown in FLZR C. tropicalis isolates.

In concordance with other studies [5, 27], neutropenia,
leukemia, and abdominal surgeries were the most prevalent
underlying conditions for our patients. The overall crude
mortality rate was high (68.6%), and patients infected with
C. glabrata (83.3%) and C. tropicalis (81.2%) showed the
highest rates of mortality. Although insertion of central
venous catheter and antibiotic treatment are both promin-
ent risk factors for the development of candidemia, these
data were scarce and not well recorded in Algerian hospi-
tals. In line with our findings, a candidemia study in South
Korea [28] revealed that patients infected with C. tropicalis
showed the highest mortality rate (44.1%) relative to those

Fig. 2 Microsatellite typing of Candida parapsilosis isolates recovered from environmental screening and blood samples. Rectangular with the
same color contained isolates of the same patients

Fig. 3 Microsatellite typing of Candida tropicalis blood isolates. Rectangular with the same color contained isolates of the same patients
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infected with other non-albicans Candida species. Surpris-
ingly, 44.1% of the patients did not receive any systemic an-
tifungal treatments and among those treated, FLZ was the
most commonly used systemic antimycotic. The low price
of FLZ and the high cost of echninocandins are among the
factors encouraging medical settings of developing and
resource-limited countries to use FLZ for the treatment of
the vast majority of candidemia cases [5, 11]. We found C.
tropicalis as the most prevalent Candida species, while C.
albicans ranked third, and C. parapsilosis and C. glabrata
were the second and fourth causes of candidemia in
Algeria. The predominance of C. tropicalis in Algeria is
similar to that in India [5], South Korea [28], and the neigh-
boring country, Tunisia [16]. Moreover, this species is the
second cause of candidemia in Brazil [29] and some South
East Asian countries [30]. Except for A. melanogenum and
C. tropicalis, which showed elevated MIC values/resistance
to azoles, all isolates were susceptible or WT to antifungals
tested in this study. The lack of antifungal resistance of C.
glabrata in this study is similar to that seen in Iranian [11]
and Indian studies [31], and in contrast to the relatively
high rate of fluconazole and echinocandin resistance in the
USA [6]. Surprisingly, 31.5% of the C. tropicalis isolates
(n = 6) were resistant to FLZ, and 50% of those isolates were
cross-resistant to the three azoles tested, with 66.6% to
VRZ and FLZ, and 83.3% to FLZ and ITZ. Studies in China
[32], Taiwan [10], and Denmark [33] observed an alarming
increasing trend of azole resistance among C. tropicalis iso-
lates. The FLZR C. tropicalis isolates were subjected to
ERG11 sequencing, and all but one of the isolates harbored
nonsynonymous mutations, among which V234F (G700T)
has been previously reported for a FLZR C. albicans isolate
[34], while P56S (C166T) detected in 83.3% (5/6) of the
FLZR isolates was a new mutation. Considering that hydro-
phobic proline 56 was converted to a polar amino acid of
serine (containing a hydroxyl group) and that substitution
in neighbor amino acid (A61E) was found solely in FLZR
C. albicans isolates [35], P56S may cause FLZR. Heterol-
ogous expression analysis of both mutations in a wild-type
FLZS C. tropicalis strain is required to clarify their contri-
bution to azole resistance. The high mortality and high

fluconazole resistance rate together with the high preva-
lence of C. tropicalis in Algeria, where candidemic patients
are treated mainly by FLZ, pose a serious threat for candi-
demic patients hospitalized in this country.
To gain insights into infection control measures we con-

ducted a comprehensive environmental screening of high-
touch areas and hands of HCWs. Candida parapsilosis was
the most prevalent yeast species isolated from the hands of
HCWs. This result is similar to that in an Italian environ-
mental surveillance study, where C. parapsilosis was the
most prevalent yeast isolated from HCW hands [36], but in
contrast C. tropicalis was identified as a major yeast isolated
from the hands of Indian HCWs [30, 37]. Candida parapsi-
losis blood and hand isolates belonged to 20 different geno-
types, but they formed clusters of genetically similar isolates.
Moreover, C. parapsilosis isolates obtained from blood sam-
ples of two patients were genetically 100% identical. These
findings may indicate a hidden source of C. parapsilosis that
may have started an outbreak in the ICU of Mustapha Pacha
hospital, which was not captured by environmental screen-
ing, likely due to the low sensitivity of culture [4]. Isolation of
two clonal C. glabrata blood isolates and two C. parapsilosis
blood isolates belonging to the same genotype from two hos-
pitals may underscore inter-hospital transmission, likely be-
cause some healthcare workers had shifts in both hospitals.
Surprisingly, two C. glabrata blood isolates recovered from a
patient’s bed and blood belonging to the same genotype
might be an indication for horizontal transmission of C.
glabrata, which has been observed in other studies [25]. Al-
though, the lack of isolation of C. tropicalis from environ-
mental sources may reject the horizontal transfer of this
species in our study, microsatellite typing showed enrich-
ment of genetically similar clusters in ICU and pediatric
wards and we could not explain the phenomenon of FLZR
acquisition in an azole-naïve patient. We noticed that a pri-
mary FLZ-susceptible (FLZS) C. tropicalis isolate from a pa-
tient was replaced by FLZR isolates during the course of FLZ
treatment, likely due to the selective pressure applied by anti-
fungal treatment [38]. Interestingly, the FLZR C. tropicalis
isolates from that patient shared the same genotype but were
different from the FLZS one, which could be explained by

Fig. 4 Microsatellite typing of Candida glabrata isolates recovered from environmental screening and blood samples. Rectangular with the same
color contained isolates of the same patients
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microevolution during resistance development [39]. Of note,
genotypic variation weas observed for multiple FLZS isolates
recovered from the same patient in this study; therefore,
genotypic variation may not always be accompanied by re-
sistance development. Interestingly, the isolate of C. orthopsi-
losis from the hands of a HCW may reinforce the hypothesis
that, similar to C. parapsilosis, it may have been transferred
from the hands of HCWs [40]. Moreover, isolation of A. mel-
anogenum, N. albida, and N. liquefaciens from high touch
areas, which are reported to have elevated MIC values to vari-
ous antifungals [41–43] and finding Aureobasidium melano-
genum in both blood and the environment are worrisome.
Findings obtained from environmental screening and micro-
satellite typing may collectively imply the lack of proper hy-
giene (both hands and hospital environments) and necessitate
the application of effective infection control strategies to eradi-
cate/control fungemia caused by various yeast species. These
infection control practices include proper hand hygiene, regu-
lar disinfection of hospital environments and high-touch areas,
and environmental screening followed by application of typing
techniques to identify the source of infection.
The limitations of our study were the retrospective na-

ture of the analysis followed by the lack of additional de-
tailed clinical data and the relatively low numbers of
isolates investigated, which is due to underestimation of
fungal-related infections in Algeria.

Conclusion
This study explored the epidemiology of candidemia and the
relevant clinical profiles of infected patients in Algeria, for
which such data are scant. Moreover, we showed a lack of
infection control strategies and antifungal stewardship that
should be implemented to improve the patient’s’ outcomes.
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