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ABSTRACT
The Cassini and Juno probes have revealed large coherent cyclonic vortices in the polar regions of Saturn and Jupiter, a dramatic
contrast from the east–west banded jet structure seen at lower latitudes. Debate has centred on whether the jets are shallow, or
extend to greater depths in the planetary envelope. Recent experiments and observations have demonstrated the relevance of deep
convection models to a successful explanation of jet structure, and cyclonic coherent vortices away from the polar regions have
been simulated recently including an additional stratified shallow layer. Here we present new convective models able to produce
long-lived polar vortices. Using simulation parameters relevant for giant planet atmospheres we find flow regimes of geostrophic
turbulence (GT) in agreement with rotating convection theory. The formation of large-scale coherent structures occurs via 3D
upscale energy transfers. Our simulations generate polar characteristics qualitatively similar to those seen by Juno and Cassini:
They match the structure of cyclonic vortices seen on Jupiter; or can account for the existence of a strong polar vortex extending
downwards to lower latitudes with a marked spiral morphology, and the hexagonal pattern seen on Saturn. Our findings indicate
that these vortices can be generated deep in the planetary interior. A transition differentiating these two polar flows regimes is
described, interpreted in terms of force balances and compared with shallow atmospheric models characterizing polar vortex
dynamics in giant planets. In addition, heat transport properties are investigated, confirming recent scaling laws obtained with
reduced models of GT.
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1 IN T RO D U C T I O N

Zonal (east/west directed) wind circulations are ubiquitous in gas
giant planets. Jupiter and Saturn have strong prograde (eastward)
equatorial jets that extend into the deep interior molecular enve-
lope (Guillot et al. 2018; Kaspi et al. 2018). In addition, coherent
vortices and related structures are found to be very robust close to
polar latitudes (Adriani et al. 2018; Fletcher et al. 2018). Current
modelling of gas giant flow dynamics involves two different ap-
proaches (Showman et al. 2018): a shallow-layer scenario in which
baroclinic turbulence is feeding the jets in a thin atmospherical
layer (Liu & Schneider 2010; Morales-Juberı́as et al. 2015; Rostami,
Zeitlin & Spiga 2017); or a deep scenario (Busse 1976; Heimpel,
Aurnou & Wicht 2005; Heimpel & Aurnou 2007; Heimpel, Gastine &
Wicht 2015) in which the jets form quasigeotrophic columns extend-
ing down into the molecular envelope. Which approach is best is still
under debate but recent laboratory experiments (Cabanes et al. 2017),
reproducing jet properties at high latitudes in the presence of viscous
damping, recent observations of the deep extension of the Jovian jet
streams (Kaspi et al. 2018), and analysis of Cassini data from two
different pressure levels within Saturn’s polar winds (Studwell et al.
2018) all favour the deep approach.

3D deep models of the molecular envelope in a rotating spherical
geometry (Heimpel et al. 2005; Heimpel & Aurnou 2007) have

� E-mail: f.garcia-gonzalez@hzdr.de

provided a strong background for understanding the mechanisms
of jet formation, in which geostrophic turbulence (GT) is a key
issue (Rhines 1975). The deep convection models of Heimpel &
Aurnou (2007) interpreted the transition between Jupiter and Saturn’s
flow regimes by considering different spherical shell widths, pointing
out the relevance of the tangent cylinder (a coaxial cylinder touching
the inner boundary at the equator) on the equatorial jet width.
The existence of such an internal boundary for zonal jets has
been one of the main concerns for deep modelling (Showman
et al. 2018), but recent gravity field measurements by the Juno
mission (Guillot et al. 2018) have confirmed that zonal jets extend
deeper into Jupiter’s atmosphere. The current explanation for this
internal boundary involves the existence of magnetic field drag acting
on the flow (Liu, Goldreich & Stevenson 2008). Measurements of
the electrical conductivity in the molecular envelope were used to
constrain the extent of zonal jets, giving a lower boundary for Jupiter
and Saturn estimated to be 0.96R and 0.86R (R being the planetary
radius), respectively (Liu et al. 2008), which match quite well with
those obtained with recent gravity measurements (Guillot et al. 2018).

Polar coherent vortices in Jupiter were discovered very re-
cently (Adriani et al. 2018) and thus much of the modelling of
polar vortices to date has focused on Saturn. Observations have
revealed a seasonal influence on the morphology of polar flow struc-
ture (Sayanagi et al. 2017; Fletcher et al. 2018) involving a strong
single polar vortex with associated spiralling arms. A hexagonal
structure is present near 75◦ north latitude at stratospherical levels,
which was believed to be the result of a Rossby wave trapped in the
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troposphere (Godfrey 1988; Fletcher et al. 2018). Existing models
of Saturn’s hexagonal pattern and polar vortices assume shallow
jet structures (Morales-Juberı́as et al. 2015; Rostami et al. 2017)
and can explain key features of the hexagonal pattern such as its
latitudinal location, almost steady azimuthal drift and the absence
of large vortices close to the structure. However, there is debate
about whether this hexagonal jet has a deep origin, as the long term
observations from the Cassini mission suggest (Baines et al. 2009;
Sánchez-Lavega et al. 2014). In the case of Jupiter, the first close-up
images of north pole revealed the coexistence of cyclonic vortices,
oval-shaped structures, filamentary regions and thin linear features
elongated more than 30◦ in the azimuthal direction, concentrated
from 60◦ latitude polewards (Orton et al. 2017). Subsequent Juno
data analysis confirmed the persistence of these flow structures: Eight
vortices surround the main cyclonic north polar vortex, whereas only
five vortices are found surrounding the main cyclonic south polar
vortex (Adriani et al. 2018).

Direct numerical simulations (DNS) of shallow atmospheric mod-
els (Scott 2011; O’Neill, Emanuel & Flierl 2015, 2016) have been
used to understand polar atmospheric dynamics of giant planets (see
the comprehensive review of Sayanagi et al. 2018 in the case of
Saturn), especially the case of polar cyclones. The latter studies
consider a source term which accounts for small-scale features
produced by moist convective storms (O’Neill et al. 2015, 2016)
and drives turbulence. The idea behind this approach is that cyclonic
vortices form as a result of poleward flux of cyclonic vorticity
caused by the β-drift, i.e. the advection of the background potential
vorticity by the storm circulation. The moist baroclinic forcing is then
responsible for the generation of a barotropic vortex aligned in the
vertical direction (O’Neill et al. 2015). This study first demonstrated
that the vortex features of the flow, i.e. the appearance (or not)
of a single vortex centred at the poles, is controlled by the ratio
of two characteristic sizes, namely, that of the small vortices and
the planetary radius. The recent study by Brueshaber, Sayanagi &
Dowling (2019) provides further support for the mechanism that
distinguishes the specific characteristics of polar dynamics occurring
in Jupiter (a ring of cyclones surrounding the poles) and Saturn
(single and strong cyclone) studied in O’Neill et al. (2015, 2016).
The key parameter that controls the transition between the latter
scenarios is the Burger number, defined as the ratio between the
Rossby deformation radius and the planetary radius (Brueshaber
et al. 2019). As the Burger number is decreased, a transition from
Saturn-like to Jupiter-like polar cyclones is observed.

Rotating Rayleigh–Bénard convection between plane boundaries
constitutes a reasonable approximation for studying polar dynamics
in gas giant atmospheres as the convective region is very thin when
compared to the planetary radius. Within this canonical framework,
much theoretical and numerical work has recently been done
by Julien et al. (2012a,b) and Rubio et al. (2014) to investigate the
regime of GT in terms of a 3D reduced model including boundary ef-
fects. The latter studies identified the physical mechanisms involved
in the formation of large-scale coherent structures surrounding the
rotation axis as a result of a fully 3D convective forcing (Rubio et al.
2014). The associated efficient mixing within the fluid reduces the
heat transport and determines its scaling law (Julien et al. 2012b).
According to Julien et al. (2012a), the realization of the GT regime, in
which the flow is weakly dependent on the axial coordinate, depends
strongly on the input parameters, particularly the Prandtl number
associated with the thermal properties of the fluid. For smaller Prandtl
numbers, the GT regime is favoured, in agreement with our results.

The formation of these coherent structures at polar latitudes in
giant planets remains to be reproduced within the context of deep

convection modelling. This is the focus of this study, based on
3D DNS of Boussinesq thermal convection in rotating spherical
shells without any symmetry assumption. In Section 2, the model
equations, numerical method, and the physical parameters of the
models are described. Section 3 constitutes the main part of the
study. It includes the description of the flow patterns and their time-
averaged properties, the investigation of a condensate process and
the transition between polar regimes, the study of the force balance
and the thermal properties, and the characterization of a Saturn-like
hexagonal pattern. Finally, a summary of the main results and future
investigations is provided in Section 4. In this closing section, we
also include a discussion of the validity of the approximations and
approaches taken, when applying our findings to the giant planets.

2 TH E MO D EL

2.1 Governing equations and numerical method

A homogeneous fluid with density ρ and constant physical properties
– thermal diffusivity κ , thermal expansion coefficient α, and dynamic
viscosity μ – is considered, to study thermal convection in a rotating
spherical shell. The latter is defined by the inner and outer radius ri

and ro, and a constant angular velocity �= �k about the vertical axis.
Gravity acts in the radial direction g = −γ r (γ is constant and r the
position vector) and the relation ρ = ρ0(1 − α(T − T0)) is assumed
(the Boussinesq approximation), but just in the gravitational term.
For the other terms appearing in the equations, a reference state (ρ0,
T0) is considered (see e.g. Pedlosky 1979; Chandrasekhar 1981).

At the boundaries, which are perfectly conducting, a temperature
difference is imposed 	T = Ti − To, T(ri) = Ti and T(ro) = To. Stress-
free boundary conditions for the velocity field are appropriate for
planetary atmospheres (Christensen 2002; Heimpel et al. 2005). The
mass, momentum, and energy equations are written in the rotating
frame of reference as in Simitev & Busse (2003) and expressed in
terms of velocity (v) and temperature (
 = T − Tc) perturbations
of the basic conductive state v = 0 and Tc(r) = T0 + ηd	T(1 −
η)−2r−1, η = ri/ro being the aspect ratio, d = ro − ri being the gap
width, and T0 = Ti − 	T(1 − η)−1 being a reference temperature.
With units d for the distance, ν2/γαd4 for the temperature, and d2/ν
for the time, the governing equations read

∇ · v = 0, (1)

∂tv + v · ∇v + 2Ta1/2k × v = −∇p∗ + ∇2v + 
r, (2)

Pr (∂t
 + v · ∇
) = ∇2
 + Raη(1 − η)−2r−3r · v, (3)

where p∗ is a dimensionless scalar containing all the potential forces.
Centrifugal effects are neglected by assuming �2/γ � 1. This is usual
for the case of spherical shell convection (Schubert & Zhang 2000).
Four non-dimensional parameters – the aspect ratio η, the Rayleigh
Ra, Prandtl Pr, and Taylor Ta numbers – summarize the physics of the
problem. The Prandtl number characterizes the relative importance
of viscous (momentum) diffusivity to thermal diffusivity, the Taylor
number is the ratio between rotational and viscous forces, and the
Rayleigh number Ra is associated with buoyancy forces and thermal
forcing. The parameters are defined by

η = ri

ro
, Ra = γα	T d4

κν
, Ta1/2 = �d2

ν
, Pr = ν

κ
. (4)

To solve the model equations (1)–(3) with the prescribed bound-
ary conditions, a pseudo-spectral method (Tilgner 1999) is used
(see Garcia et al. 2010 for a detailed description). In the radial
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direction, a collocation method on a Gauss–Lobatto mesh (Sánchez,
Garcia & Net 2016) is considered and spherical harmonics are
employed in the angular coordinates. In the Boussinesq approxi-
mation, the toroidal/poloidal decomposition for the velocity field
can be used (Chandrasekhar 1981). The code is parallelized in
the spectral and in the physical space using OpenMP directives.
Optimized libraries (FFTW3; Frigo & Johnson 2005) for the fast
Fourier transforms FFTs in longitude and matrix–matrix products
(dgemm GOTO; Goto & van de Geijn 2008) for the Legendre
transforms in latitude are implemented for the computation of the
non-linear terms. Aliasing is properly removed in the pseudo-spectral
transform method (Orszag 1970).

High-order implicit-explicit backward differentiation formulas
(IMEX–BDF; Garcia et al. 2010) are used for the time integration
of the discretized equations. The non-linear terms are considered
explicitly, to avoid solving non-linear equations at each time-step.
However, the Coriolis term is treated fully implicitly and this allows
a time integration with larger time-steps (Garcia et al. 2010).

2.2 Model parameters

Two different models of Boussinesq thermal convection are con-
sidered to explore the transition from Saturn-like (Model 1) to
Jupiter-like (Model 2) polar dynamics. In these two models, the
parameters η, Ta, and Pr are the same. They are similar to previous
numerical models of gas giant atmospheres (Heimpel et al. 2005,
2015; Heimpel & Aurnou 2007) focusing on the understanding of
jet dynamics away from the polar regions. We select an aspect ratio
η = ri/ro = 0.9 which roughly falls between the values estimated
for Jupiter and Saturn (Liu et al. 2008). We set a sufficiently large
Taylor number, Ta = 1011 – as used in Heimpel et al. (2005, 2015)
and Heimpel & Aurnou (2007) – and a Prandtl number Pr = 10−2,
which is a reasonable regime for gas giant atmospheres (French
et al. 2012) due the uncertainty in determining Pr. A key difference
between the current polar models and those of Heimpel et al. (2005,
2015) and Heimpel & Aurnou (2007) devoted to lower latitudes, is
the selection of a small Prandtl number, which strongly influences
the type of convection (Simitev & Busse 2003; Kaplan et al. 2017;
Garcia, Chambers & Watts 2019). In our case, convection directly
onsets at high latitudes (Garcia, Chambers & Watts 2018), whereas
previous deep models require a strong non-linear regime to develop
polar convection.

With an aspect ratio of η = 0.9, Ta = 1011, and Pr = 10−2,
convective onset takes the form of non-axisymmetric polar modes
confined to large latitudes (Garcia, Sánchez & Net 2008; Garcia
et al. 2018) at a critical Rayleigh number Rac = 4.65 × 104. The
main difference between our two models comes from the Rayleigh
number. Model 1 (M1) corresponds to Ra = 5 × 105 (Ra/Rac =
10.8), whereas Model 2 (M2) corresponds to a slightly larger Ra =
8 × 105 (Ra/Rac = 17.2). For low Prandtl and large Taylor numbers,
even a small degree of supercriticallity provides strong turbulent
flows (Kaplan et al. 2017), characterized by a predominance of
advection, rather than diffusion, in the temperature transport.

The DNS presented here have spatial resolutions very similar to
those used in previous deep convection models for the same range of
parameters (e.g. Heimpel et al. 2005, 2015). Specifically, we consider
spherical harmonics up to order and degree Lmax = 500 and a radial
mesh with nr = 60 points. In contrast to previous studies, however,
our numerical simulations do not rely on the use of azimuthal
symmetry constraints, nor on imposed hyperviscosity, allowing us
to capture low wavenumber coherent dynamics in the flow. These
are otherwise filtered if m = md > six-fold symmetry constraints

Table 1. Input and output parameters for the different models: the Prandtl Pr,
Taylor Ta, Rayleigh Ra, and modified Rayleigh Ra∗ = RaTa−1Pr−1 numbers.

Model 1 2
Pr 0.01 0.01
Ta 1011 1011

Ra 5 × 105 8 × 105

Ra/Rac 10.8 17.2
Ra∗ 5 × 10−3 8 × 10−3

Re 4.3 × 103 6.3 × 103

Ro 1.4 × 10−2 2.0 × 10−2

Pe 4.3 × 101 6.3 × 101

Notes. The Reynolds Re = √
2K , Rossby Ro = Re/Ta1/2, and Péclet Pe =

RePr numbers are based on the volume- and time-averaged kinetic energy K .
The time averages cover 1500 and 1300 planetary rotations for Models 1 and
2, respectively.

are imposed. However, the system of equations has in return
dimension n = (3L2

max + 6Lmax + 1)(Nr − 1) ≈ 4.4 × 107, making
the numerical integration of Models 1 and 2 very challenging.

Both models are evolved for around one viscous time unit (1.5
for M1 and 1.3 for M2), including a large initial transient, with a
time-step of 	t = 2 × 10−7. The initial condition for integrating
Model 1 corresponds to a transient flow at the same Pr = 10−2 and
Ta = 1011 but with Ra = 2.32 × 105. The latter simulation has
been initialized from a model at Pr = 3 × 10−3, Ta = 107, and
Ra = 2 × 103 (Ra/Rac = 6.6) obtained from the chaotic polar
flows described in Garcia et al. (2019). Model M2, with larger Ra,
is obtained from M1. This is a common strategy in deep convection
models (Christensen 2002; Heimpel et al. 2005; Garcia, Sánchez &
Net 2014). Because of the large dimension of the system (which has
been integrated without any symmetry assumption) and the small
time-step required to obtain the numerical simulations, only two
simulations are presented. These are however some of the highest res-
olution convective models, in rotating thin shells, performed to date.

The two models exhibit features of turbulent flows that occur in
gas giant atmospheres. The values shown in Table 1 of the time
and volume averaged Rossby Ro (measuring the balance between
Coriolis and inertial forces) or Reynolds Re (a measure of turbulent
flows) numbers are in agreement with those given in previous studies
on gas giant atmospheres, for instance, those based on the peak zonal
flow velocities, given in table 2 of Heimpel & Aurnou (2007). The
modified Rayleigh number Ra∗ = RaTa−1Pr−1 ≥ 0.005, measuring
the ratio of buoyancy to Coriolis forces, matches reasonably as well.
In addition, the Péclet number (measuring the ratio of temperature
transport by advection and diffusion) is larger than 10 (see Kaplan
et al. 2017), a value that marked the transition between laminar and
turbulent flows at low Pr and large Ta.

3 D EEP POLAR FLOW DYNAMI CS

In this section, we explore and analyse in detail the new regime
of polar convection exhibited by our two models, M1 and M2,
focusing on its relation to the polar dynamics observed on Saturn
and Jupiter. First, we provide a description of the main characteristics
of the flow patterns, followed by an analysis of time-averaged flow
latitude profiles. Secondly, we identify a turbulent energy transfer
mechanism by means of kinetic energy spectra, which, in turn,
are compared with results from the Cassini mission. Thirdly, the
appearance of different coherent polar structures is interpreted within
recent theoretical results of 3D rotating convection, and related to
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Figure 1. Velocity patterns of numerical models. Snapshots of azimuthal velocity vϕ at the outer surface r = ro (first row), and of radial velocity at r = ri +
0.5d (second row), both viewed from a latitude of 45◦. The left-hand panels are for Model 1 and the right-hand panels are for Model 2. Positive (negative) values
are marked with red (blue). Parallel circles at latitudes −80◦, −70◦ and 70◦, 80◦ are marked with dashed lines.

shallow water models of Saturn and Jupiter. We then analyse the
force balance and the properties of thermal transport. This section
closes with the description of a Saturn-like hexagonal flow pattern,
surrounding the north pole, observed in M1.

3.1 Description of flow patterns

Fig. 1 displays snapshots of the contour plots of the azimuthal
velocity vϕ at the outer sphere and the radial velocity vr at the sphere
with radius r = (ri + ro)/2 (i.e. in the middle of the shell) for both
models. The spheres are viewed from 45◦ latitude, and the 70◦ and 80◦

parallels surrounding the north pole are marked with a dashed line.
The flow is strongly axisymmetric for both models (see the first row of
Fig. 1) as is typical in stress-free convection models (Aurnou & Olson
2001; Christensen 2002), with a noticeable wide positive (prograde)
equatorial band, which is more evident for M2. This is typical for
flows with Ra∗ � 1 (e.g. Aurnou, Heimpel & Wicht 2007) in which

the Coriolis forces dominate over buoyancy effects. In this case,
Reynolds stresses associated with columnar convection are feeding
the zonal flow at mid and low latitudes (Christensen 2002). In contrast
to the latter studies, strong prograde zonal flows are produced at high
latitudes in Models M1 and M2.

The main difference between the models is in the latitudinal extent
of these high-latitude zonal circulations and their topology, which for
M1 has a noticeable m = 1 azimuthal wavenumber component. The
existence of small-scale vortices associated with turbulent flows is
best seen in the contour plots of the radial velocity (second row of
Fig. 1). In this case, very small scale flow structures at high latitudes
coexist with large-scale cells elongated in the axial direction near
the equator. As evidenced by the figure, the radial vortices within
the 70◦ parallel are stronger in the case of M2. The geostrophic
character of the flows, i.e. the tendency of the flow to align with
the rotation axis, is reflected in Fig. 2 on the meridional sections of
vϕ and vr. The zonal circulation of polar jets extends down to the
inner boundary and is almost independent of the z-coordinate. This
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Figure 2. Velocity patterns of numerical models. Snapshots of azimuthal
velocity vϕ (first row) and of radial velocity (second row) on a meridional
section for Models 1 (left-hand panel) and 2 (right-hand panels). Positive
(negative) values are marked with red (blue).

is fulfilled for the small as well as the large-scale radial vortices.
Notice how these small-scale cells are only allowed to grow outside
the tangent cylinder.

Fig. 3 shows the radial vorticity patterns on the outer sphere for M1
and M2. This figure displays a transition, in agreement with shallow
layer models O’Neill et al. (2015, 2016) and Brueshaber et al. (2019),
in which a single polar vortex (M1) is divided into smaller vortices
(M2) as the thermal forcing (Ra) is increased. The flow structure of
M1, seen in the first row of Fig. 3, reveals key features similar to
those that appear in Saturn’s atmosphere (Cassini mission; Sayanagi
et al. 2017). There is a single strong cyclonic vortex almost centred
at both poles and with spiralling morphology. The polar vortices are

surrounded by circular belts containing small vortices far away from
±70◦ latitude. These two strong cyclones are present throughout the
simulation (at least one viscous time unit) in agreement with the
observations (Fletcher et al. 2015).

In contrast to M1, the DNS corresponding to M2 (second row of
Fig. 3) has long-lived polar structures resembling the polar features
observed in Jupiter’s atmosphere (Adriani et al. 2018). It reveals
the prevalence of several strong cyclonic coherent vortices close
to the north as well as south pole, some of them with an oval
shape. Azimuthally elongated structures exist, in agreement with
the observations of the Juno mission (Orton et al. 2017; Adriani
et al. 2018). In addition, far away from the polar regions, circular
vortices are arranged in parallel lines (east–west) and the strongest
lie very close to 25.◦8 latitude, in either the Northern or Southern
hemisphere as previously simulated in Heimpel et al. (2015) with
stratified convection models.

We note that Fig. 3 evidences a multimodal structure as found
in the rotating convection experiments of Aurnou et al. (2018) at
similar Pr number. Modes with |m| ≤ 30 are responsible for long-
lived polar vortices, which extend down to the inner boundary, as
well as low-latitude large-scale cells (meridional sections of Fig. 2).
In contrast, high wavenumbers |m| > 30 only contribute far away
from the latitude circles ±70◦. For this component of the flow,
two different sizes of vortex are observed: those elongated in the
latitudinal direction near equatorial latitudes and those with oval
shape appearing around ±24◦ latitudes.

3.2 Time-averaged latitude profiles

The latitude profiles at the outer surface shown in Fig. 4 mark the
latitude position of the key features for both models seen in the
previous figures. The time-averaged Rossby number Ro = vϕ /�ro

(ratio of inertial to Coriolis forces) and radial vorticity wr are plotted
versus latitude for both models. The time series span a interval of
around 1300 planetary rotations for Model 1 and 1500 for Model 2,
with a time-step of around 20 planetary rotations in both models. The
time-averaged zonal Rossby number Roz = 〈vϕ〉/�ro (where 〈vϕ〉
is the azimuthal average of the azimuthal velocity) is not displayed
since it is almost equal to the time averaged Ro, i.e. non-axisymmetric
vϕ time fluctuations tend to cancel out. For both models, the Rossby
number Ro is clearly large close to the poles (see Fig. 4, panels a and
c) and remains smaller at equatorial latitudes. This means that our
modelling is not reasonable for the study of dynamical behaviour of
gas giant planets at low latitudes (Heimpel & Aurnou 2007; Heimpel
et al. 2005, 2015), although it reproduces qualitatively several key
features of the equatorial wind such as its latitudinal extent, the
negative peaks close to ±25◦ latitudes, and even a noticeable decrease
of magnitude near the equator (see Fig. 4c). The polar dynamics
exhibited by the present models is a new feature not previously
observed in rotating thermal convection in spherical shells. There
are two peaks of Ro around 76◦ and −78◦ for Model 1 and they
are located closer to the poles 81◦ and −81◦ for Model 2. Indeed,
the time dependence away from ±20◦ latitudes is significantly more
vigorous for Model 1. For this model, the maximum and minimum
curves of Ro clearly display two latitudes ±63◦ and ±81◦ for which
Ro remains roughly constant. Besides a transition between different
polar vortex characteristics between Models 1 and 2, there is also a
transition between equatorial behaviour: The time dependence of Ro
for Model 2 is enhanced near the equator (±20◦ latitudes) providing
maximum values of Ro around ±5◦ latitude, comparable to the peaks
near the poles (see Fig. 4c).
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Figure 3. Coherent polar vortices of numerical models. Snapshots of radial vorticity ωr (in planetary rotation units) at the outer surface r = ro viewed from a
latitude of 45◦ (left-hand panels) and from a latitude of −90◦ (right-hand panels). The first row corresponds to Model 1 and the second row to Model 2. Cyclonic
(anticyclonic) radial vorticity is red (blue) in the Northern hemisphere and blue (red) in the Southern hemisphere. Parallel circles at latitudes −80◦, −70◦ and
70◦, 80◦ are marked with dashed lines.

The radial vorticity latitude profiles shown in Figs 4(b) and (d)
clearly display a strong time dependence of vorticity. The main char-
acteristic featured by both models is the strong cyclonic vorticity near
both poles. For Model 1 the polar jet extends down to ±70◦ latitudes
(where wr becomes zero) and a similar extent, down to ±73◦, is
reached for Model 2. For the latter, the relative maximum/minimum
near ±96◦ marks the position of the several circumpolar vortices.
The radial vorticity of Model 2 exhibits stronger oscillations at lower
latitudes, especially around ±24◦, where the time average amplitude
is noticeable. The relative extrema at intermediate latitudes θ ∈ [25◦,
70◦] are larger for Model 1, indicating that vortex activity is more
vigorous (compare also the contour plots seen in Fig. 3). The bottom
panels of Fig. 4 evidence the different mode contribution to vortex
activity in Model 2 by considering only the spherical harmonics
with |m| ≤ 30 or with |m| > 30. The time-averaged wr of the latter
component is nearly zero, meaning that the main contribution to mean
vorticity comes from low-order modes. Indeed, the time-dependent

wr is zero near the poles for the |m| > 30 component of the flow,
and thus the latter does not contribute to the origin of the polar
dynamics.

Quantitatively, our models underestimate the zonal wind ampli-
tudes measured in gas giant planets. For instance, in the case of
Saturn (Sayanagi et al. 2018), the peak zonal winds close to the
poles (around ±85◦ latitude; Sánchez-Lavega et al. 2006) are around
150 m s−1, giving rise to Ro ∼ 0.01 which is roughly three times
that measured for Model 1. As commented previously, values for
the parameters are not so far from those obtained from the DNS
of Heimpel & Aurnou (2007) and Heimpel et al. (2005, 2015)
(at larger Pr) modelling wind jets at moderate and low latitudes.
However, our models exhibit larger Ro and circular vortices at high
latitudes, in contrast to previous modelling. In addition, preliminary
results for models with larger Ra point to a decrease of zonal flows
and a disappearance of coherent structures in the polar regions. Thus,
there exists a flow transition, in which zonal flow and vortices at high
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Figure 4. Flow latitude profiles. Panels (a) and (c): time averages of the Rossby number Ro = vϕ /�ro (solid line) (vϕ is the azimuthal velocity) versus
latitude in degrees. The thin dashed lines mark the maximum and minimum values of Ro at each latitude. Panels (b) and (d): time averages (solid line) and
minimum/maximum values (thin dashed line) of the radial vorticity wr in planetary rotation units. Panels (e) and (f): the radial vorticity for Model 2 when
considering the |m| ≤ 30 or |m| > 30 components of the flow.

latitudes progressively weaken, in a parameter regime relevant for
giant planetary atmospheres. This transition also occurs at lower
rotation rates when polar modes are preferred at the onset (Garcia
et al. 2019). Understanding this transition may provide a simple
explanation for the existence of polar convective coherent vortices in
planetary atmospheres.

3.3 Kinetic energy spectra and energy transfer mechanism

An analysis of the kinetic energy distribution among the spherical
harmonic modes with different degree l is performed, to elucidate the
inverse cascade mechanism for these 3D rapidly rotating flows (Ru-
bio et al. 2014). In addition, kinetic energy spectra are a tool that
helps to validate the spherical harmonic resolution of a given DNS.
A rule of thumb (Christensen, Olson & Glatzmaier 1999; Kutzner &
Christensen 2002) indicates that a model is well resolved if the

kinetic energy decreases by more than two orders of magnitude from
the maximum to the smallest wavelength scale.

Figs 5(a) and (b) display the volume averaged kinetic energy K
(dashed line) and the surface averaged kinetic energy Ko at r =
ro (solid line) of a particular mode with degree l for both Models
M1 and M2. Notice that the energies of few harmonics just before
the maximum spectral degree Lmax = 500 increase a little bit.
This behaviour is present in some 3D DNS in rotating spherical
geometry, but it has been shown (see Christensen et al. 1999 for the
geodynamo case) that a reasonable energy increase at the tail does
not significantly alter the large-scale structure of the flow.

The spectra exhibit slopes of −5/3 and −3, which are in rea-
sonable agreement with those obtained from 2D maps of velocity
measurements extracted from Cassini images (Choi & Showman
2011). Furthermore, the distribution of energy among the different
degree l displayed in Figs 5(a) and (b) resembles the distribution
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Figure 5. Energy spectra of numerical models. Panel (a): kinetic energy
spectra versus the spherical harmonic degree l for Model 1. The volume
averaged energy (dashed line) and the energy at the outer surface (solid line)
are considered. Panel (b): same as panel (a) but for Model 2. Panel (c): kinetic
energy spectra of the barotropic (dashed line) and baroclinic (solid line) flow
versus the spherical harmonic degree l for Model 1.

exhibited in fig. 5(a) of Choi & Showman (2011), constructed
from Jovian velocity measurements. Because the flow has a strong
equatorially symmetric component, odd l have larger energy than
even l, especially for low values, giving rise to the spiking behaviour
of the spectra. Note that Choi & Showman (2011) compute the power
spectra of kinetic energy, rather than the energy content of each
mode, so that even l have larger energy. The length scale marking

the change of slope from −5/3 to −3 of the Jovian spectra of Choi &
Showman (2011), assumed to be the scale at which energy is injected
to the system, is in the interval 70–140, depending on whether global
or eddy kinetic energy are considered. In our case, the situation is
similar and the −5/3 slope is lost from l ≈ 60 in the case of M1 or
from l ≈ 120 in the case of M2.

In the context of 3D Rayleigh–Bénard rotating convection, an
upscale energy transfer mechanism, known as the condensation
process, has recently been identified in the regime of GT (Rubio
et al. 2014). Large-scale barotropic vortices, fulfilling the Taylor–
Proudman constraint, are generated through an inverse cascade
mechanism. Small-scale convective motions act as an energy source
for these barotropic vortices, which, in turn, organize these small
convective structures. This is reflected in the energy spectra of the
flow when considering the barotropic and baroclinic components
separately. Flow motions in regions close to the poles in the case
of 3D rotating spherical shells can be approximated to flow motions
in a 3D rotating plane layer if the shell is sufficiently thin. Because
this is the case of M1 and M2, we may compare our kinetic spectra
with those obtained on a plane geometry. Following Rubio et al.
(2014), we compute the power spectral energy of the barotropic and
baroclinic components of the flow. Close to the poles, we may assume
êr ≈ êz (the radial direction is almost parallel to the axis of rotation)
and the plane spanned by êθ and êϕ is parallel to the x–y plane. We
define the barotropic kinetic energy Kbt = (1/2)(〈vθ 〉2 + 〈vϕ〉2) and
the baroclinic kinetic energy Kbc = (1/2)(v

′2
r + v

′2
θ + v

′2
ϕ ), with 〈f〉

being the radial average (barotropic component) and f
′ = f − 〈f〉 the

baroclinic component.
Fig. 5(c) displays the power spectra for the barotropic and baro-

clinic kinetic energies, as in fig. 3 of Rubio et al. (2014). The quali-
tative agreement between both figures is remarkable. For the smaller
scales, the barotropic kinetic energy Kbt displays an l−3 scaling as
expected for a downscale enstrophy cascade (Rubio et al. 2014). In
contrast, at larger scales, the expected l−5/3 scaling is replaced by l−3

due to the appearance of a large dipole structure. The scaling l−5/3

observed for the baroclinic kinetic energy Kbc is in agreement with
a 3D turbulence cascade from the convective scale. The different
scalings observed for the barotropic and baroclinic components
provide an explanation for the different scalings observed for the
volume averaged total kinetic energy K of Figs 5(a) and (b). At
larger scales, Kbt dominates and thus K exhibits the same scaling. In
contrast, for l > 30, the baroclinic flow is dominant and thus there is
an interval for which K follows the baroclinic −5/3 scaling.

3.4 Large-scale polar dipole regime

In this section, we provide numerical evidence of the formation of a
large-scale dipole close to the polar regions, as in Rubio et al. (2014).
In addition, we interpret the transition between a single polar vortex
(as Model M1) and multiple polar vortices (as Model M2) following
ideas developed by O’Neill et al. (2015, 2016) in the context of
shallow layer modelling.

Coherent large-scale structures are ubiquitous in the atmospheres
of gas giant planets (Adriani et al. 2018; Fletcher et al. 2018), and
have been simulated within the 2D and 3D GT context (see Rubio
et al. 2014 and references therein). The latter study demonstrated
the existence of a dipole condensate in GT flows and provided an
explanation of the physical mechanism behind for its formation
using a 3D reduced model in the limit of small Ro. As noted in
the previous section, the advection of 3D small-scale convective
baroclinic vortex produces Taylor–Proudman (almost z-independent,
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2D) barotropic large-scale motions, which, in turn, organize the
small-scale convective motions in a self-sustained process.

The relevant regime for the formation of the dipole condensate
found in Rubio et al. (2014) is Ralayer = O(E−4/3) (see also Julien
et al. 2012b), corresponding to a regime that is overall dominated by
rotation, i.e. GT . For Pr = 1, a coherent large-scale dipole was found
in coexistence with small-scale convective vortices. In this regime
the volume renderings of axial vorticity of Rubio et al. (2014) help
to visualize the organization of large columnar structures extending
from the bottom to the top boundary together with very small con-
vective vortices. Taking into account the differences in the definition
of Ra = Ralayer(1 − η), the condition RalayerE4/3 = O(1) becomes
RaE4/3 = O(0.1). In our case, RaE4/3 = 0.023 for M1 and RaE4/3 =
0.037 for M2, values not so far from O(0.1). As noticed in Julien et al.
(2012b), for small Pr, the GT regime is attained for smaller values
of RalayerE4/3, which is consistent with our results, as Pr = 0.01.

The 3D structure of the dipole condensate for both models can be
visualized in Fig. 6 which displays the surfaces of constant radial
vorticity ωr for two different values (roughly half and 1/10th of the
maximum value). Two different views are provided, containing the
x–y and the y–z planes, respectively, which help us to understand
the horizontal and vertical structure of ωr. The surfaces of constant
ωr have been restricted to the volume within the coaxial cylinder
of radius 3d and on the Northern hemisphere, for comparison with
the results of the rotating plane geometry of Rubio et al. (2014).
This comparison makes sense as the rotating spherical shell is very
thin and thus well approximated by a plane layer (see Fig. 6, views
containing the z-axis).

The structure of the main polar cyclonic vortex in the case of
M1 is strongly anisotrophic, with slightly smaller horizontal scales
(compared to the vertical scale) spanning the whole shell. Small-scale
cyclonic convective vortices of comparable amplitude surround the
main cyclone, some of them being very small (see the red surfaces of
Fig. 6, left-hand panels, Model 1). For small vorticity amplitudes, the
anticyclonic vortices, having relatively small horizontal scales, are
less common than cyclonic vortices, evidencing a clear asymmetry
between cyclonic/anticyclonic motions. This asymmetry was also
found in the experiments of Vorobieff & Ecke (2002) investigating
plane Rayleigh–Bénard rotating convection for Ro � 1.

The surfaces of constant ωr for M2 display similar structures to
those of M1, the main difference being the disruption of the main cy-
clone of M1 into the several vortices with smaller horizontal scale of
M2, as shown previously in the contour plots of Fig. 3 in Section 3.1.
The vertical scale of these main cyclonic vortices is of the order of
the width of the shell (see the red surfaces of Fig. 6, left-hand panels,
Model 1). Again, a clear asymmetry between cyclonic/anticyclonic
vortices is present in M2. The asymmetry between cyclonic and
anticyclonic vorticity is mainly due to the axisymmetric component,
which is not present for plane layer modelling (Rubio et al. 2014)
as the latitudinal variation of the Coriolis force is not considered in
their models. The contribution to the axisymmetric component to
cyclonic vorticity is evidenced in Fig. 7 when considering only ωr

for the non-axisymmetric component of the flow. In this case, the
number of cyclonic/anticyclonic vortices is similar, but the cyclonic
motions have larger vertical and horizontal scales.

The analysis by O’Neill et al. (2015, 2016) (and also Brue-
shaber et al. 2019) of shallow atmospheric models has provided
evidence for a transition between different dynamical regimes which
reproduces important features seen in giant planet atmospheres.
The transition between Jupiter-like and Saturn-like polar dynamic
regimes is described in terms of the Burger number. To compare
our fully convective models with previous shallow models, the

Burger number for M1 and M2 must be estimated. For the present
global simulations, the spherical domain as well as its rotation is
fixed, but the characteristic horizontal length scale L of the polar
convective region varies between models, giving rise to different
Burger numbers. In our models, the variation of L is achieved by
modifying the Rayleigh number, i.e. the thermal forcing, and keeping
all of the other parameters (equation 4) fixed. In this sense, the Burger
number represents an output parameter from the simulations which,
is computed after the flow is saturated, as suggested in Read (2011).
This approach differs from the simulations of O’Neill et al. (2015,
2016) and Brueshaber et al. (2019) in which the Burger number
represents an input parameter of the models.

According to Pedlosky (1979), the Burger number is defined
as Bu = g	ρD/ρ4�2L2, with L and D being the horizontal and
vertical length scales and 	ρ the density difference between the
surface and the base of the fluid. From the Boussinesq approximation,
the latter can be expressed as 	ρ = −ρouterα	T, and assuming ρ ≈
ρouter, the Burger number is

Bu ≈ gα	T D

4�2L2
.

Considering the full spherical shell, the only quantity in this latter
expression that changes between M1 and M2 is 	T. However, as
we are interested in studying polar dynamics, we should restrict
the definition of Bu to the polar region. This will also permit a
comparison with the local shallow atmospheric models of O’Neill
et al. (2015, 2016) and Brueshaber et al. (2019). For these reasons,
we take as characteristic vertical and horizontal length scales D =
d and L = θpolarro, respectively, θpolar being the latitudinal angle
of the extent of polar motions on the outer surface, which clearly
changes between the models, as shown in previous sections. In terms
of the non-dimensional input parameters, the Burger number is then
approximated as

Bu ≈ 1

4θ2
polar

RaTa−1Pr−1(1 − η). (5)

Fig. 6 provides a way to infer the latitudinal extent of polar motions
in order to estimate Bu for each model. We focus on the surfaces of
constant vorticity (at a value roughly half the maximum) viewed
from the north pole that appear in Fig. 6. For M1, the main cyclone
and its surrounding small vortices are contained in a rectangle (on
the x–y plane, see Fig. 6) with a maximum dimension of 3d (in
the x-direction). Projecting this rectangle on to the outer sphere gives
θpolar ≈ 17◦. In contrast, for M2, vortices having half of the maximum
vorticity amplitude spread within and over the whole coaxial cylinder
of diameter 6d. This gives rise to a latitudinal extent θpolar ≈ 35◦,
two times larger than for M1. The corresponding Burger numbers
(from equation 5) are Bu1 = 1.4 × 10−4 and Bu2 = 5.4 × 10−5 for
M1 and M2, respectively. These values qualitatively agree with and
are not so far from those obtained in Brueshaber et al. (2019), which
found Bu > 10−3 and Bu < 5 × 10−4 for Saturn- and Jupiter-like
polar dynamics, respectively. The order of magnitude of difference
in the computation of Bu can be attributed to the uncertainty in the
determination of the Rossby deformation radius Ld0 of Jupiter and
Saturn from which Bu = (Ld0/a)2 (a being the osculating radius at
the poles,) was estimated in Brueshaber et al. (2019). According
to Brueshaber et al. (2019), the smallest estimates of Ld0 for Jupiter
may give rise to BuJ � 10−4, and in the case of Saturn, a value of
Ld0 = 1000 km, estimated in Choi, Showman & Brown (2009), gives
rise to BuJ ≈ 2 × 10−4 (assuming a = 66 810 km). These values are
certainly in reasonable agreement with our estimations.
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Polar dynamics in deep convection models 4707

Figure 6. Isosurfaces of radial vorticity. Surfaces of constant radial vorticity ωr within the tangent cylinder of radius 3d (region within the arrows in the middle
line), restricted to the Northern hemisphere. For each model, two different values ωr are considered, blue/red meaning +/−. In the first row of each model the
surfaces are viewed from the north pole – the z-axis points out of the page – to display horizontal variations. The point of view corresponding to an almost
π /2-rotation about the y-axis of the north pole view (second row of plots in each model) is selected, to display the columnar structure.
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4708 F. Garcia, F. R. N. Chambers and A. L. Watts

Figure 7. Isosurfaces of non-axisymmetric radial vorticity. Surfaces of constant radial vorticity ωr of the non-axisymmetric flow within the tangent cylinder
of radius 3d (region within the arrows in the middle line), restricted to the Northern hemisphere. For each model, two different values ωr are considered, with
blue/red meaning +/−. The point of view is selected as in Fig. 6 to display the columnar structure.

The physical mechanisms giving rise to a strong vortex centred
at the pole for shallow models (O’Neill et al. 2015, 2016) and our
thermal convective simulations share two key characteristics. Small-
scale baroclinic instabilities cascade, creating a vertically aligned
strong barotropic vortex. This is demonstrated in the first part of
this section as well as in O’Neill et al. (2015, 2016). In addition,
the same parameter (see also Brueshaber et al. 2019) is controlling
the transition between Jupiter-like and Saturn-like polar patterns for
both types of modelling. The authors of O’Neill et al. (2016) raise the
possibility that the weather layer of Saturn may be coupled with the
convective interior below. As discussed in section 8 of O’Neill et al.
(2016), convective structures may allow local stability, which could
affect the coupling between the molecular zone below the weather
layer. In this respect, this study is providing more support for the idea
that polar vortices are generated deep in the atmosphere, as recently
discovered for the well-known east–west low and mid latitude zonal
jets (see Kaspi et al. 2018).

3.5 Force balances

The analysis of the force balances involved in the generation of
geophysical flows helps us to identify and characterize different
flow regimes and to shed light on the transitions occurring among
them (Julien et al. 2012a; Oruba & Dormy 2014; Gastine, Wicht &
Aubert 2016; Garcia, Oruba & Dormy 2017). In the context of
spherical shell rotating convection the generation of zonal flows
strongly depends on the large-scale force balance, and more specif-
ically on the balance between Coriolis and buoyancy forces. The
non-dimensional number Ra∗ was used in Aurnou et al. (2007)
to distinguish between rotation-dominated regimes Ra∗ � 1, with

strong generation of prograde zonal flows at mid-low latitudes fed by
Reynolds stresses associated with columnar convection in spherical
geometry (Christensen 2002), regimes in which Ra∗ ∼ 1 buoyancy
starts to play a role and 3D convection acts to homogenize the fluid
within the shell, generating retrograde zonal flows in the equatorial
region and strong prograde flows at high latitudes. As commented
in Glatzmaier (2018), there are studies (e.g. Kaspi et al. 2018) that
have attributed the zonal flow generation to a thermal wind balance,
in which the curl of Coriolis force balances the curl of buoyancy.
In convective models of rotating spherical shells (Glatzmaier 2018),
and in our Models M1 and M2, this balance does not hold as the curl
of Coriolis force dominates over the other terms.

Because Ra∗ � 1 for the numerical Models M1 and M2 (see
Section 2.2), Coriolis forces are governing the global dynamics, and
prograde zonal flows are generated at low latitudes. The time and
volume averages of the forces F = (1/V )

∫
V

(F 2
r + F 2

θ + F 2
ϕ )1/2dV

are shown in Table 2 and verify the predominance of the Coriolis
forces. The mean values of the Coriolis FC, inertial FI, and
viscous FV forces verify FCoriolis > Finertial � Fviscous, which
is the force balance believed to operate in Jupiter’s convective
atmosphere (Schneider & Liu 2009).

However, and in contrast to previous numerical studies (e.g. Au-
rnou et al. 2007; Gastine, Wicht & Aurnou 2013), strong prograde
zonal flows are generated at high latitudes as well, which are preferred
for Ra∗ ∼ 1 due to an angular momentum mixing produced by
3D convection (Aurnou et al. 2007). As the angular momentum
depends only on the cylindrical coordinate, the zonal flow generated
at polar latitudes is still geostrophic, as in Models M1 and M2.
For these models, the Ra∗ � 1 condition seems to be relaxed
when considering the force balance only in the azimuthal direction,
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Table 2. Time- and volume-averaged force balance: the Coriolis FCoriolis,
inertial Finertial, and viscous Fviscous rms forces of the two models.

Model FCoriolis Finertial Fviscous

1 2.0 × 109 9.5 × 107 8.1 × 105

2 3.1 × 109 2.8 × 108 2.3 × 106

Note. The time averages cover 1900 and 1050 planetary rotations for Models
1 and 2, respectively.

allowing the development of high-latitude prograde zonal flows.
Table 3 summarizes the balance for each component (Fr, Fθ , Fϕ)
of the forces. The maximum absolute value within the shell is listed.
We note that the values are picked up at the same time instant as the
snapshots of the contour plots and surfaces of constant radial vorticity
shown previously. Whereas the Coriolis force is clearly dominant for
the radial and colatitudinal components, in the azimuthal direction,
the inertial forces are comparable.

The instantaneous spatial distribution of the azimuthal component
of the Coriolis and inertial forces at the outer surface is illustrated
in Fig. 8 for both models at the same time instant as the previous
figures of contour plots. The figure shows that clear correlation of
both forces in the polar regions, indicating the importance of 3D
convection. Fig. 8 also suggests that the Coriolis predominance in
the azimuthal direction is relaxed close to the equatorial regions as
well, particularly for M1. This may be the reason for the relatively
small amplitude of the prograde zonal flow of M1 and M2 (see Fig. 4)
at equatorial latitudes with respect to previous models of Jupiter and
Saturn (see e.g. Heimpel & Aurnou 2007).

The strong dipolar character of the force balance in the case of
M1 is lost for M2. The ratio (FI)ϕ/(FC)ϕ between the maximum
values over the shell (see Table. 3) is 0.23 for M1 and 2.67 for
M2. This suggests that the value (FI)ϕ/(FC)ϕ ≈ 1 seems to control
the transition from flows with a single polar cyclone like M1, to
flows with multiple polar cyclones like M2. At the outer surface,
the situation is similar, the ratio being 0.13 for M1 and 0.6 for M2
(see the colour palette of Fig. 8). Although the ratio for M1 is still
smaller than unity, we note that in the framework of Rayleigh–Bénard
rotating convection with parallel horizontal boundaries (Julien et al.
2012a), which approximates our model close to the polar regions, the
GT regime is attained for values of Ra∗ that can be smaller than O(1).

3.6 Thermal transport properties

Previous studies in rapidly rotating thin spherical shells (Aurnou et al.
2008) have analysed the heat transfer mechanisms in the context
of planetary atmospheres. In the equatorial regions the heat flux
is inhibited in the cylindrical direction as a consequence of the
strong generation of zonal flows. In contrast, in the polar regions,
3D thermal plumes develop that are not sensitive to the geostrophic
zonal flow (Sreenivasan & Jones 2006), and thus at large latitudes
the heat transfer resembles that predicted for plane layer convection.
Fig. 9 displays the instantaneous contour plots of the temperature
perturbation 
 on a meridional section for both Models M1 and

M2. Thermal perturbations in the equatorial regions are affected by
the flow spiralling in the azimuthal direction and extend parallel
to the rotation axis in a wide region outside the tangent cylinder.
The structure of 
 close to the poles is different, 
 being positive
close to the outer boundary and negative close to the inner, which
is in agreement with previous studies in rotating spherical geometry
of gas giant atmospheres; see, for instance, fig. 4 of Aurnou et al.
(2008). However, in contrast to the latter study, the Nusselt number
of our models is significantly smaller, as in the polar regions, the
regime of GT is already attained due to the low Prandtl number of
our models (Julien et al. 2012b).

For Rayleigh–Bénard rotating convection within parallel hori-
zontal boundaries, a recent study Julien et al. (2012b) provided
an analysis of the heat transfer in terms of a reduced model in
the regime of GT (Julien et al. 2012a; Rubio et al. 2014). As
described previously, our Models M1 and M2 exhibit features, such
as the dipole condensate (Section 3.4) and the kinetic energy spectra
(Section 3.3) characteristic of GT flows, thus the thermal properties
of M1 and M2 are in concordance with Julien et al. (2012b). Fig. 10
displays the surfaces of constant non-axisymmetric temperature
perturbation. The latter quantity can be compared to the temperature
fluctuations with respect to the time averaged temperature (strongly
axisymmetric) of the modelling of Julien et al. (2012b), yielding
qualitative agreement of the tridimensional structure of the thermal
deviations (see fig. 1 of Julien et al. 2012b).

A scaling law for the heat transport (measured by the Nusselt
number Nu) was derived in Julien et al. (2012b) for GT flows. In
this regime, turbulent 3D convection damps the heat transport in the
bulk of the fluid rather than in the boundary layers, as a consequence
of the weak z-dependence of the flow. The results of Julien et al.
(2012b) point to the independence of heat transport with respect to
microscopic diffusion coefficients, leading to the scaling

Nu − 1 ≈ C1Pr−1/2Ra3/2
layerE

2,

with Elayer = 1/2Ta1/2 for sufficiently small Pr ≤ 1 and large Ralayer.
In terms of the definition of Ra = Ralayer(1 − η) used in this study,
the Nusselt scaling becomes

Nu − 1 ≈ C1
1

4
Pr−1/2Ra3/2Ta−1(1 − η)−3/2.

The time-averaged Nusselt number Nu, defined as the ratio of the
average of the total radial heat flux to the conductive heat flux (both
through the outer surface), has been computed for M1 and M2 in the
same time interval as the mean physical properties shown in Sec-
tion 2.2, Table. 1. For M1, Nu1 − 1 = 0.008 27, whereas for M2, Nu2

− 1 = 0.0174, giving rise to almost the same constant C1
1 = 0.0296

and C2
1 = 0.0308, meaning that our models verify the GT heat trans-

fer scaling derived in Julien et al. (2012b). Indeed, the value of the
constant is quite similar to the value of C1 = 0.04 obtained in Julien
et al. (2012b) by means of a detailed exploration of the parameter
space, and thus our results fit reasonably well with the theory of heat
transfer developed for plane rotating Rayleigh–Bénard convection.

Table 3. Instantaneous force balance: maximum value within the shell of the radial, colatitudinal, and azimuthal components of the Coriolis FCoriolis,
inertial Finertial, and viscous Fviscous forces of the two models.

Model (FC)r (FI)r (FV)r (FC)θ (FI)θ (FV)θ (FC)ϕ (FI)ϕ (FV)ϕ

1 6.1 × 109 2.8 × 108 6.3 × 106 1.0 × 1010 2.7 × 108 7.8 × 108 7.3 × 109 1.7 × 109 8.0 × 108

2 1.3 × 1010 1.3 × 109 2.3 × 107 1.2 × 1010 1.1 × 109 2.1 × 109 2.7 × 109 7.2 × 109 1.4 × 109

Note. The same time instant as Fig. 8 is considered.
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Figure 8. Force balance of numerical models. Snapshots of the azimuthal component of the Coriolis FCoriolis (first row) and inertial Finertial (second row)
forces, at the outer surface r = ro viewed from a latitude of 45◦. The left-hand panels correspond to Model 1 and the right-hand panels to Model 2. Red (blue)
means positive (negative) values. Parallel circles at latitudes −80◦, −70◦ and 70◦, 80◦ are marked with dashed lines.

3.7 Polygonal coherent structures

A significant achievement of the full-globe general circulation
models of Liu & Schneider (2010) was to reproduce a meandering
jet with hexagonal-like structure, as observed in Saturn (Godfrey
1988). Our convective Model 1 generates a similar structure: belts of
weak vortices surrounding the north pole (Fig. 3, first row, left-hand
section) appear to have polygonal shape. The relatively strong m = 6
component is reflected in the plot of volume averaged kinetic energy
contained in each wavenumber m shown in Fig. 11. For M1, the m =
4 and 6 components are dominant for m > 2 and they give rise to
polygonal structures surrounding the poles. A peak at around m =
90 is noticeable in the kinetic energy spectra. This corresponds to
a higher harmonic multiple of m = 6, which is responsible for the
edges and straight lines forming the hexagonal pattern. A north pole
hexagonal boundary can clearly be identified if we consider only the
component of the flow containing the m = 6k, k ∈ Z, azimuthal wave
numbers in its spherical harmonic expansion. This flow component

is strong, providing 82.7 per cent of the kinetic energy of the flow.
The contour plots of the kinetic energy density at the outer surface
(r = ro) are displayed in Fig. 12, the first and second left-hand
sections corresponding to the north and south poles, respectively.
As described for Saturn (e.g. the review by Sayanagi et al. 2018),
the north hexagonal boundary is very close to 75◦ latitude. Our
results account for a noticeable asymmetry between north and
south dynamics, which is a characteristic feature of Saturn (see the
discussion in section 12.4 of Sayanagi et al. 2018). The contour plots
of the temperature perturbation shown in the two rightmost sections
of Fig. 12 enable us to make a qualitative comparison between our
results and real measurements such as the brightness temperature
maps (from Cassini/CIRS spectroscopy) obtained in Fletcher et al.
(2015), with reasonable agreement.

More than 6 yr of Cassini observations have revealed that the
hexagonal pattern has rotated around 30◦ in the azimuthal direc-
tion (Fletcher et al. 2015). Thus, the pattern remains nearly stationary
in the planetary reference system (Sánchez-Lavega et al. 2014).
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Figure 9. Temperature meridional profiles. Snapshots of the temperature
perturbation 
 on a meridional section for Model 1 (left-hand panel) and
Model 2 (right-hand panel). Positive (negative) values are marked with red
(blue).

Our preliminary investigations indicate that azimuthal drift (in the
planetary rotating frame) of the hexagonal pattern seems to be slow.
This is displayed in Fig. 13 showing the variation of the isosurfaces
of kinetic energy density of the flow after two and four planetary
rotations, from a polar viewpoint. As observed for Saturn (e.g. fig. 1a
of Sánchez-Lavega et al. 2014), the hexagonal pattern is bounding
small horizontal scale vortices at around 75◦ latitude (marked with
segments on the axis) and the bottom vertex (that on the x-axis)
remains stationary. The vortices extend down to the deep interior in
a spiralling fashion, so its vertical scale is d.

The analysis of Fletcher et al. (2015) showed that the main polar
vortex and its surrounding hexagon have been persistent features on
the troposphere for over a decade, despite the seasonal evolution
of the temperature and composition. The stability of the hexagonal
pattern despite seasonal variations of insolation induced the authors
of Sánchez-Lavega et al. (2014) (see also Fletcher et al. 2018) to
propose its origin as consequence of a Rossby wave extending deep
into the planetary atmosphere. The simulated deep structures for
M1 persist over more than 104 planetary rotations, so the hexagonal
pattern can survive in a deep atmospheric model. This reinforces
the idea of a deep origin of the hexagonal pattern, as suggested
by Sánchez-Lavega et al. (2014) and Fletcher et al. (2018).

4 C O N C L U S I O N S

Two fully 3D simulations of thermal convection in rotating spherical
shells, with aspect ratio η = 0.9, are presented in a parameter regime
– defined by a Taylor number Ta = 1011 and a Prandtl number
Pr = 0.01 – similar to those used previous models developed for
the understanding of moderate and low-latitude wind jets observed
in giant planets (Heimpel & Aurnou 2007; Heimpel et al. 2005,
2015). Although the present Pr = 0.01 is one order of magnitude
smaller than previous models, it is still reasonable for hydrogen–

helium–water mixtures, as determined in simulations of thermal
properties along the Jupiter adiabat (French et al. 2012). For the
selected parameter regime, the onset of convection is in the form of
non-axisymmetric polar modes (Garcia et al. 2008, 2018) and thus
polar convection is excited from the onset (Garcia et al. 2019). This
does not occur in previous modelling of gas giant atmospheres at
Pr ≥ 0.1 (Heimpel & Aurnou 2007; Heimpel et al. 2005, 2015),
for which the onset of convection take place at low latitudes in
the form of spiralling modes (Zhang 1992). When this is the case,
strong supercritical regimes are required for the development of polar
dynamics (Aurnou et al. 2007).

The present models, differing in the amplitude of thermal forcing
(measured by the Rayleigh number), are non-linear, purely convec-
tive, and turbulent, but strongly geostrophic as confirmed by the
time-averaged Péclet, Reynolds, and Rossby numbers (e.g. Kaplan
et al. 2017). In addition, they exhibit a prograde zonal flow near
the equatorial region and at the outer boundary, as in gas giant
atmospheres, which is sustained by non-linear Reynolds stresses
as a consequence of the progressive tilt of convective columns at low
latitudes (Christensen 2002). A new feature of these GT flows (Ra∗ �
1) is the generation of a large-amplitude prograde zonal flow at high
latitudes and the existence of strong cyclonic vorticity surrounding
the poles. Indeed, our study shows a new transition between flows
revealing strong polar activity. This transition differentiates two
different polar regimes: at small thermal forcing a single cyclonic
vortex is found on both poles revealing features qualitatively similar
to the observed on Saturn (Sayanagi et al. 2018), whereas at larger
forcing, the single vortex is replaced by a small number of smaller
cyclonic vortices localized near the poles and thus comparable to
what has recently been found in Jupiter (Adriani et al. 2018).

For the Saturn-like model, the polar cyclonic vortex survives
during the whole simulation and thus seems to be a long-term feature
of the flow as seen in Saturn (Sánchez-Lavega et al. 2014; Fletcher
et al. 2015). By looking carefully at the different components of
the flow, we observe that the single polar vortex is bounded by an
hexagonal pattern on the north, but a polygonal boundary is absent on
the south. Indeed, the hexagonal boundary extends down to around
75◦ latitude (Sayanagi et al. 2018). In the case of the Jupiter-like
simulation, there is a small set of circular vortices surrounding the
poles, which are moving and merging. Although this contrasts with
observed structure (Adriani et al. 2018), the cyclonic vortices remain
quite circular and are always present, remaining trapped near the
poles (within the latitude circles ±80◦). The long-term persistence
(over two years of observation) of the circumpolar Jovian vortices has
recently been confirmed by Tabataba-Vakili et al. (2020) and Adriani
et al. (2020) using Juno data. The analysis of low wavenumber |m|
≤ 30 and large wavenumber |m| > 30 components of the flow has
revealed that polar dynamics are governed by low wave numbers hav-
ing a multimodal structure, where large-scale coherent convection is
localized in the polar regions as well as around ±24◦ latitude. In con-
trast, for the modes with |m| > 30, the convective vortices are small
and only present within the equatorial band defined by ±24◦ latitude.

An analysis of the kinetic energy spectra has allowed us to identify
the inverse cascade mechanism and to further demonstrate the GT
character of the flows. A comparison with kinetic energy spectra
obtained from velocity measurements as well as cloud morphology
obtained from Cassini observations (Choi & Showman 2011) reveals
a strong similarity with our result, in particular the presence of the
−5/3 and −3 scalings at low and high wavenumber, respectively.
Because the geometry of a very thin rotating spherical shell is
reasonably well approximated by a plane rotating layer close to the
poles, our results can be interpreted within the theoretical framework
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4712 F. Garcia, F. R. N. Chambers and A. L. Watts

Figure 10. Isosurfaces of non-axisymmetric temperature perturbation. Surfaces of constant temperature perturbation 
 of the non-axisymmetric flow within
the tangent cylinder of radius 3d (region within the arrows in the middle line), restricted to the Northern hemisphere. For each model, two different values 
 are
considered, with blue/red meaning +/−. The point of view is selected as in Fig. 6 to display the columnar structure.

Figure 11. Energy spectra of numerical models. Kinetic energy spectra
versus the spherical harmonic order m for Models 1 (solid line) and 2 (dashed
line).

of GT provided by a reduced model in the asymptotic limit (Julien
et al. 2012a,b; Rubio et al. 2014) of rotating plane Rayleigh–Bénard
convection. Large-scale barotropic structures are developed as a
result of the so-called spectral condensation process (Rubio et al.
2014). The −5/3 scaling is associated with the baroclinic convective
component of the flow, whereas the −3 scaling comes from a
downscale cascade of the barotropic component. The large-scale
polar vortices observed in our models are related to the formation
of a dipole condensate present in the regime of GT RalayerE4/3 ∼
O(1) (Rubio et al. 2014). We have analysed the 3D structure of
this dipole and compared it with the results for a plane rotating

layer. The large-scale dipole, which extends throughout the shell in
the vertical direction, coexists with small-scale vortices of the same
amplitude. Our models favour cyclonic vorticity as observed in gas
giant atmospheres. This is also in agreement with the plane Rayleigh–
Bénard rotating convection experiments of Vorobieff & Ecke (2002)
performed for Ro � 1.

The observed polar dynamics of the giant planets have been
studied in detail in the context of shallow atmospheric models (Scott
2011; O’Neill et al. 2015, 2016; Brueshaber et al. 2019) providing
a theoretical framework, in the context of tropical cyclone theory,
for understanding their formation mechanism in giant planets (see
the comprehensive review of Sayanagi et al. 2018 for the case of
Saturn). The main idea is that accumulation of cyclonic vorticity at
polar regions is favoured by the non-linear advection of background
vorticity produced by the circulation inside a single vortex, the so-
called β-gyre drift effect (Scott 2011). The modelling of O’Neill
et al. (2015, 2016) incorporates the effect of moist convection and
the tendency of convective storms to align in the vertical direction
and concentrate cyclonic vorticity near the poles. The mechanism
giving rise to this accumulation is strongly related to an energy
transfer between the baroclinic and barotropic components of the
flow. In particular, small-scale baroclinic vortices feed a large-
scale coherent barotropic vortex (O’Neill et al. 2015, 2016). The
polar vortex formation in our modelling is produced by the same
mechanism. The transition between Saturn-like and Jupiter-like polar
dynamics has also been described by O’Neill et al. (2015, 2016)
and characterized in terms of the Burger number. Our results in a
rotating spherical shell are in close agreement with O’Neill et al.
(2015, 2016) and Brueshaber et al. (2019), revealing rather similar
dynamical behaviour. We provide an estimate of the Burger numbers
Bu1 = 1.4 × 10−4 for the Saturn-like model and Bu2 = 5.4 × 10−5

for the Jupiter-like model, which match reasonably well to the
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Figure 12. Hexagonal pattern for Model 1. Snapshots on a spherical surface of kinetic energy v · v/2 (at r = ro) and temperature perturbation 
 (at r = ri

+ 0.85d), when considering only the m = 6k (k ∈ Z) component of the flow containing 82.7 per cent of the total rms kinetic energy. A hexagonal boundary
extending down to 70◦ latitude is exhibited at the north pole whereas this boundary is weaker and has more circular shape at the south pole.

Figure 13. Isosurfaces of kinetic energy for Model 1. Surfaces of constant kinetic energy v ·v /2 = 7.7 × 107 within the tangent cylinder of radius 3d, restricted
to the Northern hemisphere. The three snapshots with a time interval of two planetary rotations are shown with a north point of view. The projection of the outer
surface 75◦ parallel on to the x- and y-axes is represented by a small segment.

results of Brueshaber et al. (2019). The strong similarities in key
features between the shallow water models and the present models
may indicate a coupling between the weather (outermost layer) and
the deep convection zone beneath. This has been also pointed out
in O’Neill et al. (2016).

An inspection of the relevant balances, by means of the compu-
tation of the time and volume averaged rms forces present in our
models, confirms the global predominance of the Coriolis effect
indicated by Ra∗ < 1 and Ro < 1. However, the balance in the
azimuthal direction is significantly different, and the ratio between
the inertial and Coriolis components is (FI)ϕ/(FC)ϕ = O(1). This
allows the formation of high-latitude prograde zonal flows (Aurnou
et al. 2007), which are fed from small-scale tridimensional con-
vection, thanks to an inverse cascade process. The development of
zonal circulations by means of this process was conjectured in Julien
et al. (2012a) (see conclusions) when the latitudinal dependence of
the Coriolis effects was included in their plane layer model. Our
results suggest that the ratio (FI)ϕ/(FC)ϕ ≈ 1 acts as a boundary
separating the regime characterized by a single polar cyclone
and the regime characterized by multiple polar cyclones. Further
simulations exploring the parameter space are required to confirm
this.

The heat transport mechanisms involved in our models strongly fit
with the theory developed in Julien et al. (2012b), in terms of the same
reduced model investigating the dipole condensate and the associated
energy transfer mechanisms (Julien et al. 2012a; Rubio et al. 2014).
The heat transport within the bulk of the fluid is reduced, thanks to
the efficient mixing properties of 3D small-scale convection, giving
rise to

Nu − 1 ≈ C1
1

4
Pr−1/2Ra3/2Ta−1(1 − η)−3/2,

with C1 = 0.03, which is equivalent to the law given in Julien et al.
(2012b) (there with C1 = 0.04). Our results thus support the validity
of this scaling on the full thermal convection equations in spherical
geometry, whenever the regime of GT is attained in the polar regions.

Summarizing, the main results of this paper are the following:

(i) Thermal convection models in thin rotating shells reproduce
qualitatively key features observed in the polar regions of Jupiter and
Saturn: a single polar vortex, surrounded by a hexagonal structure,
in the case of Saturn, and an array of circumpolar vortices in the case
of Jupiter.

(ii) A physical mechanism, involving a energy cascade between
baroclinic and barotropic flows, is found to be responsible for the
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formation of polar coherent structures. This is in agreement with
what is found in shallow weather layer models (O’Neill et al. 2015)
and classical Rayleigh–Bénard GT (Rubio et al. 2014).

(iii) The transition between single or multiple vortices is described
in terms of the Burger number as found in previous shallow
modelling (O’Neill et al. 2015, 2016; Brueshaber et al. 2019).

(iv) The simulations reproduce the observed long-term stability
of the hexagonal pattern and polar vortex as in the case of Sat-
urn (Sánchez-Lavega et al. 2014; Fletcher et al. 2018) and the
persistence of circumpolar cyclones as in the case of Jupiter (Adriani
et al. 2020; Tabataba-Vakili et al. 2020).

(v) The above results suggest that polar coherent structures
observed in the weather layer of giant planets may be closely
linked to convection in the deep interior. This has already suggested
in Sánchez-Lavega et al. (2014), O’Neill et al. (2016), and Fletcher
et al. (2018).

Our models assume the Boussinesq approximation and thus we
are not modelling (e.g. as in Heimpel et al. 2015) the stratification
occurring in real giant planetary atmospheres. However, the incom-
pressibility condition renders the problem more tractable, as the
numerical method does not use either any symmetry assumption
or hyperviscosity, which may facilitate the development of low-
wavenumber flows responsible for the polar dynamics. According
to Jones, Kuzayan & Mitchell (2009), Boussinesq convection pro-
vides valuable information for analysing anelastic flows. In addition,
as noted in Calkins, Julien & Marti (2015), when flow velocities are
moderate, the qualitative behaviour of Boussinesq flows may prevail
under stratified conditions, suggesting that polar dynamics such as
those exhibited by our models may be present in anelastic models.
As noted in Heimpel et al. (2005) (see also the extended discussion
in Showman et al. 2018), the Boussinesq approximation is still a
reasonable approach for thin shells. This is further supported in the
review of Showman et al. (2018), where it is stated that anelastic
models provide similar flow features to the Boussinesq approach
in the case of Saturn models. The very recent study of Currie &
Tobias (2020), in a rotating plane layer, has shown that large coherent
structures may be disrupted in the upper layers with the effect of
stratification but, as concluded in Currie & Tobias (2020), it remains
unclear whether the coherence is destroyed when the global Rossby
number of the models is small, as is the case for our current models
(see Table 1).

Further research would require us to incorporate the anelastic
approximation or a non-slip condition at the inner boundary (Au-
rnou & Heimpel 2004), which would be more appropriate to mimic
the damping of the zonal flow due to magnetic fields (Sreenivasan &
Jones 2006; Liu et al. 2008), but this is out of the scope of this work.
The presented and previous models of thermal convection in rotating
spherical shells (e.g. Christensen 2002; Heimpel et al. 2005, 2015,
among many others) are still far away from the real parameters
estimated for the giant planet atmospheres. The validity of those
studies relies (see the discussion of Showman et al. 2018) on the fact
that they achieve a similar flow regime to that believed to exist for
the planetary atmospheres: turbulent flows driven by large rotation
(GT) and thus of small Rossby number. In this context, the prediction
of flow properties at the real parameters is performed by means of
scaling laws obtained from the simulations (e.g. as in Christensen
2002).

Further investigation is needed to track the described transition
between polar regimes in parameter space: in particular the depen-
dence on the Prandtl and Taylor numbers, as analysed in Garcia
et al. (2018) for the onset of convection. This is challenging, as fully

non-linear 3D spectral simulations, with large truncation radial and
angular parameters, are required to capture polar dynamics in thin
rotating shells at large Ta. A comprehensive analysis of the time-
scales exhibited by the polar flows will provide valuable information
in order to extrapolate to real situations and hence improve our
understanding of polar dynamics in gas giant atmospheres.

AC K N OW L E D G E M E N T S

FG was supported by a postdoctoral fellowship of the Alexander von
Humboldt Foundation. The authors acknowledge support from ERC
Starting Grant No. 639217 CSINEUTRONSTAR (PI Watts). This
work was sponsored by NWO Exact and Natural Sciences for the use
of supercomputer facilities with the support of SURF Cooperative,
Cartesius pilot project 16320-2018. The authors wish to thank T.
Gastine and J. Wicht for useful discussions.

DATA AVAI LABI LI TY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Adriani A. et al., 2018, Nature, 555, 216
Adriani A. et al., 2020, J. Geophys. Res. Planets, 125, e06098
Aurnou J., Heimpel M., 2004, Icarus, 169, 492
Aurnou J., Olson P., 2001, Geophys. Res. Lett., 28, 2557
Aurnou J., Heimpel M., Wicht J., 2007, Icarus, 190, 110
Aurnou J., Heimpel M., Allen L., King E., Wicht J., 2008, Geophys. J. Int.,

173, 793
Aurnou J. M., Bertin V., Grannan A. M., Horn S., Vogt T., 2018, J. Fluid

Mech., 846, 846
Baines K. H. et al., 2009, Planet. Space Sci., 57, 1671
Brueshaber S. R., Sayanagi K. M., Dowling T. E., 2019, Icarus, 323, 46
Busse F. H., 1976, Icarus, 29, 255
Cabanes S., Aurnou J., Favier B., Le Bars M., 2017, Nat. Phys., 13, 387
Calkins M. A., Julien K., Marti P., 2015, Proc. R. Soc. A, 471, 20140689
Chandrasekhar S., 1981, Hydrodynamic and Hydromagnetic Stability, Dover

publications, New York
Choi D. S., Showman A. P., 2011, Icarus, 216, 597
Choi D. S., Showman A. P., Brown R. H., 2009, J. Geophys. Res. Planets,

114, E04007
Christensen U., 2002, J. Fluid Mech., 470, 115
Christensen U., Olson P., Glatzmaier G., 1999, Geophys. J. Int., 138, 393
Currie L. K., Tobias S. M., 2020, Phys. Rev. Fluids, 5, 073501
Fletcher L. N. et al., 2015, Icarus, 250, 131
Fletcher L. N. et al., 2018, Nat. Commun., 9, 3564
French M., Becker A., Lorenzen W., Nettelmann N., Bethkenhagen M., Wicht

J., Redmer R., 2012, ApJS, 202, 5
Frigo M., Johnson S. G., 2005, Proc. IEEE, 93, 216
Garcia F., Sánchez J., Net M., 2008, Phys. Rev. Lett., 101, 194501
Garcia F., Net M., Garcı́a-Archilla B., Sánchez J., 2010, J. Comput. Phys.,

229, 7997
Garcia F., Sánchez J., Net M., 2014, Phys. Earth Planet. Inter., 230, 28
Garcia F., Oruba L., Dormy E., 2017, Geophys. Astrophys. Fluid Dyn., 111,

380
Garcia F., Chambers F. R. N., Watts A. L., 2018, Phys. Rev. Fluids, 3, 024801
Garcia F., Chambers F. R. N., Watts A. L., 2019, Phys. Rev. Fluids, 4, 074802
Gastine T., Wicht J., Aurnou J. M., 2013, Icarus, 225, 156
Gastine T., Wicht J., Aubert J., 2016, J. Fluid Mech., 808, 690
Glatzmaier G. A., 2018, Proc. Natl. Astron. Soc., 115, 6896
Godfrey D., 1988, Icarus, 76, 335
Goto K., van de Geijn R. A., 2008, ACM Trans. Math. Softw., 34, 1
Guillot T. et al., 2018, Nature, 555, 227

MNRAS 499, 4698–4715 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/4698/5912386 by guest on 15 February 2021

http://dx.doi.org/10.1038/nature25491
http://dx.doi.org/10.1029/2019JE006098
http://dx.doi.org/10.1029/2000GL012474
http://dx.doi.org/10.1016/j.icarus.2007.02.024
http://dx.doi.org/10.1111/j.1365-246X.2008.03764.x
http://dx.doi.org/10.1017/jfm.2018.292
http://dx.doi.org/10.1016/j.pss.2009.06.026
http://dx.doi.org/10.1016/j.icarus.2019.02.001
http://dx.doi.org/10.1016/0019-1035(76)90053-1
http://dx.doi.org/10.1038/nphys4001
http://dx.doi.org/10.1016/j.icarus.2011.10.001
http://dx.doi.org/10.1017/S0022112002002008
http://dx.doi.org/10.1046/j.1365-246X.1999.00886.x
http://dx.doi.org/10.1103/PhysRevFluids.5.073501
http://dx.doi.org/10.1016/j.icarus.2014.11.022
http://dx.doi.org/10.1088/0067-0049/202/1/5
http://dx.doi.org/10.1103/PhysRevLett.101.194501
http://dx.doi.org/10.1016/j.jcp.2010.07.004
http://dx.doi.org/10.1016/j.pepi.2014.02.004
http://dx.doi.org/10.1080/03091929.2017.1347785
http://dx.doi.org/10.1103/PhysRevFluids.3.024801
http://dx.doi.org/10.1103/PhysRevFluids.4.074802
http://dx.doi.org/10.1016/j.icarus.2013.02.031
http://dx.doi.org/10.1017/jfm.2016.659
http://dx.doi.org/10.1073/pnas.1709125115
http://dx.doi.org/10.1016/0019-1035(88)90075-9
http://dx.doi.org/10.1038/nature25775


Polar dynamics in deep convection models 4715

Heimpel M., Aurnou J., 2007, Icarus, 187, 540
Heimpel M., Aurnou J., Wicht J., 2005, Nature, 438, 193
Heimpel M., Gastine T., Wicht J., 2015, Nat. Geosci., 9, 19
Jones C. A., Kuzayan K. M., Mitchell R. H., 2009, J. Fluid Mech., 634, 291
Julien K., Rubio A. M., Grooms I., Knobloch E., 2012a, Geophys. Astrophys.

Fluid Dyn., 106, 392
Julien K., Knobloch E., Rubio A. M., Vasil G. M., 2012b, Phys. Rev. Lett.,

109, 254503
Kaplan E. J., Schaeffer N., Vidal J., Cardin P., 2017, Phys. Rev. Lett., 119,

094501
Kaspi Y. et al., 2018, Nature, 555, 223
Kutzner C., Christensen U., 2002, Phys. Earth Planet. Inter., 44, 29
Liu J., Schneider T., 2010, J. Atmos. Sci., 67, 3652
Liu J., Goldreich P. M., Stevenson D. J., 2008, Icarus, 196, 653
Morales-Juberı́as R., Sayanagi K. M., Simon A. A., Fletcher L. N., Cosentino

R. G., 2015, ApJ, 806, L18
O’Neill M. E., Emanuel K. A., Flierl G. R., 2015, Nat. Geosci., 8, 523
O’Neill M. E., Emanuel K. A., Flierl G. R., 2016, J. Atmos. Sci., 73, 1841
Orszag S. A., 1970, J. Atmos. Sci., 27, 890
Orton G. S. et al., 2017, Geophys. Res. Lett., 44, 4599
Oruba L., Dormy E., 2014, Geophys. Res. Lett., 41, 7115
Pedlosky J., 1979, Geophysical Fluid Dynamics. Springer Verlag, New York
Read P., 2011, Planet. Space Sci., 59, 900
Rhines P. B., 1975, J. Fluid Mech., 69, 417
Rostami M., Zeitlin V., Spiga A., 2017, Icarus, 297, 59

Rubio A. M., Julien K., Knobloch E., Weiss J. B., 2014, Phys. Rev. Lett.,
112, 144501

Sánchez J., Garcia F., Net M., 2016, J. Comput. Phys., 308, 273
Sánchez-Lavega A. et al., 2014, Geophys. Res. Lett., 41, 1425
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