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Coloured random graphs explain 
the structure and dynamics 
of cross‑linked polymer networks
Verena Schamboeck1, Piet D. Iedema1 & Ivan Kryven2,3*

Step-growth and chain-growth are two major families of chemical reactions that result in polymer 
networks with drastically different physical properties, often referred to as hyper-branched and cross-
linked networks. In contrast to step-growth polymerisation, chain-growth forms networks that are 
history-dependent. Such networks are defined not just by the degree distribution, but also by their 
entire formation history, which entails a modelling and conceptual challenges. We show that the 
structure of chain-growth polymer networks corresponds to an edge-coloured random graph with 
a defined multivariate degree distribution, where the colour labels represent the formation times 
of chemical bonds. The theory quantifies and explains the gelation in free-radical polymerisation of 
cross-linked polymers and predicts conditions when history dependance has the most significant 
effect on the global properties of a polymer network. As such, the edge colouring is identified as the 
key driver behind the difference in the physical properties of step-growth and chain-growth networks. 
We expect that this findings will stimulate usage of network science tools for discovery and design of 
cross-linked polymers.

Already in the early days of network science it has been realised that in dynamic networks the entire time trajec-
tory of network formation may reflect on the topological features of the structure that is formed at the end. In 
other words, that the structure of a dynamic network may have memory of its past. Some examples of evolving 
network models include Price’s (1965) preferential attachment model1, the vertex copying model2, network 
optimisation models3, and branching simlicial complexes4,5. Preferential attachment, vertex copying models, 
and branching simplicial complexes all result in heavy-tailed degree distributions. In this work, we introduce an 
evolving network model with an arbitrary degree distribution to show that the different effects induced by the 
two most common polymerisation processes on the resulting materials are provoked by the presence or absence 
of memory in the underlaying network structures.

Step-growth and chain-growth polymerisation are two major families of chemical reactions that result in 
polymer networks. For step-growth, such polymers include polyethylene (PE), polyvinyl chloride (PVC), poly-
propylene (PP) and polyacrylates6, which have a variety of applications: including paints and adhesives7,8, food 
packaging9, biomaterials and medical devices10,11. Well-known examples of chain-growth polymers are gels 
that find applications as absorbents for medical, chemical and agricultural purposes12, and coatings made by 
photopolymerisation13,14. The reason for the difference in the physical and mechanical properties of the step- and 
chain-growth derived polymers lies in the distinct network structures. Moreover, the structure of chain-growth 
networks can be manipulated by adjusting polymerisation conditions and species concentrators in order to 
optimise physical and mechanical properties.

The structure of networks that are produced by step-growth polymerisation is well understood. The first mod-
els were developed by Flory15 and Stockmayer16 in the 1940s. These models represent a monomer unit as a vertex 
with a defined number of half-edges, and rely on the assumption that any pair of half-edges has independent 
and identical probability to be connected (the i.i.d. assumption). Such models predict molecular size distribu-
tions and the gelation time for several special cases of monomer functionality. Following the work by Flory and 
Stockmayer, branching and coagulation processes were used to derive the size of gel molecules and predict the 
time when the gel starts to form, see Gordon17,18 and Ziff19,20. In our recent works21–24, we continued this avenue 
by identifying the entire polymer network as a random graph with a given degree distribution25, which provides 
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a new theory and algorithms of general step-growth polymer systems irrespective of the number of monomers 
and their functionality. However successful such a technique proves to be for step-growth polymer networks, 
it cannot explain the networks produced by chain-growth procedure due to history dependence of the latter.

In the polymer context, the idea of history-dependence26 means that network structures formed by chain-
growth polymerisation violate the i.i.d. assumption and thus such networks have a different structure from that 
of step-growth polymers. Due to the history-dependence of the network structure, chain-growth polymerisation 
is typically modelled with master equations, also known as population balance equations (PBEs), which track 
the evolution of several network properties throughout the entire formation process27–30. Stochastic simulation 
algorithms (SSAs)31 provide another alternative, which is especially suitable for complex polymerisation systems 
with many functional groups32. The downside of SSA is that it may require prohibitive computational costs, 
especially when important species, such as radicals, are present in small relative concentrations.

One striking feature of history-dependent processes is that the moment in time when an extensive cluster 
emerges, that is the gel point13, differs from the percolation threshold found when randomly removing bonds in 
the final network. This provides a strong contrast to network formation by step-growth polymerisation, where 
the polymerisation process is equivalent to random percolation on the final network topology21,23,24. In some 
cases, however, the uncoloured random graph gives a surprisingly good estimate of the phase transition and 
the gel fraction13, which suggests that under certain conditions chain growth polymerisation may not induce a 
significant history dependency. Beyond polymers, strong history dependence is characteristic to processes on 
networks that can be reformulated as an annealed dynamics33.

In “The coloured directed random graph witharbitrary degree distribution” section the main results of the 
theory for coloured directed random graphs are summarised. We illustrate the concept on two types of chain-
growth polymerisation, living polymerisation and free-radical polymerisation. We report a procedure to compute 
molecular weights of the sol polymer and the gel fractions, and compare these quantities with stochastic simula-
tions. “Example: living polymerisation” section presents the results for linear and nonlinear living polymerisation, 
and in “Example: free-radical photopolymerisation” section the methodology is applied to linear and non-linear 
free-radical polymerisation. “Conclusion” section discusses the conclusions of the present work. In “Methods ” 
section, the derivation of the weight-average molecular weight and the gel fraction in the coloured directed 
random graph is provided, as well as derivations of the kinetic schemes and master equations for the living and 
free-radical (photo-) polymerisations.

Results
In the present work we represent polymers as graphs. The nodes represent the monomer units and the edges 
correspond to the covalent bonds, which are formed during the polymerisation process. The degree distribution 
u(k) is the probability of a uniformly at random selected node to have k incident edges. Many macroscopically 
observable quantities in polymer chemistry have their equivalents in the graph theory: the gel point corresponds 
to the phase transition at which the giant component emerges; the gel fraction is the relative size of the giant 
component, and the molecular weight is the expected size of (weakly) connected components.

Many real world networks evolve due to a local temporal process—a set of rules that connects nodes depend-
ing on their labels, degrees, etc. Such a local formation process may or may not result in a structure that is 
significantly different from a random graph with i.i.d. degrees. Step-growth polymerisation is one example of a 
network formation process that only constrains the degree distribution, beyond that, the graph is fully random 
and history-independent. Such networks can be model by a random graph that satisfies a fixed degree distribu-
tion at each time point21,23,24. However, if the emerging structure depends on history of its formation, it cannot 
be represented by degree distribution alone, as shown in the following example: Consider a system with linear 
polymer chains having a narrow length distributions. The degree distribution only contains information about 
the number of nodes with degree two, and the nodes with degree one. If nodes with fixed degrees one and two 
are connected randomly, we will find chains with many different lengths, therefore overestimating the variance 
of the length distribution.

We extend the ‘amount of information’ stored in the degree distribution by representing the time inter-
vals at which each edge was created with edge colours. We discretise time into defined time intervals 
�ti = [ti−1, ti), i = 1, . . . ,N with every time interval �ti being attributed colour i. As before, all pairs of half-
edges are assigned an equal probability to connect, but now only half-edges, which have the same colour, are 
paired. In the limit of infinitely small time intervals, every edge is coloured in a different colour, which would 
allow exact reconstruction of the polymer structure. Hence, we propose that extending the degree distribution to 
a coloured degree distribution, should allow us to apply random graph modelling to history-dependent networks.

In Fig. 1, we illustrate the concept on a simple example of linear polymer chains: The original structure that 
we aim to recover from the random graph consists of three polymer chains of length 6. We take degree distribu-
tions of different random graph models: (1) directed, (2) undirected and coloured, (3) directed and coloured. If 
the degree distribution only contains information on the number of half-edges (degree) and their orientation 
(left), chains of various lengths are obtained. In the second case, the degree distribution contains information 
on the degree and the colour, but the edges are considered undirected (middle), again, various chain lengths are 
obtained. Only if the degree distribution contains information on both, the orientation and the colour of the 
edge, the correct structure is recovered (right).

The coloured directed random graph with arbitrary degree distribution.  To study the global 
behaviour of the polymer network, we are interested in quantities, such as the gel point (phase transition in 
the random graph), the gel fraction (relative size of the giant component), and the average molecular weight 
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(expected size of all connected components). Here, we present the mathematical expressions for these quantities 
for the coloured directed random graph with arbitrary degree distribution.

In the coloured directed random graph34, every half-edge is assigned one colour i = 1, . . . ,N , according to 
the 2N-variate degree distribution. In- and out-edges are only paired if they have the same colour. Every node is 
characterised by a vector of half-edge counts k = (k1, . . . , k2N ) of all possible half-edge types. The count k2i−1 is 
the in-degree of colour i and k2i the out-degree of colour i. Thus, the degree distribution u(k) defines the prob-
ability that a node is characterised by count vector k.

The pairing rules between the directed coloured half-edges are mathematically defined in permutation matrix 
P . If only one colour is present in the directed network ( N = 1 ), it is given by

A non-zero element Pi,j = 1 indicates that a half-edge of type i pairs with a half-edge of type j. In the case of the 
uncoloured directed network, out-edges are paired with in-edges and the other way around, but two half-edges 
of the same type cannot be paired. In the case of N colours, the 2N × 2N permutation matrix is given by

with σ as defined in Eq. (1) and 0 being a 2× 2 zero matrix.
Some network properties in this model require to know only the first and second mixed moments of the 

degree distribution u(k) , and, in what follows, we simply write E[X] to denote expectation of some random vari-
able X with respect to this distribution. We define the vector µ and matrix M as

and

The expectation values E[ki] define the first partial moments of u(k) and E[kikj] the second partial moments. We 
consider degree distributions with finite partial moments.

In simple percolation, where each edge is removed with probability 1− p , the percolation threshold34 pcrit = 1
�
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Figure 1.   Representing bond formation time as edge colour in directed random graphs. Top: An example of a 
coloured directed graph. Bottom: Reconstructed possible structures with: uncoloured directed random graph 
(left), the coloured undirected random graph (middle), and the coloured directed random graph (right).
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where matrices P and M are as defined above. Here p = pcrit indicates the point at which the giant component 
disappears under random removal of edges. However, the paradigm is different in the case of history-dependent 
networks where the degree distribution is time-dependant u(k, t) . We wish to know at which point t = tcrit > 0 , 
matrix M(t) , which continuously depends on time, starts to indicate existence of the giant component. Since for 
vanishing matrix we have lim

t→0
det(PM(t)− I) = 1 > 0, such a point is given by the first sign change of the 

determinant:

with I being the identity matrix of size 2N × 2N . For N = 1 , Eq. (6) is equivalent to the criterion derived for 
uncoloured directed random graphs21.

In a similar manner as in Ref.34, we derive expressions for the fraction of nodes in the giant component and 
the weight average component size for the directed case, see “Methods” section for the detailed derivation. The 
fraction of nodes in the giant component gnode , that is the probability that a randomly sampled node is part of 
the giant component, is given by

According to this definition, the actual number of nodes in the giant components is gnodeNsys , where Nsys is the 
total number of nodes. The elements of vector s = (s1, . . . , s2N )

⊤ are defined by

with ei denoting the standard basis vectors and the vector power being evaluated as sk :=
∏N

i=0 s
ki
i  . An expression 

for the weight-average size of finite components 〈s〉w is given by

where D = diag{E[k1], . . . ,E[k2N ]} . The elements of the matrix function X(s) are defined as

Random graph representation of chain‑growth processes
During chain-growth polymerisation, monomers join together and form long polymer chains or a polymer net-
work as a result of chemical reactions. Such a linking process, as illustrated in Fig. 2a, takes place only at active 
sites that propagate from one monomer to the next by reacting with functional groups leaving a trace of covalently 
connected monomers behind. Since the propagation reaction is asymmetric, by which we mean that active (radi-
cal) sites react with functional groups, one may attribute a notion of direction to the resulting chemical bond. 
Let a directed edge be pointing from the former radical site to the former functional group, so that a monomer 
with the former radical obtains an out-edge, and the monomer with the former functional group an in-edge.

Depending on the number of functional groups on each monomer, the system forms linear polymer strands, 
sparsely cross-linked polymers, or densely cross-linked polymer networks. Chain-growth polymerisation follows 
a mechanisms, due to which one functional group is typically converted into two bonds. Therefore, a monomer 
with one functional group contributes to linear strands ( deg = 2 ), whereas monomers with at least two functional 
groups act as crosslinks ( deg = 3, 4 ). Cross-linked systems may experience a phase transition from the soluble 
regime to the gel regime. After the transition, the gel further continues to undergo crosslinking and expands in 
its size. Figure 2b illustrates the structure of a cross-linked polymer system at different stages of its formation, 
before, close to, and after the gel point.

Example: living polymerisation.  In living polymerisation, the propagation is the main reaction respon-
sible for growth of polymers, see Fig. 2a. As shown in the figure, during the propagation step an active site ( · ) of 
one monomer reacts with the functional group ( = ) of a second monomer, the active site transfers (propagates) 
to the second monomer, and a covalent bond is formed. Here, we assume that 1% of functional groups are active 
at any time, and that active sites are not being consumed.

We can predict global network properties from purely local information, such as: (1) the distribution of the 
number of neighbours of a monomer unit, (2) the formation time of the bonds, and (3) the directionality of the 
bond. This information comprises the coloured directed degree distribution, which is obtained from a system of 
ordinary differential equations (ODEs) implementing the reaction rate equations for monomers. Such models 
are given in “Mathematical description: livingpolymerisation of polymer chains” section for linear and “Math-
ematical description: free-radicalphotopolymerisation” section for cross-linked systems.

We consider three different monomer mixtures: (a) monofunctional monomers V1 : V2 = 1 : 0 , (b) mixture 
of mono- and difunctional monomers V1 : V2 = 0.97 : 0.03 , (c) difunctional monomers V1 : V2 = 0 : 1 . In Fig. 3, 
we report the average size of the polymer molecules and the gel fraction (as given by Eqs. (7) and (9)) as a func-
tion of conversion (i.e., the fraction of reacted functional groups) for the different polymerisation systems and 
compare these results to SSA. As a reference, predictions from a projected uncoloured directed random graph, 
which does not include information on the history of network formation, are depicted too.

(6)tcrit = inf {t : det(PM(t)− I) < 0},

(7)gnode = 1− E[(Ps)k].

(8)si =
E[ki(Ps)

k−ei ]
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1− gnode
,
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If N = 1 , all edge pairs are equally likely to be linked. In the case of linear polymers, Fig. 3a, this allows for 
very short polymer chains, as well as very long ones, resulting in large variations in chain lengths. If the forma-
tion time is taken into account, the chain length distribution is additionally constrained and results in chains of 
similar length, as it should be in the case with linear living polymerisation.

Figure 3b,c shows that both systems, with V1 : V2 = 0.97 : 0.03 and V1 : V2 = 0 : 1 , feature the phase tran-
sition. In both systems, the weight average size exhibits a singularity at the gel point. The gel fractions for the 
sparsely and densely cross-linked systems are shown in Fig. 3b (right) and 3b (right). Even though the gel point is 
shifted in both systems, the shift is significantly smaller in a more densely cross-linked system ( �χ ≈ 0.02 ) than 
in the sparsely cross-linked system ( �χ ≈ 0.16 ). This indicates that the history-dependence is less pronounced 
in networks with larger fractions of crosslinking points.

Overall, we observe good agreement between the coloured random graph with N = 35 and the SSA with 
Nsys = 106 . Some minor deviations could be introduced by the small system size in the SSA.

Example: free‑radical photopolymerisation.  As a second example, we consider free-radical polymeri-
sation with photoinitiation. In contrast to living polymerisation, free-radical polymerisation allows the forma-
tion of new active sites (initiation) and also the consumption of active sites (termination) throughout the whole 
polymerisation process. Hence, chain length distributions in linear systems are typically broader than for living 
polymerisation. We aim to understand if the evolving structures still show history-dependence, and if so, to 
what extent.

The reaction scheme of free-radical polymerisation includes three competing reactions in the reaction kinetic 
ODEs model: (1) initiation, the transformation of a functional group into a radical, (2) propagation, the reaction 
between a radical with a functional group, resulting in a bond and transfer of the radical to the second monomer, 
and (3) termination, the consumption of two radicals by disproportionation (no bond formation). The initiation 
is induced by ultraviolet light irradiation, thus the term photopolymerisation.

The full kinetic model yielding the 2N-variate degree distribution for the entire polymerisation process is 
given in “Mathematical description: free-radicalphotopolymerisation” section. The kinetic rate parameters, and 
initial species concentrations in our study deviate from parameters in literature to enable a comparison with SSA, 
see Table 1. In real experimental conditions, the radical concentration is typically lower: the monomer fraction 
carrying a radical is of the order of 10−5−10−7 . Such values are easy to account for in our model, but are hard 
to achieve in SSA that requires large species concentrations. Thus for the sake of comparison, we: (1) adjusted 
the reaction rates and increased the rate coefficients for photoinitiation and termination kdkt  , and (2) choose the 
initiator concentration to be such that it is not depleted during the polymerisation process.

(a)

(b)

Figure 2.   Cross-linked polymer network during chain-growth polymerisation. Illustration of (a) the dynamical 
process and (b) the snapshots of the evolving network. In (a) the red ‘ ·’-symbol marks the active site and the ‘ =
’-symbol the functional groups. Three consecutive time instances are depicted with one bond formed in the first 
time interval (highlighted in yellow), and two bonds formed in the second (highlighted in green). In (b) the 
network topologies with system size Nsys = 2000 are depicted for: χ = 0.1 : early stage; χ = 0.4 : close to the gel 
point; χ = 0.7 : gel regime.
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We study the polymerisation of mixtures of mono- and divinyl monomers. In Fig. 4, the weight average size, 
the gel fraction and network structures are depicted for three polymerisation systems with varying ratio of mono- 
and divinyl monomers V1:V2 : (a) linear chains V1:V2 = 1:0 , (b) sparsely cross-linked network V1:V2 = 0.97:0.03 , 
(c) densely cross-linked network V1:V2 = 0:1 . The predictions of the coloured directed random graph is com-
pared to the SSA data and the uncoloured directed random graph.

The structure of the linear system V1:V2 = 1:0 confirms that chains of various sizes are present in the system 
simultaneously, which differs from the structure obtained from living polymerisation (Fig. 3). Also the network 
structure of the sparsely cross-linked system with V1 : V2 = 0.97:0.03 shows a broader range of molecular sizes. 
The densely cross-linked network V1:V2 = 0:1 looks similar to the network obtained from living polymerisation 
as in both cases the gel fraction is close to 1. Nevertheless, in free-radical polymerisation new polymer mol-
ecules are formed by the initiation of free monomers throughout the polymerisation process, but they quickly 
get incorporated into the gel.

Figure 4a, (left) depicts the weight average size for the linear system. The predictions of the uncoloured versus 
the coloured random graph diverge less strongly than in the case of living polymerisation, see Fig. 3a (left). This 
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Figure 3.   Network structure, average molecular weight, and gel fraction in living polymerisation: (a) linear 
polymers with V1 : V2 = 1 : 0 , (b) sparsely cross-linked polymers with V1 : V2 = 0.97 : 0.03 , (c) densely cross-
linked polymers with V1 : V2 = 0 : 1 . The solid black line represents the coloured random graph with N = 35 , 
and the red data points represent the averaged results of 10 independent runs of SSA with Nsys = 106 . The 
dash-dotted line indicates the gel transition predicted by the coloured random graph. The network structures are 
obtained from SSA at conversion χ = 0.5.
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is due to the continuous formation and termination of radicals throughout the polymerisation process and their 
hence limited life-time, which reflects in a large variability of the chain length. The calculated length distributions 
are broader than in the case of living polymerisation and are more similar to distributions obtained from the 
uncoloured directed random graph. Hence, the uncoloured model gives better predictions of the weight average 
size for free-radical polymerisation than for living polymerisation.

Figure 4b,c, illustrate the weight average size and the gel fraction in a sparsely and densely cross-linked poly-
mer networks. In a sparsely cross-linked system, labelling edges with their formation time does not significantly 
alter the predictions of the gel point and the weight average size. However, it does improve the predictions of 
the gel fraction at large conversions, χ > 0.6 . In our example of a densely cross-linked system, the uncoloured 
random graph underestimates the gel point by �χ ≈ 0.02 . The history-dependence is less pronounced in free-
radical polymerisation when compared to living polymerisation, but also within living polymerisation the extent 
of this effect varies across the parameter space.

Quantification of the history‑dependency.  We use M obtained at full conversion, as it contains infor-
mation of the entire polymerisation process. If Mi,j is close to zero, the half-edges of types i and j are rarely found 
on one monomer simultaneously. Let M̃ corresponds to a system with randomised colours, a system with ’erased’ 
history-dependence. Figure 5 shows structures of M and M̃ for: (a) linear living polymerisation with initial radi-
cal concentration pini = 0.01 , (b) densely cross-linked living polymerisation with initial radical concentration 
pini = 0.01 , (c) densely cross-linked living polymerisation with increased initial radical concentration pini = 0.1.

The first column (i) illustrates the matrix elements of M for the fully polymerised systems χ = 1 . In linear 
systems, only two distinct half-edge types can be present simultaneously on one node. We only observe signifi-
cant values in the diagonal band M2(i−1),2i and M2i,2(i−1) with i = 1, . . . ,N . Hence, the two half-edges present 
on the same node are likely to be of same colour and opposite orientation. This is a consequence of the chosen 
polymerisation process: Only rarely do time intervals change within the characteristic time of a propagation step. 
All other matrix elements are small since: (1) radicals do not remain on the same node for more than one time 
interval, and (2) it is not possible that two in- or two out-edges are present on the same node as every monomer 
has only one vinyl group.

Figure 5b.i presents M for densely cross-linked systems and the initial radical concentration of pini = 0.01 . 
Initially, every monomer has two vinyl groups leading to a maximum degree deg = 4 . The consumption of the 
two vinyl groups during polymerisation is independent. The overall pattern is similar to (a.i) with a non-zero 
offset; all combinations of half-edge types are allowed in the system: Even though the colours of the in- and out-
edges formed by one vinyl site are correlated, one active site may be consumed in the beginning of the process 
whereas the other site is consumed in the end. Typically, at full conversion a node has more than one half-edge 
of given orientation (two in-edges and two out-edges) and the half-edges of the same orientation are likely to 
have different colours.

Figure 5c.i shows M for densely cross-linked living polymerisation with an increased initial radical concen-
tration, pini = 0.1 . The observed pattern is different from the previous cases (a,b.i) as it shows a broader band of 
large matrix elements. The observed trend is caused by two effects: (1) The more radicals are present in the system, 
the more nodes with one in-edge of colour i and one out-edge of colour i + 1 are formed when the time interval 
changes. Thus, the larger the radical concentration, the larger are the elements M2(i−1),2(i+1) and M2(i+1),2(i−1) 
with i = 1, . . . ,N − 1 . (2) As polymerisation happens faster in systems with larger radical concentration and the 
number of time intervals is fixed and equally spaced over conversion, the absolute values �ti are shorter. Hence, 
radicals are more probable to remain on one monomer for more than one time interval.

To quantify the extent of the history-dependence of a system, we compare its M-matrix to the matrix M̃ with 
randomised colours, which represents a system with ’erased’ history-dependence. The randomised system satis-
fies the same degree distribution with respect to the orientation of the edge, but with a random distribution of 
edge colours. The derivation of M̃ is given in “Randomised matrix M̃” section. If M = M̃ , the observed network 
is not history-dependent and can be sufficiently described by the uncoloured random graph, i.e., colours are 
redundant. One example of such a process is the conventional step-growth polymerisation24.

We now quantify the degree of history-dependence using the following score:

Table 1.   Kinetic parameters and initial concentrations (not representative for real-world systems).

Symbols Values SI units Definitions

kd 1.30 s−1 Rate constant photoinitiation

kini 6.12× 104 l(mol s)−1 Rate constant vinyl initiation

kp 6.12× 104 l(mol s)−1 Rate constant propagation

ktd 4.40× 105 l(mol s)−1 Rate constant termination

I2(0) 1.03 mol l−1 Initial concentration of photoinitiator

I(0) 0 mol l−1 Initial concentration of photoinitiator

M0 1 mol l−1 Initial concentration of monomers

R0 0.01, 0.1 – Initial fraction of radicals

cmono 1, 0.01, 0 – Initial fraction of monofunctional monomers

cdi 0, 0.01, 1 – Initial fraction of difunctional monomers
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The entry-wise matrix norm is defined as ||M||F :=
(

∑

i,j |Mi,j|
2
)1/2

 . The randomised matrices for the systems 
presented in Fig. 5 are illustrated in column (ii). For the system of linear living polymerisation (Fig. 5a.ii) we 
obtain a checkerboard pattern with zero elements for correlations of two half-edges of equal orientation 
M2(i−1),2(j−1) and M2i,2j for i, j = 1, . . . ,N . Non-zero elements are obtained for two half-edge types with opposite 
orientation, all of equal value. For densely cross-linked living polymerisation we observe a similar checkerboard 
pattern, however with all elements shifted to larger values and without zero elements. In contrast to M , the 
randomised matrix M̃ is to a large extent independent of the initial radical concentration, see Fig. 5b.ii,c.ii. These 
trends are summarised in Fig. 6, where we plot the measure of the history-dependence h as a function of two 
parameters: the fraction of active sites (radicals) and the fraction of crosslinkers (divinyl monomers). An 
increased fraction of radicals results in a decrease of the h-value, implying that networks formed with high radical 
concentrations exhibit less history-dependence: as the polymerisation process becomes ‘less sequential’ and 

(11)h =
||M − M̃||F

||M̃||F
.
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(a)   Free-radical polymerization, V1:V2=1:0
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(b)   Free-radical polymerization, V1:V2=0.97:0.03

(c)   Free-radical polymerization, V1:V2=0:1

Figure 4.   Network structure, average molecular weight, and gel fraction in free-radical polymerisation: (a) 
linear polymers with V1:V2 = 1:0 , (b) sparsely cross-linked polymers with V1 : V2 = 0.97 : 0.03 , (c) densely 
cross-linked polymers with V1:V2 = 0:1 . The solid black line presents the results from the coloured random 
graph with N = 40 , and the red data points represents the averaged results of 10 independent SSA runs with 
system size Nsys = 106 . The dash-dotted line indicates the gel transition predicted by the coloured directed 
random graph. The network structures are obtained with SSA at conversion χ = 0.5.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14627  | https://doi.org/10.1038/s41598-020-71417-9

www.nature.com/scientificreports/

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

-0.8

-0.6

-0.4

-0.2

0

0.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

-0.8

-0.6

-0.4

-0.2

0

0.2

2 4 6 8 10
Half-edge type, i

1
2
3
4
5
6
7
8
9

10

H
al

f-
ed

ge
 ty

pe
, j

-0.8

-0.6

-0.4

-0.2

0

0.2

(a.i) (a.ii) (a.iii)

(b.i) (b.ii) (b.iii)

(c.i) (c.ii) (c.iii)

Figure 5.   Examples of M-matrices for different systems with N = 5 colours: (a) living polymerisation with 
V1 : V2 = 1 : 0 and pini = 0.01 , (b) living polymerisation with V1 : V2 = 0 : 1 and pini = 0.01 , (c) living 
polymerisation with V1 : V2 = 0 : 1 and pini = 0.1 . The following matrices are depicted: (i) M according to 
Eq. (4), (ii) M̃ according to Eq. (43), (iii) Mdiff = M̃ −M.
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hence closer resembling to the step-growth polymerisation. Conversely, the effect of the history-dependence in 
sparsely cross-linked systems is more pronounced than in densely cross-linked ones. Figure 7, show that in 
photo-initiated polymerisation, where light irradiation is used to control the radical concentration, the divinyl 
monomer fraction is the main parameter determining degree of history dependance.

Conclusion
Networks produced by chain-growth polymerisation are constrained to form in a sequential manner and thus 
differ from networks resulting from the step-growth process. Such a difference results in the history-dependence 
of the network structure: If the network were to be cut into separate monomers and then rewired randomly 
by maintaining their degree sequence, a very different network would be obtained. This work shows that the 
structure of such history-dependent networks corresponds to coloured random graphs that solely rely on local 
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Figure 7.   Photo-initiated polymerisation. The coloured model for free-radical polymerisation supplemented 
with parameters used in acrylate coatings13. This process is initiated and controlled by light irradiation with 
constant intensity IL , which produce radicals, see Methods for details. (a) History-dependence is sensitive to the 
fraction cdi of difunctional monomer but not to light intensity. (b) Gel fraction buildup at IL = 1, 000W/m2 and 
cdi = 1 features weak history dependency, wheres for cdi = 0.1 history dependency becomes more pronounced, 
as shown in (c).



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14627  | https://doi.org/10.1038/s41598-020-71417-9

www.nature.com/scientificreports/

description of the monomers. This association between polymers and random graphs enables analytical methods 
and fast algorithms for studying the structure of polymer networks originated from the chain-growth mecha-
nism. We expect that such a fundamental connection to random graphs could be exploited to facilitate design 
and optimisation of polymer materials. The objectives for design depend on particular application. For example, 
practitioners designing polymer recipes may be interested to either avoid gelation while maximising molecular 
weight when controlling viscosity of a polymer melt, or to maximise gel fraction to achieve stronger materials, 
as in coating and thin film production. Another example is volumetric three-dimensional printing35–39, where 
the objective is to maximise steepness of the gel fraction curve, which guaranties high contrast of printed objects.

By computing a score function, we show that only low radical concentration and small fraction of difunc-
tional monomers was found to be associated with significant history-dependency. Coincidently the region of 
the parameter space is often exploited in polymer design to enhance elasticity37,40–42, whereas the region is also 
poorly tractable with conventional SSA, which has the best performance when concentrations of all species are 
comparable43.

Not all polymerisation process lead to pronounced history-dependency, and hence they may be satisfactory 
represented with simple random graphs without colours. Even in extreme cases of industrially relevant processes 
with history-dependency that we have studied (living and free radical polymerisation) the discrepancy between 
gel fraction curves was found to be small comparing to what can be achieved with altering monomer function-
ality. We thus hypothesise that polymer networks that are currently produced exploit a rather small subset of 
structural forms that can be possibly accommodated by coloured random graphs.

Methods
Derivation of the size of the giant component.  Let us consider a system of nodes bearing 2N different 
types of half-edges. The probability that a node is characterised by the half-edge count vector k = (k1, . . . , k2N ) 
is given by the multivariate degree distribution u(k) . The permutation matrix P defines a pairing on the 2N half-
edge types, with Pi,j = 1 if half-edge types i and j form a bond and Pi,j = 0 otherwise.

Let the i-excess degree distribution ui(k) be the probability that a node connected to a randomly sampled 
half-edge of type i has excess configuration k (thus not counting the already sampled half-edge). It is given by

where ei are the standard basis vectors.
Let z = (z1, . . . , z2N ), |zi| < 1, zi ∈ C , we define the generating functions of the degree distribution

and the i-excess degree distribution

as

Note that the vector power in these definitions and in what follows is evaluated as

Let W(x) : C → C and Wi(x) : C → C for i = 1, . . . 2N be a family of complex functions satisfying the system 
of 2N + 1 equations:

with ω(x) := (W1(x), . . . ,W2N (x))
⊤ . Here Wi(x) play an auxiliary role as we are mainly concerned with the 

properties of W(x). The theory for coloured random graphs34 interprets W(x) as the generating function for 
the probability w(n) that a uniformly at random chosen node is part of a finite component of size n, that is 
W(x) =

∑

n>0 x
nw(n) with x ∈ C, |x| ≤ 1. Therefore, the probability that a randomly sampled node is not in 

any finite-sized component but in the giant component is given by

where W(1) can be calculated by substituting x = 1 in Eq. (14), yielding

(12)ui(k) = (ki + 1)
u(k + ei)

E[ki]
,

U(z) : C2N → C

Ui(z) : C
2N → C

(13)

U(z) =
∑

k>0

zku(k),

Ui(z) =
∑

k>0

zkui(k) =
1

E[ki]

∂U(z)

∂zi
, i = 1, . . . , 2N

zk :=

2N
∏

i=0

zkii .

(14)
W(x) = xU(Pω(x)),

Wi(x) = xUi(Pω(x)), i = 1, . . . ,N

(15)gnode = 1−W(1),

(16)W(1) =
∑

k>0

u(k)(Ps)k = E[(Ps)k],
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with s = ω(1) , satisfying system of equations

for i = 1, . . . , 2N . These results were stated in Eqs. (7) and (8).

Derivation of the weight‑average size of finite components.  We derive the expression of the 
weight-average size of finite components, defined as

and normalised to the system size without the giant component. The evaluation of ddxW(x) results in

with y = d
dxw(x)|x=1 and D = diag{E[k1], . . . ,E[k2N ]} . The elements of vector y = (y1, . . . , yN )

⊤ , where 
yi =

∂
∂xWi(x)|x=1 , are given by

Utilising the matrix function X(s) with its elements

with i, j = 1, . . . , 2N , Eq. (20) is written in its matrix form y = s + X(s)Py . Thus, y is expressed explicitly as

Having Eqs. (19) and (22) in hand, Eq. (18) is written as

which is stated in Eq. (9).

Mathematical description: living polymerisation of polymer chains.  In this section, we introduce 
a master equation for monomer species in living polymerisation. First we will discuss the formulation without 
colours, followed by the monomer PBE with N colours. Living polymerisation is a special type of chain-growth 
polymerisation characterised by a very fast initiation and suppressed termination of radicals. Hence, only propa-

(17)

si = Wi(1) = Ui(Ps)

=
∑

k>0

ui(k)(Ps)
k

=
1

E[ki]

∑

k>0

(ki + 1)u(ki + ei)(Ps)
k

=
E[ki(Ps)

k−ei ]

E[ki]
,

(18)�s�w =

d
dxW(x)|x=1

1− gnode
,

(19)

dW(x)

dx

∣

∣

∣

∣

x=1

= U(Pω(x))|x=1+

+

(

∂U(z)

∂z1

d(Pω(x))1

dx
+ . . .

+
∂U(z)

∂zN

d(Pω(x))N

dx

)∣

∣

∣

∣

x=1,z=s

= W(1)+

(

∂U(z)

∂z1
, . . . ,

∂U(z)

∂zN

)∣

∣

∣

∣

z=s

Py

= 1− gnode + s⊤DPy.

(20)

yi = Ui(Pω(x))|x=1+

+

(

∂Ui(z)

∂z1

d(Pω(x))1

dx
+ . . .

+
∂Ui(z)

∂zN

d(Pω(x))N

dx

)∣

∣

∣

∣

x=1,z=s

= si +

(

∂Ui(z)

∂z1
, . . . ,

∂Ui(z)

∂zN

)∣

∣

∣

∣

z=s

Py.

(21)

Xi,j(s) =
∂Ui(z)

∂zj

∣

∣

∣

∣

z=s

=
E[(kikj − δi,jki)s

k−ei−ej ]

E[ki]
,

(22)y = [I − XP(s)]−1s.

(23)�s�w = 1+
s⊤DP[I − XP(s)]−1s

1− gnode
,
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gation is modelled explicitly. We consider a monomer with one functional group (vinyl group), which allows the 
formation of at maximum two bonds per monomer and therefore leads to linear strands of polymers.

Monomer equation for living chain polymerisation.  The monomer equation describes the concentration of the 
monomer species over time by a system of ODEs, rather than the concentrations of polymers of different size as 
is the case with the conventional PBE. We consider a system with the initial fraction of active monomers units 
to be set to R0 = 0.01 . During the propagation reaction, the active monomer unit connects with an unreacted 
monomer and a covalent bond is formed. Due to the asymmetry in the reactants (vinyl+radical), the formed 
connection is considered asymmetric as well. This asymmetry is represented as the orientation of a directed 
edge. Monomer species Mk1,k2 are characterised by the number and direction of edges they bear—the number 
of in-edges k1 and out-edges k2.

In order to describe living polymerisation, we need to distinguish between five monomer species: (1) free 
monomers M0,0 , (2) active monomers M∗

0,0 with zero (half-) edges, (3) active monomers M1,0 with one in-
edge and zero out-edges, (4) dead ends M0,1 , which initially were active sites and have already connected to one 
monomer with zero in-edges and one out-edge, and (5) consumed monomers M1,1 with one in-edge and one 
out-edge. The polymerisation process is described by the following reaction mechanism:

Active monomer units M∗
0,0 or M1,0 connect to free monomers M0,0 at rate kp . The product species consist of 

one consumed monomer M0,1 or M1,1 and a new active monomer M1,0 . This reaction mechanism translates 
into the following system of ODEs for monomer concentrations, which we denote as Mi,j(t):

with the initial conditions being set as follows: M0,0(0) = M0(1− R0) , M∗
0,0(0) = M0R0 , M0,1(0) = 0 , 

M1,0(0) = 0 and M1,1(0) = 0.
We quantify the progress of the polymerisation by the conversion of functional groups, χ(t) , which, in the 

case of linear polymers, is equivalent to the conversion of monomers:

The two-variate degree distribution u(k1, k2) at any time point t is extracted from the solution of Eq. (25) by 
setting:

ODEs with colours for living chain polymerisation.  We extend the system of ODEs from the previous section to 
incorporate the formation time of edges in the species description, which allows to compute the coloured degree 
distribution. Consider N time intervals �tc = tc+1 − tc with c = 1, . . . ,N . To each newly formed edge we assign 
colour c if its formation time t ∈ [tc−1, tc) . The monomer species Mk are now indexed by the count vector

where the index k2(i−1)+1 denotes the count of in-edges of colour i and k2i the count of out-edges of colour i, for 
i = 1, . . . ,N . In the case of linear polymer chains, the count vector elements are restricted to k2(i−1)+1, k2i ∈ {0, 1} , 
which does not hold true for a polymer network. We group the count vectors by the total number of in-edges 
and out-edges irrespectively of their colour:

Let the elements of vectors �k1,0(c) and �k0,1(c) be given by

with δi,j being Kronecker delta, and let

(24)
M

∗
0,0 +M0,0

kp
−→ M0,1 +M1,0,

M1,0 +M0,0

kp
−→ M1,1 +M1,0.

(25)

Ṁ0,0(t) = −kpM0,0(t)[M1,0(t)+M
∗
0,0(t)],

Ṁ
∗
0,0(t) = −kpM0,0(t)M

∗
0,0(t),

Ṁ0,1(t) = kpM0,0(t)M
∗
0,0(t),

Ṁ1,0(t) = kpM0,0(t)M
∗
0,0(t),

Ṁ1,1(t) = kpM0,0(t)M1,0(t),

(26)χ(t) = 1−
M(t)

M(0)
.

(27)u(k1, k2) =
Mk1,k2(t)+M∗

k1,k2
(t)

∑

k1,k2
[Mk1,k2(t)+M∗

k1,k2
(t)]

.

(28)k = (k1, . . . , k2N ),

km,n = {k :

N
∑

i=1

k2(i−1)+1 = m,

N
∑

i=1

k2i = n}.

(29)
[�k1,0(c)]i = δi,2(c−1)+1,

[�k0,1(c)]i = δi,2c ,
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with θ(t) the Heaviside step function. For all c = 1, . . . ,N representing time intervals, the reaction mechanism 
of Eq. (24) is extended using the multi-index notation:

The latter reaction mechanism translates into a system of ODEs as follows. For monomer species that have no 
half-edges, we have:

For monomers with one out-edge of arbitrary colour, we have

for all k ∈ k0,1 . For monomer species with one in-edge of arbitrary colour, we have:

for all k ∈ k1,0 . For monomer species with one in-edge of arbitrary colour and one out-edge of colour c we have:

for all k ∈ k1,0 . The initial conditions are given by M0(0) = M0(1− R0) , M∗
0
(0) = M0R0 and Mk(0) = 0 

for k  = 0.
From the solution of the ODE system (29)–(34), the 2N-variate degree distribution at time t is computed:

where conversion χ(t) is defined as

See Table 1 for the numerical values used in the examples.

Mathematical description: free‑radical photopolymerisation.  We consider the photopolymerisa-
tion of mono- and diacrylates and derive the differential equations for the concentration of monomer species at 
N discrete time intervals in a similar way as in the preceding section. The concentrations are used to construct 
the coloured degree distribution.

ODEs with colours for free‑radical photopolymerisation.  The reaction mechanism for polymer species can be 
found in Ref.13. We characterise the state of a monomer unit Mv,r,k by its number of vinyl groups v, radicals r, 
and the edge count vector k = (k1, . . . , k2N ) where N is the number of time intervals. The covalent bond formed 
during polymerisation is represented by a directed edge oriented from the initial radical site to the initial vinyl 
site. In the case of photopolymerisation of mono- and diacrylates, the elements of the count vector are restricted 
to ki ∈ {0, 1, 2}, i = 1, . . . , 2N , as every monomer unit can form at maximum two in-edges and two out-edges.

The reaction mechanism is summarised as follows:

•	 Photoinitiation of the initiator I2 and formation of two initiator radicals I per initiator: 

•	 Initiation of a vinyl group by reaction with the initiator radical: 

•	 Propagation (including crosslinking) by the reaction of the radical with a vinyl group and formation of an 
edge of colour c: 

�(t, c) = [θ(t − tc)+ θ(tc+1 − t)],

(30)
M

∗
0 +M0

kp
−→ M�k0,1(c) +M�k1,0(c),

Mk +M0

kp
−→ Mk+�k0,1(c) +M�k1,0(c), k ∈ k1,0

(31)
Ṁ0(t) = −kpM0(t)



M
∗
0(t)+

�

κ∈k1,0

Mκ (t)



,

Ṁ
∗
0(t) = −kpM0(t)M

∗
0(t),

(32)Ṁk(t) = kpM0(t)M
∗
0(t)�(t, c),

(33)

Ṁk(t) =− kpM0(t)Mk(t)

+ kpM0(t)



M
∗
0(t)+

�

κ∈k1,0

Mκ (t)



�(t, c),

(34)Ṁk+�k0,1(c)(t) = kpM0(t)Mk(t)�(t, c),

(35)u(k) =
Mk(t)+M∗

k(t)
∑

k[Mk(t)+M∗
k(t)]

,

(36)χ(t) = 1−
M0(t)

M0(0)
,

I2
kd
−→ 2I .

I +Mv,r,k
vkini
−−→ Mv−1,r+1,k .
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•	 Termination by disproportionation by the reaction of two radicals: 

The corresponding system of ODEs reads as:

where

The radical concentration cr(t) and vinyl concentration cv(t) in the system are given by

The polymerisation progress is quantified by the vinyl conversion

with cv(0) the initial vinyl concentration. The remaining initial concentrations are given as I2(0) , I(0), and 
Mv,r,k(0) = 0 for all v, r, k except for M2,0,k0,0(0) = cdiM0 and M1,0,k0,0(0) = cmonoM0 . The fractions cdi and 
cmono refer to the fractions of di- and monovinyls in the systems. All numerical values are presented in Table 1.

After solving the system of ODEs, the degree distribution is computed:

Special case: cross‑linked living polymerisation.  Living polymerisation is a simplified case of the free-radical 
polymerisation: As living polymerisation does not include initiation and termination reaction, the respective 
rate constants are set to zero, kini = 0, ktd = 0 . Also, initiator and initiator radicals are not present in the system, 
hence I2(0) = 0 , I(0) = 0 . After applying these changes, the system of ODEs (37) simplifies to

The initial conditions are given by

•	 M2,0,k0,0(0) = cdi(1− R0)
2M0,

•	 M1,1,k0,0(0) = cdi2R0(1− R0))M0,
•	 M0,2,k0,0(0) = cdiR

2
0M0,

•	 M1,0,k0,0(0) = cmono(1− R0)M0,
•	 M0,1,k0,0(0) = cmonoR0M0,
•	 Mv,r,k(0) = 0 elsewhere,

with cdi and cmono the fraction of di- and monofunctional monomers and cdi + cmono = 1.

Mv,r,k +Mv′ ,r′ ,k′
kp
−→

Mv,r−1,k+�k0,1(c) +Mv′ ,r′ ,k′+�k1,0(c).

Mv,r,k +Mv′ ,r′ ,k′
rr′ktd
−−−→ Mv,r−1,k +Mv′ ,r′−1,k′ .

(37)





Ṁv,r,k(t)
İ2(t)
İ(t)



 =

�

Gv,r,k(t)
−kdI2(t),

2kdI2(t)− kiI(t)cv(t)

�

,

(38)

Gv,r,k(t) := kiniI(t)
[

(v + 1)Mv+1,r−1,k(t)− vMv,r,k(t)
]

+ kpcr(t)
[

(v + 1)Mv+1,r−1,k−�k1,0(c)(t)

− vMv,r,k(t)
]

+ kpcv(t)
[

(r + 1)Mv,r+1,k−�k0,1(c)(t)

− rMv,r,k(t)
]

+ 2ktdcr(t)
[

(r + 1)Mv,r+1,k(t)− rMv,r,k(t)
]

.

(39)

cr(t) =
∑

v,r,k

rMv,r,k(t),

cv(t) =
∑

v,r,k

vMv,r,k(t).

(40)χ(t) = 1−
cv(t)

cv(0)
,

(41)u(k) =

∑

v,r Mv,r,k(t)
∑

v,r,k Mv,r,k(t)
.

(42)

Ṁv,r,k(t) = kpcr(t)
(

(v + 1)Mv+1,r−1,k−�k1,0(c)(t)

− vMv,r,k(t)
)

+ kpcv(t)
(

(r + 1)Mv,r+1,k−�k0,1(c)(t)

− rMv,r,k(t)
)

.
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Randomised matrix M̃.  Matrix M̃ is defined in a similar manner as M in Eq. (4),

with µ̃i,j defining the second mixed moments and µ̃j the first moments of a 2N-variate degree distribution with 
randomised colours. The randomised degree distribution is based on the uncoloured directed degree distribution 
u(k1, k2) with every half-edge having equal probability of having any colour i with i = 1, . . . ,N , which results 
in a multinomial distribution.

In order to mathematically describe the randomised system, we define the uncoloured directed degree dis-
tribution as the distribution that is obtained from an originally coloured degree distribution by neglecting the 
colour, but retaining the orientation:

where the summation is performed over

containing all configurations of vector k with x in-edges and y out-edges regardless their colour.
The first moments of the randomised degree distribution are given by

In order to characterise the second mixed moments, we distinguish between the second moments with same 
half-edge types,

the second moments with same half-edge orientation,

(43)M̃i,j =
µ̃i,j

µ̃j
− δi,j , i, j = 1, . . . , 2N

(44)u(x, y) =
∑

�x,y

u(k),

�x,y = {k|
∑

i>0

k2(i−1) = x,
∑

j>0

k2j = y}

(45)

µ̃2(i−1) =
∑

k1,k2

k1
∑

k′1=0

k′1u(k1, k2)

×

(

k1
k′1

)(

1

N

)k′1
(

N − 1

N

)k1−k′1

,

(46)

µ̃2i =
∑

k1,k2

k2
∑

k′2=0

k′2u(k1, k2)

×

(

k2
k′2

)(

1

N

)k′2
(

N − 1

N

)k2−k′2

.

(47)

µ̃2(i−1),2(i−1) =
∑

k1,k2

k1
∑

k′1=0

k′21 u(k1, k2)

×

(

k1
k′1

)(

1

N

)k′1
(

N − 1

N

)k1−k′1

,

(48)

µ̃2i,2i =
∑

k1,k2

k2
∑

k′2=0

k′22 u(k1, k2)

×

(

k2
k′2

)(

1

N

)k′2
(

N − 1

N

)k2−k′2

,

(49)

µ̃2(i−1),2(j−1) =
∑

k1,k2

k1
∑

k′1=0

k′1
∑

k′′1=0

k′′1 (k
′
1 − k′′1 )u(k1, k2)

×

(

k1
k′1

)(

1

N

)k′1
(

N − 1

N

)k1−k′1

,
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and the second moments with different types and orientation,

with µ̃2(i−1),2j = µ̃2j,2(i−1).
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