
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The AARTFAAC Cosmic Explorer
observations of the 21-cm power spectrum in the EDGES absorption trough
Gehlot, B.K.; Mertens, F.G.; Koopmans, L.V.E.; Offringa, A.R.; Shulevski, A.; Mevius, M.;
Brentjens, M.A.; Kuiack, M.; Pandey, V.N.; Rowlinson, A.; Sardarabadi, A.M.; Vedantham,
H.K.; Wijers, R.A.M.J.; Yatawatta, S.; Zaroubi, S.
DOI
10.1093/mnras/staa3093
Publication date
2020
Document Version
Final published version
Published in
Monthly Notices of the Royal Astronomical Society

Link to publication

Citation for published version (APA):
Gehlot, B. K., Mertens, F. G., Koopmans, L. V. E., Offringa, A. R., Shulevski, A., Mevius, M.,
Brentjens, M. A., Kuiack, M., Pandey, V. N., Rowlinson, A., Sardarabadi, A. M., Vedantham,
H. K., Wijers, R. A. M. J., Yatawatta, S., & Zaroubi, S. (2020). The AARTFAAC Cosmic
Explorer: observations of the 21-cm power spectrum in the EDGES absorption trough.
Monthly Notices of the Royal Astronomical Society, 499(3), 4158-4173.
https://doi.org/10.1093/mnras/staa3093

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1093/mnras/staa3093
https://dare.uva.nl/personal/pure/en/publications/the-aartfaac-cosmic-explorer(c11d4142-e4a2-4e2a-ade8-752c4976abd4).html
https://doi.org/10.1093/mnras/staa3093


MNRAS 499, 4158–4173 (2020) doi:10.1093/mnras/staa3093
Advance Access publication 2020 October 9

The AARTFAAC Cosmic Explorer: observations of the 21-cm power
spectrum in the EDGES absorption trough

B. K. Gehlot ,1,2‹ F. G. Mertens ,2,3 L. V. E. Koopmans,2 A. R. Offringa ,2,4 A. Shulevski ,5,6

M. Mevius,4 M. A. Brentjens,4 M. Kuiack ,5 V. N. Pandey,2,4 A. Rowlinson ,4,5 A. M. Sardarabadi,2

H. K. Vedantham ,2,4 R. A. M. J. Wijers ,5 S. Yatawatta 2,4 and S. Zaroubi2,7

1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
2Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700AV Groningen, the Netherlands
3LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, F-75014 Paris, France
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ABSTRACT
The 21-cm absorption feature reported by the EDGES collaboration is several times stronger than that predicted by traditional
astrophysical models. If genuine, a deeper absorption may lead to stronger fluctuations on the 21-cm signal on degree scales (up
to 1 K in rms), allowing these fluctuations to be detectable in nearly 50 times shorter integration times compared to previous
predictions. We commenced the ‘AARTFAAC Cosmic Explorer’ (ACE) program, which employs the AARTFAAC wide-field
image, to measure or set limits on the power spectrum of the 21-cm fluctuations in the redshift range z = 17.9–18.6 (�ν =
72.36–75.09 MHz) corresponding to the deep part of the EDGES absorption feature. Here, we present first results from two LST
bins: 23.5–23.75 and 23.75–24.00 h, each with 2 h of data, recorded in ‘semi drift-scan’ mode. We demonstrate the application
of the new ACE data-processing pipeline (adapted from the LOFAR-EoR pipeline) on the AARTFAAC data. We observe that
noise estimates from the channel and time-differenced Stokes V visibilities agree with each other. After 2 h of integration
and subtraction of bright foregrounds, we obtain 2σ upper limits on the 21-cm power spectrum of �2

21 < (8139 mK)2 and
�2

21 < (8549 mK)2 at k = 0.144 h cMpc−1 for the two LST bins. Incoherently averaging the noise bias-corrected power spectra
for the two LST bins yields an upper limit of �2

21 < (7388 mK)2 at k = 0.144 h cMpc−1. These are the deepest upper limits thus
far at these redshifts.

Key words: methods: data analysis – methods: statistical – techniques: interferometric – dark ages, reionization, first stars –
diffuse radiation – radio lines: general.

1 IN T RO D U C T I O N

Observations of the redshifted 21-cm signal of neutral hydrogen
from the Cosmic Dawn (CD) and Epoch of Reionization (EoR) hold
the potential to revolutionize our understanding of how these first
stars and galaxies formed and the nature of their ionizing radiation
(Madau, Meiksin & Rees 1997; Shaver et al. 1999; Furlanetto, Oh
& Briggs 2006; Mesinger, Furlanetto & Cen 2011; Pritchard &
Loeb 2012; Zaroubi 2013). During the CD (12 � z � 30), the first
luminous objects formed in the dark and neutral Universe (Pritchard
& Furlanetto 2007). X-ray and ultraviolet radiation from these first
stars heated and ionized neutral hydrogen (H I) in the surrounding
inter-galactic medium (IGM) during the EoR. This process continued
(spanning the redshift range 6 � z � 12) until hydrogen in the IGM
became fully ionized (Madau et al. 1997).

� E-mail: kbharatgehlot@gmail.com

In recent years, a large number of observational efforts got
underway to observe this faint 21-cm signal from the CD and EoR.
Radio interferometers such as the Giant Meterwave Radio Telescope
(GMRT; Paciga et al. 2011), the LOw Frequency ARray (LOFAR;
van Haarlem et al. 2013), the Murchison Widefield Array (MWA;
Bowman et al. 2013; Tingay et al. 2013), the Precision Array for
Probing the Epoch of Reionization (PAPER; Parsons et al. 2010)
as well as the next-generation instruments such as the Hydrogen
Epoch of Reionization Array (HERA; DeBoer et al. 2017), the Long
Wavelength Array (LWA; Greenhill et al. 2012), the New Extension
in Nançay Upgrading loFAR (NENUFAR; Zarka et al. 2012), and
the upcoming Square Kilometre Array (SKA; Mellema et al. 2013;
Koopmans et al. 2015) are working towards measuring the spatial
brightness temperature fluctuations in the high-redshift cosmological
21-cm signal.

In parallel, single-element radiometers such as the Experiment
to Detect the Global Epoch of Reionization Signature (EDGES;
Bowman et al. 2018), the Large-aperture Experiment to Detect the

C© 2020 The Author(s)
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Dark Ages (LEDA; Bernardi et al. 2016), the Shaped Antenna
measurement of the background RAdio Spectrum 2 (SARAS 2;
Singh et al. 2017), the Sonda Cosmológica de las Islas para la
Detección de Hidrógeno Neutro (SCI-HI; Voytek et al. 2014), the
Probing Radio Intensity at high z from Marion (PRIZM; Philip et al.
2019), and the Netherlands-China Low frequency Explorer1 (NCLE)
are seeking to measure the global sky-averaged 21-cm signal as a
function of redshift.

In 2018, a deep spectral feature centred at 78 MHz was reported
by the EDGES collaboration (Bowman et al. 2018). The feature
was presented as the long sought-after 21-cm absorption feature
seen against the CMB during the CD at z ∼ 17. The location of
this putative absorption trough is consistent with redshift predictions
from theoretical models and simulations of the CD (Furlanetto et al.
2006; Pritchard & Loeb 2010; Mesinger, Ferrara & Spiegel 2013;
Cohen et al. 2017). However, the depth of the feature is �T21 ∼
0.5 K (99 per cent confidence level), which is two to three times
stronger and considerably wider (�ν ∼ 19 MHz) than that predicted
by the most optimistic astrophysical models (e.g. Pritchard & Loeb
2010; Fialkov, Barkana & Visbal 2014; Fialkov & Loeb 2016;
Cohen et al. 2017). Moreover, the observed feature is flat-bottomed
instead of a smooth Gaussian-like shape. Several ‘exotic’ theoretical
models have already been proposed which might explain the depth
of the feature, such as a considerably colder IGM due to interaction
between baryons and dark matter particles causing a lower spin-
temperature and therefore a deeper absorption feature (e.g. Barkana
2018; Fialkov, Barkana & Cohen 2018), or a stronger radiation
background against which the absorption is taking place (e.g. Dowell
& Taylor 2018; Ewall-Wice et al. 2018; Feng & Holder 2018;
Fialkov & Barkana 2019). Although the 21-cm signal is expected
to be stronger at these redshifts, the foreground emission is several
times brighter at these frequencies compared to EoR 21-cm signal
observations at 150 MHz (Bernardi et al. 2009, 2010). Moreover,
ionospheric effects are amplified at lower frequencies (de Gasperin
et al. 2018; Gehlot et al. 2018), rendering the measurement of the
signal equally (or even more) challenging than in EoR experiments.
As of now, Ewall-Wice et al. (2016) reported a systematics-limited
power spectrum upper limit of �2

21 < (104 mK)2 on co-moving
scales k � 0.5 h cMpc−1 (in 3 h of integration) on the 21-cm signal
brightness temperature in the redshift range 12 � z � 18 using MWA.
This overlaps with the low-redshift edge of the 21-cm absorption
feature (Bowman et al. 2018). Gehlot et al. (2019) provided a 2σ

upper limit of �2
21 < (1.4 × 104 mK)2 on the 21-cm signal power

spectrum at k = 0.038 h cMpc−1 (in 14 h of integration) using the
LOFAR-Low Band Antenna (LBA) system in the redshift range
19.8 � z � 25.2, which corresponds to the high-redshift edge
of the absorption feature. More recently, Eastwood et al. (2019)
used OVRO-LWA observations to report a 2σ upper limit of �2

21 <

(104 mK)2 at k ≈ 0.1 h cMpc−1 (in 28 h of integration) at redshift
z ≈ 18.4.

Although concerns have been raised about the validity of the
detection of the absorption feature in terms of foreground modelling
and instrumental effects (Hills et al. 2018; Bradley et al. 2019),
if the detection is confirmed, the strength of the 21-cm absorption
feature can also cause a significant increase in the 21-cm brightness
temperature fluctuations in the redshift range z = 17–19 (Barkana
2018; Fialkov et al. 2018). This redshift range corresponds to
the deepest part of the absorption profile. It enables detection of

1https://www.ru.nl/astrophysics/radboud-radio-lab/projects/netherlands-ch
ina-low-frequency-explorer-ncle/.

the 21-cm signal brightness temperature fluctuations on degree
angular scales in this redshift range within a much shorter inte-
gration time (∼50 times shorter) compared to what was previously
expected.

Motivated by this, we have commenced a large-scale program
called ‘AARTFAAC Cosmic Explorer’ (ACE) to measure or limit
the power spectrum of the brightness temperature fluctuations of the
21-cm signal from z ∼ 18 using the LOFAR Amsterdam-ASTRON
Radio Transients Facility And Analysis Centre (AARTFAAC) wide-
field imager (Prasad et al. 2016). AARTFAAC correlates up to 576
individual receiver elements [LBA dipoles or High Band Antenna
(HBA) tiles] in the core of LOFAR, thereby providing a wider
field of view (FoV) and increased sensitivity on large angular
scales compared to regular LOFAR observations. The redshift range
targeted by ACE is z = 17.9–18.6 (72.36–75.09 MHz frequency
range), which corresponds to the deep part of the EDGES absorption
feature. The ACE programme2 has collected about 500-h deep
integration data of a large part of the northern sky to measure the
power spectrum. In this work, we present first power spectrum results
in two LST bins each with 2 h of data and successfully demonstrate
the end-to-end application of the new ACE data-processing pipeline,
which is adapted from the LOFAR-EoR data processing pipeline to
AARTFAAC data. Readers may refer to Patil et al. (2017), Gehlot
et al. (2019), and Mertens et al. (2020) for an overview of the LOFAR-
EoR data processing pipeline, and a description of HBA and LBA
data processing.

This paper is organized as follows: Section 2 briefly describes
the AARTFAAC wide-field imager, the observation setup of ACE
observations, and the basic pre-processing steps for the raw data,
e.g. flagging and averaging. The calibration and imaging strategy for
the ACE data is described in Section 3. In Section 4, we estimate and
discuss the noise in ACE data and method of combining multiple
ACE observations. In Section 5, we describe the Gaussian Process
Regression foreground removal technique and power spectrum esti-
mation methodology. We discuss results from the analysis Section 6.
Finally, we summarize the work and discuss future outlook in
Section 7. We use Lambda cold dark matter cosmology throughout
the analyses with cosmological parameters consistent with Planck
(Planck Collaboration XIII 2016).

2 O BSERVATI ONS AND PRE-PROCESSI NG

We used the LOFAR-AARTFAAC wide-field imager to observe the
northern sky in the frequency range 72.4–75 MHz. The sky was
observed in ’semi drift-scan’ mode,3 and the observed snapshot data
was processed using a tweaked version of the LOFAR-EoR data
processing pipeline (Gehlot et al. 2018, 2019; Mertens et al. 2020).
The observational setup and the pre-processing steps are briefly
described in following subsections.

2.1 The LOFAR AARTFAAC wide-field imager

The AARTFAAC is a LOFAR-based all-sky radio transient monitor
(Prasad et al. 2016; Kuiack et al. 2019). It piggybacks on ongoing

2LOFAR proposal ID: LT10 006. Investigators: Gehlot and Koopmans.
3AARTFAAC-LBA (unlike HBA) does not beam-form to track; it only points
to the instantaneous zenith direction per integration time in drift-scan mode.
During preprocessing, the drift-scan data for a long observational run are split
into 15-min observation blocks and rephased. The phase centre for each block
follows a constant declination point that passes through the zenith half-way
during the 15-min run. We refer to this strategy as the ’semi drift-scan’ mode.
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4160 B. K. Gehlot et al.

Figure 1. The left-hand panel shows the uv-coverage of A12 mode (12 station configuration) of the LOFAR-AARTFAAC LBA array at 74 MHz for 15 min of
synthesis. The right-hand panel shows the radial profile of the uv-coverage, i.e. Nvis per baseline bin (|u| = √

u2 + v2) of width 0.5λ.

LOFAR observations and taps the digital signal streams of individual
antenna elements from 6 to 12 core stations depending on the
requirements. AARTFAAC operates in two modes viz. A6where the
six innermost stations (also called the ‘superterp’) of the LOFAR-
core are used, and A12 that employs 12 innermost stations of
the LOFAR-core. The A6 mode consists of 288 dual-polarization
receivers (e.g. LBA dipoles or HBA tiles) within a 300-m diameter
circle, and the A12 mode consists of 576 such receivers spread
across 1.2 km (van Haarlem et al. 2013). Fig. 1 shows the 15-min
synthesis uv-coverage of the A12 mode at 74 MHz and the radial
profile (Nvis per baseline bin of du = 0.5λ) of the uv-coverage. The
latter is relatively flat for u = 10–100λ except for a dip around
u ∼ 20λ, 70λ, which is due to slightly patchy LBA-dipole layout
in the ‘superterp’ and the transition to non-superterp baselines.
The array is co-planar at centimetre level within 0–70λ, which is
beneficial for wide-field imaging. In addition to this, the baselines
up to 1.2 km support intermediate-resolution imaging, which helps
to improve calibration and better captures compact structure in the
sky. Each of the inner 12 LOFAR core stations consists of 96 LBA
dipoles4 (only 48 out of 96 dipoles can be used at a time) and 48 HBA
tiles.5 At a given time, AARTFAAC can only observe in either LBA
or HBA mode depending upon the ongoing LOFAR observation. The
digitized signal from the corresponding receiver elements is tapped
and transported to the AARTFAAC correlator (located at the Centre
for Information Technology (CIT)6 in Groningen, Netherlands) prior
to beam-forming. Due to network limitations, only 16 subbands can
be correlated using the 16-bit mode. Each subband is 195.3 kHz wide
and consists of up to 64 channels providing a maximum frequency
resolution of 3 kHz, with currently maximum instantaneous system
bandwidth of 3.1 MHz. The correlator subsystem is a GPU based
and produces correlations (XX, XY, YX, YY) for all dipoles pairs
for every frequency channel with 1-s integration. The correlator has
1152 input streams with 576 signal streams per polarization. The

4LBA dipoles are dual-polarization (X–Y) dipoles optimized to operate
between 30 and 80 MHz.
5HBA tiles consist of 16 dual-polarization dipoles arranged in a 4 × 4 grid,
which are analogue beam-formed to produce a single tile beam. HBA tiles
are optimized to operate between 110 and 240 MHz.
6https://www.rug.nl/society-business/centre-for-information-technology/.

output correlations can either be dumped as raw correlations on
storage discs on the AARTFAAC storage/compute cluster or can
be routed to the AARTFAAC real-time calibration and imaging
pipeline for transient detection. AARTFAAC can only observe
in drift-scan mode. However, phase tracking can be applied to
raw data during or after pre-processing. The raw data from the
AARTFAAC storage/compute cluster can be streamed via a fast
network (1 Gbit s−1) to the LOFAR-EoR processing cluster ‘Dawn’
at the CIT. The raw data can be converted to standard measurement
set (MS) format using a custom software package AARTFAAC2MS7

(Offringa et al. 2015), which can also apply offline phase tracking.
Readers may refer to Prasad et al. (2016) for further information
about AARTFAAC system design and capabilities, and van Haarlem
et al. (2013) for observing capabilities of LOFAR.

2.2 ACE observational setup and status

We use the A12 mode of AARTFAAC to observe the Northern sky
in the drift-scan mode with the mean phase centre at the zenith.
We use 14 contiguous subbands (a total of 2.73-MHz bandwidth)
to observe the 72.36–75.09 MHz, targeting the redshift range z =
17.9–18.6. We place the two remaining subbands ∼4 MHz away
from the targeted band centre on either side of the band, to aid
in assessing the wide-band systematics and calibration quality as
well as help foreground modelling and subtraction. We choose three
channels per subband (with 65.1-kHz resolution) and 1-s correlator
integration. High spectral and time resolution provides improved
RFI excision and a better handle on delay/frequency transform
(discussed in Section 5.3). The ACE observing campaign concluded
after observing around 500 h of northern sky in drift-scan mode
during three LOFAR observing cycles. Most observations span night
time LSTs with a typical span of 4–12 h per observation.

For this pilot analysis, we select two LST bins, viz 23.5–23.75
(LST:23.5 h or LST-bin 1 hereafter) and 23.75–24.00 h (LST:23.75 h
or LST-bin 2 hereafter) with eight observation blocks of 15 min each,
taken from different nights recorded during first cycle observations.
This corresponds to the total integration time of 2 h per LST-

7https://github.com/aroffringa/aartfaac2ms.
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Table 1. Observational and correlator setting details.

Parameter Value

Telescope LOFAR AARTFAAC
Observation cycle and ID Cycle 10, LT10 006
Antenna configuration A12
Number of receivers 576 (LBA dipoles)
Sidereal bins (h) 23.5–23.75 and 23.75–24.00 h
Number of observation blocks (per LST-bin) 8
Phase centre Bin 1: RA 23h37m30s, Dec. +52d38m00s

Bin 2: RA 23h52m30s, Dec. +52d38m00s

Minimum frequency 72.36 MHz
Maximum frequency 75.09 MHz
Target bandwidth 2.73 MHz
Outrigger subbands 68.36 and 78.90 MHz
Primary beam FWHM 120◦ at 74 MHz
Field of view 11 000 deg2 at 74 MHz
Polarization Linear X–Y
Time, frequency resolution:

Raw data 1 s, 65.1 kHz
After flagging and averaging 4 s, 65.1 kHz

bin. Table 1 summarizes the observational and correlator setting
details.

2.3 Data pre-processing

The first step of data processing is to apply tracking to the drift-scan
observations. For instruments with much wider FoVs (full width
at half-maximum ∼ 120◦ in our case), phase referencing to a single
stationary point in the sky during long observations limits the portion
of the sky which is visible. This is not an optimal strategy for
long-duration observations. Therefore, instead of fixing the phase
reference to a single stationary point for the entire observation, we
choose to re-phase every 15-min observation block. The phase centre
for each observation block is a constant declination point (on a great
circle through zenith) that passes through zenith mid-way during the
15-min observation. We refer these re-phased 15-min observation
blocks as ‘time-slices’ throughout this paper.

The next step is RFI excision, which is performed on the highest
resolution data to minimize information loss. We use AOFLAGGER

(Offringa et al. 2010; Offringa, van de Gronde & Roerdink 2012) to
perform RFI excision on raw data and also flag all visibilities that
include non-working LBA dipoles (∼6–7 per cent). The remaining
data are averaged to a resolution of 4 s and 65.1 kHz and subsequently
divided into 15-min time-slices for every individual phase centre.
Each time-slice is separately written into MS format, which are stored
permanently on the LOFAR-EoR processing cluster. The data volume
in MS format is around 150 GB for 15-min time-slices, and ∼1.2 TB
for 2 h worth of data, respectively. The AARTFAAC2MS package
performs the re-phasing and flagging tasks and returns the phased
and flagged data in MS format. The dipoles within a station share
the same electronic cabinets, such that intra-station baselines may be
affected by mutual-coupling/cross-talk effects. Therefore all intra-
station baselines (|b| � 80 m) are also flagged post-MS conversion.
The fraction of visibilities flagged by AOFLAGGER (excluding non-
working dipoles), at this stage, varies between 2 and 25 per cent for
different time-slices in the two LST bins.

3 C A L I B R AT I O N A N D I M AG I N G

Visibilities measured by AARTFAAC are corrupted by the errors
caused due to instrumental imperfections such as complex receiver

gain, primary-beam and global band-pass, as well as environmental
effects, for example, due to the ionosphere. Calibration of AART-
FAAC refers to the estimation of these errors and correcting the
observed visibilities to obtain a reliable estimate of the true sky
visibilities. The errors that corrupt the visibilities can be classified
into two broad categories: direction-independent (DI) errors and
direction-dependent (DD) errors. DI errors are independent of the
direction of the incoming signal from the sky and comprise of
complex receiver gain and frequency band-pass, as well as a global
ionospheric phase. In contrast, DD errors change with sky direction,
e.g. as a result of the antenna beam pattern, ionospheric phase
fluctuations, and Faraday rotation (Hamaker, Bregman & Sault 1996;
Sault, Hamaker & Bregman 1996; Smirnov 2011a,b).

3.1 DI calibration

DI calibration involves estimation of complex gains (full-Jones) per
dipole, per time and frequency interval (represented by a complex
2 × 2 Jones matrix for two linear polarizations). We use DPPP8 to
calibrate the raw visibilities and subsequently apply the gain solutions
obtained in the calibration to the visibilities. Unlike SAGECAL-CO

(Yatawatta 2015; Yatawatta 2016; Yatawatta, Diblen & Spreeuw
2017) that we used previously in Gehlot et al. (2019) for LBA-beam-
formed data, DPPP employs the primary beam model for individual
LBA dipoles. We use Cas A and Cyg A (the two brightest sources in
the northern sky) to calibrate the visibilities. Their sky model consists
of 14 components (9 components for Cas A and 5 components for
Cyg A), i.e. Delta functions and Gaussians. The models of these
sources were obtained using LOFAR-LBA observations and the
source fluxes in the model, within a few per cent, are consistent
with the Very Large Array (VLA) observations at 74 MHz (Cohen
et al. 2007; Kassim et al. 2007). We use a power law with a spectral
index of −0.8 to represent the source spectra. We choose a calibration
solution-time interval of 16 s for each 65.1-kHz channel to account
for DI (or beam-averaged) instrumental and slower ionospheric
effects while maintaining a reasonable signal-to-noise ratio (∼30)
over the calibration interval. During calibration, we exclude the

8https://www.astron.nl/lofarwiki/doku.php?id=public:user software:
documentation:ndppp.
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baselines |u| < 20λ in order to avoid the large-scale diffuse Galactic
emission biasing the calibration solutions. We apply a LOFAR-LBA
dipole beam model9 during the model prediction step to adjust the
flux scale. Absolute flux scale can be obtained by applying the beam
model before the imaging step. Although the current sky model is
somewhat limited in terms of the number of sources, it represents
most of the flux on the baselines used for later analyses. We are
working on developing a more accurate sky model for calibration,
which will include compact sources above the confusion limit and
multiscale diffuse emission for robust calibration of AARTFAAC.

3.2 DD calibration

The two brightest sources Cas A and Cyg A dominate the visibilities
and superpose significant PSF side-lobes over the field. It is crucial to
subtract these sources to reduce the confusion due to these side-lobes.
We use DPPP (DDEcal) to subtract these sources using DD calibra-
tion. We use a calibration solution interval of 16 s and 65.1 kHz,
respectively. The calibration is constrained in the frequency direction
and enforces frequency smoothness at 2-MHz level. This is somewhat
similar to consensus optimization in SAGECAL-CO (Yatawatta 2016;
Yatawatta et al. 2017), which also enforces frequency smoothness
of gain solutions. We exclude baselines |u| < 60λ in this step to
reduce bias due to source subtraction on smaller baselines used for
analyses in later sections. The directional gain solutions obtained
towards Cas A and Cyg A are used to subtract them.

After this, we perform another flagging step where we flag dipoles
with relatively high visibility variance in time and frequency. We use
AOQUALITY and AOQPLOT (bundled with AOFLAGGER) to generate
quality statistics and flag dipoles with five times more variance com-
pared to the average. Subsequently, we run AOFLAGGER and SSINS-
(Sky Subtracted Incoherent Noise Spectra; see Wilensky et al. 2019
for more details) based flagger to flag visibilities with bad (non-
converged) solutions and corrupted by low-level RFI, respectively.
After this intermediate flagging step, we re-perform the DI, and
DD calibration steps in Sections 3.1 and 3.2, respectively. Finally,
another instance of AOFLAGGER is run to remove any remaining
visibilities with bad/non-converged calibration solutions. After two
rounds of flagging, the final fraction of flagged visibilities in the 20–
50λ baseline range amounts to 4.5–7 per cent for different nights in
the LST:23.5-h bin, and 4–6 per cent in the LST:23.75-h bin (except
for two nights in the second bin, where flagged visibilities fractions
are around 9 and 14 per cent, respectively).

3.3 Imaging

The visibilities after DI, DD-calibration. and iterative flagging are
imaged with WSCLEAN package (Offringa et al. 2014; Offringa &
Smirnov 2017), a wide-field interferometric imaging software that
uses the w-stacking algorithm. We use a ‘Kaiser-Bessel’ kernel
(Kaiser & Schafer 1980), which is an approximation of the Prolate
Spheroidal Wave Function (Jackson et al. 1991), for gridding with
a kernel-size of 31 pixels with an oversampling factor of 1.6 × 104

and a padding factor of 1.5 to avoid any artefacts due to gridding.
Readers may refer to Offringa et al. (2019) for a detailed analysis
of convolutional gridding artefacts, their impact on 21-cm power
spectra and methods to mitigate these artefacts. We use the 20–
60λ baseline range with ‘natural’ weighting scheme to produce

9Current LOFAR-LBA dipole beam models are based on electro-magnetic
(EM) simulations of the LOFAR-LBA dipoles (private communication with
LOFAR Radio Observatory).

Stokes I, V, and PSF images for all channels and time-slices over
the full visible sky for further analysis. The image cubes produced
by WSCLEAN are converted to gridded visibilities in brightness
temperature units of Kelvin. The cubes are trimmed to 120◦ size
using a ‘Hann’10 spatial taper (see e.g. Blackman & Tukey 1958) and
25–40λ baseline range for further analyses. These gridded visibility
cubes (V(u, v, ν)), number of visibilities per uv-cell (N(u, v, ν)), and
other related metadata are stored in HDF5 data format.11 Fig. 2 shows
a higher resolution deep-cleaned Stokes I continuum image (using
all baselines with ‘Briggs 0.5’ weighting scheme) corresponding to
the LST:23.5-h bin. We observe that subtraction of the bright sources
Cas A and Cyg A leaves residuals at the ∼1–2 per cent level.

We also produced another set of higher resolution Stokes I
snapshot images of the calibrated data with 1-min integration per
snapshot, for every night used in the analysis, to study the ionospheric
condition during these observations. A lower baseline cut is applied
to avoid the large-scale Galactic diffuse emission. A source data base
was created by selecting ∼2500 compact sources from the combined
image of all nights using PYBDSF software (Mohan & Rafferty 2015).
The sources from the data base were matched in snapshot images
using PYBDSF and position shifts corresponding to 650 bright sources
(out of 2500) were obtained. These position shifts are used in later
sections to assess ionospheric conditions for different nights.

4 N OISE STATISTICS

We derive noise statistics of the data using time differenced Stokes V
visibilities (δtVV (u, v, ν)). The calibrated visibilities are divided into
even and odd samplings at 4-s time resolution and gridded. At this
time cadence, the sky (circularly polarized emission), ionospheric
effects, and the PSF do not vary appreciably, cancelling out in
the difference. Thus, the difference between even and odd gridded
Stokes V visibilities provides a reasonable estimate of the thermal
noise (apart from a

√
2 factor). This estimate may be used to obtain

system equivalent flux density (SEFD) by rearranging the following
equation (Thompson, Moran & Swenson 2001):

σvis(u, v, ν) =
√

2kBTsys

AeffNvis(u, v, ν)
√

�ν�t
, and

SEFD = 2kBTsys

Aeff
, (1)

where σ vis and Nvis are visibility noise and number of visibilities per
uv-cell, respectively. Also, �ν and �t are the frequency channel
width and time resolution, respectively. We found the average
SEFD values for LST bins 1 and 2 to be ≈1.93 (±33 kJy) and
≈1.95 MJy (±49 kJy), respectively. These estimates are similar
(within a few per cent) to other SEFD estimates for AARTFAAC
imager (≈2 MJy12). Differencing Stokes V visibilities corresponding
to adjoining channels (δνVV (u, v, ν)) also provides an estimate of
frequency uncorrelated noise. We compare the ratio of frequency
averaged angular power spectra (〈C�[δνVV ]〉/〈C�[δtVV ]〉) of time
and frequency difference Stokes V visibilities. Fig. 3 shows the ratio
for eight nights in the two LST bins. We observe that the ratio varies
between 1.0 and 1.2 for different nights in either LST bins. However,

10The ‘Hann’ window is defined as

W (n) = 0.5 − 0.5 cos

[
2πn

(M − 1)

]
,

where 0 ≤ n ≤ M − 1.
11https://www.hdfgroup.org/solutions/hdf5.
12AARTFAAC team via private communication.
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AARTFAAC Cosmic Explorer 4163

Figure 2. Intermediate resolution Stokes I continuum image (72.4–75.1 MHz, single night, cleaned) of LST:23.5-h bin used in the analysis. The image is shown
in orthographic projection, where dotted curves represent the parallels and meridians corresponding to Dec. (30◦ separation) and RA, respectively.

the mean of ratios for different nights varies between 1 and 1.1 and
shows a weak baseline dependence. We suspect that the excess is
due to the residual part of the Stokes I sky leakage to Stokes V
(at 0.2 per cent level at 74 MHz in Stokes I) in channel difference
visibilities which is coherent over different nights. The residual sky
is small enough and is of the order of the thermal noise for a single
time-slice, however, appears in the incoherent mean of the ratio. The
baseline dependence might be caused by the scale dependence of the
residual sky emission.

We use channel difference visibilities as a proxy for frequency
uncorrelated noise and time difference visibilities as a proxy of
thermal noise in the data. Previous LOFAR-EoR data analyses in
Patil et al. (2017) and Gehlot et al. (2019) used Stokes V data
itself as a noise estimator because only a tiny fraction of sky is
circularly polarized making Stokes V a proxy of thermal noise of
the system. However, in wide-field arrays such as AARTFAAC,
the Stokes I to Stokes V polarization leakage can become more
significant, contaminating the otherwise clean Stokes V data. Another
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4164 B. K. Gehlot et al.

Figure 3. Ratio of frequency averaged angular power spectra of frequency and time difference visibilities. The left-hand panel shows 〈C�[δνVV ]〉t /〈C�[δtVV ]〉ν
for different nights in the LST:23.5-h bin. The right-hand panel is same as the left-hand panel but for the LST:23.75-h bin. The black curve shows the mean of
the ratios for eight nights.

thermal noise estimator is time-differenced Stokes V visibilities
as described above; however, it does not account for uncorrelated
errors in the frequency direction. Therefore, we simulate noise using
equation (1), with SEFD estimates based on channel differenced
Stokes V visibilities. Associated noise visibilities VN(u, v, ν) are
later used to correct for the noise bias in Stokes I residual power
spectra. This approach is similar to the one used by Mertens et al.
(2020) to simulate noise visibilities.

4.1 Combining multiple time-slices

In an ideal case, the number of visibilities per gridded uv-cell
(Nvis(u, v, ν)) would represent the visibility weight if noise on each
visibility follows the same noise statistics. Mertens et al. (2020) used
a methodology to account for the night to night variations in the data
by calculating modified visibility weights as

WV (u, v) = 1

MAD(δνVV (u, v, ν))
√

Nvis(u, v, ν)
. (2)

This equation computes weights using a robust median absolute
deviation (MAD) estimate from channel difference Stokes V visi-
bilities. These weights reflect night to night variations and baseline
dependence in the otherwise (theoretically) invariant per-visibility
noise. Following the method in Mertens et al. (2020), to increase the
robustness of the estimator, the baseline profile of weights WV (|u|)
is fitted with a third-order polynomial to obtain ŴV (|u|), which is
further normalized such that 〈ŴV (|u|)〉(|u|,m) ≡ 1 after averaging over
all baselines and time-slices (m) in a given LST bin. ŴV (|u|) can be
used to obtain visibility weights per night as

W(u, v, ν) = Nvis(u, v, ν)ŴV (|u|) (3)

and different time-slices within an LST bin are then combined using
a weighted average as

Vm(u, v, ν) =
∑m

i=1 Wi(u, v, ν)Vi(u, v, ν)∑m

i=1 Wi(u, v, ν)
, (4)

where Vi(u, v, ν) are the visibilities corresponding to ith time-slice
(note that all time-slices in a given LST bin have the same phase
centre) and Vm(u, v, ν) are the visibilities corresponding to m time-
slices combined. In the previous section, we observed that these night
to night variations in the frequency uncorrelated noise are relatively
small. Therefore, Stokes I visibilities are combined using Nvis(u,
v, ν) as weights. However, we use this weight definition to define
weights for the noise visibilities VN(u, v, ν) and use inverse variance
weighting to combine the noise visibility cubes optimally.

5 FO R E G RO U N D R E M OVA L

Subtraction/isolation of the bright foreground emission is a crucial
step in 21-cm signal experiments. The intrinsic foreground emis-
sion has two dominant components viz. diffuse emission (Galactic
synchrotron and thermal emission), and extra-galactic sources (e.g.
radio galaxies, clusters and supernova remnants; Di Matteo et al.
2002; Zaldarriaga, Furlanetto & Hernquist 2004; Bernardi et al.
2009; Ghosh et al. 2012). In addition to this, the instrument imparts
spectral structure on the data called instrumental mode mixing due
to its frequency response (Datta, Bowman & Carilli 2010; Morales
et al. 2012; Trott, Wayth & Tingay 2012; Vedantham, Udaya Shankar
& Subrahmanyan 2012; Hazelton, Morales & Sullivan 2013). On the
other hand, the 21-cm signal varies rapidly with frequency. Gaussian
process regression (GPR; Rasmussen & Williams 2005) exploits this
distinct spectral behaviour of the intrinsic foregrounds, instrumental
mode mixing, and the 21-cm signal to separate them from each other.
GPR models these different components with Gaussian processes
(GPs), using different covariance functions representing the spectral
correlation functions of the different components. Readers may refer
to Mertens, Ghosh & Koopmans (2018) and Mertens et al. (2020)
for an overview of GPR and its application for foreground removal
and signal separation.

In the current analysis, we use DD-calibration to remove only two
bright sources Cas A and Cyg A unlike the DD-calibration in LOFAR
beam-formed data analysis where several directions are used in
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DD-calibration to remove compact sources in the sky model (see,
e.g. Patil et al. 2017; Gehlot et al. 2019; Mertens et al. 2020). The
reason behind choosing this strategy is the fact that individual dipoles
are less sensitive and have wider FoV than beam-formed stations ren-
dering the DD-calibration (with several directions) on AARTFAAC
data unfeasible from the standpoint of obtaining enough signal-to-
noise ratio towards every direction and very high computational
requirements due to a large number of antenna elements. Therefore,
we tune GPR to remove diffuse+compact foreground emission and
the instrumental mode mixing component. We select 42 channels
of 65.1-kHz width (totalling 2.73-MHz bandwidth) to perform the
foreground removal.

5.1 Covariance model selection

The observed data d can be modelled as the sum of foreground
components (intrinsic and mode mixing) f fg(ν) that are coherent
over the wide frequency range (intrinsic foregrounds coherent scale
>10 MHz, mode-mixing component coherent scale 1–5 MHz), the
21-cm signal f 21(ν), which is expected to decorrelate for >1-MHz
scales, and uncorrelated noise component (n), i.e.

d = f fg(ν) + f 21(ν) + n. (5)

The covariance of the above GP model (K = Kfg + K21 + Kn) is
composed of covariances of different components in the model, e.g.
foregrounds, the 21-cm signal, and noise. Selection of covariance
functions for the final covariance model is driven by data in a
Bayesian framework where the model that maximizes the evidence is
chosen. A covariance model that matches the data allows us to obtain
an estimation of the power spectrum. We use Matern class covariance
function (κMatern) (Stein 1999) to represent the covariance of different
components of the GP model:

κMatern(νp, νq) = σ 2 21−n


(n)

(√
2n|ν|
l

)n

Kn

(√
2n|ν|
l

)
, (6)

where |ν| = |νq − νp| is the absolute frequency separation between
two channels, σ 2 is the variance, and Kn is the modified Bessel
function of the second kind (not to be confused with covariance
matrices). The coherence scale is set using the ‘hyperparameter’ l.
Listed below are the covariance models for various components:

(i) Intrinsic foregrounds. The intrinsic sky emission such galac-
tic diffuse emission (synchrotron, free–free emission, etc.), extra-
galactic sources (e.g. radio galaxies and clusters, supernova rem-
nants) compose intrinsic foregrounds. These foregrounds tend to
be smooth at frequency scales �10 MHz. For intrinsic foreground
component (Kint), we set n = +∞, which yields a radial basis
function (RBF) (equivalent to a Gaussian covariance function) and set
uniform prior U(5, 100) MHz for the frequency coherence scale lint.

(ii) Instrumental mode mixing. Chromatic behaviour of an in-
strument such as Instrumental bandpass (and poly-phase filter
passband), cross-talk/mutual coupling between receivers impart less-
smooth spectral structure on to otherwise smooth intrinsic foreground
emission. Moreover, residuals due to imperfect calibration are also
chromatic in nature. These effects combined together from the mode-
mixing component. We use the Matern covariance function with n =
3/2, with a uniform prior U(0.5–20) MHz to model the mode-mixing
covariance (Kmix). Furthermore, frequency subbands in AARTFAAC
also affected by a frequency structure due to the polyphase filter bank
that repeats after every three channels (195.3 kHz, referred to as
subband ripple, hereafter). We model the covariance of this subband
ripple (KSB) using a product of a radial basis function and a cosine

covariance function. The latter is written as

κCosine(νp, νq ) = cos (|ν|/lcos) , (7)

where lcos is the length scale of the cosine function with period p =
lcos/2π. Coherence length scale of RBF covariance function is fixed
at 1.5 MHz and a uniform prior U(0.02, 0.05) MHz used for the
length scale of the cosine function.

(iii) The 21-cm signal. So far, any information about 21-cm signal
fluctuations comes from simulations, due to the lack of a detection.
The covariance shape of the signal is also unknown. However, sim-
ulations of the CD and EoR (e.g. 21CMFAST simulations; Mesinger
et al. 2011) may be used to understand covariance properties of
the expected 21-cm signal, which is expected to decorrelate at �
1-MHz scales. Mertens et al. (2018) used 21CMFAST simulations to
show that the exponential covariance function well approximates
the frequency covariance of 21-cm signal from different phases of
the CD and Reionization Epoch. Therefore, we choose exponential
covariance function to represent 21-cm signal covariance (K21) and
is obtained by setting n = 1/2 in equation (6) with σ 2

21 and l21 as
hyperparameters and a Gamma distribution prior 
(α, β) with (α, β)
= (7.2, 8.5).

(iv) The noise. We simulate noise covariance (Ksn) using the same
approach for simulating noise visibilites (using equation 1 with
weights described by equation 2).

The final covariance model (K) is a sum of all the components
described above and is given by

K = Kint + Kmix + KSB + K21 + Ksn. (8)

The final GP model consists of eight hyperparameters that are
optimized in a Bayesian manner by maximizing the evidence using
an MCMC approach. In addition to using a covariance kernel, we
use principal component analysis (PCA) in conjunction with GPR
to remove the subband ripple from the data. First, GPR is used to
remove the foregrounds. Next, PCA is run on the residuals, and the
first principal component is subtracted from the original visibilities
before the foregrounds were removed. Finally, GPR is performed
on the residuals after subtraction of the first principal component to
remove the remaining part of the subband ripple component. Since
the subband ripple is independent of direction, the PCA technique is
sufficient to mitigate the residual ripple post-GPR. Moreover, it does
not impact the 21-cm signal since the PCA component is the same
for all baselines, and hence only removes instrumental effects such
as bandpass errors. Foreground removal is performed separately on
each time-slice in both LST bins, as well as different combinations
of averaged time-slices. Table 2 lists the hyperparameters of the
GP model, their priors used for GPR foreground removal and values
(with marginalized errors) that maximize the evidence obtained using
MCMC parameter estimation. We note that frequency coherence
length scale (lint) of intrinsic foregrounds is poorly constrained and
hits the prior boundary (only lower limit is reported in Table 2) due to
limited bandwidth. The 21-cm signal length scale also hits the prior
boundary (which is expected); hence, only the lower limit is reported.

Similar to Mertens et al. (2020), a bias correction to the power-
spectrum estimation is applied during the GPR foreground removal
to obtain an unbiased estimate of covariance of residuals. This bias
depends on the dynamic range (DR) of the data. We find that the
normalized intrinsic foreground variance σ 2

int/σ
2
n (a proxy of the DR

of the data) for the two LST bins estimated during GPR is similar
to the value reported in Mertens et al. (2020), which corresponds
to the LOFAR-HBA data after subtraction of compact sources. This
is expected as the AARTFAAC data are significantly noisier than
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4166 B. K. Gehlot et al.

Table 2. List of hyperparameters, corresponding priors, and MCMC estimates (for eight nights combined data) for different covariance components in the final
GP model.

Covariance model Hyperparameters Prior MCMC estimate MCMC estimate
(LST bin 1) (LST bin 2)

Intrinsic foregrounds (Kint) ηint +∞ – –
σ 2

int/σ
2
n – 562.26+6.59

−10.61 521.06+8.51
−8.18

lint U (5, 100) >77.05 >67.81

Instrumental mode mixing (Kmix) ηmix 3/2 – –
σ 2

mix/σ
2
n – 119.54+2.46

−1.12 116.91+2.72
−0.76

lmix U (0.5, 20) 1.26+0.009
−0.006 1.26+0.012

−0.004

Subband ripple (KSB) ηRBF +∞ – –
σ 2

RBF/σ 2
n – 9.61+0.093

−0.031 9.137+0.064
−0.052

lcos U (0.02, 0.05) 0.031+0.000 003
−0.000 004 0.031+0.000 003

−0.000 005

The 21-cm signal (K21) η21 1/2 – –
σ 2

21/σ
2
n – <0.0054 <0.0068

l21 
(7.2, 8.5) >0.43 >0.52

LOFAR-HBA data and has similar DR as that of LOFAR-HBA
data post-subtraction of compact sources. In addition, the inferred
coherence length scales obtained for the intrinsic foregrounds and
mode-mixing component are >1 MHz. In contrast, the 21-cm signal
is expected to decorrelate on coherence scales less than 1 MHz,
showing that GPR optimally separates the foregrounds from the data
without affecting the faint 21-cm signal.

5.2 Impact of the ionosphere on foreground removal

Turbulence in ionospheric plasma introduces phase shifts in the
electromagnetic wave-front propagating through the ionosphere.
The phase shifts are dispersive and have a significant impact on
the data observed at low frequencies. Full-sky images produced
with AARTFAAC data allows accessing ionospheric information of
the observations (Koopmans 2010; Vedantham & Koopmans 2015,
2016). Although the DI calibration mitigates the average ionospheric
distortion along the effective LOS, the ionosphere and therefore its
distortion varies over the FoV. A linear gradient in the electron density
over the array, for a given direction on the sky, results in an apparent
shift of the position of a source in the image towards that direction.
To first order, the ionospheric structure is expected to be linear over
the ∼1.5-km patch size formed by the array. However, this gradient
varies depending on the LOS direction (Mevius et al. 2016). We used
the position shifts obtained from 1-min snapshot images as described
in Section 3.3 to investigate ionospheric variability during different
nights used in the analysis. Projecting these position shifts on a
virtual ionospheric layer provides a direct probe of the ionospheric
disturbances (see, e.g. Loi et al. 2015; Jordan et al. 2017). The
mean and variance of these source position shifts provide an initial
estimate of the ionospheric conditions during the observations. We
find the average position shifts to vary between 1.7 and 2.2 arcmin,
suggesting relatively mild ionospheric conditions. However, two
nights show relatively higher variations, but we do not observe
that results from these nights do not show any deviations from the
results corresponding to the nights with relatively mild ionospheric
conditions.

Moreover, we only use a small baseline range of 25–40λ for
the foreground removal, which corresponds to an image resolution
of the order of a degree. The average positional shifts caused by
the ionosphere are a fraction of the resolution; hence, it does not

significantly impact the GPR foreground removal. Additionally, the
overall coherent integration time for power spectrum estimation is
about 2 h, and the residuals are mainly dominated by the thermal
noise. However, ionospheric effects may start to play a role for deeper
integrations, therefore studying these effects using the available data
will itself be a subject of further study once more data are analysed.

5.3 Power spectrum estimation

After having removed all FGs, we estimate the PS from the residual
data cubes. For a given survey of co-moving volume V, the power
spectrum P (k) of a brightness temperature field T (r) is defined as

P (k) = V〈|T̃ (k)|2〉, (9)

where T̃ (k) is the discrete Fourier transform of T (r):

T (k) = 1

NxNyNν

∑
r

T (r) e2πik·r . (10)

The wavevector k has components (kx, ky, k�) and are defined as
(Morales & Hewitt 2004):

kx = 2πu

D(z)
, ky = 2πv

D(z)
, k‖ = 2πν21H0E(z)

c(1 + z)2
η, (11)

where z is the redshift of observation, ν21 is the rest-frame frequency
of the 21-cm transition, D(z) is the transverse comoving distance,
H0 is the Hubble constant and E(z) ≡

√
�m(1 + z)3 + �� (Hogg

1999), and η is the Fourier dual to frequency. The cylindrically
averaged power spectrum P(k⊥, k�) may be obtained from P (k) as

P (k⊥, k‖) = 〈P (k)〉(kx ,ky ), and k⊥ =
√

k2
x + k2

y . (12)

Similarly, the spherically averaged dimensionless power spectrum
(�2(k)) can be obtained from P (k) as

�2(k) = k3

2π2
〈P (k)〉(kx ,ky ,k‖). (13)

We use the gridded visibilities (in temperature units) before and
after foreground removal produce various power spectrum products.

6 MU LT I N I G H T R E S U LT S

Here we discuss the results after processing and foreground removal
for various time-slices in each LST bin.
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Figure 4. Cylindrically averaged Stokes I power spectra P(k⊥, k�) of combined power spectra of eight nights per LST bin before (left-hand panels) and
after (right-hand panels) foreground removal with GPR. Top and bottom panels correspond to LST:23.5 and LST:23.75 h, respectively. The black dashed line
corresponds to the instrumental horizon, and the purple dashed line corresponds to horizon buffer accounting for the window function.

6.1 Power spectra results

Cylindrically averaged power spectrum in (k⊥, k�) space is the most
commonly used statistical tool to study the challenges associated
with foreground contamination and systematic biases (Bowman,
Morales & Hewitt 2009; Vedantham et al. 2012). The wave mode k⊥
represents the scale of the brightness temperature fluctuations in the
plane perpendicular to the LOS and the wave mode k� represents the
scale of the fluctuations along the LOS. Foregrounds, the ionospheric
effects and systematic biases that are smooth in frequency reside
within a region often called ‘the wedge’.

Fig. 4 shows the cylindrically averaged Stokes I power spectra
P(k⊥, k�) of eight time-slices combined datacubes (for the two LST
bins) before and after foreground removal. The structure around
k‖ ∼ 2.0 h cMpc−1 in power spectra before foreground removal is
a leftover of the subband ripple. We observe that the foreground
emission that originally dominated the lowest k� modes in Stokes I
power spectra, as well as the 195-kHz ripple, are effectively removed
by GPR foreground removal. We still observe a faint structure
between 1.0 � k‖ � 1.5 h cMpc−1 and k⊥ � 0.026 h cMpc−1. Fig. 5
shows averaged P(k⊥, k�) (along k� and k� axes, respectively) and
spherically averaged power spectra �2(k) for individual time-slices
in the two LST bins. Power spectra for different time-slices in a
given LST bin are similar on approximately all k modes present in
the data. Power spectra before and after foreground removal also
have similar noise floors. The LST:23.75-h bin has one to two nights

with slightly higher noise floor, which is probably due to relatively
worse data quality or calibration compared to the rest. The faint
structure observed in combined power spectra in Fig. 4 is at or below
the noise level of individual time-slices (or possibly absent in some).
However, it shows up in final combined data. Furthermore, it appears
to be transient and does not correlate from night to night (discussed
later). The structure is possibly faint RFI that remains undetected by
the RFI mitigation strategy we have utilized.

Fig. 6 shows the ratio between the residual Stokes I power
spectrum after foreground removal (shown in the right-hand panels
of Fig. 4) and the corresponding noise power spectrum for the two
LST bins. We observe that the ratio is approximately flat except for
the faint RFI structure, as mentioned previously. For the LST:23.5-h
bin, the ratio has a median of ∼1.01 and a MAD of ∼0.08. For the
LST:23.75-h bin, the median ∼ 1.00 and MAD ∼ 0.08. This shows
that Stokes I residuals are almost entirely noise dominated for both
LST bins.

6.2 Cross-coherence between nights

Cross-coherence (or normalized cross-spectra) is a useful tool
to understand correlations between different data sets, i.e. time-
slices/LSTs in our case. We use cross-coherence further to study the
correlation between residual data for different time-slices to better
understand about residual foreground emission and other structures
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4168 B. K. Gehlot et al.

Figure 5. Stokes I power spectra before (red) and after (blue) foreground removal of different time-slices used in the analyses. The left-hand panels show
P(k⊥), which is the average of P(k⊥, k�) along the k� axis. The middle panels show P(k�), which is the average of P(k⊥, k�) along the k⊥ axis. The right-hand
panels show the spherically averaged power spectra. Different colour shades represent different time-slices.

Figure 6. The ratio of residual Stokes I power spectrum after foreground removal and the estimated noise power spectrum. The left- and right-hand panels
correspond to LST:23.5 and LST:23.75 h, respectively. The black dashed line corresponds to the instrumental horizon, and the purple dashed line corresponds
to horizon buffer accounting for the window function.

in cylindrical power spectra. We use the definition in Mertens et al.
(2020) to define cross-coherence between two data sets in (k⊥, k�)
space:

Ci,j (k⊥, k‖) = 〈|T̃ ∗
i (k)T̃ ∗

j (k)|2〉
〈|T̃i(k)|2〉〈|T̃j (k)|2〉 , (14)

where T̃i(k) is the Stokes I temperature cube in k space. The value
of C(k⊥, k�) can vary between 0 and 1, representing no-correlation
or maximum correlation, respectively.

We use residual Stokes I data to compute cross-coherence between
different pairs of time-slices corresponding to different nights within
an LST bin. We calculate the mean cross-coherence in three regions

(as in Mertens et al. 2020):

(i) the foreground region (k� < 0.6),
(ii) the subband ripple region (1.7 < k� < 2.36),
(iii) The ‘EoR window’ (0.6 < k‖ < 1.7&k‖ > 2.3).

Fig. 7 shows the mean cross-coherence between different pairs
of nights for a given LST bin for these three regions of (k⊥, k�)
space. Foreground region shows a mean coherence of ∼0.2–0.3
for the two LST bins. It is possible that the observed correlation
originates due to the sky emission outside the FoV (∼120◦) used in
the analysis, and remained unsubtracted even after GPR foreground
removal. The subband ripple region, on the other hand, shows a low
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Figure 7. Mean cross-coherence of different pairs of time-slices in various regions (different columns) of (k⊥, k�) space. The three columns (left- to right-hand
side) correspond to the foreground, subband ripple, and EoR window regions, respectively. The eight different time-slices in a given LST bin are numbered from
1 to 8. Top and bottom panels correspond to LST:23.5- and LST:23.75-h bins, respectively.

coherence Ci, j ∼ 0.01–0.02, suggesting that the ripple is mitigated
reasonably well with the strategy we have employed. However,
it may become more severe as we integrate more data in future
analyses. The coherence Ci, j < 0.01 of most pairs in the EoR window;
however, time-slice pairs (3,4), (3,5), and (4,5) show slightly higher
coherence (Ci, j ∼ 0.01). These time-slices are affected more by
the faint RFI structure that also affects the coherence in the EoR
window.

To understand the RFI structure better, we also compute the mean
cross-coherence in the region 1.0 < k‖ < 1.5 and k⊥ < 0.026, which
was affected the most by the RFI structure. For this case, we compute
the coherence between all time-slices across the two LST bins. Fig. 8
shows the corner plot of the coherence of the RFI-affected region of
(k⊥, k�) space. We find that combinations of time-slice pairs between
(5–10) show relatively higher coherence (Ci, j ∼ 0.02–0.04) and these
nights were observed over 12 d. Note that time-slice pairs (2i −
1, 2i) belong to same ith observing night (except (3,4)). Any sky
emission would decorrelate over short periods (e.g. between the two
LST bins), whereas an RFI source on the ground would still be
correlated over longer times. This provides additional evidence that
the structure is transient and persisted over a span of two to three
weeks, possibly some temporary source of local RFI. Other pairs
show smaller correlations, similar to correlation levels in the EoR
window.

6.3 Power spectra of combined time-slices

We used the procedure described in Section 4.1 to combine different
nights/time-slices in a given LST bin. The GPR foreground removal
is performed on intermediate data sets obtained after adding time-
slice on by one. Fig. 9 shows the spectral variance, cylindrical power
spectra averaged over all k⊥, and spherically averaged power spectra
of residual Stokes I data in intermediate combined data sets. As
expected, variance and power spectra scale down in amplitude with
integration time as we add more data to a given LST bin. Additionally,
power spectra appear to be dominated by noise and devoid of
any obvious, coherent structures that may emerge after integrating
more time-slices. There are several frequency channels with slightly
higher covariance, which is probably due to slightly higher levels of
RFI flagging than the rest. Two channels on the higher frequency
end show relatively lower variance, which cannot be explained
by higher RFI fraction. We are investigating the cause of the low
variance of these two channels, and how it impacts the analysis and
results.

6.4 Noise bias-corrected power spectrum

We compute the spherically averaged dimensionless Stokes I power
spectrum (�2(k)) of the residuals after GPR foreground removal for
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Figure 8. Mean cross-coherence of different pairs of time-slices in the region
in (k⊥, k�) space surrounding the RFI structure. Odd-numbered time-slices
correspond to the LST:23.5-h bin and even-numbered time-slices correspond
to the LST:23.75-h bin (respectively). Time-slice pairs (2i − 1, 2i) where i ∈
[1, 8] belong to the same night except pair (3,4). Time-slices are arranged in
the order of increasing observing date.

the combined (eight time-slices) data in the two LST bins. We use the
corresponding simulated noise cubes VN(u, v, ν) to obtain the noise
power spectrum that is used to correct for the noise bias. The noise
bias-corrected power spectrum (and associated uncertainty) can be
written as

�2
21 = �2

I − �2
N, and

�2
21,err =

√
�4

I ,err + �4
N,err. (15)

The uncertainty value �2
21,err on the power spectrum �2

21 includes
the sample variance (due to the number of individual uv-cells
and effective FoV) and a contribution from the uncertainty on the
hyperparameters of the GP model used in the analysis. However,
the inferred values of most hyperparameters of the GP model are
well constrained with very small uncertainty levels (�1 per cent as
shown in Table 2), except for the 21-cm signal, suggesting that the
GPR error contribution to the final uncertainty on the power spectrum
can be ignored. Similar findings have been reported in the application
of GPR on LOFAR-HBA data (Mertens et al. 2020) as well as on
HERA data (Ghosh et al. 2020).

We also combine �2
21 for the two LST bins incoherently using

inverse variance weighting to obtain incoherently averaged power
spectrum. These noise bias-corrected power spectra for the two LST
bins, and the incoherently averaged power spectrum are shown in
Fig. 10. After 2 h (8 × 15 min) of integration per LST bin, we
obtain a 2σ upper limit of �2

21 < (8139 mK)2 at k = 0.144 h cMpc−1

for LST:23.5-h bin, and �2
21 < (8549 mK)2 at k = 0.144 h cMpc−1

for LST:23.75-h bin, respectively, in the redshift range z = 17.9–
18.6. The incoherently averaged power spectrum yields �2

21 <

(7388 mK)2 at k = 0.144 h cMpc−1. We observe that the upper limit
scales down by a factor of 1.1, compared to the expected factor of

√
2. We also observed that the power spectra are dominated by noise

at all k-scales probed by ACE.

7 SU M M A RY A N D F U T U R E WO R K

In this work, we described the ACE program motivated by the
reported detection of the deep absorption feature in sky-averaged
spectrum of the 21-cm signal during CD by the EDGES collaboration
(Bowman et al. 2018). Main results of the paper are summarized as
follows:

(i) We demonstrate the successful end-to-end application of the
ACE data-processing pipeline (which is adapted from LOFAR-EoR
data processing pipeline) to ACE data, starting from pre-processing
and calibration to power spectrum estimation after foreground
removal.

(ii) We observe that the ratio of noise estimates from the channel
and time-differenced Stokes V visibilities varies between 1.0 and 1.2
for most time-slices in the two LST bins. The mean ratio per LST
bin shows weak baseline dependence, which is possibly caused by
residual Stokes I to V leakage. We use channel differenced Stokes V
noise as an estimator of frequency uncorrelated noise and later for
noise bias correction.

(iii) Residual power spectra reach the expected noise level to
within 1 per cent. Cylindrically averaged Stokes I power spectra
exhibit a faint structure between 0.1 < k� < 1.5 and k⊥ <

0.026. This structure appears to be transient (as shown by the
cross-coherence test) and affects certain baselines. We suspect this
structure is possibly caused by faint RFI that remained undetected
by flagging strategy we have employed in the analysis. Combining
multiple nights decreases the power as expected, and corresponding
power spectra of combined data do not show any obvious coherent
emission.

(iv) Even though the noise bias-corrected power spectrum is still
dominated by noise, it is not regarded as a detection because the
power levels within 2σ are two to three orders of magnitude higher
than the expected signal and the power still decreases by adding
more data. We thus obtain a 2σ upper limit of �2

21 < (8139 mK)2

(or equivalently (8.14 K)2) and �2
21 < (8549 mK)2 (or equivalently

(8.55 K)2) at k = 0.144 h cMpc−1 for LST:23.5-h and LST:23.75-h
bins, respectively. The incoherently averaged power spectrum yields
�2

21 < (7388 mK)2 (or equivalently (7.39 K)2) at the same k value.
These limits correspond to the redshift range z = 17.9–18.6.

Although the upper limits are still at least two orders of magnitude
higher than signals predicted by simulations, adding more data in
future will allow us to improve these limits and possibly exclude or
constrain various astrophysical models that may explain the 21-cm
signal from the CD.

7.1 Future outlook and forecast

In this work, we demonstrated the successful application of the new
ACE data-processing pipeline and effectively reaching the expected
noise levels. However, most of the steps used in the analysis are still
fairly rudimentary and require improvements. In the future, we plan
to improve the processing and analysis by improving several aspects
of the ACE data-processing pipeline as follows:

(i) Improving DI calibration of the data by including a detailed
sky-model (compact sources and large-scale diffuse emission). It will
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Figure 9. Various statistics for residual Stokes I of intermediate data sets with the increasing number of time-slice integration. From the left- to right-hand side:
variance, cylindrical power spectrum averaged over all k⊥ modes, and spherically averaged power spectrum. Top and bottom panels correspond to LST:23.5-
and LST:23.75-h bins. Different colours correspond to the number of nights averaged (in increasing order from yellow to purple) in order of observing dates.
The dashed grey line shows the thermal noise corresponding to eight time-slices combined in a single LST bin. Note that spherically averaged power spherical
power spectra shown here are not corrected for the noise bias.

Figure 10. Noise bias-corrected power spectra �2
21 for the two LST bins

(‘crosses’ correspond to the LST:23.5-h bin and ‘circles’ correspond to
the LST:23.5-h bin). The incoherently averaged power spectrum is shown
using diamond markers. The dashed line shows the error on the noise power
spectrum, which corresponds to the theoretically achievable 2σ upper limit
in 2 h of coherent averaging. The x-error bars represent the range of k bins
and y-error bars represent 2σ errors on the power spectra.

also allow a better direction subtraction/peeling of bright sources,
Cas A and Cyg A, to mitigate residuals post-subtraction.

(ii) The subband ripple is a dominant systematic in ACE data.
Currently, we use a covariance model in GPR (along with PCA) to

mitigate it, which is suboptimal. The subband ripple is a multiplica-
tive effect as it is caused by the bandpass shape of the polyphase
filterbank. We are exploring methods and strategies to mitigate the
subband ripple during the calibration step rather than during the
post-imaging steps.

(iii) The RFI removal strategy used by AOFLAGGER in the current
analysis is based on LOFAR-LBA RFI mitigation strategy, which
may be suboptimal for noisier ACE data. We plan to improve the
current RFI-mitigation strategy to work on ACE data optimally. We
also plan to use a near-field imaging technique to pinpoint whether
the cause of the faint RFI is due to sources on the ground. In addition
to this, we plan to alternatively explore RFI mitigation techniques
that use polarization information and directional statistics of RFI for
RFI detection and removal (Yatawatta 2020).

(iv) Our current analysis is based on coherently averaging data in
a given LST range. In the future, we plan to widen the LST range
using map-making methods based on spherical harmonics techniques
to achieve a lower noise floor.

(v) Low-frequency wide-field observations are more prone to
effects from polarization leakage and the ionosphere. We plan to
study the effect of polarization leakage and the ionosphere in ACE
observations and mitigate them if required.

Incorporating the improvements as mentioned above to the data
processing pipeline allows us to decrease the power spectrum levels
further. Assuming that foregrounds and systematics are optimally
mitigated/removed, a power spectrum sensitivity of �2

21 < (1 K)2

may be reached in 150 h of integration and even lower levels with
the 500 h of data in hand. This sub-Kelvin sensitivity is already at
the level of some predictions of the 21-cm fluctuations during the
CD (Fialkov et al. 2018; Fialkov & Barkana 2019).
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