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Introduction

1.1 The spinor norm and determinant of monodromy oper-
ators on K3 surfaces and elliptic curves

Let n > 3 be an integer. There are no elliptic curves over Q whose Q-rational
n-torsion points are isomorphic to (Z/nZ)%2. More precisely, the following result
holds.

Proposition 1.1.1. Let E be an elliptic curve over a field k of characteristic 0,
and n > 3 an integer. If E has maximal n-torsion, that is, if E[n](k) = (Z/nZ)®?,
then k contains a primitive nth root of unity.

In this thesis we prove, among other things, the following analogue of Propo-
sition 1.1.1 for K3 surfaces.

Proposition 1.1.2. Let S be a K3 surface over a field k of characteristic 0, and
let ¢ be an odd prime number. If the lattice A := Pic(S) has rank 11, and if the
(-part of its discriminant AV /A has length 11, then k contains a square root of

(-1)7z ¢

We prove a stronger version of this proposition in Chapter 5, namely Theo-
rem 5.6.1. Moreover, it is possible to prove a similar theorem for ¢ = 2, involving
the biquadratic field Q(4,v/2), see Remark 5.6.2.

Proposition 1.1.1 follows from the following more general theorem.

Theorem 1.1.3. Let E be an elliptic curve over a field k of characteristic 0, and
{ a prime number. Then the diagram
Galy —"— GL(HL (B, Z4))
det
z;

X,

commutes, where x;: Galy, — Z;* denotes the cyclotomic character, and p is the
natural action of Gal, on Hy,(Er, Zy).




1. Introduction

Proposition 1.1.1 is derived from this as follows. For convenience, we take n = /.
When E[¢](k) = (Z/(Z)®?, then Galy, acts trivially on H} (Fy, Z/(Z). It is easy
to see that the image of

{9 € GL(HL (B, Z0)) | g @ Z) Z = id}

under det: GL(H{,(Er, Z¢)) — Z is trivial. It follows from Theorem 1.1.3 that
the cyclotomic character x, has trivial image, which implies that k£ contains a
primitive root of unity.

One of the main results of this thesis is the following analogue of Theorem 1.1.3
for K3 surfaces, see Theorem 5.2.1. It can be used to prove Proposition 1.1.2 via
an argument similar to the derivation of Proposition 1.1.1 from Theorem 1.1.3. It
makes use of a description of the image of the spinor norm for Z,-lattices, which
can be found in Section 5.1.3

Theorem 1.1.4. Let S be a K3 surface over a field k of characteristic 0. Then
the diagram

p
Gal, —— O(HZ, (S5, Z¢(1)))
v - det
77 )2

Xe

commutes, where x;: Gal, — Z, denotes the cyclotomic character, p is the nat-
ural action of Galy, on H2,(Sz, Z¢(1)), and v denotes the spinor norm.

It may not be immediately clear how the spinor norm in Theorem 1.1.4 is
related to the determinant in Theorem 1.1.3. The theory of Shimura stacks provides
us with a link.

1.2 Shimura stacks and moduli spaces

The moduli space of complex elliptic curves is isomorphic to the quotient of the
upper half plane % T by an action of SLy(Z). The global Torelli theorem for com-
plex K3 surfaces gives a similar description of the moduli space of polarized K3
surfaces.

Let (S, M) be a complex polarized K3 surface of degree 2d, and let A be its prim-
itive second cohomology group. That is, A is the orthogonal complement of ¢; ()
in H*(S,Z(1)). Then A is a Z-lattice of signature (2,19). Up to isomorphism, A
does not depend on (S, \). Let 2 be the Hermitian symmetric domain parametriz-
ing the Hodge structures of K3 type on A (see Section 2.3 for a definition). The
complex structure of S induces a Hodge structure on A, which yields a point of .
Mapping a polarized K3 surface of degree 2d to its primitive degree 2 cohomology
group defines an open immersion from the moduli space of complex polarized K3
surfaces to the quotient of 2 by the action of some arithmetic group I'.

The theory of Shimura varieties permits us to extend these descriptions to the
moduli spaces of elliptic curves and polarized K3 surfaces over Q.
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1.2. Shimura stacks and moduli spaces

Let At be the ring of finite adeles, let G be the algebraic group GL3 over Q, let

K be the compact open subgroup GLy(Z) of G(A¢), and let H be the double half-
plane C\ R. Then there is an isomorphism of complex Deligne-Mumford stacks

[SL2(Z)\ H ] — Shg[G, H]c = [G(Q\ H xG(Ar)/ K],

where the square brackets indicate that the quotients are taken stackily (or orb-
ifoldily). The stack Shi[G, H]c is known as a Shimura stack. Let Ell be the moduli
stack of elliptic curves over Q. We have an isomorphism

Ellc — Shc[G, H]c. (1.1)

The theory of canonical models of Shimura varieties shows that Shi[G, H]c de-
scends to a Deligne-Mumford stack over Q, and that the morphism in (1.1) de-
scends to an isomorphism over Q.

Work of Rizov and Madapusi-Pera (see [R3] and [MP1)), refined in [T1], shows
that a similar statement holds for the moduli stack K35, of degree 2d polarized
K3 surfaces over Q. That is, the open immersion K354 c — [I'\€2] descends to an
open immersion of Deligne-Mumford stacks

K32d — Sh/c[G, Q] (12)

over Q, where G is the special orthogonal group SO(A ® Q).

In this thesis, we give a detailed exposition of the descent of (1.2), and gen-
eralize it to moduli spaces of polarized hyperkéhler varieties. These are higher-
dimensional analogues of K3 surfaces, also referred to as irreducible holomor-
phic symplectic manifolds. One of our results is the following theorem (see Theo-
rem 4.5.2).

Theorem 1.2.1. Let My, be a connected component of the moduli stack of po-
larized oriented hyperkéhler varieties over Q. There exists an orthogonal Shimura
stack Shi[G, Q] and an étale morphism

M, — Shg|G, 9],
defined over Q.

A key ingredient of the proof of Theorem 1.2.1 is a theorem of Deligne and
Milne which states that many Shimura varieties are moduli spaces of abelian mo-
tives (see [M3]). In order to effectively use this result, we give a more Tannakian
approach to the statement and proof of the result of Deligne and Milne.

Note that Theorem 1.2.1 is weaker than the analogous statement for K3 sur-
faces in two ways.

The first difference is that it is a result about a moduli stack of polarized
oriented hyperkéhler varieties (see Section 4.3). This is a degree 2 étale covering of
the moduli stack of polarized hyperkahler varieties. For hyperkahler varieties with
even second Betti number (for example, K3 surfaces), we can follow the arguments
in [T1] to refine Theorem 1.2.1 to get rid of the orientations. See Theorem 4.6.2.

3



1. Introduction

The second difference is that the morphism My, — Shg[G, Q] is an étale mor-
phism, rather than an open immersion. For hyperkahler varieties of K3["]—typc, we
are able to refine Theorem 1.2.1 to obtain an open immersion, for suitably chosen
K (see Theorem 4.7.18). The existence of such K is a priori not obvious. We prove
its existence by extending a result of Markman on the monodromy of complex
K3["]—type hyperkéhler varieties to KS["]-type hyperkéahler varieties over Q. This
result may be of independent interest, see Theorem 4.7.12.

1.3 Deligne’s reciprocity law

To link the results in Section 1.2 to the ones in Section 1.1, we use a result of
Deligne on the connected components of Shimura varieties.

Let (G,X) be a Shimura datum with reflex field E. When (G, X) is either
(GLg,H) or (SO(A ® Q),Q2), then E = Q. Consider the projective system of
Shimura varieties Sh(G, X) = (Shx(G, X))k, where K ranges over all compact
open subgroups of G(A¢), and let mo(Sh(G, X)) be the limit limy 7o (Shic (G, X)5)-
Then Deligne gives an expression of the profinite set m(Sh(G, X)z) as a quo-
tient of G(Ay). Moreover, he gives an explicit description of the Galg-action on
mo(Sh(G, X)) in terms of the group G(A¢) and the class field theory of E. The
full statement of Deligne’s result can be found in Section 5.3.1.

When (G, X) = (GLga, H), it can be shown that the determinant det: G(A¢) —

A induces an isomorphism from 7o (Sh(G, X )q) to zZ". Moreover, if we endow

Z” with the natural Galg-action coming from the Kronecker-Weber theorem, this
isomorphism is Galg-equivariant.
In the orthogonal case, the spinor norm G(A¢) — A¢’/2 induces an isomor-

phism from the Galg-set mo(Sh(G, X)g) to ZX/Q, endowed with the Galg-action
coming from the Kronecker-Weber theorem. A proof of this fact can be found in
Section 5.3.2.

A more careful analysis, which combines these results with the ones in Sec-
tion 1.2, yields Theorem 1.1.3 and Theorem 1.1.4.

We have not been able to generalize Theorem 1.1.4 to higher-dimensional hy-
perkahler varieties. It seems plausible that this can be approached with similar
methods. However, our proof of Theorem 1.1.4 uses that we can get rid of the
orientations in Theorem 1.2.1 for K3 surfaces, and that the second cohomology
group of K3 surfaces is self-dual.

1.4 Overview

In this section, we give a brief overview of the chapters in this thesis. More detailed
descriptions of each chapters’ contents can be found in their respective introduc-
tions.

In Chapter 2, we recall the basic theory of Shimura varieties and motives, and
we give a Tannakian exposition of Milne’s results relating the canonical models
of Shimura varieties to moduli spaces of abelian motives. In Chapter 3, we prove

4



1.4. Overview

that the moduli stack of polarized hyperkéhler varieties is, among other things, a
Deligne-Mumford stack. The next chapter contains various generalizations of (1.2)
to hyperkahler varieties of higher dimension. Finally, in Chapter 5, we apply the
existence of (1.2) and Deligne’s results on the connected components of a Shimura
stack to prove Theorem 1.1.4.







Shimura varieties and motives

This chapter is an exposition of the fact that certain Shimura varieties are moduli
spaces of abelian motives. This was originally proved in [D2] and [M3]. We focus
in particular on Shimura varieties of orthogonal type, as these play an important
role in the moduli theory of hyperkahler varieties, which we will see in Chapter 4.

In the first section we briefly go over the basics of the theory of Shimura vari-
eties, primarily to set up notation. Then, in Section 2.2, we collect the features of
André’s category of motives [A2] which we need. The two main facts we will need in
the sequel are Deligne’s result that Hodge cycles on abelian varieties are motivated
(Theorem 2.2.2), and Milne’s theorem that the Hodge structures parametrized
by Shimura varieties of Hodge and orthogonal type come from abelian motives
(Proposition 2.2.4).

In Section 2.3, we give the main result of this chapter, namely a description of
the complex points of an orthogonal Shimura variety in terms of abelian motives
endowed with a symmetric bilinear form and a trivialization of the determinant,
Theorem 2.3.3. In particular we will show that this description is compatible with
the action of Aut(C). We prove this theorem by describing the complex points of a
Hodge type Shimura variety Sh(G, X)) in terms of tensor functors from the category
of G-representations to the category of abelian motives, in Theorem 2.3.16. The
reader familiar with [D2] and [M4] will note that all results in this section go
back to Deligne and Milne, with the possible exception of our more Tannakian
treatment of the proof and statement of the theorem.

2.1 Shimura varieties

In this section we establish basic notation regarding Shimura varieties, and in
particular about orthogonal Shimura varieties. See also [M4] and [D2] for a more
detailed account. For the part about orthogonal Shimura varieties, [MP2], [D3],
and [Al] are excellent references.

2.1.1 Generalities

Let (G,X) be a Shimura datum, see [M4, Definition 5.5]. In particular, G is a
connected reductive group over Q, and X C Hom(S,Gr) is a G(R)-conjugacy

7



2. Shimura varieties and motives

class, where S = Resc /g G, denotes the Deligne torus. Let Z be the center of
G. We assume throughout this thesis that (G, X) satisfies condition SV5 in [M4].
That is, we assume that Z(Q) is discrete in G(Ay), where Ay is the ring of finite
adeles.

For a commutative C-algebra A, the map AQr C — A X A, a® z — (za,Za)
is an isomorphism of rings. This yields an isomorphism Gy, c x G,,,c — Sc,
which we will use to identify these two group schemes. For h € X, we define
pr: Gm,c — Gc as z — he(z,1). The reflex field E of (G, X) is by definition the
unique smallest subfield of C such that the G(C)-conjugacy class of uy, is defined
over F.

There is an inverse system (Shx (G, X))k of varieties over E associated with
(G, X), where K ranges over all compact open subgroups of G(A¢). The varieties
Shi (G, X) are called Shimura varieties. The set of C-points of Shi (G, X) is
the double coset

G(Q)\X x G(A)/ K.

Here, G(Q) acts on X by conjugation, and on G(A¢) by left multiplication. The
group K acts trivially on X, and on G(A¢) by right multiplication.

The limit of the inverse system (Shi(G, X))k is denoted Sh(G, X). Proposi-
tion 2.1.10 in [D4], combined with the fact that Z(Q) is discrete in G(A¢), implies
that the set of C-points of Sh(G, X) is

Sh(G, X)(C) = G(Q)\X x G(Aq).

The action of G(Af) on Sh(G, X )(C) via right multiplication descends to an action
of G(A¢) on Sh(G, X) defined over E.

Example 2.1.1. Let (V,4) be a symplectic Q-vector space of dimension 2d. The
group of symplectic similitudes associated with V' is defined to be the algebraic

group
GSp(V) = {(g,c) € GL(V) x G, | Vo,w €V 9(gv, gw) = cw(v,w)}.

We define Hy to be the complex manifold consisting of h: S — GSp(V)gr such that
h endows V with a Hodge structure of type d(0,1) + d(1,0). Now (GSp(V),Hv)
is a Shimura datum with reflex field Q, known as a Siegel Shimura datum.
When there is no possibility for confusion to arise, we use GSp and H to denote
GSp(V) and Hy, respectively. The Shimura varieties associated with (GSp, H) are
moduli spaces for polarized abelian varieties of dimension d with level structure,
as is shown in [D2, § 4].

Definition 2.1.2. A Shimura datum (G, X) is said to be of Hodge type if there
exists a Siegel Shimura datum (GSp, ) as in Example 2.1.1 and a morphism of
Shimura data (G, X) — (GSp, H) such that G — GSp is a closed immersion.

2.1.2  Orthogonal Shimura varieties

In this section we go over the basics of Shimura varieties associated with certain
quadratic spaces.

8



2.1. Shimura varieties

Let V be a quadratic space over Q of signature (2,n) with n > 1. To V
we can associate a Shimura datum (SO(V'), Qv ), known as a Shimura datum of
orthogonal type, as follows. We let SO(V) be the group of orthogonal trans-
formations of V' with determinant 1. The Hermitian symmetric domain Qy C
Hompg grp(S,SO(V)r) is defined to be the set of Hodge structures of K3 type on
V. That is, it consists of those Hodge structures on V' for which

e V has type (L _1)7 (070)3 (_17 1)a
e V1=l and V~1! are one-dimensional and orthogonal to V99,
e the space (V@ R) N (VH=1 @ V~11) is positive-definite.

The space 2y has two connected components, interchanged by mapping a Hodge
structure on V ® R to the one whose (1,—1), (0,0), and (—1,1) parts are V11,
V09 and V1~ respectively. When there is no possibility for confusion to arise,
we will use SO and € to denote SO(V) and Qy, respectively.

There is a natural central extension GSpin(V') of SO(V), called the Clifford
group of V| which is constructed using the even Clifford algebra of V. It fits in a
short exact sequence

1— G, — GSpin(V) — SO(V) — 1,

and comes endowed with a homomorphism N: GSpin(V) — G, whose kernel is
the spin group Spin(V'). Again, when there is no possibility of confusion, we will
use GSpin and Spin to denote GSpin(V') and Spin(V'), respectively.

For each h: S — SOg in €2, there exists a unique h’': S — GSping making
the diagram

s son

ww\ h\/\\ /I\
~4

G,, R — GSping

commute, where w: Gy, r — S is the weight homomorphism. The set of such A’
is a GSpin(R)-conjugacy class €' in Hom(S, GSping ). The pair (GSpin, ') is a
Shimura datum, and the homomorphisms GSpin — SO and N: GSpin — G,
induce morphisms of Shimura data

(SO, Q) «— (GSpin, Q') — (G, {Q(—1)}). (2.1)

Note that the map ' — 2 is a bijection. As can be seen in [MP2, Lemma 3.6],
the Shimura datum (GSpin, ') is of Hodge type.

Lemma 2.1.3. The Shimura data (GSpin, ) and (SO, Q) have reflex field Q.

Proof. The fact that (GSpin, ') has reflex field Q can be found in [S4]. Apply-
ing [D4, 2.2.1] to the morphism (GSpin, Q') — (SO, Q) now shows that the reflex
field of (SO, ) is Q. 0




2. Shimura varieties and motives

2.2 Motives

We will work with the category of motives as constructed by André in [A2]. In
this section we summarize its salient features.

2.2.1 Generalities

Let k be a field of characteristic 0. Let SmPr;, be the category of smooth projective
varieties over k, and let Mot be the category of motives over k defined using
motivated cycles. Then Moty is a Q-linear semisimple neutral Tannakian category
endowed with a functor h: SmPr;"” — Mot sending a variety to its associated
motive. We use 1 to denote the unit motive, and for a motive M and n € Z, we
denote by M(n) its nth Tate twist.

Let 0 be an embedding of fields kg — k1. Then pullback of schemes yields a
covariant functor from SmPr;, to SmPr;, , mapping a smooth projective variety

X over kg to 0* X, defined by the cartesian diagram

o' — X

Spec(k;) —— Spec(ko)
pec(o

This extends uniquely to the category of motives. That is, for each motive M €
Moty, we have a motive o*M over k; such that h(c*X) = o*h(X) for each
X e SmPrkO.

Singular cohomology with coefficients in Q induces a fiber functor Hg: Motc —
Q-Vect, known as the Betti realization functor. For an embedding o: k — C, this
gives rise to a fiber functor H,: Mot, — Q-Vect, defined as the composition

Mot o, Motc LN Q-Vect.

Similarly, when k is algebraically closed, étale cohomology with coefficients in the
ring of finite adeles A induces a fiber functor He;: Mot — As-Mod, known as
the étale realization functor. We use M, and My as shorthands for the images of a
motive M under H, and Hgt, respectively. Artin’s comparison isomorphism [SGA4,
Théoréme X1.4.4] between étale and singular cohomology allows us to identify Hg
with H, ® A¢ as functors from Mot to A¢-Mod.

For a smooth projective variety X over C, the cohomology groups Hi(X ,Q)
are canonically endowed with a polarizable Hodge structure. This extends to the
Betti realization of motives, leading to a tensor functor which we abusively denote
H,: Mot; — Q-HS, where ¢ is an embedding k — C, and Q-HS is the category
of polarizable Q-Hodge structures.

Let kg and k1 be algebraically closed fields of characteristic 0, and let o: kg —
k1 be an embedding of fields. For a smooth projective variety X over kg, this in-
duces a functorial isomorphism on étale cohomology 7*: HY, (X, As) — Hi (0* X, Ag).

10



2.2. Motives

This extends to the category of motives to give a functorial isomorphism
7% Hgt (M) — He (0" M) (2.3)

for motives M over kg.
For later use, it is convenient to phrase the case kg = k; = C in terms of the
following 2-commutative diagram:

Motc Motc
Hét % ét (24)
A¢-Mod

That is, ¢* is an isomorphism of tensor functors Hg; — Hg, o from Motc to
A-Mod.

2.2.2 Abelian motives

Let Mot,p, ; be the Tannakian subcategory of Mot generated by the motives of
abelian varieties. The objects of Mot,y, ;, are called abelian motives.

Example 2.2.1. Using the Kuga-Satake construction, André has shown that if
X is a hyperkiihler variety with by(X) > 3, then h*(X) is an abelian motive. In
particular, the motive of a K3 surface is abelian. See [A1, Theorem 1.5.1].

For the remainder of the chapter, we only consider motives over C.

The Betti realization functor restricts to a fiber functor Hg: Mot,, ¢ —
Q-Vect. Let G, = Aut®(Hg), so that Hp identifies Mot,,,c with G, -Rep.
Similarly, we use Gugg to denote the Tannakian fundamental group associated
with the forgetful functor Q-HS — Q-Vect. The functor Mot,, ¢ — Q-HS
yields a homomorphism Gpgqg — Gab. We denote its restriction to S C ngg,R by
habt S — gab,R.

The following is a restatement of a fundamental result of Deligne, which says
that Hodge cycles on complex abelian varieties are motivated.

Theorem 2.2.2 ([A2, Théoréme 0.6.2]). The Betti realization functor restricts to
a fully faithful functor Hg: Mot,, ¢ — Q-HS.

Corollary 2.2.3. The homomorphism Guag — Gab Is surjective.

Proof. According to Theorem 2.2.2, the functor Hg: Mot,, c — Q-HS is fully
faithful. Moreover, when M is an abelian motive, then every subobject of Hg(M)
is isomorphic to the image of a subobject of M, by the semisimplicity of Q-HS.
This implies that the corresponding homomorphism Guge — Gap is surjective. [

Milne has shown for a large class of Shimura varieties of abelian type that the
Hodge structures they parameterize are the Betti realizations of abelian motives,
see [M3, Theorem 1.34]. We will only need the following specific instance.

11



2. Shimura varieties and motives

Proposition 2.2.4. Let (G, X) be a Shimura datum of Hodge or of orthogonal
type, and let h € X. Then there exists a unique homomorphism h: G,;, — G such
that the diagram

S # GR
hab
hr
gab,R

commutes.

Proof. The uniqueness is an immediate consequence of Corollary 2.2.3.

We first prove the existence part of the proposition for (G, X) of the form
(GSp(V),H). Let h: S — GSp(V)r be an element of H. Then Riemann’s theo-
rem [D2, Théoreéme 4.7] shows that there exists an abelian variety A with H'(4, Q)
isomorphic to (V, h) as a Q-Hodge structure. Moreover, the symplectic form ) is
a morphism of Q-Hodge structures /\2 V — Q(—1). By Theorem 2.2.2, ¢ yields a
morphism of motives A®h*(A) — 1(—1). It follows that h: S — GSp(V)g lifts to
a morphism G,, — GSp(V).

For general (G, X) of Hodge type, pick an embedding (G, X) — (GSp,H).
Then by the preceding argument, the composition Guqge — G — GSp factors
through G,p. Since Gugge — Gab is surjective by Corollary 2.2.3, the image of
Gap — GSp is contained in G, yielding the desired lift h Gapb — G of h.

Now let (SO, ) be a Shimura datum of orthogonal type. Consider the mor-
phism of Shimura data (GSpin, ') — (SO, ) asin (2.1), and let h’': S — GSping
be the unique element of ' lifting h. Since (GSpin, ) is of Hodge type, there

exists a homomorphism I G.r, — GSpin with A’ = R’ o ha,. The composition

Gat, 2 GSpin — SO is the desired lift of h. =

2.3 Orthogonal Shimura varieties as moduli of motives

This section contains the main theorem of this chapter, which gives a descrip-
tion of the complex points of a Shimura variety of orthogonal type in terms of
motives endowed with a motivic bilinear form and a motivic trivialization of its
determinant.

Let (V,by) be a quadratic space over Q of signature (2,n), with n > 1, and let
wy: Q — det V' be an isomorphism of vector spaces.

As in Section 2.3 we associate with (V, by ) a Shimura datum (SO, ) with reflex
field Q. In particular, we have a set Sh(SO,)(C) endowed with a left Aut(C)-
action and a right SO(Af)-action which commute, an (Aut(C), SO(A¢))-set, for
short.

Definition 2.3.1. Let Mot (V') be the set of isomorphism classes of tuples (M, b, w, o),
where

12



2.3. Orthogonal Shimura varieties as moduli of motives

M is an abelian motive over C,
e b is a morphism Sym? M — 1,
e w is an isomorphism 1 — det M,

e « is an isomorphism of Af-modules V ® Ay — Mg mapping by to bg and
wy to wegt.

Two tuples (M7, b1, w1, 1) and (Ma, be, ws, ap) are said to be isomorphic if there
is an isomorphism of motives ¢: M; — Ms mapping b; and wy to b and we and
such that the diagram

My ¢ M ¢

of Ag-modules commutes.

Pullback of motives as in (2.4) defines a left Aut(C)-action on Mot(V'). More-
over, by precomposing « with ¢ € SO(A¢), we obtain a right SO(A¢)-action.

It is easy to verify that these two actions commute, making Mot (V,by,wy) an
(Aut(C),SO(A¢))-set.

Definition 2.3.2. Let Mot(V,2) be the subset of Mot(V) consisting of those
tuples (M, b, w, ) such that there exists an isomorphism

BV — Mp (2.5)

mapping by and wy to bg and wg, and such that the Hodge structure on V' induced
by aP is an element of .

It is clear that the SO(Af)-action on Mot (V) restricts to one on Mot(V, Q).
The following theorem shows that the Aut(C)-action restricts to one on Mot (V, Q2)
as well. _

For h € Q, we denote by h the unique lift of h to a homomorphism G,;, — SO,
as in Proposition 2.2.4.

Theorem 2.3.3. The map Sh(SO, Q)(C) — Mot(V) given by

[ g] — ((V:h), by, wy, )
is (Aut(C),SO(Ay))-equivariant, and defines a bijection from Sh(SO,Q)(C) to
Mot (V, ).

The proof of this theorem will be given in subsection 2.3.4. The Aut(C)-
equivariance will be deduced from the Shimura-Taniyama formula [D2, Théoréme 4.19]
for abelian varieties of CM type.

13



2. Shimura varieties and motives

We will now give a corollary of Theorem 2.3.3 which will be more convenient
in our treatment of moduli stacks of polarized hyperkahler varieties.

Let (W,bw) be a quadratic space over Q of signature (3,n), with n > 1,
let Ayy € W be an element of positive length, and let wy : Q — det W be an
isomorphism of vector spaces.

Definition 2.3.4. Let Mot(W, Ay) be the set of isomorphism classes of tuples
(M, b, \,w, ), where

e M is an abelian motive over C,
e b is a morphism Sym? M — 1,

e )\ is a morphism 1 — M,

e w is an isomorphism 1 — det M,

e « is an isomorphism of A¢-modules W ® Ay — Mg mapping by, Ay, and
ww to bgg, Aét, and wegy, respectively.

Two tuples (M, b1, w1, A1, 1) and (Ms, by, Ao, wa, 2) are said to be isomorphic if
there is an isomorphism of motives ¢: M; — Ms mapping by, A1, and wy to ba,
Ao, and ws, respectively, and such that the diagram

Pét
M ¢ Mo ¢

P

W ® A

of Af-modules commutes.

Define V' to be the orthogonal complement of Ay in W, and by the pairing
on V induced by by. Then V is a quadratic space of signature (2,n), and hence
gives rise to an orthogonal Shimura datum (SO, Q). Let p: SO — SO(W) be the
homomorphism sending g to g @ idq »,,. Note that similarly to Mot(V'), the set
Mot (W, Ay) comes with an Aut(C)-action, and p induces a right SO(Ag)-action
on Mot(W, Ay ).

The following corollary follows immediately from Theorem 2.3.3.

Corollary 2.3.5. The map Sh(SO,Q)(C) — Mot(W, A\w) given by
[, g = (W, ph). bw, Aw, wiv,g)

is (Aut(C),SO(A¢))-equivariant.
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2.3. Orthogonal Shimura varieties as moduli of motives

23.1 Mot(G)

Before we start with the proof of Theorem 2.3.3, it will be useful to put the
construction of Mot (V) and Mot(V, ) in a more Tannakian framework.

Let G be an affine group scheme over Q. We denote by G -Rep the category
of finite-dimensional representations of GG, and by wg: G-Rep — Q-Vect the
forgetful functor.

Definition 2.3.6. Let G be an affine group scheme over Q. Then we denote by
Mot (G) the set of isomorphism classes of pairs (F,n), where F' is a tensor functor
from G-Rep to Mot c, and 7: wg ® A — He F' is an isomorphism of tensor
functors from G-Rep to A¢-Mod. It will be convenient to represent such a pair
(F,n) as the 2-commutative diagram

G-Rep Motp,c

Bk

A¢-Mod

Here, two pairs (F1,71) and (F»,72) are said to be isomorphic if there exists an
isomorphism of tensor functors ¢: F; — F5 from G'-Rep to Mot,;, ¢ for which
the diagram

H ,
He Fy «(9) Hy, o
N /{
we ® Ag

of functors G-Rep — A¢-Mod commutes.

Remark 2.3.7. For (F,n) € Mot(G), the exactness of fiber functors implies that
F is exact.

There is an alternative description of Mot(G) in terms of G-torsors on Qy;,
which we now give.

Definition 2.3.8. We define Mot'(G) to be the set of isomorphism classes of
tuples (T, h, a), where

e T is a G-torsor on Q,
o h: Gap — Aut(T) is a homomorphism of group schemes,
o acT(Ay).

Two tuples (71, h1, 1) and (Ts, ha, az) are said to be isomorphic if there exists an
isomorphism of G-torsors 77 — T mapping h; and a; to he and as, respectively.
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2. Shimura varieties and motives

Remark 2.3.9. Note that the automorphism scheme Aut(7") is a pure inner
form of G, which is isomorphic to G if T has a Q-valued point.

We define a map f: Mot(G) — Mot'(G). Let (F,n) € Mot(G). The isomor-
phism sheaf 7' := Isom®(wg, Hg oF) is a G-torsor on Qy,, satisfying Autq(T) =
M(@(HB oF') by the equivalence between G-torsors and fiber functors on G-Rep
(see [S1, Proposition IT1.3.2.5.3]). Consider the canonical homomorphism Aut®(Hg) —
Aut®(Hg oF). Since Aut®(Hp) = Gap, and Aut® (Hp oF) = Aut(T), this gives a
homomorphism h: G, — Aut(T). By definition of T, the isomorphism of tensor
functors n is an Ag-valued point of T'. We now set f(F,n) = (T, h,n).

Lemma 2.3.10. The map f: Mot(G) — Mot'(G) is a bijection.
Proof. Let Mot” (G) be the set of isomorphism classes of tuples (w, h, @), where
e w: G-Rep — Q-Vect is a fiber functor,

e h: Gap — Aut®(w) is a homomorphism of group schemes,

® a: wg ®Ar — w® Ay is an isomorphism of tensor functors from G -Rep to
A¢-Mod.

From a fiber functor w: G-Rep — Q-Vect we obtain a G-torsor Isom® (wg,w),
which yields an equivalence between the stack of fiber functors on G-Rep and the
stack of G-torsors, see [S1, Proposition II1.3.2.5.3] for more details. This equiva-
lence yields a bijection Mot”(G) — Mot'(G).

It follows that we need to show that the map Mot(G) — Mot” (G) given by

(F777) — (HBOFa h: gab HM(@(HB OF)’ 77)

is a bijection.
For the surjectivity, consider a tuple (w, h,a) € Mot”(G). Then w lifts to an
equivalence w: G -Rep — Aut®(w), and « fits in the 2-commutative diagram

G-Rep Aut®(w)-Rep
wa (M\ ‘M(w) ® Ag
A¢-Mod

Moreover, h: Gap, — Aut®(w) gives rise to a functor h*: Aut®(w) — Moty c
compatible with the natural fiber functors. It is easily checked that the outer
triangle in the diagram

*

G-Rep LN Aut®(w)-Rep L Mot c

id
we ® Ag a ét

A¢-Mod
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2.3. Orthogonal Shimura varieties as moduli of motives

defines an element of Mot(G) mapping to the tuple (w, h, a).

For the injectivity, let (Fi,m1), (F2,12) € Mot(G), and assume that the asso-
ciated tuples (Hg oF, h1,m1) and (Hp oF%, ha, 7o) are isomorphic. That is, assume
there is an isomorphism of tensor functors ¢: HgoF} — HpoF5, such that the
diagram of group schemes

Aut®(Hg oF) % Aut® (Hp o)

AT

and the diagram of tensor functors from G -Rep to Af-Mod

(HB OF1 ®Af HB OF2 ®Af

E

wg @ Ag

commute. From (2.6) we obtain that for any V' € G -Rep, the homomorphism of
vector spaces ¢y : HgoFy (V) — Hp oFy(V) is Gap-equivariant. This implies that
 lifts to an isomorphism of tensor functors ¢: Fy — Fj from G -Rep to Mot,y, c.
Since Hgy = A ® Hg, Equation (2.7) says that ¢ is compatible with 77 and 72,
and hence that ¢ defines an isomorphism from (Fy,n;1) to (Fa,n2). O

Let (V,by) be a quadratic space over Q of signature (2,n) with n > 1, and
wy: Q — det V an isomorphism of vector spaces. We now relate Mot(SO(V)) to
the set Mot (V') defined in Definition 2.3.1. Note that if we endow Q with the trivial
SO(V)-action, then by : Sym?V — Q and wy: Q — detV are both morphisms
in SO(V)-Rep. As such, we obtain a map ¥: Mot(SO(V)) — Mot (V) given by

(£,m) — (F(V), F(bv), F(wv),nv).
Lemma 2.3.11. The map ¥: Mot(SO(V)) — Mot (V) is a bijection.

Proof. Let (V',b') be a quadratic space over Q of dimension 2 + n, let w': Q —
det V' be an isomorphism of vector spaces, and let a: V ® Ay — V' ® A; be
an isometry which maps wy to w’. We will show that the isomorphism sheaf
Isom((V, by, wy ), (V/,b,w")) is an SO(V)-torsor on Qg. To do this, it suffices to
show that there is an isomorphism V ® Q — V' ® Q mapping by to b’ and wy to
w'.
First we assign an invariant to the tuple (V, by, wy ). Let det(by): (det V)2 —

Q be the isomorphism of vector spaces given by mapping (v1 A... Avaiy)® (w1 A

.. AN Wa4,) to the determinant of the matrix (by (v, w;)); ;. Now composing the
isomorphism w(?: Q — (det V)®? with det(by) yields an element of Q* which
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2. Shimura varieties and motives

we denote with . Similarly one defines det(V'): (det V')®? — Q and N € Q*
using b’ and w’. Note that the existence of the isomorphism «a and the injectivity
of Q% — A¢™ imply that A = \.

Any two quadratic spaces of the same dimension over an algebraically closed
field are isometric, so there exists an isometry ¢: V@ Q — V' @ Q. Let p €
Q™ be such that p(w) = pw’. Taking the tensor square and composing with
det(b') yields the equality det(b')p(w®?) = p? det(b')(w’)®2. The right-hand side
is equal to p?), and since det(b') = det(p(V')), the left-hand side is equal to
A. From the fact that A = ), it follows that p> = 1 and hence that p = 1.
Composing ¢ with an element of O(V’) with determinant —1 if necessary, we
obtain an isomorphism V ® Q — V'’ ® Q mapping by to b’ and wy to w’. This
proves that Isom((V, by, wy ), (V/,0',w’)) is an SO(V)-torsor on Q.

This yields an equivalence between tuples (V' ', w’) endowed with an isomor-
phism a: V ® Ay — V' ® Af and SO(V)-torsors T endowed with an A; point
a € T(Ay). Since an element of Mot(V') consists of such a tuple (V',¥/,w') en-
dowed with a homomorphism G,, — SO(V”’), this equivalence gives a bijection
f'+ Mot(V) — Mot'(SO(V)).

It is now easily verified that the composition f’¥ is the bijection f: Mot(SO(V)) —
Mot’(SO(V)) from Lemma 2.3.10, proving that ¥ is itself a bijection. For example,
for (F,n) € Mot(SO(V)), we have an SO(V)-equivariant map

Isom® (wso vy, Hp oF) — Isom((V, by, wy), (F(V), F(by), F(wy))

given by € — ey . This is an isomorphism since the source and target are SO(V')-
torsors. O

The set Mot(G) comes with a right G(As)-action, which we now define. An
element g € G(A¢) yields an automorphism of wg ® A¢, which we also denote by
g. Such g then acts on a pair (F,n) € Mot(G) by (F,n)g = (F,ng), that is, g
maps (F,n) to the outer triangle in the diagram

G-Rep ———= G-Rep L Mot,p,c

g n
_ | —

A¢-Mod

Let (G, X) be a Shimura datum of Hodge or of orthogonal type. According to

Proposition 2.2.4, every h € X lifts to a unique homomorphism h: G,, — G. We
denote the associated tensor functor G-Rep — Mot,, ¢ with h*.
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2.3. Orthogonal Shimura varieties as moduli of motives

Lemma 2.3.12. The assignment

G —Rep MOtab’C

h*
id
4 /

Af-MOd

[h, 9] —

defines a G(At)-equivariant injective map
®: Sh(G, X)(C) — Mot (G),
functorial in (G, X).

Proof. Let (h1,q1) € X x G(A¢), let v € G(Q), and define (ha,g2) = v(h1,01)-
Since v induces an isomorphism of tensor functors ET — E;, and since gs = g1,
the map ® is well-defined.

For the injectivity, suppose we are given (h1,91), (h2,92) € X x G(A¢) and
an isomorphism ¢: (ET, g1) — (E;, g2). Then from the compatibility of ¢ with g;
and go we find that for (V,p: G — GL(V)) in G-Rep, the map ¢y, ,): V — Vis
p(g297"). By taking (V p) to be a faithful representation we obtain that v := gog; *
is an element of G(Q), and that yh; = hs, proving the injectivity. O

Remark 2.3.13. We denote by Mot(G, X) the subset of Mot(G) consisting

of those pairs (F,n) for which there exists an isomorphism of tensor functors

nB: wg — HpoF, that is,

G-Rep d Mot.,c
B
w\ =——= “Hp (2.8)
Q-Vect

such that if ¢: G,, — G is the homomorphism corresponding to (F,n®), then
Yhap: S — GR is an element of X.

Proposition 2.3.14. Let (G, X) be a Shimura datum of Hodge or of orthogonal
type. The map ®: Sh(G, X)(C) — Mot(G) from Lemma 2.3.12 has Mot (G, X)
as its image.

Proof. 1f [h, g] € Sh(G, X)(C), then Hg h* = wg. Therefore we can take nB: wg —
Hg h* to be the identity. This shows that ®([h, g]) € Mot (G, X).

To prove that ® has Mot(G, X) as its image, let (F,n) € Mot(G, X), and
let nB: wg — Hp be an isomorphism of tensor functors as in (2.8). Then the
pair (F,n®) gives rise to a unique homomorphism v: G, — G such that 7"
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2. Shimura varieties and motives

lifts to an isomorphism of tensor functors e: ¢* — F. Now the composition h :=
YrAab: S — GRr is an element of X satisfying h = 1. Now since Hgt ¥* = wg® Ay,
the composition

Het (€)™

we ® A — Hg F Hgg o™

defines an automorphism of wg ® Af and hence an element g € G(Ay). It is easy

to verify that e is an isomorphism from ®([h, g]) to (F,n), proving that ® surjects
onto Mot (G, X). O

Similarly to Lemma 2.3.11, we now relate the set Mot(V, ) from Defini-
tion 2.3.2.

Lemma 2.3.15. Let (V,by) be a quadratic space over Q of signature (2,n) with
n > 1, and wy: Q — detV an isomorphism of vector spaces, and let (SO (V), 0)
be the associated Shimura datum. The bijection W: Mot(SO(V)) — Mot (V)
given in Lemma 2.3.11 maps Mot (SO(V), Q) onto Mot(V, Q).

Proof. Given (F,n) € Mot(SO(V), ) and nB wso(v) — Hp F an isomorphism
of tensor functors as in (2.8), then setting o® = nB: V — F(V)p shows that
(F(V),F(by), F(wy),nv) is an element of Mot(V, ).

Conversely, let (M,b,w,a) € Mot(V,), and let aP: V — Mg be an isomor-
phism as in (2.5). Then there exists an h € §2 for which the diagram

%SO (Mp)

\/

commutes. Moreover, if we set g = (aB)~la € SO(V)(A¢), then o® is an isomor-
phism from ((V,h),by,wy,g) to (M,b,w,a). It follows that ¥ maps ®([h, g]) to
(M, b,w, ). O

Using pullback of motives as in (2.4) we can define a left Aut(C)-action on
Mot (G) by having o € Aut(C) act on a pair (F,n) € Mot(G) as

*

G—Rep L Motab’c U% MOtab’C

n a*
O'(F, 77) = _ | —

Af—MOd

It is clear that the G(Ag)-action and Aut(C)-action commute.
The subset Mot (G, X) is not necessarily Aut(C)-stable. However, in the next
three subsections we will prove the following result.
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2.3. Orthogonal Shimura varieties as moduli of motives

Theorem 2.3.16. Let (G, X) be a Shimura datum of Hodge or of orthogonal type
with reflex field E. Then Mot(G, X) is an Aut(C /E)-stable subset of Mot(G),
and the bijection Sh(G, X)(C) — Mot (G, X) is Aut(C /E)-equivariant.

Remark 2.3.17. Since the map Mot(SO(V)) — Mot(V) given in Lemma 2.3.11
is Aut(C)-equivariant, Theorem 2.3.3 is a corollary of Theorem 2.3.16 and Lemma 2.3.15.

2.3.2 Siegel Shimura data

Let (V, 1y ) be a symplectic vector space over Q, and let (GSp, H) be the associated
Shimura datum as in Example 2.1.1.

Definition 2.3.18. Let R be a Q-algebra, and consider R—modules Vi, Vo, Lq,
and Lo endowed with homomorphisms ) : /\ Vi — L1 and vy /\ Vo — Ly, A
similitude from the tuple (V1, L1) to the tuple (V5, Lo) is a pair of isomorphisms

(p: Vi = Vo, At Ly —— Ly)
for which the diagram

U1

AN Vi —— I

o| I

N Vo — Ly
2

comimutes.

Definition 2.3.19. We define the set Mot(V, ¢y ) as the set of isomorphism
classes of tuples (M, L, v, «, 8), where

e M and L are abelian motives over C,
° 1 /\2 M — L is a morphism of motives,
o (a,5): (V®Af, As) — (Mg, Let) is a similitude.

Here, two tuples (Mj, L1,%1, 01, 81) and (Ma, Lo, 9, g, B2) are said to be iso-
morphic if there exists a pair of isomorphisms ¢: My — Ms and A: Ly — Lo for
which the diagrams

P1
/\2M1%L1 Mlet%MQet
% P ’ \ /
N M, el V® A
2
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2. Shimura varieties and motives

and

Ll ét > L2 ét

N A

V& A¢

commute. Pullback of motives gives a left Aut(C)-action on Mot (V, ¥y ).

Definition 2.3.20. We define AV (V, 1) to be the set of isogeny classes of tuples
(A, \, ), where

e A is an abelian variety over C,
e )\ is a polarization on A,

o a: V®A; — H (A, Ag) is a similitude, where H}, (A4, A¢) is endowed with
the symplectic form induced by A.

Two tuples (A1, A1, a1) and (A2, A2, a2) are said to be isogenic if there is an isogeny
¢ € Hom(A;, As) ® Q making the diagram

*

®
Hi(Az, Af) —————— HL (A1, Ag)

N

V® As

commute. Pullback of schemes gives a left Aut(C)-action on AV (V, ¢y ).

Proposition 2.3.21. The map Sh(GSp, H)(C) — Mot(GSp) given in Lemma 2.3.12
is Aut(C)-equivariant.

Proof. In [D2, §4], Deligne defines a bijection Sh(GSp, H)(C) — AV (V, ¢y ), as
follows. Let (h,g) be an element of Sh(GSp,H)(C). Fix a lattice A C V such
that ¢y restricts to a perfect pairing on A. Then (A, k) is a Z-Hodge structure
of type d(1,0) 4+ d(0,1), where 2d is the dimension of V, and 9y |z is a polar-
ization on (A, h). This gives rise to a polarized abelian variety (A, \) (unique up
to isomorphism) such that H'(A,Z) is isomorphic to A as a polarized Z-Hodge
structure. Pick such an isomorphism f: A — Hl(A, Z). Now we define « to be the

composition

A

VoA VoA 2L HY(A A).

The pair (h, g) is mapped to (A, A\, @). As a consequence of the Shimura-Taniyama
formula [D2, Théoreme 4.19], this map is Aut(C)-equivariant.

Next, there is a map from AV (V,v¢y) to Mot(V, 9y ), given by mapping
(A, )\, «) to the tuple (f)l(A),l(—l),z/),\,oz,ﬁ), where 1, is the symplectic form
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2.3. Orthogonal Shimura varieties as moduli of motives

associated with A, and ( is the factor of similitude of «. This map is clearly
Aut(C)-equivariant.

We now define a map Mot(GSp) — Mot (V, vy ). Denote by x the 1-dimensional
representation of GSp given by the similitude character. Then we map (F,7n) €
Mot (GSp) to (F(V), F(x),¥v,nv,ny). This map is clearly Aut(C)-equivariant,
and similarly to Lemma 2.3.11, one can show that this map is a bijection.

We now have a diagram

Sh(GSp, H)(C) —=— Mot(GSp)

AV (V. ¢pv) —— Mot (V, v

From the constructions of the maps z,y, z, and w it can be seen that for (h,g) €
Sh(GSp, H)(C), the tuples yx(h, g) and wz(h, g) have the same Betti realization,
and are therefore isomorphic by Theorem 2.2.2. It follows that the diagram com-
mutes. Since y, z, and w are Aut(C)-equivariant, and since y is injective, we con-
clude that z is Aut(C)-equivariant. O

Remark 2.3.22. Note that this proves Theorem 2.3.16 for Siegel Shimura data.

2.3.3 Shimura data of Hodge type

Before proving Theorem 2.3.16 for Shimura data of Hodge type, we need the
following lemma.

Lemma 2.3.23. Let t: G — G’ be a homomorphism of affine group schemes
over Q. If v is a closed immersion, then the induced map Mot(G) — Mot (G') is
injective.

Proof. In this proof, we will identify Mot c with G, -Rep. That is, we think
of an abelian motive M as the vector space Hg(M) endowed with a G,p-action.

Let (Fy,m), (F2,m5) € Mot(G), and suppose they have the same image under
the map Mot(G) — Mot (G’). That is, assume we have an isomorphism ¢: Fj* —
Fy* of tensor functors from G’ -Rep to Mot,y, ¢ such that for every W € G’ -Rep,
the diagram of A¢-modules

Het (ow)
Hg: Fl(W) ‘ Hgt F2(W)
T’LW\ /{W
W & As

commutes. We wish to show that (Fy,7;) is isomorphic to (Fy,n,). This amounts
to showing that for V' € G -Rep, the functorial isomorphism of A¢-modules

vy Ar@FV — At @FV
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2. Shimura varieties and motives

restricts to a Gap-equivariant map ¢y : F1V — V.

Since ¢ is a closed immersion, [DM1, Proposition 2.21] implies that there exist
W € G'-Rep, Ve G-Rep,_an injective G-equivariant map V - W, and a
surjective G-equivariant map V — V.

We first show that 7727V771_,‘1/(F1V) = 5V, From 772,L*W771_,L1*W = AfQpw, it
follows that n2$L*W?7iL1*W(F1W) = FL,W. Therefore,

o7y o (F1V) = (Ar @FV) N EBW = By(V).

This and the surjectivity of F: W= BV (which follows from Remark 2.3.7) imply
that Uz,vni\l/(Fl V) = F,V. We denote the resulting isomorphisms of vector spaces
oy Fﬂ~/ — FQXN/ and py: F1V — FV.

We now show that ¢y is G,p-equivariant. Consider the commutative diagram

W > LV RV
@WJ W/J @VJ
RW > iV Jan%

The horizontal maps are injective and surjective because F' is exact, cf. Re-
mark 2.3.7. A diagram chase combined with the fact that ¢y is Gap-equivariant
shows that ¢y is Gap-equivariant, completing the proof. O

Proposition 2.3.24. Let (G,X) be a Hodge type Shimura datum. The map
Sh(G, X)(C) — Mot(G) given in Lemma 2.3.12 is Aut(C)-equivariant.

Proof. Let (G, X) be a Shimura datum of Hodge type with reflex field E, and let
(G, X) — (GSp, H) be an embedding into a Siegel Shimura datum. Then there is
a commutative diagram

Sh(G, X)(C) —— Mot(G)

J |

Sh(GSp, H)(C) ——> Mot(GSp)

It is clear from the definitions that the map Mot(G) — Mot(GSp) is Aut(C)-
equivariant, and it is injective by Lemma 2.3.23. Moreover, by Proposition 2.3.21
the map Sh(GSp, H)(C) — Mot (GSp) is Aut(C)-equivariant, and Sh(G, X)(C) —
Sh(GSp, H)(C) is Aut(C /E)-equivariant since (G, X) — (GSp, H) induces a mor-
phism Sh(G, X') — Sh(GSp, H) g. It follows that the map Sh(G, X)(C) — Mot(G)
is Aut(C /E)-equivariant. O

Remark 2.3.25. Note that this proves Theorem 2.3.16 for Shimura data of Hodge
type.
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2.3. Orthogonal Shimura varieties as moduli of motives

2.3.4 Shimura data of orthogonal type

We will need that the Picard group of Ay is trivial, and later for Lemma 5.1.14
we will also need that the Picard group of A is trivial, where where A denotes the
ring of adeles of Q. This is unsurprising, but it is difficult to find a proof in the
literature, so we include it here.

Lemma 2.3.26. The Picard groups of A and A are trivial.

Proof. Note that since A = R x A, we have Pic(A) = Pic(A¢), so it suffices to
show that Pic(A) = 1.
For a finite set of primes S, define

Rs=Rx[[Q,x[] 2.

peES PES

By definition, A is the colimit colimg Rg. Therefore [SP, Tag 01ZL] says that
for every line bundle £ on Spec(A), there exists an S and a line bundle L£g on
Spec(Rg) such that L is the pullback of Ls to Spec(A). It follows that it suffices
to show that Pic(Rg) is trivial.

More generally, suppose that we are given a set of rings { R; };c; with Pic(R;) =
1 for all 4, and set R = [[;,; R;. If P is a G,,-torsor on Spec(R)zariski, then P is
affine, since affineness is Zariski-local on the target. Therefore

iel
which is non-empty since P(R;) is non-empty for every ¢ € I by Pic(R;) = 1. This

shows that P is the trivial torsor, and hence that Pic(R) = 1. Since the Picard
groups of R, Q,,, and Z, are trivial, this proves the lemma. O

Proposition 2.3.27. Let (SO, ) be a Shimura datum of orthogonal type. The
map Sh(SO, Q)(C) — Mot (SO) given in Lemma 2.3.12 is Aut(C)-equivariant.

Proof. As in (2.1) , we have a Shimura datum (GSpin, ') of Hodge type and a
morphism (GSpin, Q') — (SO, Q). Since the map GSpin — SO fits in a short exact
sequence

1— G,, — GSpin — SO — 1,

and since H' (At 4, Gyn) = Pic(A) = 1 by Lemma 2.3.26, the map GSpin(A¢) —
SO(A¢) is surjective. Moreover, the map ' — Q is a bijection, so the map
Sh(GSpin, ')(C) — Sh(SO,Q)(C) is surjective. There is a commutative diagram

Sh(GSpin, ')(C) —— Mot (GSpin)

l J

Sh(SO, Q)(C) —— Mot(SO)
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2. Shimura varieties and motives

Because (GSpin, ') is of Hodge type, Proposition 2.3.24 states that the map
Sh(GSpin, Q')(C) — Mot(GSpin) is Aut(C)-equivariant. In addition to this,
Mot(GSpin) — Mot(SO) and Sh(GSpin, 2')(C) — Sh(SO,Q)(C) are clearly
Aut(C)-equivariant. It follows that Sh(SO, Q)(C) — Mot(SO) is Aut(C)-equivariant,
wich was to be shown. O

Remark 2.3.28. This concludes the proof of Theorem 2.3.16. By Remark 2.3.17,
this also finishes the proof of Theorem 2.3.3.
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Moduli of polarized hyperkahler varieties

The main result of this chapter is that the moduli stack of polarized hyperkahler
varieties is a separated Deligne-Mumford stack over Q (Theorem 3.3.2). In a later
chapter we will also see that it is smooth (Corollary 4.1.16). This result is well
known to the experts. Our account closely follows that in [R4] and [H2, Chap-
ter 5], where the same result is proved for polarized K3 surfaces (that is, for
two-dimensional polarized hyperkahler varieties) in mixed characteristic.

The first section collects the basic definitions and facts about hyperkahler va-
rieties. The second section is about polarizations on hyperkédhler varieties, and
Picard schemes. We also state some important results by Matsusaka and Mum-
ford on the moduli of polarized varieties. The final section contains the main result
and its proof.

3.1 Hyperkahler varieties

Definition 3.1.1. A complex scheme X is called a hyperkéhler variety if the
following conditions hold:

1. X is connected, smooth, and projective,
2. HO(X , %) is spanned by a nowhere degenerate 2-form,
3. ™1 (X) =1.

Remark 3.1.2. Since the Hodge-de Rham spectral sequence degenerates at the
E;-page for compact Kdhler manifolds (and in particular for smooth projective
complex varieties), the 2-form in the definition is automatically closed. For this
reason, hyperkahler varieties are sometimes called irreducible holomorphic sym-
plectic varieties.

Lemma 3.1.3. Let X be a smooth projective connected complex scheme for which
there exists a nowhere degenerate 2-form in H(X,0%). The étale fundamental
group w$t(X) is trivial if and only if 71 (X) is.

Proof. By [SGAT1, Corollaire XI1.5.2], 7¢¢(X) is the profinite completion of m (X).
In particular, if 7y (X) is trivial, then so is 7¢*(X).
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3. Moduli of polarized hyperkahler varieties

For the converse, note that the Bogomolov decomposition theorem implies that
there exists an exact sequence 1 — Z2F — m1(X) = G — 1, with G a finite group
(this is explained in the statement immediately following [B2, Théoréme 1]). Since
the profinite completion 7$*(X) of 7 (X) is trivial, the group G is trivial. Now
71 (X) = Z%* | so that 7$*(X) = 1 implies that k = 0, showing that 7, (X) =1. O

Definition 3.1.4. Let K be a field of characteristic 0, and let K be an algebraic
closure of K. A scheme X over K is called a hyperkahler variety if the following
conditions hold:

1. X is geometrically connected, smooth, and projective,

2. HO(X , Qg( / ) is spanned by a nowhere degenerate 2-form,
3. W%t(X?) =1.

Remark 3.1.5. Since K has characteristic 0, the degeneration of the Hodge—
de Rham spectral sequence at F; again shows that the 2-form is closed.

Remark 3.1.6. Lemma 3.1.3 shows that when K = C, Definitions 3.1.1 and 3.1.4
agree. This allows us to apply the results of [B2], which use definition 3.1.1.

Example 3.1.7. Two-dimensional hyperkéhler varieties are K3 surfaces. Con-
versely, every K3 surface over a field of characteristic 0 is a hyperkahler variety.

Example 3.1.8. For higher-dimensional examples, consider a K3 surface S over
a field K of characteristic 0, and n an integer greater than or equal to 2. Then
by [B2, Théoreme 3] and the Lefschetz principle, the Hilbert scheme SI"! of n
points on S is a 2n-dimensional hyperkéhler variety over K. Deformations of hy-
perkéhler varieties of this type are also hyperkéhler varieties, known as K3[”]-type
hyperkahler varieties. We will return to these varieties in Section 4.7.

Example 3.1.9. The only other known examples are the so-called generalized
Kummer varieties ([B2, § 7]), which are higher-dimensional analogues of Kummer
K3 surfaces, and the more recent examples in dimension 6 and 10 constructed by
O’Grady as symplectic desingularizations of certain moduli spaces of sheaves on
abelian surfaces and K3 surfaces ([O2] and [O1]).

Proposition 3.1.10. If X/K is a hyperkéhler variety of dimension 2n, then
1. for every prime ¢, H} (X7, Z¢) = 0, and H3 (X7, Z¢) is a free Zy-module;

2. dimg H(X, Ox) = dimg H(X, Qi) = (14 (=1)")/2, and x(X, Ox) =
n+1;

3. Pic(X) is torsion-free;

4. the Kodaira dimension of X is 0.
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3.2. Polarizations on hyperkahler varieties

Proof. The first point follows from the étale analogues of Hurewicz’ theorem and
the universal coefficient theorem. Point 2 follows from [B2, Proposition 3] and the
Lefschetz principle. The torsion-freeness of Pic(X) follows from Point 1 and the
Kummer sequence. The fourth point follows immediately from the triviality of the
canonical sheaf, which is due to the existence of a non-degenerate 2-form. O

The following lemma states that small deformations of hyperkahler varieties
are hyperkahler varieties, which will be useful in the sequel.

Lemma 3.1.11. Let S be a scheme over Q, and suppose f: X — S is a proper
smooth morphism of schemes with projective and geometrically connected fibers.
If s € S is a point for which X is a hyperkéhler variety, then there exists a open
neighborhood U of s in S such that all fibers of Xy — U are hyperkdhler varieties.

Proof. First assume S is reduced and locally Noetherian. Corollaire X.3.9 in [SGA1]
shows that the fundamental group of the geometric fibers of f is constant on the
connected components of S, which are open because S is locally Noetherian, and
hence locally connected [SP, Tag 04MF].

Let 2n be the relative dimension of f. The sets {t € S | x(X¢, Ox,) =n+1} and
{t € S| hi(X:,0x,) < 5(1+(=1)"),i=0,1,...,2n} are open and both contain
s by Part 2 of Proposition 3.1.10. Their intersection is {t € S | h"(X:,Ox,) =
%(1 + (=1)%),i = 0,1,...,2n}. It follows from this and Hodge symmetry that

ho (Xt, Qit/k(t)) =1 for all ¢ in an open neighborhood of s.

The constancy of t — h° (Xt, Q%Q/]k(t)) near s allows us to apply Grauert’s

direct image theorem (which uses the reducedness of S) to extend a symplectic
form on X, to nearby fibers, proving the lemma for reduced and locally Noetherian
S.

For not necessarily reduced S, we obtain the result by applying the reduced
case to Sieq. A standard limit argument gets rid of the Noetherian hypothesis, see
for instance [GW, Theorem 10.66]. O

3.2 Polarizations on hyperkahler varieties

We need some properties of the Picard sheaf of smooth proper morphisms whose
fibers are hyperkahler varieties. For an algebraic space X over a scheme S, let
Picx /s denote the fppf sheafification of the presheaf T' — Pic(X7) on (Sch /S)gps.

Remark 3.2.1. When S is a scheme over Q, and f: X — S a smooth proper
morphism of schemes whose fibers are hyperkahler varieties, f, Ox = Og holds
universally because f is proper and has geometrically connected fibers. It follows
that the étale sheafification of T' +— Pic(X7) is equal to Picx,s [FGIT, pg. 257].
Moreover, for every S-scheme T there is an exact sequence [BLR, Proposition 8.4]

0 — Pic(T) — Pic(Xr) — Picx, 7(T).

So given a section A € Picy,g(S), we can find an étale cover S” — S such that the
pullback of A to X lies in Pic(Xg:)/Pic(S’) C Picx,, /s/(S').
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3. Moduli of polarized hyperkahler varieties

Following [BLR], we call a morphism X — S strongly projective if it is finitely
presented and there exists a locally free sheaf F on S of constant finite rank and
a closed immersion X — P(FE) over S. Let S be a quasi-compact scheme. For
a strongly projective flat morphism X — S with geometrically integral fibers,
Picy,g is a scheme [BLR, Theorem 8.2.5].

The following proposition is proved for families of K3 surfaces in [R4, Lemma 3.1.6].
The proof applies verbatim to families of hyperkéhler varieties of higher dimension.

Proposition 3.2.2. Let S be a quasi-compact scheme over Q, and X /S a strongly
projective smooth morphism whose fibers are hyperkahler varieties. Then multi-
plication by n € Z~q is a closed immersion [n]: Picx,g — Picx/g.

Definition 3.2.3. Let S be a Q-scheme, and let X — S be a smooth proper mor-
phism of algebraic spaces whose fibers are hyperkéhler varieties. A polarization
on X/S is an element A € Picx/s(S5) such that for every geometric point 5 of S,
the pullback Az € Pic(X5) is ample.

Let P € QJt] be a polynomial. A polarized morphism of algebraic spaces (X —
S, ) is said to have Hilbert polynomial P if every geometric fiber (X3, As) has
Hilbert polynomial P.

Remark 3.2.4. Polarizations always exist, étale locally. To see this, let X/S be as
in Definition 3.2.3, let § be a geometric point of S, and pick an ample line bundle
Lo on X5. Then Lo is an element of the stalk of the sheaf Picx,s on Sg, and
therefore extends to a section A € Picx/g(U), where U is an étale neighborhood of
5. Since ampleness is open on the base, we can find an étale neighborhood V- — U
of 5 on which A is a polarization.

Lemma 3.2.5. Let P € Q[t] be a polynomial. There exists an integer m € Zxg
such that the following holds. For any scheme S over Q and any smooth proper
morphism of schemes X — S whose fibers are hyperkahler varieties endowed with
a polarization A € Picx,g(S) with Hilbert polynomial P, there exists an étale
cover U — S such that

e (f: Xy — U, \y) is a polarized proper smooth morphism of schemes whose
fibers are hyperkéahler varieties with Hilbert polynomial P,

e \y is the image under Pic(Xy) — Picx,, ,u(U) of a line bundle L on Xy,
o f.(L®™) is free of rank P(m),
o L®™ js relatively very ample.

Proof. Matsusaka’s big theorem [M2] gives an integer m € Zxg such that if K
is a field of characteristic 0 and (X/K, \) is a polarized hyperkéhler variety with
Hilbert polynomial P, then mA € Picx,x (k) is the class of a very ample line
bundle on X4.

Let (X — S,)\) be a polarized smooth proper morphism of schemes whose
fibers are hyperkahler varieties with Hilbert polynomial P. Using Remark 3.2.1,
we find an étale cover U — S such that the first two conditions of the lemma are
satisfied.
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3.3. The moduli stack of polarized hyperkahler varieties

Kodaira vanishing and the triviality of the canonical sheaf of X imply that
H'(X,,L®™) = 0 for all s € U, so from [MFK, Chapter 0, §5, a)] it follows
that f.(L®™) is locally free. The statement about the rank follows from Kodaira
vanishing and the definition of the Hilbert polynomial. By further refining the
cover U — S we can globally liberate f,(L®™).

The fact that L™ is relatively very ample follows from the choice of m. [

We will need the following results on moduli of non-ruled polarized varieties,
due to Matsusaka and Mumford. See also [P2, Theorem 4.3, Proposition 4.4].
Note that ruled varieties have Kodaira dimension —oo, so by Point 4 of Proposi-
tion 3.1.10, the lemmas apply to hyperkéhler varieties.

Lemma 3.2.6 (Matsusaka-Mumford, [MM1, Chapter 1, Theorem 2]). Let R be
a dvr with fraction field K, and X1, Xo smooth proper R-schemes with non-
ruled special fibers, equipped with relatively ample line bundles Ly and Ly. Any
isomorphism f: X1 gk — Xo g with f*[La k] = [L1,k] extends uniquely to an
isomorphism X1 — X with f*[Ls] = [L1].

Lemma 3.2.7 (Matsusaka-Mumford, [MM1, Chapter 1, Corollary 2]). Let X be
a non-ruled variety over an algebraically closed field K with H°(X, Q% / x) =0,
equipped with an ample line bundle L. Then the number of automorphisms of X
preserving the class of L in Pic(X) is finite.

3.3 The moduli stack of polarized hyperkahler varieties

In this section we define the stack of polarized hyperkahler varieties, and prove
some of its properties. We closely follow [R4] and [H2, Chapter 5].

Definition 3.3.1. The moduli stack of polarized hyperkahler varieties is
defined as the groupoid fibration HK — Sch/Q whose objects are pairs (X —
S, A € Picx/5(S)) where S is a Q-scheme, X — S is a smooth proper morphisms
of algebraic spaces whose fibers are hyperkahler varieties, and A is a polarization
on X. Morphisms (X’ — 5", X) — (X — S, \) are those cartesian squares

f

X — X

|

S — 5
for which f*A = X" in Picx//g/(S’). The functor HK — Sch/Q maps (X — S, )
to S, and a cartesian square as above to the morphism S’ — S.

The following is the main theorem of this chapter. See also Lemma 3.3.9,
Lemma 3.3.10, and Corollary 4.1.16 in the next chapter.

Theorem 3.3.2. The groupoid fibration HK is a smooth separated Deligne-
Mumford stack over Q. Its dimension at a C-point (X, A) is equal to ba(X) — 3.
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3. Moduli of polarized hyperkahler varieties

Remark 3.3.3. In this section we will only prove that HK is a separated Deligne-
Mumford stack, locally of finite type over Q. The assertion about the smoothness
and dimension of HK will be proved in a later chapter and is a consequence of
the local Torelli theorem for complex hyperkéhler varieties [B2, Théoreéme 5]. See
Corollary 4.1.16.

Lemma 3.3.4. The groupoid fibration HK is a stack on (Sch / Q)gt.

Proof. This follows immediately from the fact that the groupoid fibration of alge-
braic spaces is a stack [SP, Tag 04UA]. O

Fix a polynomial P € Q[t] and an integer m, € Z>¢, and define N := P(m)—1.
Denote by Hilb the Hilbert scheme Hilbﬁg\,mt), which parametrizes closed sub-
schemes Z of PY such that O(1)|z has Hilbert polynomial P(mt). Let Z C
P" x Hilb be the universal family.

Let Hy, p: (Sch/Q)°™ — Set be the subfunctor of Hilb sending a Q-scheme
S to the set of those Z € Hilb(S) satisfying

1. Z — § is smooth, and its fibers are hyperkéahler varieties,
2. there exists an L € Pic(Z) such that O(1)|z = mL in Pic(Z)/ Pic(S),
3. for any geometric point s of S, the restriction map
HO(PY,0(1)) — HO(Z5, LE™)
is an isomorphism.

Lemma 3.3.5. The functor H,, p is representable by a scheme, and the inclusion
H,, p — Hilb is an immersion.

Proof. We need to show that the locus in Hilb over which Z satisfies the given
properties is a locally closed subscheme.

Let H; be the set of s € Hilb such that Z; is a hyperkéhler variety over
k(s). This is an open set by the fact that smoothness is an open condition and
Lemma 3.1.11.

Consider the cartesian square

: [m] .
PICZHI/H1 E— PICZHI/Hl

*O(1) -

Hy ——— H,

Then Ho — Hj is a closed immersion by Proposition 3.2.2. Since Pi(:gHQ/H2 is a
scheme by Theorem 8.2.5 in [BLR], there exists a Poincaré bundle on Picz,_,m, X1, Z ;-
This, combined with the fact that by construction O(1)|z,, € mPicz,_,u,(H2),
shows that Property 2 holds over Hs.

That Property 3 defines a locally closed subscheme H,, p of Hy is proved
exactly as in the final part of the proof of Proposition 5.1 in [MFK]. O
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3.3. The moduli stack of polarized hyperkahler varieties

Now pick m € Zx>( associated with P as in Lemma 3.2.5, and let HK” C HK
be the open substack of pairs (X — S, \) with Hilbert polynomial P. Note that
the action of the group scheme PGL := Aut(Pg) on Hilb restricts to an action on
Hm,P~

Lemma 3.3.6. The universal family Zg,, , — H,, p yields a PGL-invariant mor-

phism H,, p — HK?, which in turn induces an equivalence [Hp,.p/PGL] —
HK?. In particular, HK? is an algebraic stack.

Proof. To simplify the notation, we define H = H,, p.

The natural relatively very ample line bundle on Zy — H is of the form mA
for exactly one A € Picz,, ;5 (H) by the definition of H and Proposition 3.2.2. This
defines the morphism (Zg,)\): H — HK” .

To establish the required equivalence, we use [LMB, Proposition 3.8]. This
proposition states that it suffices to show

1. for every Q-scheme U and every morphism £: U — HK?” there exists an
étale cover f: V — U such that f*¢ is in the essential image of H — HK?;

2. H xygkr H is equivalent to H x PGL as an (H x H)-stack, where H xPGL —
H x H is given by (h, g) — (h, hg).

For Point 1, let (X, \): U — HK?, and take an étale cover V. — U as in
Lemma 3.2.5. That is, there exists a line bundle L on Xy such that Ay is the class
of L in Picx,y(V), the line bundle L®™ is relatively very ample, and f. L is free of
rank N + 1. It follows that L®™ gives rise to a closed immersion Xy — P f,(L®™)
satisfying the Conditions 1, 2, and 3 preceding Lemma 3.3.5, so that we have a
morphism V' — H. In particular, (Xy, A\y) is in the essential image of H — HK?.

To prove Point 2, define ®: H x PGL — H xggr H by (h,g) — (h,hg, g7 |n).
This is a morphism of (H x H)-stacks which is clearly fully faithful. We want to
see that it is an equivalence.

To see the essential surjectivity of ®, consider Z;1, Zs € H(U) and an isomor-
phism ¢: (Zy,L1) — (Z1,La), where Ly and Ly are as in the second point of
Lemma 3.3.5. There is a commutative diagram

P(fi LT™) — P(fo.L5™)
\ /

Py Py

Zy ———————> s

The top arrow is the isomorphism induced by the fact that ¢*(Lo) = f;(M)®L; for
some M € Pic(U), and the morphisms P(f; .LY™) «— Py} are the isomorphisms
induced by Point 3 of Lemma 3.3.5. All other morphisms are the obvious ones.
The composition of the top arrows is now an element g € PGL(U) = Auty (P )
with Z,g~! = Z,, proving the essential surjectivity of ®. O
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3. Moduli of polarized hyperkahler varieties

Lemma 3.3.7. The stack HK” is of finite type over Q.

Proof. Since the Hilbert scheme is of finite type Q, it follows that H is of finite
type over Q. Using [SP, Tags 06US, 050X], we find that HK” is of finite type over

Q. O

Lemma 3.3.8. The stack HK is a Deligne-Mumford stack, locally of finite type
over Q.

Proof. Since HK is the disjoint union of all HK? where P ranges over all poly-
nomials P € Q[t], Lemmas 3.3.6 and 3.3.7 show that HK” is an algebraic stack,
locally of finite type over Q.

To show that HK is a Deligne-Mumford stack, it suffices to show that the
diagonal A: HK — HK xq HK is of finite type and that the geometric points
of HK have finite and reduced automorphism groups [O3, Remark 8.3.4].

By Lemma 3.2.7, and because group schemes over a field of characteristic 0
are reduced [SGA3, Corollaire VIg.1.6.1] (see also [P1, Corollaire 4.2.8)), the au-
tomorphism group of a geometric point of HK is finite and reduced.

By [SP, Tag 04XS], the diagonal A is locally of finite type. Since HK is the dis-
joint union of the Noetherian stacks HK?, and since morphisms between Noethe-
rian stacks are quasi-compact, A is also compact, and hence of finite type. O

Lemma 3.3.9. The stack HK is a Deligne-Mumford stack, locally of finite type
over Q.

Proof. This follows immediately from the fact that HK is the disjoint union of all
HK?”, where P ranges over all of Q[t], Lemma 3.3.8, and Lemma 3.3.7. O

Lemma 3.3.10. The Deligne-Mumford stack HK is separated over Q.

Proof. Since HK is locally of finite type over Q by Lemma 3.3.9, we can ap-
ply the valuative criterion for separatedness of morphisms of locally Noetherian
stacks [LMB, Proposition 7.8]. That is, we need to show that for a complete dvr R
over Q with fraction field K and algebraically closed residue field, and two points
(X1,M1), (X2, A2) € HK(R), any isomorphism f: (X1, \1)x — (X2, \2)k over K
extends uniquely to an isomorphism (X7, A;) — (X2, A2) over R.

Since R is complete and has algebraically closed residue field, the étale covers
of R are all trivial. Therefore, by Remark 3.2.1, the \; are the classes of rela-
tively ample line bundles on X; and Xs, respectively. This allows us to apply
Lemma 3.2.6, which says that the isomorphism f extends uniquely to an isomor-
phism (X1, A1) — (X2, \2), proving the lemma. O
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Period maps for hyperkahler varieties

It is well-known that the canonical model of a Siegel Shimura stack is the moduli
stack of principally polarized abelian varieties over Q (see [D2]). This follows
almost immediately from Deligne’s definition of canonical models. An analogue of
this result for polarized K3 surfaces over Q was initially proved by Rizov in [R3],
then via a different argument by Madapusi-Pera in [MP1], and finally a slightly
stronger version was proved by Taelman in [T1]. In this chapter, we extend this
result to higher-dimensional polarized hyperkéhler varieties over Q. More precisely,
we will construct a degree 2 étale cover HK,; of the moduli stack HK of polarized
hyperkéahler varieties over Q, and then give an étale morphism from HK,, to an
orthogonal Shimura stack, known as the period map.

In the first section we collect some important results from the literature on
hyperkahler varieties over C. In particular, we recall some basic facts about a
quadratic form on the second cohomology of a hyperkéhler variety known as the
Beauville-Bogomolov-Fujiki form (the BBF form), and state the global Torelli
theorem of Verbitsky, which roughly says that the geometry of a hyperkéhler
variety is largely determined by its second cohomology endowed with the BBF
form (Theorem 4.1.12). We also show that HK is smooth (Corollary 4.1.16).

In the next section, we define a BBF form for hyperkahler varieties over non-
closed fields of characteristic 0. The most important result in this section is the
étale monodromy invariance of this form (Theorem 4.2.4). The third section in-
troduces the notion of an orientation on a hyperkahler variety, which yields the
degree 2 étale cover HK,, of HK on which we will construct the period map.

Section 4.4 is an introduction to Shimura stacks, following [T1]. It is also shown
that, over C, orthogonal Shimura stacks are moduli stacks of Hodge structures
endowed with a bilinear pairing and a trivialization of the determinant, known as
an orientation. Then, in Section 4.5, we use this modular interpretation to give a
morphism from HK,, ¢ to an orthogonal Shimura stack, mapping a hyperkéhler
variety endowed with an orientation to its second cohomology, endowed with the
BBF form and the orientation. We then use the results in Chapter 2 to prove
the main theorem of this chapter, which states that this morphism descends to Q
(Theorem 4.5.2).

The final two sections give stronger versions of this result for specific examples
of hyperkéhler varieties. Following [T1], Section 4.6 shows that we can in fact
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obtain a period map on the moduli stack of polarized K3 surfaces, rather than
on the stack of oriented polarized K3 surfaces (Theorem 4.6.4). In Section 4.7,
we consider hyperkahler varieties deformation equivalent to the Hilbert scheme of
points on a K3 surface, known as KB["]—type hyperkahler varieties. We extend a
result of Markman on the monodromy of K3[”]—type varieties to K3[”]—type varieties
over non-closed fields of characteristic 0 (Theorem 4.7.12), and combine this with
Verbitsky’s Torelli theorem to give a period map for such varieties over Q which
is actually an open immersion (Theorem 4.7.18).

4.1 The global Torelli theorem

In this section, we recall the definition of a quadratic form on the second cohomol-
ogy of a complex hyperkéhler variety, known as the Beauville-Bogomolov-Fujiki
form. Endowed with this form and its natural Hodge structure, the second coho-
mology captures much of the geometry of a hyperkahler variety. This is Verbitsky’s
global Torelli theorem, which we state in the first subsection, see Theorem 4.1.12.
In the second subsection we show that the moduli stack of polarized hyperkéhler
varieties is smooth, see Corollary 4.1.16.

4.1.1 The global Torelli theorem

In this subsection we define the Beauville-Bogomolov-Fujiki form, state some of
its properties, and state the global Torelli theorem. We will call a complex Kéahler
manifold X a hyperkéhler manifold if it is compact, simply connected, and if
H°(X, QL) is spanned by a nowhere degenerate 2-form.

Theorem 4.1.1. Let X be a hyperkdhler manifold. Then there exists a unique
primitive quadratic form q: H*(X,Z(1)) — Z such that

1. q is a Q-multiple of the quadratic form
Q:ar— / tdx o?
b'e

on H*(X, Q(1)),
2. there exists a Kéhler class w € H*(X,R(1)) with g(w) > 0.

Proof. In [B2, Théoreme 5], Beauville defines a primitive quadratic form ¢x on
H?(X,Z(1)) which is positive on all Kéhler classes. Moreover, it is shown in [F,
Remark 4.12] that ¢x is a multiple of Q.

Now suppose ¢ is another primitive quadratic form on H?(X, Z(1)) satisfying
the two conditions, and let w € H?*(X,R(1)) be a Kihler class on which ¢ is
positive. Then by the first condition, ¢ is equal to cqx, where ¢ € Q*. Since ¢
is primitive, ¢ € {£1}. Moreover, ¢ = ¢x(w)/q(w) is positive because ¢x(w) is
positive on all Kéhler classes. It follows that ¢ = qx. O
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4.1. The global Torelli theorem

Definition 4.1.2. Let X be a hyperkahler manifold. The quadratic form on
H?(X,Z(1)) given in Theorem 4.1.1 is called the Beauville-Bogomolov-Fujiki
form or BBF form of X, which we denote ¢x.

Occasionally it will be more convenient to work with the BBF pairing

bx: Sym?H?*(X,Z(1)) — Z,
which is defined by
bx (v,w) := ¢x (v +w) — gx(v) — gx(w).

Remark 4.1.3. As is noted in the proof of Theorem 4.1.1, there holds gx (w) > 0
for every Kahler class. In particular, if L is an ample line bundle on X, we have

C]X(Cl (L)) S Z>0.

Example 4.1.4. When S is a complex K3 surface, the BBF form on H*(S, Z(1)) is
simply the quadratic form induced by the cup product. In particular, it is an even
self-dual Z-lattice of signature (3,19). These properties determine the isometry
class of H%(S,Z(1)) by [S3, Chapter V, Theorem 5].

In general, the BBF form is not necessarily self-dual, as the following example
shows.

Example 4.1.5. Let S be a K3 surface, X = SI" be the Hilbert scheme of n
points on S. In [B2], Beauville gives the following description of the BBF form on
X. Let S be the nth symmetric product of S. That is, S(™ is the quotient of S™
by the action of S,, given by permuting the coordinates. Then there is a natural
map S — S and the inverse image of the singular locus of S is a divisor
E on S, There exists a 6 € H*(X, Z(1)) with 26 = E, and such that

H2(S", Z(1)) 2 H%(S, Z(1)) & Z§
as quadratic spaces. There holds ¢(d) = 2 — 2n. In particular, the discriminant
A(HA(X,Z(1))) == H2(X, Z(1))¥/ H*(X, Z(1))
is isomorphic to Z /(2n — 2) Z, and is generated by .

Example 4.1.6. For the remaining known examples of complex hyperkahler va-
rieties as in Example 3.1.9, the BBF form has also been computed. They can all
be found in the table in [R1].

Let (A,b: Sym* A — Z) be a Z-lattice of signature (3,n), and suppose that
A is endowed with a Z-Hodge structure. Then (A,b) is called a Hodge lattice
of K3 type if the pairing b: Sym? A — Z(0) is a morphism of Hodge structures,
A has type (—1,1),(0,0), (1, —1), the spaces AL~ and A~1! are one-dimensional
and orthogonal to A%?, and the space (A@R)N(A»~t@ A~11) is positive-definite.

Proposition 4.1.7 ([GHJ, Section 22.3]). Let X be a hyperkéahler manifold. Then
the BBF form has signature (3,ba(X) — 3), and it endows H*(X, Z(1)) with the
structure of a Hodge lattice of K3 type.
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4. Period maps for hyperkahler varieties

The following proposition is a consequence of Point 2 in Theorem 4.1.1.

Proposition 4.1.8. Let X/S be a proper smooth map of complex analytic spaces
whose fibers are hyperkédhler manifolds. Then there exists a unique quadratic form

ax/s: R Z(1) — Z
such that for every s € S, the form qx s restricts to the BBF form on H?(X,, Z(1)).

Definition 4.1.9. The quadratic form gx/s in Proposition 4.1.8 is called the
BBF form of X/S. The associated morphism of variations of Hodge structures

bx/s: Sym®R? f. Z(1) — Z(0)

given by
bx/s(v,w) = qx/s(v +w) — gx/s(v) — gx/s(w).
is known as the BBF pairing of X/S.

Before we can state the global Torelli theorem, we need the notion of a parallel
transport operator.

Definition 4.1.10. Let X, and X; be hyperkahler manifolds. Suppose we have
e a smooth proper morphism of complex analytic spaces f: X — T,
e 0,1 T(C),
e a path v in T from 0 to 1,

e isomorphisms ¥y: X9 — Xp and 9: X7 — X1, where Xy and X; are the
fibers of f over 0 and 1, respectively.

Then the induced homomorphism

H2(Xo, Z(1)) 1 B2 (%0, 2(1) — H2(X1, (1)) - B2 (X1, 2(1))
is called a parallel transport operator.

Remark 4.1.11. It is easy to verify that the composition of parallel transport
operators is again a parallel transport operator. By Proposition 4.1.8, parallel
transport operators preserve the BBF form.

The following is known as the global Torelli theorem for hyperkéhler manifolds.
It was originally proved by Verbitsky in [V]. See also [M1] and [H1].

Theorem 4.1.12. Let X, and X be hyperkéhler manifolds, and p: H?*(Xg, Z(1)) —
H?(X,,Z(1)) a homomorphism of abelian groups. Then there exists an isomor-
phism f: X7 — Xo with ¢ = f* if an only if ¢ is a morphism of Hodge structures,
an isometry, a parallel transport operator, and there exists a Kahler class w on X
such that p(w) is a Kahler class on X;.
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4.1. The global Torelli theorem

Remark 4.1.13. When X and X; are complex K3 surfaces, the isomorphism f in
Theorem 4.1.12 is unique by [H2, Proposition 15.2.1]. In general, the isomorphism
f is not unique. For example, if X is a complex generalized Kummer variety
of dimension 2n — 2 with n > 2, then the kernel of Aut(X) — O(H*(X,Z(1))) is
isomorphic to a semidirect product of Z /2 Z with (Z /n Z)®*, as is shown in [BNS,
Corollary 3.3].

Corollary 4.1.14. Let (Xo, \o) and (X1, A1) be polarized hyperkéhler varieties,
and p: H*(X1,Z(1)) — H*(Xo, Z(1)) a Hodge isometry mapping c1(\1) to ¢1(Xo).
If p is a parallel transport operator, then there exists an isomorphism f: (Xg, Ag) —
(X1, A1) inducing .

Proof. This follows immediately from Theorem 4.1.12 and the fact that if X is an
ample line bundle, then ¢;(\) is a Kéhler class. O

4.1.2 Deformations of polarized hyperkahler varieties

Let (Xo, Ao) be a polarized complex hyperkahler variety. We are interested in the
deformation theory of the pair (Xo, Ag). Let Artc be the category of local Artinian
C-algebras. We define a functor Def(Xy, A\g): Artc — Set by mapping a local
Artinian C-algebra A with maximal ideal m to the set of equivalence classes of
tuples

(f: X — Spec(A), A € Picx/a(A), p: Xo — Xu).

Here, f is a smooth proper morphism of algebraic spaces whose fibers are hy-
perkéhler varieties, A\ € Picx/4(A) is a polarization, and ¢ is an isomorphism
of schemes mapping A9 to Am. Two such tuples (f: X — Spec(A), A, ) and
(f': X' — Spec(A),N,¢’) are said to be equivalent if there exists an isomor-
phism of algebraic spaces X — X’ over A mapping A to A, and such that the
diagram

Xpg ——— X/,

N

Theorem 4.1.15. Let (X, \g) be a polarized complex hyperkéhler variety with
second Betti number bs. Then the functor Def(Xg, Ag): Artc — Set is prorepre-
sented by the formal power series ring Clt1, ..., ts,—3].

commutes.

Proof. Let Germs be the category of germs of complex analytic spaces. Its objects
are pairs (5, s), with S a complex analytic space, and s € S. A morphism (S, s) —
(5’,s') in Germs consists of an open neighborhood U of s, and a morphism
p: U — S’ mapping s to s'. Define a functor Def,,(Xy): Germs® — Set by
mapping a germ (S, s) to equivalence classes of pairs (f: X — U,¢: Xo — X;),
where U is a neighborhood of s, f is a proper smooth map of complex analytic
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4. Period maps for hyperkahler varieties

spaces, and ¢ is an isomorphism. Two pairs (f: X — U, ) and (f': X' = U’,¢)
are equivalent if there exists a neighborhood V' C UNU’ of s and an isomorphism
of complex spaces Xy — X{, making the diagram

Xy ———— X,
Xo

commute. The Bogomolov-Tian-Todorov theorem states that since X is a compact
Kéhler manifold with trivial canonical bundle, the functor Def,, (Xy) is represented
by the germ (C",0), for some n € Z>.

Let Q§2 (Xo,R(1)) be the complex manifold parametrizing Hodge structures of

K3 type on H?*(Xy,R(1)), and let ¥ — Def,,(Xo) be the universal deforma-
tion of Xj. Since Def,,(Xp) is simply connected, we can canonically identify
H?(%,,Z(1)) with H*(X,,Z(1)) for each s € Def,,(Xp). This gives rise to a mor-
phism p: Def,,(Xo) — Q§2(XO,Z(1)). The local Torelli theorem [B2, Théoréme 5]
states that p is a local isomorphism. This implies that n = by — 2.

Let Def,n(Xo, Ao): Germs®™® — Set be the functor parametrizing polarized
deformations of (Xy, Ag), defined similarly to Def,,(Xo) and Def(Xg, \g). Then
Defan(Xo, Ao) is a subfunctor of Def,,(Xp), and is in fact the inverse image of

QI:EZ(XO,R(I))Q)\(J; under p. In particular, Def,,,(Xo, Ao) is represented by the germ

(0172737 O).

Let A be the category of C-algebras which are isomorphic to quotients of Ogn
for some n € Z>g. Then (S,s) — OF; defines an equivalence Germs®” — A,
where OF" denotes the structure sheaf of S. Since the analytification of a finite
C-scheme is still finite, the category A contains Artc as a full subcategory, and

there is a 2-commutative diagram

Artc ——— A
Def(Xo, AO\ /efan(Xo, o)
Set

In particular, since the completion of Ogs, s , is C[t1,...,ty,—3], and since Ar-
tinian algebras are complete, we have, for any A € Artc

Def(Xo, Ao)(A) = Hom(Ogn o, A) = Hom(C[t1, . .., tp,3], A).

The following corollary finishes the proof of Theorem 3.3.2.

40
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Corollary 4.1.16. The moduli stack HK of polarized hyperkéahler varieties over
Q is smooth. Its dimension at a C-point (X, \) is equal to by(X) — 3.

Proof. For the smoothness assertion, it suffices to prove that HK ¢ is smooth over
C. We already know that HK¢ is locally of finite type. From [SP, Tag 02HX]
it follows that we need to check that if A is an Artinian C-algebra, and I C A
an ideal with I? = 0, then for any morphism Spec(A/I) — HK, there exists a
2-commutative diagram

Spec(A/I) — HK

Spec(A)

More concretely, this means that given a smooth proper morphism X — Spec(A/I)
whose fibers are hyperkéhler varieties and a polarization A € Picx, spec(a/r)(A/1),
we want to find a smooth proper morphism X’ — Spec(A) whose fibers are hy-
perkéhler varieties and a polarization A" € Picx/ gpec(a)(A) such that the pullback
of the pair (X', \') to A/I is isomorphic to (X, A). This follows immediately from
Theorem 4.1.15.

Let (X, \) be a C-point of HK, and let Cle] be the ring of dual numbers over
C. Then Def(X, \)(CJe]) is a finite-dimensional C-vector space, and the dimension
of HK at the point (X, \) is equal to that of Def(X, A\)(Cle]). It therefore follows
from Theorem 4.1.15 that the dimension of HK at (X, ) is ba(X) — 3. O

4.2 The BBF form on étale cohomology

In this section we extend the notion of BBF form to hyperkéhler varieties over arbi-
trary fields of characteristic 0. The main result is the étale monodromy invariance
of the BBF form, Theorem 4.2.4.

Lemma 4.2.1. Let X be a hyperkéhler variety over a field K of characteristic 0.
Then there exists a unique primitive quadratic form q: HZ (X7, Z(1)) — Z such
that

1. q is a Q-multiple of the quadratic form

. / 2
QX.ou—>/X th?oz

on Hegt(Xfr Af(l))?
2. there exists an ample line bundle L on X for which g(ci1(L)) € Z+yo.

Proof. By a spreading out argument, we may assume that K is of finite type over
Q. We choose an embedding of K into C. Now using Artin’s comparison isomor-
phism and Theorem 4.1.1, we obtain a primitive quadratic form on H3, (X%, Z(1))
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satisfying the conditions of the lemma. In fact, by Remark 4.1.3, we obtain a
quadratic form ¢: HZ (X, Z(1)) — Z satisfying the stronger condition that for
every ample line bundle L € Pic(X3) there holds g(c1(L)) € Zso.

Now suppose ¢’ is another primitive quadratic form on H, (X7, 2(1)) satisfying
the conditions of the lemma. Let L be an ample line bundle on X such that
¢ (c1(L)) € Z~g. Since ¢ and ¢’ both satisfy condition 1, there exists a ¢ € Q*
with ¢ = cq’. Because g and ¢’ are primitive, we have ¢ € Z N Q> = {#1}. It now
follows from the fact that ¢’(ci(L)) and ¢(ci(L)) are positive integers that ¢ = 1,
proving the uniqueness. O

Definition 4.2.2. Let X be a hyperkihler variety over a field K of character-
istic 0. The quadratic form on HZ, (X%, Z(1)) given in Lemma 4.2.1 is called the
Beauville-Bogomolov-Fujiki form or BBF form of X, and is denoted gx.
The bilinear pairing by : Sym® HZ, (X%, Z(1)) — Z associated with gx is called
the BBF pairing.

Remark 4.2.3. The proof of Lemma 4.2.1 shows that if X is a hyperkéahler variety
over C, then the Artin comparison isomorphism between singular and étale coho-
mology gives an isometry from H?(X,Z(1)) ® Z endowed with the BBF form from
Definition 4.1.2 to HZ, (X, 2(1)) endowed with the BBF form from Definition 4.2.2.

Theorem 4.2.4. Let S be a Q-scheme, f: X — S a proper smooth morphism of
algebraic spaces whose fibers are hyperkéhler varieties. Then there exists a unique
quadratic form R R

ax/s+ R§ [ Z(1) — Z(0)
such that for every geometric point s of S, the form qx s restricts to the BBF
form on H2, (X5, Z(1)).

Proof. The uniqueness is clear, so we go on to prove the existence of the form.

First, we prove the existence for those f: X — S which admit a polarization
A € Picx/g(S). We assume without loss of generality that S is connected.

Let 5 and 3’ be geometric points of S, and 7 a path in Sg from s to 5. Then
~ induces an isomorphism of Z-modules v, : HZ (X5, Z(1)) — HZ (X5, Z(1)). Let
q and ¢’ be the BBF forms on H3, (X, Z(1)) and HZ, (Xy, Z(1)), respectively. It
suffices to show that ¢v. = ¢'.

For the forms Q := Qx, and Q' := Qx_, from Lemma 4.2.1 it is clear that
Qvx = Q'. Since ¢ is a primitive Q-multiple of @, it follows that the form ¢v, is a
primitive Q-multiple of @Q’. Moreover, because Az extends to a section \ of Picy,g
over S, we have (¢7«)(c1(As)) = q(c1(X5)), which is an element of Z~ by part 2 of
Lemma 4.2.1. Since the BBF form is uniquely determined by the two conditions in
Lemma 4.2.1, it follows that ¢y, = ¢, proving the theorem for polarizable families
of hyperkéhler varieties.

Now let f: X — S be as in the statement of the theorem. By Remark 3.2.4,
there exists an étale cover U — S and a polarization A € Picx,s(U). Let fu: Xy —
U be the pullback of X to U. Then the first part of this proof shows that there
exists a quadratic form

au: RE fus Z(1) — Z(0)
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in Ug which restricts to the étale BBF form on geometric fibers. It suffices to show
that gy descends to S.

Let pr; and pr, denote the projections U xg U — U, and let X; and X»
be the pullbacks of Xy along pr; and pry, respectively. Then stalk-wise pr} qu
and pr3 qu are the BBF forms of the geometric fibers of X; and X, respectively.
From X; = X, it follows that prj gu = prj qu, since isomorphisms of hyperkéahler
varieties preserve the BBF form. In particular, gy descends to S, proving the
theorem. O

Remark 4.2.5. Let S be a Q-scheme, and let f: X — S be a proper smooth
morphism of algebraic spaces whose fibers are hyperkéhler varieties. The quadratic
form

dx/s: R?et Js 2(1) —Z

given in Theorem 4.2.4 is called the BBF form of X/S. The associated bilinear
pairing bx /s Sym? RZ, f. 2(1) — Z is known as the BBF pairing of X/S.

This quadratic form is preserved under base change in the following sense.
Suppose we are given a morphism ¢: S — S of Q-schemes. Define f: X' — S’
by the cartesian square

X — X

f’l lf

S —— S
¥

Then f’ is a smooth proper morphism of algebraic spaces whose fibers are hy-
perkahler varieties. Smooth and proper base change for étale cohomology give an
isomorphism

¢ (RE 1. 2(1) — RE £LZ(1)
of local systems on S%, which is compatible with the BBF forms.

Remark 4.2.6. Let X be a complex hyperkéhler variety, and o € Aut(C). It is not
clear whether X and o* X have isometric BBF forms on their singular cohomology.
However, it can be shown that they have the same genus, as follows. Remark 4.2.5
shows that H*(X, Z(1)) ® Z and H*(0* X, Z(1)) ® Z are isometric. In addition, by
Proposition 4.1.7 they have the same signature, so they have the same genus.
For all known examples of complex hyperkéhler varieties (see Examples 3.1.7
through 3.1.9), the BBF form A satisfies the inequality rk(A) > length(A(A)) 4 2,
as can be seen in the table in [R1]. Here, length(A(A)) denotes the minimal number
of elements required to generate A(A). By [N1, Theorem 1.14.2], this inequality and
the indefiniteness of A imply that the genus of A contains exactly one isometry
class. In particular, if X is one of the known examples of complex hyperkahler
varieties, then X and ¢*X have isometric BBF forms on their singular cohomology.
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4.3 Orientations on hyperkahler varieties

This section serves to introduce the moduli stack HK,, of oriented polarized hy-
perkahler varieties. The main result is the rather technical Theorem 4.3.6, which
we need to construct a morphism from a connected component of HK,, to an
orthogonal Shimura stack.

We will need to work with motives over a finitely generated field k of charac-
teristic 0. Similarly to the algebraically closed case discussed in Section 2.2, they
form a semisimple Tannakian category Moty.

Let k be an algebraic closure of k. Then the composition of the pullback functor
Mot, — Motz with the fiber functor Hg;: Moty — A¢-Mod yields a fiber
functor on Motk, which we denote by Hg 4. Equatlon (2.3) shows that Hy, ¢ gives
rise to a functor Mot — Gal, -Rep, ., where Gal, -Rep,, denotes the category
of Ag-modules endowed with a continuous A¢-linear Galg-action. We will abusively
denote this functor with HEét as well. Similarly, an embedding ¢: £k — C and the
Betti realization functor give rise to a fiber functor H,: Mot — Q-HS. For a
motive M € Moty, we denote by Mg, and M, the images of M under Hy ., and
H,, respectively. 7

Lemma 4.3.1. Let k be a finitely generated field of characteristic 0, let X be a
hyperkéhler variety over k with by(X) > 3, and let wyy: Z /AZ — det HZ, (X7, 114)
be a Galg-equivariant isomorphism. Then there exists an isomorphism of motives

over k
w: 1 — det(h?(X)(1))

such that we: Af — det HZ, (X7, At(1)) of w restricts to an isomorphism 7 —
det H, (X, Z(1)) satisfying wetlz ® Z /4Z = wyy). Moreover, for every embedding
1k — C, the map w,: Q — det H*(X Xk, C,Q(1)) restricts to an isomorphism
Z — det H?(:* X, Z(1)).

Proof. We first show that det(h? ( )(1)) is isomorphic to 1. Since by (X) > 3, [Al,
Theorem 1.5.1] shows that det(h*(X)(1)) is an abelian motive over k of rank 1 and
weight 0. Tt follows that det(h*(X)(1)) is an Artin motive. In particular, since its
rank is 1, it follows that det(h?(X)(1)) is the motive associated with a quadratic
character y: Galp — {£1}. For any prime number ¢, the character y agrees with
the composition

Gal, — O(HZ, (X5, Ze(1))) 2% {+1}.

The commutative diagram

O(Hg, (X7, Z2(1)))

Galk {il}

T~ |

GL(HZ, (X, 1))
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and the existence of wyy) show that x is trivial, and hence that there exists an
isomorphism w: 1 2 det(h?(X)(1)).

For 1: k — C, we endow det H*(X, ¢, Z(1)) with the quadratic form induced
by the BBF form. Similarly, det HZ, (X5, 2(1)) is also endowed with the quadratic
form induced by the BBF form. Then, by Theorem 4.2.4, det H*(X, ¢, Z(1)) ® Z
and det He?t(XE,Z(l)) are isometric. In particular, since the genus of a rank 1
lattice contains only one isometry class, the discriminant d of det H*(X, ¢, Z(1))
is independent of the choice of «.

Endow 1 with the unique quadratic form ¢ such that for any ¢: &k — C, the
quadratic form ¢, on Q restricts to a quadratic form on Z with discriminant d.
By rescaling the isomorphism w: 1 — det(h*(X)(1)), we may assume that it is an
isometry with respect to ¢ and the BBF form. Let ¢: £ — C. Then, by construc-
tion, the two sublattices w,(Z) and det H*(X, ¢, Z(1)) of det H*(X, ¢, Q(1)) have
the same discriminant, and are therefore equal. It follows that w, restricts to an
isomorphism Z — det H? (X,,c,Z(1)). From the Artin comparison isomorphisms
it now follows that wg restricts to an isomorphism Z — det HZ, (X, Z(1)).

Multiplying w with —1 if necessary guarantees that ws; ® Z /4Z = wyy). O

Lemma 4.3.2. Let S be a normal Q-scheme of finite type, f: X — S a smooth
proper morphism of algebraic spaces whose fibers are hyperkéhler varieties satisfy-
ing by > 3, and let wyyy: Z [4Z — det Rgt f+«pa be an isomorphism of local systems
on Sg. Then there are unique isomorphisms of local systems

wee: Z — det RZ, f. Z(1)

on Sg and
Wan: Z — detR? fo . Z(1)

on S satisfying wet|se = Wan ® Z and Wiy = wet ® Z /A Z.

Proof. The uniqueness of the isomorphisms is clear, so we go on to prove existence.
Without loss of generality we may assume that S is connected. Let n be
the generic point of S, and 77 an algebraic closure of 7. Lemma 4.3.1 shows
that the restriction of the local system det RZ, f. 2(1) to n is constant. Since
7t (n,m) — 7$H(S,7) is surjective by [SGA1, Proposition V.8.2], we conclude that
det RZ, f. 2(1) is constant.
Let s be a C-point of S. Then we have a commutative diagram

GL(H?(X,,Z(1)))

| e

7T1(Sc,8) {il} (4'1)

e

GL(H?(X,, 1ug))
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By the existence of wyyj, the composition m(Sc,s) — GL(H*(Xs, pa)) — {1}
is trivial, so by (4.1) we conclude that 71 (Sc, s) — GL(H?*(X,, Z(1))) — {1} is
trivial as well. It follows that the local system det R? fe,« Z(1) is constant on Sc.

Since the local systems det RZ, f. 2(1) and detR? fc . Z(1) are constant, the
isomorphisms given in Lemma 4.3.1, applied to 7, give the desired isomorphisms
of local systems wg; and way. O

Definition 4.3.3. Let S be a Q-scheme, and let f: X — S be a smooth proper
morphism of algebraic spaces whose fibers are hyperkéhler varieties. An orienta-
tion on X/S is an isomorphism of sheaves of finite abelian groups

w: Z/AZ — det RS, fujia

on Sgt.

The moduli stack of oriented polarized hyperkéahler varieties HK,, is
defined to be the stack parameterizing tuples (X/S, A\, w), where (X/S,\) € HK is
an element such that the fibers of X/S have second Betti number greater than 3,
and w is an orientation on X/S. Let f: X — HK,, be the universal hyperkéhler
variety. We denote by wiy) the universal orientation Z /4Z — det R%, folia.

Remark 4.3.4. Since HK,,, is a degree 2 étale cover of HK, it is itself a smooth
separated Deligne-Mumford stack over Q.

Remark 4.3.5. The condition on the second Betti number of the hyperkahler
varieties parameterized by HK,, is there to ensure that their motives are abelian,
cf. Remark 2.2.1. This will allow us to apply Lemma 4.3.2.

Theorem 4.3.6. There are unique isomorphisms of local systems
wee: Z —> det R, f, Z(1)

on HK,, ¢ and
Wan: Z — det R? fe«Z(1)

on HK,, ¢ such that wst|uk = Wap @ 7 and such that Wi = ws @Z 4 Z.

or,C

Proof. By Corollary 4.1.16, HK,, is smooth, and in particular normal and of finite
type over Q. It follows that we can apply Lemma 4.3.2 to conclude the proof. [

The following lemma will be useful in our treatment of the moduli stack of
polarized K3 surfaces.

Lemma 4.3.7. There is a rank 1 local Z-system D on HKg¢, endowed with an
injective morphism of sheaves D — det R, f. Z(1) on HK¢; and an isomorphism
of sheaves D|ak — det R? fc . Z(1) on HK¢ such that the diagram
detR? fc . Z(1)
Dlakc l@ Z (4.2)

detR2, fc.. Z(1)
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4.3. Orientations on hyperkahler varieties

commutes.

Proof. Being a degree 2 étale cover of HK, the stack HK,, comes with a natural
{#1}-action making it a {£1}-torsor on HKg. In addition to this, we have a Z*-

torsor Isom(Z, det R? fc . Z(1)) on HK ¢, and a Z " torsor Isom(Z, det RZ, f. Z(1)).
Theorem 4.3.6 gives morphisms of sheaves

wer: HK, — Isom(i,det RZ f, 2(1)) (4.3)

on HK¢; and
wan: HKor ¢ — Isom(Z, det R? fc . Z(1)) (4.4)

on HK ¢ such that the diagram

Isom(Z,det R? fc . Z(1))

— J@Z

Isom(z, det RZ, f. 2(1))|HKc

HKor,C (45)

commutes. It is easily verified that the maps wst and w,y, are {£1}-equivariant.
In particular, w,y, is an isomorphism, since its source and target are torsors under
the same group Z* = {+1}.

There is an equivalence from the groupoid of rank 1 local Z-systems on HK;
(respectively HK ) to the groupoid of {41}-torsors on HKy; (respectively HK )
given by mapping a local system L to Isom(Z, L). Similarly, Isom(z, —) gives an
equivalence from the groupoid of rank 1 local 2—systems on HKg; to the groupoid

of Z -torsors on HK:.

It follows that HK,, gives rise to a rank 1 local Z-system on HKg. Equa-
tions (4.3) and (4.4) yield injective morphisms of sheaves D — det R, f. Z(1) and
Dluke — detR? fc . Z(1). The commutativity of the diagram in (4.5) shows that
the diagram in (4.2) commutes, proving the lemma. O

Corollary 4.3.8. Let S be a Q-scheme, 5 a geometric point of S, and X/S a
smooth proper morphism of schemes whose fibers are hyperkéhler varieties with
by > 3, endowed with a polarization A € Picx,g(S). For every prime number £,
consider the monodromy representation pg: 7$4(S,5) — O(HZ (X3, Z¢(1))). Then
the composition det py: 7$t(S,5) — {41} is independent of .

Remark 4.3.9. When the base scheme is normal, and the fibers of f are K3
surfaces, this result holds in mixed characteristic, and without the existence of
a polarization. We sketch a proof. By first spreading out and using Chebotarev
density we reduce to the case of a K3 surface X over a finite field. Over a finite
field, the Weil conjectures [D3, Théoreme 1.3] imply that the determinant of the
Frobenius on H? can be expressed in terms of the zeta function of X, which is
independent of /.

Saito uses this argument to prove an analogous result for the middle cohomol-
ogy of any even-dimensional proper smooth variety, see [S2, Lemma 3.2].
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4.4 Shimura stacks

In this section, we introduce Shimura stacks (following [T'1]), and we give a modular
interpretation of orthogonal Shimura stacks over C in terms of variations of Z-
Hodge structures.

441 General Shimura stacks

Let (G, X) be a Shimura datum with reflex field E. As in Chapter 2, we assume
that Z(Q) is discrete in G(A¢), where Z denotes the center of G. Let K be a
profinite group, and let i:  — G(A¢) be a continuous homomorphism with finite
kernel and open image (for example, K C G(A¢) a compact open subgroup).

We define the Shimura stack Shi[G, X] as follows. Let K’ C K be an open
normal subgroup such that il : K — G(Ay) is injective and has neat image
(see [M4] for the definition of a neat compact open subgroup of G(Ay¢)). Then the
Shimura variety Sh;cy (G, X) is smooth and defined over E. Moreover, the finite
group K /K" acts on Sh;(xcry (G, X) via right multiplication, and we let Shi[G, X]
be the quotient stack

ShIC [Ga X] = [Shi(lC’)(Ga X)/(IC/]C/)] .

Now Shi[G, X] is a smooth separated Deligne-Mumford stack over E, whose
coarse moduli space Shy (G, X) is isomorphic to the Shimura variety Sh; (G, X).
The G(Ag)-action on Sh(G, X) endows it with the structure of a K-torsor on
Shi[G, X]st-

Example 4.4.1. Let (G, X) be the Siegel Shimura datum associated with a sym-
plectic Q-vector space of dimension 2, that is, (G,X) = (GLg,H). For K =
GLy(Z), the stack Shx[@, X] is equivalent to the moduli stack of elliptic curves
over Q. More generally, for (G, X) = (GSpy,, H) and K = GSpQg(Z), the stack
Shi[G, X] is equivalent to the moduli stack of principally polarized abelian vari-
eties of dimension g over Q.

Lemma 4.4.2. Let S be a smooth separated C-scheme. Then the functor
Hom(S, Shi[G, X]c) — Hom(S*", Shk |G, X&)
given by analytification is an equivalence of groupoids.

Proof. First suppose K is a neat compact open subgroup of G(Ay¢), so that Shx[G, X]| =
Shi (G, X). Then the lemma is well known and a consequence of [M4, Lemma 5.13]
and Borel’s theorem [M4, Theorem 3.14].

For more general i: K — G(Ag), let K’ be a open normal subgroup of K such
that i|xc is injective, and such that i(K') is neat. Then Shi[G, X]|& is the quotient
stack

[Shigen (G, X)B/( /K]

so a morphism 9: S* — Shy[G, X]&' corresponds to a (K /K')-torsor P on Sa"
and a (K / K')-equivariant holomorphic map ¢: P — Sh;c (G, X)&. By [SGAL,
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4.4. Shimura stacks

Corollaire XIL.5.2], the torsor P is the analytification of a (K /K')-torsor P
on S. Moreover, by the case of the lemma for neat compact open subgroups
of G(A¢), the map ¢ is the analytification of a (K /K')-equivariant morphism
@alg: P — Shixr) (G, X)c. It follows that ¢ is the analytification of a morphism
S — Shi |G, X]c. O

The analytification of Shi[G, X]c can be identified with the quotient stack
[GQ\X x G(Ag)/ K]

Its groupoid of C-points has as objects pairs (h,g), with h € X and g € G(Ag).
A morphism (h,g) — (h/,g’) consists of v € G(Q) and k € K with vA = h’ and
vgi(k) =g’

Let V be a finite-dimensional Q-vector space, endowed with a homomorphism
p: G — GL(V) and a continuous linear right K-action, and assume that these two
actions commute. Then the quotient stack

GIQ\X x V x G(Ar)/ K|

is a variation of Q-Hodge structures on Shi[G, X|&. Its fiber over a point (h, g) €
Shi[G, X]& is V, endowed with the Hodge structure ph.

Now consider a full Z-lattice L C V® A¢ such that for all v € L and k € K we
have i(k)vk™! € L. Then the quotient

GQN\X x{(v,9) €V xG(Ag) [veg(l)NV}/K (4.6)

is a variation of Z-Hodge structures on Shi[G, X]&". The stalk over a point (h, g)
of Shi [G, X]& is the finitely generated free abelian group g(L) NV, endowed with
the Hodge structure given by ph.

4.4.2 Orthogonal Shimura stacks

We now apply the constructions of Section 4.4.1 to give a modular interpretation
of orthogonal Shimura stacks in terms of variations of Z-Hodge structures. We will
do this for various choices of I, which arise naturally from the moduli stacks of
hyperkahler varieties that we consider in later sections.

Let (Ag,bg) be a Z-lattice of signature (3,n) with n > 1, let A\g € Ay be an
element with by(Ao, Ag) > 0, and let wp: Z — det Ag be an isomorphism of abelian
groups. Define V' to be the signature (2,7n) quadratic space (Q\o)t C Ay ® Q,
and let (SO, ) be the Shimura datum associated with V' as in Section 2.3. Define
Ko to be the profinite group

Ko == {g € SO(Ao)(Z) | g(ho) = Ao},

which we endow with the injective map i: Ko — SO(Ay¢) sending g to the restric-
tion of g® A¢ to V® Ar C Ag® A¢. The image i(Ky) is a compact open subgroup
of SO(Ay), so we have a Shimura stack Shy,[SO, Q).
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4. Period maps for hyperkahler varieties

Let SO act on Ag ® Q =V & Qg by having g act as g @ id, and let Ko act
trivially on Ag ® Q. Then Ay ® Q and the Z-sublattice Ag ® Z of Ay ® At induce
a variation of Z-Hodge structures A on Shy,[SO, Q)% as in (4.6). The stalk of
A over a point (h,g) € Shi,[SO, Q) is the finitely generated free abelian group
g(Ao ® 2) N Ap ® Q, endowed with the Hodge structure given by h.

The pairing on Ag, the element Ay € Ay, and the isomorphism wy: Z — det Ag
induce the following morphisms of Z-VHS:

e b: Sym? A — Z(0),
o \: Z(0) — A,
o w: Z(0) — det A.
The following lemma gives a universal property for the tuple (A, b, A\, w).

Lemma 4.4.3. Let S be a complex analytic space. Pulling back the tuple (A, b, \,w)
induces an equivalence of groupoids from Hom(S, Shi,[SO, Q&) to the groupoid
of tuples (A, b, \,w) where

e ANisaZ-VHS on S,

e b: Sym* A — Z(0) is a morphism of Z-VHS making the stalks of A K3-type
Hodge lattices of signature (3,n),

e )\ is a positive global section of A of type (0,0),
e w: Z(0) — det A is an isomorphism of Z-VHS,

such that for every s € S, there exists an isometry As; ® 7 — Ay ® Z mapping As
and ws to \g and wy, respectively.

Proof. We construct a quasi-inverse of the natural functor from Hom(S, Shy, [SO, €])
to the groupoid of tuples (A,b, \,w). Without loss of generality we may assume
that S is connected.

We first show that the fibers of A ® Q are isomorphic to the tuple (Ap ®
Q. bo, Ao, wo). Let s € S, and let v, A0®2 — AS®2 be an isometry mapping Ag to
As and wg to ws. The quadratic spaces A ® Q and Ag® Q have the same signature,
and 1, induces an isometry Ay ® A = Ay ® Ay, so by the Hasse-Minkowski
theorem [S3, Chapter IV, Theorem 9], there is an isometry ps: A, @Q — Ay ® Q.
By an argument similar to that in the proof of Lemma 2.3.11, we can use the
existence of 15 to modify ¢4 so as to ensure that it maps As to Ag and w;s to wy.

Let I C Ky be a neat open normal subgroup, so that H := Ky /K is a finite
group, and Shi[SO, Q¢ is equal to the Shimura variety Shi (SO, Q). Define S’
to be the quotient sheaf

Isom((Ao ® 2, bo, Ao, wo), (A ® 27 b, )\7w))/IC

on S. Then S’ is an H-torsor on S. We will construct an H-equivariant map S’ —
Shk (SO, Q)c. Since Shi, [SO, Q] is by definition the quotient stack [Shx (SO, Q2)/H],
this induces a morphism S — Shy, [SO, Q]c.
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Let U C S’ be a connected open set on which the local system underlying A
is constant, and let p: Ay ® Q — A ® Q be an isometry mapping A to A\p and w
to wg. By the constancy of A, we can also find an isometry ¥: Ag®Z - AR Z
representing the universal section of

Isom((AO ® Z, bo, Ao, wo), (ADZ, b, A,w))/IC

over S’.

By definition of variations of Hodge structures, there is a holomorphic map
f: U — X mapping s € U to the image under ¢s of the Hodge structure on
As ® Q. Note that for any s € U, the composition ¢ o 95 defines an element of
SO(At). The constancy of Ay and the connectedness of U imply that this element
does not depend on the choice of s, and we will denote it with g. Now define
U — Shx(SO,Q)c by mapping a point s € U to (f(s),g). Since

Shi (SO, Q)c = SO(Q)\X x SO(Ay)/ K,

this map does not depend on the choice of ¢ and v, and it is clearly H-equivariant.
Moreover, [M4, Lemma 5.13] gives a decomposition of Shx (SO, Q)¢ into quotients
of the form I'\ X, with T" a discrete group acting properly discontinuously on X.
This decomposition can be used to show that U — Shc (SO, Q)¢ is holomorphic.

Applying this construction to an open cover of S’ on which the local system un-
derlying A is constant gives an H-equivariant holomorphic map S’ — Shx[SO, Q]¢,
and hence a morphism S — Shy, [SO, Q]c. O

Consider an open subgroup I C y. We will generalize Lemma 4.4.3 to give a

modular interpretation of Shi[SO, Q.
The group K acts from the right on the isomorphism sheaf

I := Tsom ((AO ® Z, bo, Aoy wo), (M@ Z, b, )\,w))

on Shy, [SO, Q)& In the proof of the following lemma we will construct a section
a of the quotient sheaf I/ KC over Sh[SO, Q&' We will refer to «v as the univer-
sal level-K structure on A over Shi[SO,Q]%'. The following lemma says that
Shic[SO, Q)" is a moduli stack for Z-VHS endowed with a level K-structure.

Lemma 4.4.4. Let S be a complex analytic space. There exists a section «
of the quotient sheaf I/ over Shi[SO, Q)& such that pulling back the tuple
(A, b, \,w, @) induces an equivalence of groupoids from Hom(S, Shi[SO, Q&) to
the groupoid of tuples (A, b, \,w, &) where (A, b, \,w) is as in Lemma 4.4.3, and «
is a global section of the quotient sheaf

Isom ((AO ® 2, bo, Ao, wo), (A ® 2, b, A,w)) /K.
Proof. We will only construct the universal level C-structure on the restriction of

A to Shi[SO, Q). The rest of the proof is similar to that of Lemma 4.4.3, and
therefore omitted.
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Let QT be a connected component of €, and let SO(Q)+ € SO(Q) be the
stabilizer of this component with respect to the action of SO(Q) on my(£2). Let
C be a set of representatives of the quotient set SO(Q)4\SO(A¢)/ K, and for
g € SO(Ay), let T'y be the group SO(Q)+ NgK g~'. Then the stack Shic[SO, Q)&
is equivalent to the disjoint union

IT [T\t (4.7)

gec

as can be seen in [M4, Lemma 5.13]. Since Q% is simply connected, the analytic
stack [I'y\Q"] is connected, and its fundamental group is I'y.

For g € C, let Ay be the Z-lattice g(Ay ® 2) NAy ® Q. Then \g € Ay, and
wo induces an isomorphism wy: Z — det Ay. The pullback of A to [[,\Q7T] is
Lo\ (21 x Ay)]. To give a section of I/ K over [[',\Q"] is therefore equivalent to
giving an isometry ¥: Ag ® Z— Ag® Z preserving Ag and mapping wg to wy such
that for every v € Iy, there exists a k € K with vy = ¥k. Since Ag®2 =g(Ap ®2),
the choice ) = g gives an isometry satisfying these conditions.

It can be checked that this defines a section

Q: Sh}C[SO,Q]C — I/ K,
completing the proof of the lemma. O

We now introduce a compact open subgroup Kz of SO(Af) that will play
an important role in our treatment of the moduli stack of polarized hyperkahler
varieties which are deformation equivalent to a Hilbert scheme of points on a K3
surface. The group Ko acts on the discriminant group A(Ag) := AY/Ag. This
induces an action on the quotient set F(Ag) := A(Ag)/{£1}, where —1 acts as
—ida(ag)- We define the group Kr C Kq as

Kp:= {g € Ko | Alg) = :tidA(AO)}'

The universal level-ICr structure a on the restriction of A to Shi, [SO, Q] induces
an isomorphism of sheaves of finite sets @: F(Ag) — F(A) on Shi,.[SO, Q]c.
The next lemma follows almost immediately from Lemma 4.4.4.

Lemma 4.4.5. Let S be a complex analytic space. Pulling back the tuple (A, b, \, w, @)
induces an equivalence of groupoids from Hom(S, Shy,.[SO, Q]&") to the groupoid

of tuples (A, b, \,w, @) where (A,b,\,w) is as in Lemma 4.4.3, and @: F(Ag) —
F(A) is an isomorphism of sheaves of sets on S such that for every s € S, there
exists an isometry ¢ : Ag ® Z — As® Z mapping Ao and wg to A\ and w, and such
that o is induced by .

Now suppose that the rank of A is even. Taelman showed in [T1] that we can
find a Shimura stack parametrizing Hodge lattices of K3 type in the same genus
as Ag, without the need for adding an orientation.

Let I be the profinite group

{9€0(80)(Z) | g(r) = Ao and det(g) € {+1}}. (4.8)
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The requirement that detg € {1} says that for every prime p the determinant
det g, € {£1} C Z is the same. That is, det g, is either 1 for all p or —1 for all
p. Consider the continuous homomorphism

i: K— SO(Af), gr— det(g)glvea;,

where as before V' denotes the orthogonal complement of A\g in Ag ® Q. Note that
the determinant of det(g)glvea, is 1 by the evenness of rk Ag, so that ¢ indeed
lands in SO(A¢). Moreover, i has open image and a finite kernel (of order < 2), so
this gives rise to a Shimura stack Shx[SO, Q.

We construct a universal Z-VHS on Shx[SO, Q]c. As above, let g € SO act on
Ap®Q as g@id, and let K act from the right on Ao ® Q via the determinant on V,
and as the identity on Q Ag. Then these actions and the Z-lattice Ag®Z in Ag® A¢
give rise to a Z-VHS A as in (4.6). As before, the pairing by: Sym* Ag — Z and
the element \g give rise to

e a morphism of Z-VHS by: Sym? A — Z(0),
e a global section A of A of type (0,0) satisfying b(A, \) > 0.
The following lemma states that the tuple (A, b, A) is universal.

Lemma 4.4.6. Let S be a complex analytic space. Pulling back the tuple (A, b, \)
induces an equivalence of groupoids from Hom(S, Shi[SO, Q&) to the groupoid
of tuples (A, b, \) where

e ANisaZ-VHS on S,

e b: Sym? A — Z(0) is a morphism of Z-VHS making the stalks of A K3-type
Hodge lattices of signature (3,n),

e )\ is a global section of A of type (0,0) satisfying b(A, \) > 0,

such that for every s € S, there exists an isometry ¥: Ay ® Z— Ay ® Z mapping
As to Ao, and mapping the rank 1 free abelian group det(A;) to det(Ao).

Proof. We prove the lemma for the case S = Spec(C). The additional details
needed to prove the lemma for more general complex analytic spaces are similar
to the proof of Lemma 4.4.3, and are therefore omitted.

The statement of the lemma gives a functor F' from the groupoid

Shic[SO, Q2J(C) = [SO(Q)\2 x SO(Ay)/ K]

to the groupoid of tuples (A, b, A) on Spec(C). On objects, F is defined by mapping
an object (h, g) to the Z-lattice A, := g(Ap® Z)NAo® Q endowed with the Hodge
structure h, and the positive type (0,0) element A\g. A morphism from (h,g) to
(h',¢') in consists of v € SO(Q) and k € K with vh = i/ and ygk = ¢’. Then F'
maps (7, k) to the restriction of (det(k)y) @ idqx, to Ag.

To see that F is faithful, suppose we have (7o, ko) and (y1, k1) in SO(Q) x K
giving morphisms from (h, g) to (R, ¢’). If F(y0, ko) = F(71, k1), then in particular
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det(ko)vo = det(k1)v1. Since det(yy) = det(y1) = 1, this implies that vy = 71,
and det(kg) = det(k;). Moreover, we have vogi(ko) = ¢ = mgi(k1), so that
i(ko) = i(k1). Since

ko ® Af = (det(k'o)i(ko)) ®ida,r, = (det(kl)i(/ﬁ)) @ ida,r, = k1 @ Ay,

we obtain kg = kq.

For the fullness of F, let (h,g) and (h',g") be points of Shi[SO, %, and
suppose we have a Hodge isometry ¢: Ay, — Ay preserving Ag. Since A; ® Q and
Ay ® Q are equal to Ag ® Q, the isometry v := det(gp)gpb/\é is an element of

SO(Q). Note that Ay @ Z = g(Ao ® Z), and A, = ¢' (Ao ® Z), so we define k to
be the composition
A&7 8 5\ ¢®Z 5\ ()" 5
o®Z—>g(A0®Z) e®Z, (A0®Z) Y A0 Z.
Then k satisfies det(k) = det(p) € {£1} so that k € K. It can be verified that
(7, k) is a morphism from (h,g) to (A, ¢") with o = F(~,k).

To prove the essential surjectivity, consider a tuple (A,b,A) on Spec(C). Let
Vi Ao ®Z — A ®Z be an isometry mapping Ao to A and det(Ag) to det(A). Tt
follows that if we endow det(Ap) and det(A) with the pairings induced by by and
b, then the lattices det(Ag) and det(A) have the same discriminant d € Z.

By the existence of ¢ and the fact that A and Ay have the same signature,
the Hasse-Minkowski theorem [S3, Chapter IV, Theorem 9] gives an isometry
v: A®Q — Ay Q mapping A to Ag. The sublattices det(Ag) and ¢det(A) have
the same discriminant d, so it follows that ¢ maps det(A) to det(Ag).

Define h €  as the image under ¢ of the Hodge structure on Q A\t C A ® Q.
Consider the composition g := ¢|a, x\1 ¢¥|vea,: VA — V®A¢, where V denotes
the orthogonal complement of Ay in Ag ® Q. Since ¢ and 1 map the Z-lattices
det(Ag) and det(A) into each other, det g is an element of {£1}. By composing ¢
with —idy @idq », if necessary, we ensure that det(g) = 1, so that g € SO(Ay).
Note that even after this modification, p: A®Q — Ay®Q is still a Hodge isometry
mapping A to Ag.

With these choices it can be checked that ¢ induces a Hodge isometry A — A,
mapping A to Ag, where A is endowed with the Hodge structure given by h. This
shows that F' is essentially surjective, completing the proof of the lemma. O

4.5 Period maps

Let M/ Q be a connected component of the moduli stack HK,, of oriented po-
larized hyperkahler varieties over Q. In this section, we will associate to M an
orthogonal Shimura stack Shi,[SO, 2] over Q, and we will construct an étale
morphism Mg — Shi, [SO, Q]c, called the period map. The main result of this
section is that this period map descends to a morphism M — Shy,[SO, ], de-
fined over Q. This is a generalization of a result of Rizov ([R3, Theorem 3.16]).
Our treatment closely follows the proof of that result given by Madapusi-Pera
in [MP1].
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Let f: X — M be the universal hyperkéhler variety, A the universal polariza-
tion on X, and wyyy: Z /4Z — det R, f./14 the universal orientation. As we saw in
Theorem 4.3.6, wyy) gives rise to isomorphisms of local systems

wee: Z —> det R, f, Z(1)
on Mor,ét
Wan: Z — detR? fo. Z(1)

on Mor,C“

Let wg := (X0, AzosWa],z0) Pe a C-point of M. Then Ay := H?(Xo,Z(1))
endowed with the BBF pairing by is a Z-lattice of signature (3,n), for some n >
1, and Ag = ¢1(Ay,) is a positive element of Ag. Moreover, wy := wan 4, IS an
isomorphism Z — det Ag. Let V be the orthogonal complement of Q Ag in Ay ® Q.
Then as in Section 4.4.2, the tuple (Ag, Ao, bo,wp) gives rise to an orthogonal
Shimura datum

(SO, Q) = (SO(V)7 QV)a
and a compact open subgroup Ko C SO(Ay) defined as
Ko := {g € SO(A0)(Z) | g(No) = Ao }-

Lemma 4.5.1. Let x = (X, A\;,wj4),.) be a C-point of M. Then the tuple
(HQ(X7 Z(l)) ® 2, bx, Cl(>\a:)7 Wan,a:)

is isomorphic to (Ay ® Z, bo, Mo, wo).

Proof. This is a consequence of the connectedness of M and the fact that the
BBF pairing on R? fe.« Z(1) and the isomorphism of sheaves wa, on M¢ extend to
morphisms of local systems on Mg over Q, which is the content of Theorems 4.2.4
and 4.3.6. O

On M, we now have the following Hodge-theoretic data:
e a Z-VHS R? fc . Z(1),

e the BBF pairing b,,: Sym® R? fc . Z(1) — Z(0), making the stalks of R? fc . Z(1)
K3-type Hodge lattices of signature (3,n), by Propositions 4.1.7 and 4.1.8,

e \un = 1 (AMe) is a positive global section of R? fc . Z(1) of type (0,0) by
Remark 4.1.3,

e the orientation wa,: Z(0) — detR? fc . Z(1) from Theorem 4.3.6, which is
an isomorphism of Z-VHS.

By Lemma 4.4.2, Lemma 4.4.3, and Lemma 4.5.1, these data gives rise to a mor-
phism of complex Deligne-Mumford stacks

Mg — Shy, [SO, Q] ¢,
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4. Period maps for hyperkahler varieties

known as the period map. Note that since the reflex field of (SO,) is Q by
Lemma 2.1.3, Shy,[SO, ] is a stack over Q. We will show that the period map
descends to a morphism defined over Q.

First note that the tuple (R? f .« Z(1), ban, Aan, Wan) o1t M ¢ extends uniquely
to a tuple on Mg over Q consisting of

e the local Z-system R f. 2(1),
e the étale BBF form bg: Sym?RZ f. 2(1) — Z from Theorem 4.2.4,
e the polarization A\ := ¢;(\) € H'(M, R2, f. 2(1))7
e the orientation we: Z — detR? f, 2(1) from Theorem 4.3.6.
This gives rise to a Ky-torsor
Isom((Ao ® Z, bo, Ao, wo)s (R, £+ Z(1), bes, et wét))

on Mg;. Similarly, the SO(Af)-action on Sh(SO, Q) endows it with the structure
of a KCp-torsor on Shy, [SO, Qet.

Theorem 4.5.2. The period map Mc — Shy,[SO,Q]c defined by the tuple
(R2 fc,x Z(1), ban, Aan, wan) descends to a morphism M — Shy, [SO, 1] defined
over Q. This morphism is étale, and it pulls the Ky-torsor Sh(SO, ) on Shi, [SO, Qe
back to the Ky-torsor

Isom((Ao ® 2, bo, Ao, w0> , (Rﬁt f 2(1), bet, Adt, Wét))
on M.

Proof. Let K C Ky be a normal neat open subgroup, so that H = Ky / K is a finite
group, Shi[SO, Q] = She (SO, Q), and

Shi, [SO, ] = [Shi (SO, Q)/H].
Now define M to be the stack of objects of M endowed with a level K-structure.
That is, M is the H-torsor
tsom (Ao @ Z, bo, Ao, o), (R, S Z(1), b Aew, wr) ) / K (4.9)

on Myg;. Then M is a smooth separated Deligne-Mumford stack. By Lemma 4.4.4
and Lemma 4.4.2, the tuple (R? fc,«, ban, Aan, Wan) restricted to M ¢, endowed
with the canonical level-K structure, yields an H-equivariant morphism of complex
Deligne-Mumford stacks My ¢ — Shx (SO, Q)¢ for which the diagram

M}QC Emm—d Sh;(;(SO, Q)C

T

MC E— Sh)co [SO, Q]C
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commutes.

We will show that the morphism f: My c — Shi(SO, Q)¢ descends to Q. The
commutative diagram (4.10) will then imply that Mc — Shg,[SO, Q]c descends
to Q as well.

Let P be the groupoid of tuples (X, \,wy),a), where x := (X, A, wy)) is a
complex point of M, and a: Ay ® Z — H? (X, 2(1)) is an isometry mapping Ay to
c1(A), and wg t0 way . This groupoid comes with a forgetful functor P — My (C)
mapping (X, A\, wyy), @) to (X, A\, wyy, @ mod K).

Next, we construct a functor f': P — Sh(SO, Q)(C). Let (X, \,wy), ) € P. By
an argument similar to that in the proofs of Lemma 2.3.11 and Lemma 4.4.3, there
exists an isometry ¢: H*(X,Q(1)) — Ag ® Q mapping ¢;(A) to Ag and wy to wp.
Let h be the image under ¢ of the Hodge structure on Qc;(\)*t C H*(X, Q(1)),
and define g to be the composition ¢[a, ¢, (r)t © @lvga,. Then h € X and g €
SO(Art), so this yields an element of Sh(SO, Q2)(C) which does not depend on the
choice of ¢. It can be checked that this gives a functor f': P — Sh(SO,)(C).

Now we have a commutative diagram of groupoids

p I Sh(SO, Q)(C)

J J

M (C) m Shi (SO, 2)(C)

If we show that f” is Aut(C)-equivariant in the sense that for every o € Aut(C)
and every (X, A, wy), ) in P there holds

(0% X, 0"\, o*wpy, 0¥ a) = o f (X, A, wy), @),

then it follows that f(C) is Aut(C)-equivariant in a similar sense, which implies
that f descends to a map My — Shx (SO, ).

Corollary 2.3.5 gives an Aut(C)-equivariant map ®: Sh(SO,Q)(C) — Mot(A¢®
Q, A\o) where Mot(Ay® Q, \g) is as in Definition 2.3.4. Theorem 2.2.2 and Exam-
ple 2.2.1 imply that the composition P — Sh(SO,Q)(C) — Mot(Ay ® Q, Ao) is
given by mapping (X, A, wy), @) to the tuple

<h2(X)7 ban,x (29 Qv )\an,r & Qa Wan,z o2y Qa a® Af) )

where x denotes the C-point of M corresponding to (X, A,wpy)). The required
Aut(C)-equivariance of f’ now follows from the fact that o*h*(X) = h?(c*X),
and the existence of bgy, Mgy, and weg.

We now show that the period map pulls the Ko-torsor Sh(SO, 2) on Shi, [SO, 9]¢t
back to the isomorphism sheaf

I:= Isom((Ao ® Z, bo, Ao, wo) ; (Rgt FeZ(1), bty Aat, wét))
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4. Period maps for hyperkahler varieties

on Mg;. It follows from (4.9) that I is the inverse limit limx My, where K ranges
over all normal neat open subgroups of Ky. Since Sh(SO, ) is equal to the limit
limg Shic (SO, ), it follows from the cartesian squares

My —— ShK(SO,Q)

L

M — Shy, [SO, Q]

that the period map pulls Sh(SO, ) back to I.
To see that the period map M — Shy,[SO, €] is étale, it suffices to show that
M — Shi, [SO, Q¢ is étale. This is an immediate consequence of the local Torelli

theorem (see [Al, Proposition 3.3.1] and [B2, Théoréme 5]) and the decomposition
of Shi, [SO, Q¢ given in (4.7) and [M4, Lemma 5.13]. O

Remark 4.5.3. The period map in Theorem 4.5.2 is not in general an open
immersion. In order for it to be an open immersion, it is necessary that it is fully
faithful on C-points. An example where the period map is neither full nor faithful
is when M is a moduli stack of polarized oriented generalized Kummer varieties
(see Example 3.1.9). The fact that the period map is not faithful in this case follows
from [BNS, Corollary 3.3]. The failure of fullness follows from the global Torelli
theorem (Corollary 4.1.14) and the fact that not every Hodge isometry between
generalized Kummers is a parallel transport operator by [M5, Theorem 4.3].

One result pertaining to the failure of faithfulness of the period map is the
result of Hassett and Tschinkel which states that when X is a complex hyperké&hler
variety, then the kernel of Aut(X) — O(H?*(X,Z(1))) is a deformation invariant of
X. See [HT, Theorem 2.1] for a more precise statement. It implies that the relative
inertia stack of M — Shy,[SO, 1] is a local system of finite groups on M.

In contrast with the period map for abelian varieties, the period map for hy-
perkéhler is not surjective. See [D1] for a description of the image of the period
map when M is a moduli stack of hyperkéhler varieties deformation equivalent to
a Hilbert scheme of points on a K3 surface.

4.6 K3 surfaces

In this section we consider moduli stacks of polarized hyperkéhler varieties whose
second Betti number is even (for example K3 surfaces). For such moduli stacks
we can use Lemma 4.4.6 to eliminate the orientations occurring in Theorem 4.5.2.
This results in a period map from a connected component of HK to an orthogonal
Shimura stack, see Theorem 4.6.2. This section follows work on moduli stacks of
K3 surfaces of Taelman in [T1].

Let M be a connected component of HK for which the hyperkahler varieties
parameterized by M have even second Betti number, let f: X — M be the uni-
versal hyperkahler variety, and let A be the universal polarization on X.
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4.6. K3 surfaces

Let 2o = (X0, Ay, ) be a C-point of M. Then Aq := H?*(Xy, Z(1)) endowed with
the BBF pairing by is a Z-lattice of signature (3,n), with n an odd and positive,
and Ag := ¢1(Az, ) is a positive element of Ag. Let V be the orthogonal complement
of A\p in Ag ® Q. Then as in Section 4.4.2; the tuple (A, bg, Ag) gives rise to an
orthogonal Shimura datum

(SO, Q) := (SO(V), Qv ),

and a profinite group K defined as in (4.8), namely

K= {g € O(Ao)(Z) | 9(Xo) = Ao and det(g) € {ﬁ:l}}.

We endow K with the continuous homomorphism i: K — SO(A¢) given by map-
ping g € K to det(g)g|lvga,. Since the reflex field of (SO, Q) is Q by Lemma 2.1.3,
this yields a Shimura stack Shi[SO, Q] over Q.

We will construct a K-torsor on M as follows. On Mg, we have

e the local Z-system R f. Z(1),
e the étale BBF form be;: Sym?RZ, f, Z(1) — Z,
e the polarization Ag 1= c1(A) € HO(M,R?)t I« 2(1))

In addition to this, Lemma 4.3.7 gives a rank 1 local Z-system D on Mg endowed
with an injective morphism of sheaves D — det RZ, f. Z(1) and an isomorphism
of sheaves D|ng — det R? fo . Z(1) for which the diagram

det R? fo . Z(1)
_— l _
®QZ

D|Mc
det R, fo . Z(1)
commutes. Now the isomorphism sheaf
tsom (Ao ©Z, bo, Ao, det Ao), (R £ Z(1), ber, A, D))

is a KC-torsor on My;.

Lemma 4.6.1. Let x = (X, ;) be a C-point of M. Then there exists an isom-
etry 1: H*(X,Z(1)) ® Z — Ay ® Z mapping ¢1(\;) to \o, such that 1) maps
det H?(X,Z(1)) to det A.

Proof. This follows from the connectedness of the stack M over Q, and the exis-
tence of bg, A¢t and D.
Let A be the BBF lattice H?(X, Z( )), and let 7 be a path from z to o in

Myg;. Then the existence of the local Z- system Ret I« ( ) implies that the path ~
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4. Period maps for hyperkahler varieties

induces an isomorphism ¥: A ® Z — Ao ® Z. Tt follows from the existence of et
and Ag that ¢ is an isometry, and that it maps ¢1(Az) to Ag.

To see that ¥ maps det A to det Ay, we consider the local Z-system D on My;.
The equivalence between rank 1 local Z-systems on Myg; and Z*-torsors on Mg
can be used to show that v induces a functorial isomorphism yp: D, — D,,. In
particular, since v is induced by 7, we have a commutative diagram

D, —— detA < detA®Z

YD l ldet P

Dy —— det Ag —— det Ag @ Z
It follows from this diagram that ¢ maps det A into det Ag, which was to be
shown. 0
On Mc, we have the following Hodge-theoretic data:
e a variation of Z-Hodge structures R? fc . Z(1),

e the BBF pairing by, : Sym?R? fc,« Z(1) — Z(0), making the stalks of R? fo« Z(1)
K3-type Hodge lattices of signature (3,n),

e a positive type (0,0) global section \ay := ¢1(A|me) of R? fo.. Z(1).

It follows from Lemma 4.6.1, Lemma 4.4.6, and Lemma 4.4.2 that the tuple
(R2 fC,* Z(l), bana /\an)

gives rise to a morphism M¢ — Shi[SO, Q]¢, known as the period map.
The following theorem states that the period map descends to Q. Its proof is
similar to that of Theorem 4.5.2, and is therefore omitted.

Theorem 4.6.2. The period map M — Shi[SO, Q]¢ defined by the tuple

(R2 fC,* Z(l)a bana Aa,n)

descends to a morphism M — Shx[SO, Q] defined over Q. This morphism is étale,
and it pulls the K-torsor Sh(SO, ) on Shi[SO, Q)¢ back to the K-torsor

Isom((Ao ® Z, bo, Mo, det Ag), (R? £, Z(1), ber, Ao, D))

on Mét .

We now apply Theorem 4.6.2 and the global Torelli theorem (Corollary 4.1.14)
to K3 surfaces to show that the stack of primitively polarized K3 surfaces is an open
substack of a Shimura stack. Let K354 be the moduli stack over Q of primitively
polarized K3 surfaces of degree 2d, and f: X — K3y, the universal K3 surface.
Then K354 is a connected component of HK parametrizing hyperkéhler varieties
with even second Betti number. We maintain the notations from earlier in the
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section. That is, A is the BBF lattice of a C-point of K354, we denote by (SO, Q)
the associated orthogonal Shimura datum, and so on.

In this case, the lattice Ay is the K3 lattice Ak, which is the unique even
self-dual lattice of signature (3,19), and A¢ is a primitive element of Aks of length
2d.

For polarized K3 surfaces, the global Torelli theorem (see Corollary 4.1.14) has
the following form.

Theorem 4.6.3 ([H2, Theorem 5.3 and Proposition 15.2.1]). Let (Xg, Ao) and
(X1, A1) be polarized K3 surfaces, and

p: H(X1,Z(1)) — H*(Xo,Z(1))

a Hodge isometry mapping c¢1(\1) to ¢1(Xo). Then there exists a unique isomor-
phism f: (Xo, Ao) — (X1, A1) inducing .

Combining this with Theorem 4.6.2 yields the following theorem, which states
that K354 is an open substack of an orthogonal Shimura stack.

Theorem 4.6.4. The period map K334,c — Shi[SO, Q|c defined by the tuple
(R2 fC7* Z(l)a bana )\an)

descends to a morphism K324 — Sh[SO, Q] defined over Q. This morphism is an
open immersion, and it pulls the K-torsor Sh(SO, ) on Shx[SO, Qs back to the
K-torsor

Isom((AO ©Z, bo, Ao, det Ag), (R? £, Z(1), bes, Aet, D))

on K32d7ét.

Remark 4.6.5. The only other known examples of complex hyperkahler varieties
with even second Betti number are O’Grady’s examples, see Example 3.1.9. Let
OGg and OGyg be O’Grady’s examples of dimension 6 and 10, respectively.

By [MW, Theorem 5.2], the kernel of Aut(OGg) — O(H?*(OGg,Z(1))) is iso-
morphic to (Z /2Z)®%. Tt follows that the period map is not faithful. Since open
immersions of stacks are representable, it follows that Theorem 4.6.4 does not
extend to the moduli space of polarized hyperkahler varieties deformation equiv-
alent to OGg. However, the period map is full on C-points in this case by [MR,
Theorem 5.4].

For OGjo the map Aut(OGo) — O(H*(0G,Z(1))) is injective, by [MW,
Theorem 3.1], so the period map in Theorem 4.6.2 is faithful. However, by [M5,
Theorem 5.3], the analogue of Theorem 4.6.3 with K3 surfaces replaced with vari-
eties deformation equivalent to OGyg does not hold, which shows that the period
map is not full, and hence not an open immersion.

4.7 The K3 deformation type

Throughout this section, n is an integer greater than or equal to 2. In this section
we consider hyperkéhler varieties that are deformation equivalent to the Hilbert
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4. Period maps for hyperkahler varieties

scheme of n points on a K3 surface, known as K3[”]-type hyperkahler varieties.
In the first subsection we extend a theorem of Markman on the monodromy of
such varieties over C to such varieties over non-closed fields of characteristic 0, see
Theorem 4.7.12. In the second subsection, we use this to give an open immersion
from a connected component of the moduli stack of polarized oriented K3[”]—type
hyperkéahler varieties to an orthogonal Shimura stack.

4.7.1 K3M-type hyperkihler varieties and their monodromy

Definition 4.7.1. A hyperkahler variety X over C is said to be of K3 type if
there exists a proper smooth morphism X — T of complex analytic spaces, with
T connected, such that one of the fibers of f is isomorphic to X, and another is
isomorphic to S for some projective K3 surface S over C.

By [H2, Theorem 7.1.1], any two complex K3 surfaces are deformation equiva-
lent in a complex analytic sense. The following lemma is an algebraic analogue of
this result for projective complex K3 surfaces. The lemma is well known, but it is
difficult to find an argument in the literature, so we sketch a proof.

Lemma 4.7.2. Let S7 and Sy be two projective complex K3 surfaces. Then there
exists a smooth proper morphism of complex schemes f: & — T whose fibers are
K3 surfaces, with T' connected, such that one fiber of f is isomorphic to S, and
another is isomorphic to Ss.

Proof sketch. Pick primitive polarizations on S; and Sy of degrees 2d and 2e,
respectively.

Let N C Aks be a signature (1,1) lattice with primitive elements A and p of
length 2d and 2e, respectively. Moreover, assume that the orthogonal complements
of X and p in N do not contain any 6 with §2 = —2. Now consider the period domain

Q:={[z] € Qpy, | 2N =0}.

It parametrizes K3-type Hodge structures on Akjs for which all of IV is of type
(0,0). Let Q° be the open subset

Q U ws

d€AKs
§2=—2,6N=0

where W5 denotes the subset of 2 orthogonal to 6. Then € is non-empty, because
it is the complement of countably many hyperplanes. The surjectivity of the period
map [H2, Theorem 6.3.1] implies that there exists a complex K3 surface S with
N C Pic(S) such that if § € Pic(S) with 62 = —2, then §A # 0 and Ju # 0.

Let C be the subset of {z € Pic(S) @R | 22 > 0} containing the ample cone of
S. By [H2, Corollary 8.1.6], the ample cone of S is a connected component of

Y =¢C U H;
§€Pic(S)
§5%=0
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where Hs C Pic(S) ® R denotes the orthogonal complement in Pic(S) ® R of 4.
By construction, A and u are elements of Y. By [H2, Proposition 8.2.6] there is a
subgroup of O(Pic(S)) that acts transitively on the set of connected components
of Y. It follows that there exist ¢,% € O(Pic(S)) such that ¢(\) and ¥(u) are
ample. It follows that S has primitive polarizations of degree 2d and 2e.

Let K324, c and K39, ¢ be the moduli stacks of primitively polarized com-
plex K3 surfaces of degree 2d and 2e, respectively. These are irreducible Deligne-
Mumford stacks of finite type over C. By [DM2, Proposition 4.14], there ex-
ist connected schemes 77 and 75 and surjective morphisms 77 — K334 c and
15 — K3zc,c.

The polarizations on S of degree 2d and 2e give rise to C-points 7 and x5 of
Ty and Ts. Let t1 and ty be C-points of T} and T5 lifting x1 and xo, respectively.
Gluing 77 and T at the points ¢; and t5 we obtain a scheme T. By pulling back
the universal K3 surfaces on K324, c and K39, ¢ to 77 and T5, and gluing them
along the fibers over the points f;(t) and f2(t), we obtain the desired morphism
& — T deforming S; to Ss. O

The following lemma shows that in the definition of K3["]—type hyperkéahler
varieties, one can replace the complex analytic spaces by algebraic spaces over C.

Lemma 4.7.3. Let X be a hyperkahler variety over C of K3 type, and S a
projective complex K3 surface. Then there exists a smooth proper morphism of
complex algebraic spaces f: X — T whose fibers are hyperkahler varieties, with T'
conn[e?ted, such that one fiber of f is isomorphic to X, and another is isomorphic
to S,

Proof. In [MP3, Corollary 1.2], Mongardi and Pacienza show that varieties bira-
tional to the Hilbert scheme of points on a projective complex K3 surface are dense
in the moduli space of polarized complex hyperkéhler varieties of K3l type. It fol-
lows that there exists a projective complex K3 surface S’, a complex hyperkahler
variety X’ birational to (S")[*, and a smooth proper morphism of complex al-
gebraic spaces X1 — Ti, one of whose fibers is isomorphic to X, and another is
isomorphic to X’.

Since X’ and (S")[") are birational complex hyperkiihler varieties, [R2, Propo-
sition 2.1] says that there exists a smooth proper morphism of complex algebraic
spaces Xo — Ty whose fibers are hyperkahler varieties, one of whose fibers is
isomorphic to X’, and another isomorphic to (S)!",

By Lemma 4.7.2, there exists a smooth proper morphism of complex algebraic
spaces & — T3 whose fibers are K3 surfaces, one of which is S/, and another is
S. It follows that there is a smooth proper morphism of complex algebraic spaces
X3 — T3 whose fibers are the Hilbert schemes of n points on the fibers of & — T3.

By gluing X1 — T, X5 — T3, and X3 — T3 together along appropriate points,
we obtain a smooth proper morphism of complex algebraic spaces whose fibers are
hyperkahler varieties, one of which is isomorphic to X, and another to S, O

Lemma 4.7.4. Let X be a complex hyperkihler variety of K3 type, and let
o € Aut(C). Then the pullback o* X of X along o is a hyperkahler variety of K3
type. Moreover, the BBF forms on H*(X,Z(1)) and H?(c* X, Z(1)) are isometric.
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Proof. Let S, T,and f: X — T be as in Lemma 4.7.3. Then 6*f: 0* X — ¢*T is a
smooth proper morphism of algebraic spaces such that one of the fibers is isomor-
phic to 0* X, and another is isomorphic to o*(S™). Since o*(S™) = (¢*5)"], and
since 0*S is a K3 surface, it follows that ¢* X is of K3l type. In particular, X and
0*X have isometric BBF forms on singular cohomology by Proposition 4.1.8. [

Definition 4.7.5. A hyperkdhler variety X over a field k of characteristic 0 is
said to be of K3 type if X descends to a hyperkahler variety X over a subfield
K of C such that X¢ is of K3 type.

Remark 4.7.6. Lemma 4.7.4 shows that when k = C, Definition 4.7.5 is equiva-
lent to Definition 4.7.1.

Lemma 4.7.7. Let X be a hyperkahler variety of K3 type over an algebraically
closed field k of characteristic 0, and S a K3 surface over k. Then there exists a
smooth proper morphism of algebraic spaces f: X — T over k whose fibers are
hyperkahler varieties, with T connected, such that one fiber of f is isomorphic to
X, and another is isomorphic to S,

Proof. This follows from Lemma 4.7.3 by a spreading out argument. O

Lemma 4.7.8. Let S be a connected finite type Q-scheme, and X/S a smooth
proper morphism of algebraic spaces whose fibers are hyperkahler varieties. If there
exists a C-point sg of S such that X, is of K3 type, then every fiber of X/S is
of K3 type.

Proof. Let s be a C-point of S. We will show that the fiber X, is of K3l type.
By the connectedness of S, we can find a ¢ € Aut(C) such that osg is in the same
component of S as s. By Lemma 4.7.4, X,5, = 0* X, is of K3 type, so it
follows that X, is of K3" type.

Now let k be a field of characteristic 0, and s € S(k). Since S is of finite type,
we can find a finitely generated subfield &’ C k and a point s’ € S(k’) such that s
factors through s’. Next, we choose an embedding k' C C. By the above, Xy ¢ is
of K3I" type, so by definition X, is of K3 type. O

Let S be a Q-scheme, and f: X — S be a smooth proper morphism of al-
gebraic spaces whose fibers are hyperkéhler varieties of K3l type. Consider the
discriminant

Ax/9) = A(RE £ 2(1)

which is a local system of finite abelian groups on Sg;, with fibers isomorphic to
Z /(2n—2) Z, see Example 4.1.5. Now let F(X/S) be the local system of finite sets
on Sy defined as the quotient of A(X/S) by the action of {£1}, with —1 acting

as — idA(X/S)-
Theorem 4.7.9 (Markman). Let S be a scheme over an algebraically closed field
of characteristic 0, and let X/S be a smooth proper morphism of algebraic spaces

whose fibers are hyperkéhler varieties of K3™ type. Then the local system F(X/S)
on Sg; Is constant.
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Proof. For S of finite type over C, this follows from [M1, Lemma 9.2] and [SGA1,
Corollaire XII.5.2]. A spreading out argument shows that the result holds for any
scheme S over C. We obtain the result for general algebraically closed ground
fields of characteristic 0 via the Lefschetz principle. O

Lemma 4.7.10. Let S be a K3 surface over a field k of characteristic 0. Then the
local system F(S™ /k) on kg is constant.

Proof. We will show that the local system A(S["/k) is constant. A fortiori its
quotient F (S /k) is then also constant.

As in Example 4.1.5, there is a natural morphism S — S and the inverse
image of the singular locus defines a divisor F on S"). Then A(S!"™/k) is generated
by § € Hzt(Sl[?”},Z(l)) satisfying 20 = FE. Since F is Gali-invariant, and since
Hgt(Sl[?n], Z(1)) is a free Z-module, it follows that § is Galg-invariant. This shows
that Galy, acts trivially on A(SM /k). O

Lemma 4.7.11. Let k be a perfect field, let k be an algebraic closure of k, let M
be a stack on (Sch /k)¢, and let F be a local system of finite sets on the big étale
site Mg, of M. If

1. for any algebraically closed extension 2 of k and y,z € M(§2) there exists
a connected algebraic space T' over {) and a morphism T' — My which has
y and z in its image,

2. the restriction of F to My is constant, and
3. there exists a point x € M(k) such that +*F is constant,
then F is constant.

Proof. Let LS(Mjy) be the category of local systems of finite sets on My, ¢ For

an algebraically closed extension  of k, a geometric point zq € M(2) induces a
functor xj from LS(My7) to the category fSet of finite sets, via pullback. For two
geometric points xg and z; of Mz, a path from x¢ to x; in My, consists of an
isomorphism of functors z§ — z7. Assumption 1 implies that we can find a path
between any two geometric points of M.

Let T be the k-point of My corresponding to the k-point x of M in assump-
tion 3. We define Fy to be the finite set T5F. Let Fy € LS(M) be the constant
sheaf of finite sets on My associated with Fj. We will show that F is isomorphic
to ]:0.

By assumption 2, the sheaf F | M. Is constant, so there exists an isomorphism
B: F|m, — Folm, which satisfies T°f = idg- 7.

We claim that the condition that "8 = idz«x determines S uniquely. To see
this, first note that the big étale site of Mj- has enough points by [SP, Tag 06W4],
so B is determined by the morphisms y*35: y*F — y*F(, where y ranges over all
geometric points of My. For a geometric point y of My, let v be a path from T
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4. Period maps for hyperkahler varieties

to y. Then by the functoriality of v there is a commutative diagram of bijections

6

T F —— T Fy

v [

Y F ———y"Fo
Y6
This shows that y*3 is determined by Z*3, so that the condition %6 = idz-r
uniquely determines f.

Let o € Galg. Then o acts trivially on T*F because F is constant, and it acts
trivially on T*F by assumption 3. It follows that of: F|sm. — Fo|m, satisfies
T*(0B) = id, so that o8 = §. It follows that 5 induces an isomorphism F — Fo,
showing that F is constant on M. O

Theorem 4.7.12. Let S be a scheme over Q, and let X/S be a smooth proper
morphism of algebraic spaces whose fibers are hyperkahler varieties of K3 type.
Then the local system F(X/S) on Se is constant.

Proof. Let K3 be the groupoid fibration on Sch / Q whose objects are proper
smooth morphisms of algebraic spaces f: Y — S, where S is a Q-scheme, such
that all fibers of f are hyperkihler varieties of K3l type. Then K3 is a stack
for the étale topology. The assignment

Y/S — F(Y/S)(S)

defines a local system JF of finite sets on the big étale site K3([£] of K3, The
theorem is equivalent to F being constant. Lemma 4.7.7, Theorem 4.7.9, and
Lemma 4.7.10 show that K3 and F satisfy the hypotheses of Lemma 4.7.11, so
F is constant. O

Remark 4.7.13. The results proved in this section have analogues for generalized
Kummer varieties (see Example 3.1.9).

The main results used in proving that being of K3 type is an algebraic condi-
tion (see Lemma 4.7.3 and Lemma 4.7.4) are [MP3, Corollary 1.2] and [R2, Proposi-
tion 2.1]. These results hold for generalized Kummer varieties, and the arguments
given here for KS[”]—type varieties carry over almost verbatim to such varieties
(with the complex K3 surface and its Hilbert scheme of points in Lemma 4.7.3
replaced by a complex abelian surface and the associated generalized Kummer
variety).

Let S be a Q-scheme. For a smooth proper morphism X — S whose fibers are
generalized Kummer varieties, we denote by F(X/S) the quotient by {£1} of the
sheaf of finite abelian groups

AR, f. Z(1))

on Sg;. It follows from [M5, Theorem 4.3] that if S is a scheme over an algebraically
closed field of characteristic 0, and if X/S admits an orientation, then the local
system of finite sets F(X/S) is constant, giving an analogue of Theorem 4.7.9.
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Suppose X is the generalized Kummer variety associated with an abelian sur-
face over a field k of characteristic 0. Then the description given in [B2] of the BBF
lattice HZ, (X, 2(1)) shows that its discriminant is generated by an algebraic cycle
on X, which allows one to prove an analogue of Lemma 4.7.10. Ultimately this
leads to an analogue of Theorem 4.7.12 for oriented generalized Kummer varieties.

4.7.2 Period maps for K3[”]—type hyperkahler varieties

We will now apply the results of the preceding subsection to obtain a period map
over Q for oriented polarized hyperkahler varieties of K3["]—type which is an open
immersion.

Let M be a connected component of HK,, such that one of the points of
Mis a K3["]—type hyperkéhler variety. We use the notation from Section 4.5. In
particular, we let f: X — M be the universal hyperkahler variety, A the universal
polarization, and wyy the universal orientation on X. By Lemma 4.7.8, every fiber
of X /M is of K3 type.

The constructions in Section 4.5 yield a Z-VHS R? fc . Z(1) on Mg, endowed
with data ban, Aan, and wap, arising from the BBF form, the polarization, and
the orientation on X, respectively. They also yield a local Z-system RZ, f. Z(1)
on Mg, endowed with data bgy, Mg, and weg. Moreover, we pick a C-point zg =
(X0, Az Wi4],z0 ), Which gives rise to Ag := H2(X0, Z(1)), endowed with the BBF
form by, the polarization Ag := Aan ., and the orientation wp := wan z,-

Theorem 4.7.12 gives rise to extra structure on R? fc . Z(1) and R2, f. 2(1), as
follows. As in the proof of Theorem 4.7.12, let K3[™ be the stack over Qg whose
objects are smooth proper morphisms of algebraic spaces f: X — S, where S is
a Q-scheme, such that all fibers of f afe hyperkéhler varieties of K3l type. The
assignment

Y/S — F(Y/S)(S)

defines a local system F of finite sets on the big étale site of K3 Let Fy be the
constant sheaf of finite sets associated with F'(X(). Then Theorem 4.7.12 shows
that we can pick an isomorphism of sheaves

such that f is the identity over the point X, of K3, Now X /M yields a mor-
phism M — K3["], which allows us to pull the isomorphism 3 back to give an
isomorphism

a: Fyp — F(X /M)

of sheaves of finite sets on Mg;. Note that @, is the identity.

Since F(X / M) is a constant local system of finite sets, there is an isomorphism
of sheaves @: Fy — F(X /M) such that @y, is the identity.

The proof of the following lemma is similar to that of Lemma 4.5.1, and hence
omitted.
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4. Period maps for hyperkahler varieties

Lemma 4.7.14. Let x = (X, \,wy)) be a C-point of M. Then there exists an
isometry 1¥: Ag ® 7 — HQ(X7 Z(1) ® Z mapping Ao and wg t0 Aan z and wan g,
and such that 1 induces @,.

Let (SO, ) be the orthogonal Shimura datum associated with (Ag, b, Ao, wo)
as in Section 4.5. Moreover, let Kz be the profinite group

{ge Kol Alg) =+idany)},

viewed as a compact open subgroup of SO(A) by mapping g € Kr to g|a, AL
Now Lemma 4.7.14, Lemma 4.4.5, and Lemma 4.4.2 show that the tuple

(R2 fC,* Z(l), bana )\aru Wany Oé)

gives rise to a morphism of complex Deligne-Mumford stacks Mc — Shg,.[SO, Q]c.
Note that the isomorphism sheaf

Isom ((AO oY 27 bO7 )‘07 wo, idF(Ao))’ (Rgt f* 2(1)7 bét7 Aétv wét))

is a Kp-torsor on Mg;. Moreover, Sh(SO,)) is a Kp-torsor on Sh[SO, Q]¢. The
following theorem states that the period map Mg — Shy,.[SO, Q]c descends to
Q. Its proof is similar to that of Theorem 4.5.2.

Theorem 4.7.15. The period map Mc — Shy.[SO, Q]c defined by the tuple
(R? fe,x Z(1), ban, Aans Wan, @)

descends to a morphism M — Shi,[SO, Q] defined over Q. This morphism is
étale, and pulls the K p-torsor Sh(SO, Q) on Shy,[SO, Qe back to the K p-torsor.

tsom (Ao @ Z, bo, Ao, wo, idr(ag)s (R f2 Z(1), bers At wer))

on M.

We wish to show that this period map is an open immersion. For this, we
need the following two lemmas. The first implies that the period map is faithful.
The second is a consequence of characterization of parallel transport operators for
K3[”]—type hyperkahler varieties, due to Markman. In conjunction with Verbitsky’s
global Torelli theorem (Corollary 4.1.14), this will allow us to show that the period
map is full.

Lemma 4.7.16 ([B1, Proposition 10] and [HT, Theorem 2.1]). Let X be a com-
plex hyperkéhler variety of K3 type. Then the natural homomorphism Aut(X) —
O(H?(X, Z(1))) is injective.

Lemma 4.7.17. Let x = (X, \,wyy)) and 2’ = (X', )\’,wf4]) be C-points of M, and
let p: H*(X',Z(1)) — H*(X,Z(1)) be a Hodge isometry mapping Aan.o', Wan.a'»

and @y t0 Aan,z, Wan,a', and &y. Then ¢ is induced by an isomorphism x — z’ in
M.
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4.7. The K3[" deformation type

Proof. By the global Torelli theorem for polarized hyperkéhler manifolds, Corol-
lary 4.1.14, it suffices to show that ¢ is a parallel transport operator in the sense
of Definition 4.1.10.

By applying Lemma 4.7.3 to both X and X', we can find a smooth proper
morphism of algebraic spaces f: ) — T whose fibers are hyperkahler varieties,
with T' connected, such that one fiber of f (over ¢t € T, say) is isomorphic to X,
and another (over ¢’ € T') is isomorphic to X’.

Pick a path « in T®" from t to ¢’. Then  induces a parallel transport operator
¢: H2(X,Z(1)) — H%(X’,Z(1)). Since f defines a morphism 7' — K3 it follows
that 13y = By, where 3 is the isomorphism of sheaves on KSZ] given in (4.11).

Now the composition @i is an element of O(H?*(X,Z(1))). Since @, = Bx
by definition of @, it follows that ¢u(a@,) = @,, so that ¢y acts as £id on
A(H?*(X,Z(1))). By [M1, Lemma 9.2], this implies that 1) is a parallel trans-
port operator. Since v is a parallel transport operator, and since the composition
of parallel transport operators is a parallel transport operator, it follows that ¢ is
a parallel transport operator. O

The following theorem is an immediate consequence of Lemma 4.7.16 and
Lemma 4.7.17.

Theorem 4.7.18. The period map M — Shi,.[SO, Q] from Theorem 4.7.18 is an
open immersion.

Remark 4.7.19. By Remark 4.7.13, we can prove a statement similar to Theo-
rem 4.7.18 for moduli spaces of oriented polarized hyperkahler varieties deforma-
tion equivalent to a generalized Kummer variety. The resulting period map is full
by [M5, Theorem 4.3] and Corollary 4.1.14. However it is not an open immersion,
since it is not faithful by [BNS, Corollary 3.3].
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The spinor norm of monodromy operators

In this chapter, we will compute the spinor norm of monodromy operators on K3
surfaces.

In the first section, we recall the definition and basic facts about the spinor
norm. In the second section, we state the main result, and compare it to known
results. The proof of the result makes use of a theorem of Deligne on the connected
components of Shimura varieties, which is stated in the third section. The proof of
the main result is given in the fourth section. In the final two sections, we apply
the result to sharpen a theorem of Elsenhans and Jahnel on the zeta function of
K3 surfaces over finite fields, and to give a necessary condition for a lattice to be
the Néron-Severi lattice of a K3 surface over a non-closed field.

5.1 The spinor norm

5.1.1 Generalities

In this section we recall the definition of the spinor norm, and list some results
which we will need in later sections. None of the results in this section are original,
and proofs for most of them can be found in [C, Appendix C], [K], and [MM2].
We provide proofs for the results which are harder to find in the literature.

Throughout this section, (V, ¢) will be a quadratic form of over a commutative
ring R. That is, V is a locally free R-module of constant finite rank, and ¢ is a
map V — R such that g(Av) = A%q(v) for all A € R and v € V, and such that the
map bg: V x V — R given by

(v,w) — q(v +w) — q(v) — q(w)

is a bilinear form. The map b, is known as the bilinear form associated with g.
Moreover, in this section, we assume that V' is self-dual in the sense that b,
induces an isomorphism V' — VV. In case 2 is not invertible in R, we additionally
assume that V' has even dimension.
The reason for restricting our attention to quadratic forms satisfying these
conditions is that for such quadratic forms, the group scheme O(V) admits a
natural central extension in the fppf topology, namely

1— pg — Pin(V) — O(V) — 1. (5.1)
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5. The spinor norm of monodromy operators

The group Pin(V) is known as the Pin group of V, and is constructed using the
Clifford algebra of V. See [C, Appendix C.5].

Definition 5.1.1. The connecting homomorphism O(V)(R) — H'(Rgppf, f12) com-
ing from (5.1) is known as the spinor norm, and will be denoted vy .

Remark 5.1.2. We denote by —V the quadratic form (V, —¢). Note that O(V) =
O(=V). In general, v_y does not coincide with vy, see Lemma 5.1.9. Some authors
refer to v_y as the spinor norm, notably [H2].

Remark 5.1.3. In working with the spinor norm, we will frequently make use of
the exact sequence

1 — R*/2 — H*(Rpppt, pta) — Pic(R)[2] — 1

coming from the Kummer sequence. In particular, when Pic(R) is trivial, we will
identify the spinor norm with a map O(V)(R) — R*/2.

Example 5.1.4. In later sections, we will frequently consider self-dual even Z-
lattices A. Such lattices arise as the associated bilinear form of a self-dual quadratic
form over Z. Moreover, these lattices have even rank by [H2, Theorem 14.1.1], so
we have a spinor norm vy : O(A)(Z) — Z7 /2 = {£1}.

The following lemmas collect some basic identities for the spinor norm.

Lemma 5.1.5. Let V and W be quadratic spaces over R. For g € O(V)(R) and
h € O(W)(R), the direct sum g @ h is an orthogonal transformation of V& W,
and

vwew (g @ h) =vv(g)vw(h).

Lemma 5.1.6. Let V' be a quadratic space over R, and R — R’ a ring homomor-
phism. Then the diagram

O(V)(R) ———— O(V)(R)

Hl(prpf7 M2) — Hl(Rgppf’ /”LQ)

commutes.

Similarly to (5.1), the group O(V) also admits a natural central extension
GPin(V) by G, constructed using the Clifford algebra of V', see [C, Appendix C.4].
This group scheme comes with a morphism N: GPin(V) — G,, known as the
Clifford norm, the kernel of which is Pin(V'). The facts we need about GPin(V)
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and Pin(V') are summarized by the following commutative diagram:

11— g —— Pin(V) — O(V) —> 1

Ji

1—G,;, — GPin(V) — O(V) —> 1

The two columns on the left are fppf exact sequences, and the two top rows
are central extensions. The top left square is cartesian.

The group scheme GPin(V) is related to the group scheme GSpin(V') of Sec-
tion 2.3 by the cartesian square

GSpin(V) —— GPin(V)

J J

SO(V) —— O(V)

The following lemma relates the spinor norm to the Clifford norm. This is
useful because the Clifford norm is a morphism of group schemes, whereas the
spinor norm is not.

Lemma 5.1.7. Let V be a quadratic space over R. Then the diagram

GPin(V)(R) — ¥ R

O(V)(R % H' (Reppt, p2)

)

commutes, where the map R* — Hl(prpf, l2) Is the connecting homomorphism
coming from the Kummer sequence.

Proof. The short exact sequence

1 — ps — G x Pin(V) — GPin(V) — 1,
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5. The spinor norm of monodromy operators

gives rise to a connecting homomorphism §: GPin(V)(R) — H'(Rpppt, pt2). The
commutative diagram

1—— pg — G, xPin(V) —— GPin(V) —— 1

| J

1 12 Pin(V) ——— O(V) —— 1

shows that ¢ coincides with the composition GPin(V)(R) — O(V)(R) % H'(Reppt, p12)-
Similarly, the commutative diagram

1—— pg — G, xPin(V) —— GPin(V) —— 1

I |

1 G, G, 1
k2 5
shows that ¢ coincides with the composition GPin(V)(R) M rx o H' (Ripps, i2)-
From this we conclude the lemma. O

Suppose v € V' with ¢(v) € R*. Then

defines an element 7, € O(V)(R), called the reflection through v. The following
lemma computes the spinor norm on reflections.

Lemma 5.1.8. Let v € V be such that q(v) € R*. Then v(r,) is the image of
q(v) under the map R*/2 — H'(Rgypt, p12) coming from the Kummer sequence.

5.1.2 Quadratic forms over fields of characteristic # 2

In this subsection, we take R to be a field k of characteristic # 2.

The Cartan-Dieudonné theorem says that O(V)(k) is generated by reflections,
so Lemma 5.1.8 allows us to compute the spinor norm of any orthogonal transfor-
mation. We can also use this to see how vy relates to v_y .

Lemma 5.1.9. Let V' be a quadratic form over a field k of characteristic # 2.
Then for all g € O(V)(k),

vy (g) = det(g)v-v(9)
in k*/2.

Proof. By the Cartan-Dieudonné theorem it suffices to check this on reflections,
which can be done using Lemma 5.1.8 and the fact that the determinant of a
reflection is —1. O
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5.1. The spinor norm

Remark 5.1.10. This result holds for more general base rings. For instance,
suppose A is an even self-dual lattice. Then the injectivity of Z* /2 — R* /2 and
Lemma 5.1.9 applied to A ® R show that vy = det -v_y.

Over fields of characteristic # 2 there is another convenient way to compute
spinor norms, given by the Zassenhaus formula.

Lemma 5.1.11 (Zassenhaus formula, [C, Theorem C.5.7]). Let V' be a quadratic
space over a field k of characteristic # 2. For g € O(V)(k), let V; C V' be the maxi-
mal subspace on which 1+ g is nilpotent, and let V; be its orthogonal complement.

Then
in k*/2,
|41

where disc(Vp) is defined to be the determinant of the Gram matrix of Vi with
respect to any basis of V.

v(g) = disc(Vp) det (1;_9

By applying the Zassenhaus formula to —idy, we immediately obtain the fol-
lowing identity.

Lemma 5.1.12. IfV is a quadratic space over a field k of characteristic # 2, then
v(—idy) = disc(V)
holds in k*/2.

The Zassenhaus formula also has the following consequence, which we will use
in Section 5.5.

Lemma 5.1.13. Let k be a field of characteristic # 2, let V' be a quadratic form
over k, and g € O(V) (k). If g does not have —1 as an eigenvalue, then det(g) is a
square in k*.

Proof. Lemma 5.1.11, applied to both V and —V, says that

1+g

vy (g) = det (2> =v_v(g)

in £*/2. Combining this with Lemma 5.1.9, which states that v_y (g) = det(g)vv (g),
yields the result. O

5.1.3 The image of the spinor norm over arithmetically interesting rings

In this subsection we collect some results on the image of the spinor norm.
The first says that the spinor norm is surjective on adelic points and Q-points
for indefinite quadratic spaces of rank > 3 over Q.

Lemma 5.1.14. Let V' be an indefinite quadratic space over Q of rank > 3.
The Clifford norms Na: GSpin(V)(A) — A* and Nq: GSpin(V)(Q) — Q™ are
surjective. The spinor normsva : SO(V)(A) — A*/2 andvg: SO(V)(Q) — Q*/2

are surjective.
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5. The spinor norm of monodromy operators

Proof. We will use Spin, GSpin, and SO to denote Spin(V'), GSpin(V'), and SO(V),
respectively.

If R is a Q-algebra with Pic(R) = 1, then the map GSpin(R) — SO(R) is
surjective. Therefore we can conclude from Lemma 5.1.7 that if Ny is surjective,
then v is also surjective. As such, since A and Q have trivial Picard groups (see
Lemma 2.3.26), we only have to show the surjectivity of Na and Nq.

By [C, Lemma C.4.1, Proposition C.4.10] Spin is simply connected, from which
it follows that Hl(Qp,ém Spin) = 1 for every prime p ([PR, Theorem 6.4]), and
hence that Nq_ is surjective for all p. Let A C V be a full Z-lattice. This yields
integral models GSpin(A) and Spin(A) of the group schemes GSpin and Spin.
Given the surjectivity of Nq, for all p, to show that Na, is surjective, it suffices
to show that Nz, : GSpin(A)(Z,) — Z, is surjective for all but finitely many p.

Let p be an odd prime number coprime to the discriminant of A, so that
Spin(A ® Z,,) is a smooth connected group scheme, which follows from [C, Theo-
rem C.1.5], the smoothness of uo over Z,, and the short exact sequence

1— po — Spin(A®Z,) — SOA®Z,) — 1.
For A\ € Z

» > we wish to find an element of GSpin(A)(Z,) lifting A. That is, we
want to show the existence of the diagonal dashed arrow in the diagram

N R
N

~
~

~
~
~
~
~

GSpin(A® Z,) — 5 G,

~
~

Spec(Fp) — S\pec(Zp)

Since the kernel Spin(A ® F,) of N over F, is connected, Lang’s theorem [PR,
Theorem 6.1] shows the existence of the dashed arrow on the left. The smoothness
of the kernel Spin(A®Z,) of N implies the smoothness of N itself [EvdGM, Corol-
lary 4.33]. This allows us to apply Hensel’s lemma [EGAIV, Théoréme 18.5.17] to
show the existence of the diagonal dashed arrow.

Let e;,es € Vr be orthogonal elements with e% = —1 and e% = 1, which
exist because V is indefinite. Then for A € R we have Ngr(Aejea) = —A? and
Nr()\) = A2, proving the surjectivity of Nr, which, combined with the surjectivity
of Na,, implies the surjectivity of Na.

To see that Nq is surjective, it suffices to show the triviality of the connecting
homomorphism §: Q* — Hl(Qét7 Spin) derived from the short exact sequence

1 — Spin — GSpin — G,, — 1.

From the surjectivity of Ng it follows that R* — H'(Re, Spin) is trivial, and in
particular that the composition Q* — H*(Qy,, Spin) — H' (R, Spin) is trivial.
From the Hasse principle for simply connected groups ([PR, Theorem 6.6]), which
says that H'(Qyg,, Spin) — H* (R, Spin) is a bijection, we obtain that ¢ is trivial.

O
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5.1. The spinor norm

Let ¢ be a prime number, and A a Z,-lattice. When ¢ = 2 we require A to be
even, to ensure that it has an associated quadratic form. Note that A is automati-
cally even when ¢ is odd. We denote by A(A) the discriminant form of A, i.e., the
group AY /A endowed with the natural quadratic form AY /A — Q/Z induced by
the extension of the bilinear form on A to AV. Note that O(A) acts on A(A). We
denote by 6(/\) the group

{9 € O(A) | glan) =idaa)} -

On this group, we can define a Z; /2-valued spinor norm vy, as the following
lemma shows.

Lemma 5.1.15. Let A be an even Z,-lattice. There is a unique homomorphism
va: O(A) — Z /2 for which the square

O(A) SELC N Z) /2

J J

(A®Qe) Q/ /2

commutes.

Proof. The uniqueness of v, follows from the injectivity of Z; /2 — Q /2.

Note that even though A need not be self-dual, A ® Q, is self-dual, so we have
a spinor norm vagq,: O(A ® Q,) — Q, /2. We need to prove that the image of
the composition B

O(A) — O0(A® Q) — Q/ /2
is contained in Z; /2.

Let A’ be a self-dual even Z,-lattice into which A embeds. Then Definition 5.1.1
gives a spinor norm v: O(A’) — Z; /2. Moreover, the map O(A®Q,) — O(A'®Q,)
given by g — g @ idy1 restricts to an injective map 6(/\) — O(A'). Now the
diagram

O(A) ——— O(A)

l v

OA® Q) ——> O\ ®Qy) Z;)2
14
12
Q/ /2

which commutes by Lemma 5.1.5 and Lemma 5.1.6, shows that v, lands in Z; /2.
O
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5. The spinor norm of monodromy operators

Remark 5.1.16. When confusion is unlikely to arise, we will denote the map vy
by v.

We are interested in the image of (det,v): O(A) — {£1} x Z, /2. We now
define some invariants of A in terms of which completely determine the image of
(det, v).

For a finite abelian group A, we denote by length(A) the minimal number of
elements needed to generate A. Note that rk A > length(A(A)).

Let ¢ be an odd prime number, and A an even Z,-lattice. Then by [N1, The-
orem 1.9.1], there exists a unique (up to isomorphism) Z,-lattice A; of rank
length(A(A)) whose discriminant form is isomorphic to A(A). It is clear that
disc(A1) € Z; /2 only depends on the discriminant form A(A).

Definition 5.1.17. For A and A; as above, we denote the invariant disc(A;) €
Z,) /2 of A(A) with disc(A(A)).

Theorem 5.1.18 ([MM2, Theorem VII.12.1]). Let ¢ be an odd prime number,
and A an even Zy-lattice. Then

{(1,1)} if Tk A = length(A(A))
(det, ) O(A) = { {(1,1), (~1,2disc(A(A)))} if rk A = length(A(A)) + 1
{£1} x Z) /2 otherwise,

as a subgroup of {£1} x Z, /2.

Remark 5.1.19. For ¢ = 2, the image of (det,v) is also completely determined
by A(A) and rk A, but the result is much more complicated than for odd ¢. The
interested reader is referred to [MM2, Theorems VII.12.2, VII.12.3, VII.12.4] for
the full statement.

For an even self-dual Z,-lattice A’ and a sublattice A of A’, we denote by
O(A’, A) the group

O, A) = {g € O(A') | gla = ida}. (5.2)

Consider the product det -v: O(A’) — Z,° /2 of the spinor normv: O(A') — Z; /2
with the composition

O(N) 2 1i5(Zg) — 2 /2.
In Section 5.6, it will be useful to know when the image of O(A’, A) under det -v
is trivial. The following corollary of Theorem 5.1.18 gives a necessary and suffi-

cient criterion in terms of the ranks of A’ and A, the invariant disc(A(A)), and
length(A(A)).

Corollary 5.1.20. Let £ be an odd prime number, A’ a self-dual even Z,-lattice,
and A a primitive sublattice of A’. Then det -v(O(A’,A)) =1 if and only if

rk A + length(A(A)) =k A’ — 1
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and the product
(—1)™ 22 disc(A(A))

is equal to 1 in Z; /2, or if
rk A + length(A(A)) = rk A",

Proof. Let A+ be the orthogonal complement of A in A’. Since A’ is self-dual,
there is an isomorphism O(A’,A) — O(A') mapping g to its restriction to A*.
Similarly to the proof of Lemma 5.1.15, there is a commutative diagram

O(N,A) —=— O(A*)

det -

77 /2

)

so that det-v(O(A,A)) = det-v(O(AL)). It now follows from Theorem 5.1.18
applied to A+ that det -v(O(A, A)) is trivial if and only if

rk At = length(A(A1)) +1

and —2disc(A(A1)) is a square in Z, or if tk A+ = length(A(AL)).

We will now restate these conditions in terms of invariants of A. Let I" be the
unique even Zg-lattice of rank equal to length(A(A)) whose discriminant form is
isomorphic to A(A) (see [N1, Theorem 1.9.1]). Then disc(A(A)) is equal to disc(T").
Moreover, since A+ is the orthogonal complement of A in the self-dual lattice A/,
we have A(A+) = —A(A). It follows that

disc(A(AY)) = dise(=T) = (=1)™F disc(I') = (—1)'mehAM) gisc(A(A)).
Moreover, length(A(A+)) = length(A(A)), and rk A+ = rk A’ — 1k A. This finishes
the proof of the corollary. O

5.2 Statement of the result

In this section we state the main result of this chapter, which computes the spinor
norm of monodromy operators on K3 surfaces. We also give some corollaries of
the main theorem which are proved in later sections.

Before stating the main theorem, we introduce some notation.

Recall that the Kronecker-Weber theorem identifies Galab with ZX. Let ¢ be

a prime number. The surjection 7" - Z) /2 gives rise to a number field K.
For ¢ = 2, the ring of integers Ok is Z[(g], where (g is a primitive 8th root

V" -1
of unity, and for odd ¢ the ring of integers is Z{%}, where ¢* = (1) 2 L.

Since K is unramified away from ¢, the ring Ok [7] is étale over Z[{]. Moreover,
the action of Gal(K/Q) = Z, /2 on K extends to an action on Ok [7], making

79



5. The spinor norm of monodromy operators

Ty := Spec(Ok|[3]) a Z; /2-torsor on Z[4]¢. In particular, Ty has degree 2 over
Z[}] when £ is odd, and degree 4 when ¢ = 2.

For a Z[%]—scheme S, we denote by Ty s the (Z,72)-torsor on Sy defined by the
cartesian diagram

Tg’s _— Tg

S— Spec(Z [%] )

Given a geometric point 5 of S, we denote the homomorphism 7¢*(9,3) — Z,/2
associated with Ty s by x¢.

The following is the main result of this chapter. It is proved in Section 5.4.

Theorem 5.2.1. Let ¢ be a prime number, d € Z~g, S a scheme over Z [ﬁ], and

5 a geometric point of S. For a projective K3 surface f: X — S of degree 2d, the
following diagram commutes:

76t(S,3) O(Hgt (X5,Z(1)))
x ldet v
Z,/2

where v denotes the spinor norm.

Using the triviality of x, when S = Spec(F'), with F' an algebraically closed
field, we immediately obtain the following corollary.

Corollary 5.2.2. Let S be a scheme over an algebraically closed field F of
characteristic p, let ¢ be a prime number distinct from p, s € S(F), and X
a projective K3 surface over S, of degree coprime to p. Then the composition

78t (S, s) — O(HZ,(X,, Zo(1))) 2% 7X /2 is trivial.
As a corollary, we obtain [H2, Proposition 7.5.5], which states the same result

for complex K3 surfaces. Note that if X is a complex K3 surface, [H2] works with
V_mz2(x,z(1)) instead of vyz2(x z(1))- As is shown in remark 5.1.10,

V_ H2(X,Z(1)) = det 'VH2(X,Z(1))'

Corollary 5.2.3. Let S be a scheme over C, s € S(C), and X a projective K3

surface over S. Then the composition (S, s) — O(H?(X,, Z(1))) det v, Z*/2 is
trivial.

Proof. This follows by applying Corollary 5.2.2 and using the injectivity of Z* /2 —
Z,) )2 for £ = 3(4). O
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5.3. The reciprocity law for Shimura stacks

The result also allows us to compute the spinor norm of the Frobenius operator
acting on the second cohomology of a K3 surface over a finite field. The proof is
contained in Section 5.5. The corollary also gives rise to a restriction on the zeta
function of a K3 surface over a finite field, see Corollary 5.5.3

Corollary 5.2.4. Let F, be a finite field, X a K3 surface over F, of degree
coprime to q, and ¢ a prime number coprime to q. Then

v (Frobq‘Hgt (XquzZ(l))> = q - det (Flrobq|Hgt (XFq7Zz(1)))
inZ; /2.
The theorem also gives rise to a necessary condition for the realizability of
sublattices of the K3 lattice as Néron-Severi groups of K3 surfaces over a given

field, as the following corollary shows. See Theorem 5.6.1 for a slightly stronger
statement.

Corollary 5.2.5. Let k be a field, let ¢ be an odd prime number, and let X/k be
a K3 surface of degree coprime to the characteristic of k. If

rk(Pic(X)) + length(A(Pic(X) ® Zy)) = 22

then £* is a square in k.

5.3 The reciprocity law for Shimura stacks

This section contains some Shimura-theoretic preliminaries necessary for the proof
of Theorem 5.2.1. The first subsection is about Deligne’s reciprocity law for the
connected components of a Shimura variety. In the second subsection we apply
Deligne’s reciporicity law to orthogonal Shimura stacks.

5.3.1 The reciprocity law for Shimura stacks

In this subsection we recall a result of Deligne on the structure of the set of
connected components of a Shimura varieties and the Galois action on it, known
as Deligne’s reciprocity law. All of these results can be found in [D4]. We work in
the slightly more general setting of Shimura stacks, but the results carry over to
our setting with minimal modifications. B

If G is a reductive group over a number field E, we denote by G the universal
covering of the derived subgroup of G. We then define 7(G) to be the quotient set

7(G) = G(Ap)/G(E)G(AR).
Lemma 5.3.1 ([D4, Corollaire 2.0.8, (2.4.0.1)]). Let E be a number field, and G

a reductive group over E. Then G(E)G(Ag) C G(Ag) is a normal subgroup, and
the quotient w(G) is a locally compact Hausdorff abelian group. This construction
defines a functor

. locally compact Hausdorff
T (reductlve E—groups) —

abelian groups
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5. The spinor norm of monodromy operators

Remark 5.3.2. If E'/E is a finite extension, and Gg a reductive E-group, Deligne
constructs a natural homomorphism

Ngp: 7(Gpr) — 7(Gr),

called the norm, see [D4, (2.4.0.1)]. This homomorphism is needed to state Deligne’s
reciprocity law in full generality. In all Shimura data we will deal with outside this
section the reflex field is Q, so all norms we encounter are the identity.

Example 5.3.3. If G = GL3 over Q, then G = SLo, so the determinant yields
an isomorphism 7(G) & Q* \ A*. In the next subsection we will see that when
G = SO(V), where V is a quadratic space over Q of signature (2,n) with n > 1,
then the spinor norm yields an isomorphism 7(SO(V)) = Q* \ A*/2.

Example 5.3.4. If F is a number field, and G = G,, g, then 7(G) = EX\ Aj.
Artin’s reciprocity law is a homomorphism 7(Gy, g) — Gal? inducing an isomor-
phism 7o (G ) — Galfy. We will denote its reciprocal by

artp: (G p) — Galy .

We now restrict our attention to reductive Q-groups G. Let G®4 be the adjoint
group of G. We use G(R) . to denote the inverse image of the identity component
of G*(R) under G(R) — G*(R). By To7m(G) we denote the quotient group

7om(G) = (mom(G)) /mo(G(R)4).
This construction is relevant to us because of the following result.

Lemma 5.3.5 ([D4, Proposition 1.2.7, Résumé 2.1.16]). Let (G, X) be a Shimura
datum with reflex field E, and 7o Sh(G, X) the E-scheme of connected components
of Sh(G, X). Then won(G) is profinite, and the G(Ay)-action on my Sh(G, X) fac-
tors through G(As) — Tom(G), endowing mo Sh(G, X) with the structure of a
Tom(G)-torsor on E. Moreover, my(X) is a G(R)/G(R)-torsor.

Example 5.3.6. Consider the Siegel Shimura datum (G, X) associated with a
symplectic Q-vector space of dimension 2, as in Example 2.1.1. That is, (G, X) =
(GLo, H), where H is the double half plane, which parametrizes Hodge structures
on R? of type (0,1) + (1,0). The reflex field of (G, X) is Q. It is easy to see that
GL2(R)4 is connected, so that Tom(G) = mom(G). The determinant and Artin
reciprocity therefore yield an isomorphism

artq

Tom(G) 2% mo(Q\ AX) 2 Gally . (5.4)

Lemma 5.3.5 gives a Galg)—action on the source, and GalaQb acts on the target by
translation. We will see in Example 5.3.8 that Deligne’s reciprocity law implies
that the isomorphism above is Galg)—equivariant.

For a commutative C-algebra A, the map AQr C — A x A, a ® z — (za,Za)
is an isomorphism of rings. This yields an isomorphism G,,.c x G,,,c — Sc,
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5.3. The reciprocity law for Shimura stacks

which we will use to identify these two group schemes. Let (G, X) be a Shimura
datum. For h € X, we define up: Gy,,c — Gc as z — hc(z,1). The reflex field
E of (G, X) is by definition the unique smallest subfield of C such that the G(C)-
conjugacy class of up is defined over E. Then F is a number field. It can be shown
that g, induces a continuous group homomorphism 7(Gy, g) — 7(Gg), which we
denote with muy, see [D4, §2.4].

We now define a continuous homomorphism

T(G,X) : GalE — ﬁoﬂ'(G% (55)
as the following composition

—1
art 5

woN
Galp — Gal? —Z- 1o7(Gn.12) oEe

mom(pn)
—_

mom(Gg) mom(G) — Tom(G).

We now have two Tom(G)-torsors on E, namely 7y Sh(G, X), and the one defined
by (5.5). The following theorem of Deligne says that these two torsors are isomor-
phic.

Theorem 5.3.7 (Deligne’s reciprocity law, [D4, Théoreme 2.6.3]). Let (G, X) be
a Shimura datum with reflex field E. Then the Tom(G)-torsor mo Sh(G,X) on E
is isomorphic to the one defined by (5.5).

Example 5.3.8. We again consider the Shimura datum (G, X) = (GLg, H), as in
Example 5.3.6. Let h: S — Gr be an element of H. Then the composition det h
corresponds to the Tate Hodge structure Q(—1), so that det up: Gp.c = Gm,c
is the identity. From Deligne’s reciprocity law it now follows that (5.4) is Galg-
equivariant.

We will rephrase 5.3.7 in a way which is more convenient for our purposes. Let
(G, X) be a Shimura datum with reflex field E, and K a profinite group endowed
with a continuous homomorphism K — G(Ay) with finite kernel and open image.
The G(Ag)-action on Sh(G, X) turns Sh(G, X) into a K-torsor on Shi[G, X]st.
For a geometric point 5 of Shi[G, X], and a geometric point § of Sh(G, X) lying
over 3, this K-torsor gives rise to a homomorphism 7$*(Shx[G, X],3) — K.

Lemma 5.3.9. Let § be a geometric point of Sh(G, X), § its image in Shx[G, X],
and p: m$*(Shi[G, X],3) — K the resulting homomorphism. Then the diagram

74 (Shic[G, X],5) —— K

l

G(Af)

!

GalE W ﬁoﬂ'(G)

)

commutes, where r (g, x) is defined by (5.5).
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5. The spinor norm of monodromy operators

Proof. Let 6 be the composition X — G(A¢) — Ton(G). Using 6 to change

the structure group of the KC-torsor Sh(G, X) gives rise to a Tom(G)-torsor on

Shic[G, X]st, which we denote 6, Sh(G, X). By Theorem 5.3.7, it suffices to show

that 0, Sh(G, X) is isomorphic to the pullback of 7y Sh(G, X) to Shx[G, X].
Consider the commutative diagram

Sh(G, X) —> mo(Sh(G, X))

J J

Shi[G, X] — Spec(E)

Here, K acts on my(Sh(G, X)) via 6, and the map Sh(G, X) — mo(Sh(G, X)) is
KC-equivariant. This proves the lemma. O

Example 5.3.10. As in Example 5.3.8, consider the Shimura datum (GLg,H).
Let IC be the compact open subgroup GLa(Z) of GL2(A¢), and S a geometric point
of Shx[GLy, H]. Then Lemma 5.3.9 and Example 5.3.8 can be used to show that

the diagram
78 (Shi[GLy, H],3) —— K

T

Gal 7"
_
aQ X

commutes. Here, x: Galq — Z” is the cyclotomic character, that is, it is the
composition of Galgq — Gal?Qb with the isomorphism Gal% A given by the
Kronecker-Weber theorem. Note that Shic[GLg, #H] is the moduli stack of elliptic
curves over Q. This can be used to show that for any scheme S over Q with
geometric point §, and any family F of elliptic curves over .S, the diagram

(9, 5) — GL(H'(Es, Z))

comimutes.

5.3.2  Orthogonal Shimura stacks

In this section, we apply Deligne’s reciprocity law to orthogonal Shimura stacks.
Before stating the main result, we need to introduce some notation.

Throughout this section, V' is a quadratic space over Q of signature (2, n), with
n > 1. We denote by (SO, ) the associated Shimura datum as in Section 2.3.
That is, SO = SO(V) is the special orthogonal group, and 2 = Qy is the period
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5.3. The reciprocity law for Shimura stacks

domain of Hodge structures of K3 type on V ®q R. By Lemma 2.1.3, the reflex
field of (SO, ) is Q. In addition, we let K be a profinite group endowed with a
continuous homomorphism X — SO(A¢) with open image and finite kernel. As
we saw in Section 4.4, this gives rise to a Shimura stack Shx[SO, ], which is a
smooth separated Deligne-Mumford stack over Q.

Remark 5.3.11. Artin reciprocity yields a map
Galq — Galy /2 — mo(Q\AX/2) = Q“\A* /2

which we denote CFT. Moreover, note that since Q*\A* /2 is 2-torsion, it does
not matter whether we use Artin’s reciprocity law or its reciprocal artq to define
this map.

The following is the main result of this section.

Proposition 5.3.12. Let s be a geometric point of Sh(SO, ), and § its image in
Shx[SO, Q). Define éx: K — Q*\A*/2 to be the composition

K — SO(Af) 2= Af/2 — Q\AY/2,

where v denotes the spinor norm, see Section 5.1. Then the diagram

7t (Shx[SO, Q],5) ———— K

J [

X X

commutes.

Remark 5.3.13. Let GSpin = GSpin(V') be the Clifford group of V', and N: GSpin —
G,,, the Clifford norm (see Section 2.3). The proof will show that a similar state-

ment involving GSpin(Ay) NoAx Q*\ A* and the composition

—1

rt
Galq — Galfy 3 ) (Q™\ A¥)
holds for the Shimura datum (GSpin, )
The proof will make use of the morphisms of Shimura data from (2.1), namely
(80,9) — (GSpin, ) = (G, {Q(-1)}),

and the relation of the spinor norm to the Clifford norm given by Lemma 5.1.7.
Note that by Lemma 2.1.3, the reflex fields of each of these Shimura data is Q.

Lemma 5.3.14. Let V be a quadratic space over R of signature (2,n), with
n > 1. Both SO(R)4 and GSpin(R) are connected.
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5. The spinor norm of monodromy operators

Proof. 1t is well known that SO(R) has two connected components. Moreover, by
the last part of Lemma 5.3.5, [SO(R) : SO(R)] = |7 (2%F)| = 2, proving the first
assertion.

For the second assertion, note that [GSpin(R) : GSpin(R)] = 2 by Lemma 5.3.5,
so it suffices to show that mo(GSpin(R)) = {£1}. For this, we use that if G is a
Lie group with closed subgroup H, then the sequence

mo(H) — mo(G) — mo(G/H) — 1

is exact and functorial in (G, H). We apply this to the exact sequences 1 —
{#+1} — Spin(R) — SO(R)y — 1 and 1 — R* — GSpin(R) — SO(R) — 1,
and use the connectedness of Spin(R) ([PR, Proposition 7.6]) to conclude that
mo(GSpin(R)) = 1p(SO(R)) = {£1}. O

Corollary 5.3.15. Let V be a quadratic space over Q of signature (2,n) with
n > 1. Then Tow SO = mymw SO and Tow GSpin = mgm GSpin.

Note that SO(Af) = Af/2 — Q*\ A*/2 factors through mom(SO), yielding a
morphism m7(SO) — Q*\ A*/2 which we also denote with v. Moreover, Corol-
lary 5.3.15 identifies Tom(SO) with mom(SO), so Deligne’s reciprocity law results
in a homomorphism

T(s0,N)

Galqg Tom(SO) = mem(SO) 2= Q™\ A* /2.

The following lemma states that this homomorphism coincides with the one coming
from class field theory.

Proposition 5.3.16. Let V' be a quadratic space over Q of signature (2,n) with
n > 1. The diagram

T(s0,n
Galqg oD mom(SO)

Rly

Q™ \A"/2

commutes.

Proof. Recall that Lemma 5.1.7 gives a commutative diagram relating the spinor
norm to the Clifford norm. If we apply mgm to this commutative diagram, and
factor out Q* in the bottom right corner, we obtain

ﬂo?T(GSpin) L 7TO7T(G7VL)

T

mom(SO) — Q*\A™/2
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On the other hand, let h: S — SOgr be an element of €2, and h: S — GSpin the
unique lift of h to GSpin for which Noh: S — G, r corresponds to the Lefschetz
Hodge structure Q(—1), cf [D3, 4.2]. Since the reflex field of (SO, £2), (GSpin, ),
and (G, {Q(—1)}) is Q, we obtain a commutative diagram

mom(SO)
mom (k)
o7 (Gy) —————— wom(GSpin) (5.7)
7T07T(/~L7L)
mom (N
WOW(HNZ,) ot )
mom(Gom)

Note that since Nh corresponds to Q(—1), there holds pu,; = idg so the
bottom map in the commutative diagram is the identity.

By combining (5.7) and (5.6) with the definition of rgo o), we find that

m,Q)

Galg H o (G

77071' GSpln % mom(Gm)

1225
780,02 l

mom( SO — Q*\A*/2

commutes. Since the map Galg — Q*\ A /2 given by composing the maps along
the top of the diagram is precisely the one coming from class field theory, we obtain
the desired result. O

Finally, we are able to prove Proposition 5.3.12.

Proof of Proposition 5.3.12. Note that Tym(SO) = mem(SO) by Lemma 5.3.14.
Therefore Lemma 5.3.9 and Proposition 5.3.16 yield a commutative diagram

7%t (She[SO, Q,3) ——— > K
J T(S0,Q)
Galg ———— mm(SO)

14

CFT
Q \A*/2
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proving the proposition. O

Remark 5.3.17. Lemma 5.1.14 shows that the spinor norm induces an isomor-
phism mym(SO) — Q*\ A*/2. Combining this with Proposition 5.3.16 and the
fact that the scheme of connected components of Sh(SO, ) is a wem(SO)-torsor
on Qg shows that m(Sh(SO,Q)) 2 Spec(Q®"*?). Similarly, m(Sh(GSpin, Q)) =
Spec(Q™), where Q®” is the maximal abelian extension of Q.

We end this section by making Proposition 5.3.12 more explicit in the case that
is most relevant to our purposes.

Let A be a self-dual even Z-lattice of signature (3,n), with n odd, and X € A
a primitive vector of positive length. By setting V = A+ ® Q, this gives rise to an
orthogonal Shimura datum (SO, Q) := (SO(V), Qy). Let K be the profinite group
defined in (4.8). That is,

K={g€0(A®Z)|gr=Xand detg € 3(Z) € iz(Z) }

We endow K with the homomorphism i: K — SO(A¢), g — det(g)glv,,, yielding
a Shimura stack Shi[SO, Q] over Q.
Note that the fact that A is self-dual and of even rank implies that we have

a spinor norm v: O(A ® 2) — ZX/Z see Definition 5.1.1. Combining this with

the determinant det: O(A ® Z) — ua(Z), we obtain a map det-v: K — 272,
sending g € K to det(g)v(g). We can use this map to change the structure group

of the K-torsor Sh(SO, ) on Shx[SO, Q]s, yielding a ZX/2—torsor which we de-

note (det-v), Sh(SO,). Aside from this we have another EX/ 2-torsor, namely
Spec(Q"*) x Shx[SO, Q.

Proposition 5.3.18. Let (SO, (2, K) and v be as above. Then
(det -v), Sh(SO, Q) = Spec(QT**) x Shx[SO, Q]
as 2X/2—torsors on Shx[SO, Q)¢

Proof. Define a map 1: Q*\ A*/2 — ZX/2 to be the composition

Q*\ A% /2 22 Gal(Q™ ) Q) — Z/2,

where the second map is the isomorphism given by the Kronecker-Weber theorem.
It can be shown that v is given explicitly by

(av)v — <ap Sgl’l(aoo) H qordq(aq)>

q p

In particular,
Y(lg,—-1,-1,...) = -1, (5.8)

and
((av)e) = (av)e, for (ay)y € Z /2 C AX/2. (5.9)
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CFT

The composition Galg — Q™\A*/2 2, ZX/ 2 corresponds to the ZX/ 2-torsor
Spec(Qq”ad) on Q. It now follows from Proposition 5.3.12 that it suffices to
show that )
K~ SO(Af) 2 @\ A /2 Y772

is equal to det -v.

Let g € K. First, note that by applying the identities in Lemma 5.1.5 and
Lemma 5.1.12 to Vq, and Vq & Q, A = Aq, for all p, and using that det(v) €
{£1}, we obtain

. . 1—det(g)
vi(g) = v(det(g)glva,) = disc(Va;) 2 v(ga,)-

Note that since A is self-dual and of even rank, we have v(ga,) = v(g) € ZX/Z
Write A2 = 2d, with d € Z+, so that disc(Va,) = —2d < 0. Combining this with

v(g) € Z"and (5.8) and (5.9), we find that applying v to the equation above yields
Yri(g) = det(g)v(g), which was to be shown. O

The following remark relates the proposition to the Z, /2-torsors T, defined
n (5.3), and hence to the maps x; occurring in Theorem 5.2.1.

Remark 5.3.19. Note that Qquad is a Galois extension of Q with Galois group
ZX/2, so that Spec(Q*) is a (Z /2) torsor on Qg,. We denote by (s a primitive

8th root of unity, and for an odd prime ¢, we define ¢* = (—1 ) 3 € The diagram

quad

/ N
w7

shows that Ty q is obtained by changing the structure group of Spec(Q"*®) to
Z))/2.
[

N
~X
™o

5.4 Proof of Theorem 5.2.1

We use the notation of Theorem 5.2.1. In particular, S is a Z[5%;]-scheme, and
f: X — S a projective K3 surface of degree 2d. Recall the Z,72-torsor Ty s on Se
defined in (5.3). The K3 surface f: X — S gives rise to an O(Aks ® Zy)-torsor on
Set, namely

Isomg (Aks ® Zy, RZ, f- Z(1)),

where A3 denotes an even self-dual lattice over Z of signature (3, 19), and R, f. Z(1)
is endowed with the cup product pairing. By changing the structure group of this
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5. The spinor norm of monodromy operators

torsor using the map det -v: O(Ags®Zy) — ZZX /2, we obtain a ZZX /2-torsor on Sgt,
which we denote (det-v)y x/s. Now Theorem 5.2.1 is equivalent to (det-v)s x,s
and Ty s being isomorphic as torsors on Sg. Note that these torsors are stable
under base change along morphisms S’ — S.

Let K334 be the moduli stack over Z[1/2d¢] of polarized K3 surfaces of degree
2d, and f: X — K394 the universal K3 surface. Then it suffices to show that
(det -v) % /K3,, and Ty ks,, are isomorphic. We will obtain the characteristic 0
case using Shimura-theoretic methods, and later deduce the general case.

Let A € Aks be a primitive element of length 2d, and define V to be the
orthogonal complement of A in Aks ® Q. Let (SO,Q) be the Shimura datum
associated with V' as in Section 2.3, and let K be the profinite group defined
in (4.8), namely

K:= {g € O(Axs)(Z) | g(A\) = A and det(g) € {:tl}}.

We endow K with the continuous homomorphism i: K — SO(A¢) given by map-
ping g € K to det(g)g|lvea,, yielding a Shimura stack Shi[SO, 2] over Q. Theo-
rem 4.6.4 gives a morphism P: K324 q — Shik[SO, ], defined over Q.

Lemma 4.3.7 gives a rank 1 local Z-system D on K35, q, endowed with an

injective map D — det R3, fq.« Z(1). This gives rise to a K-torsor
I := Isom ((AKg, A, det Axs), (Rgt fau Z(1),b, ), D) )

on K394 q,¢, where b is the pairing coming from the cup product. Consider the
composition

K& 772 — 77 )2,

Then changing the structure group of I using this homomorphism is precisely the
restriction to K324,q,¢ of the torsor (det-v), % /ks,,- Theorem 4.6.4 says that P
pulls the KC-torsor Sh(SO, Q) on Shx[SO, Qs back to I, so combining this with
Proposition 5.3.18 and Remark 5.3.19 proves that

~

Tf,K32d,Q = (det 'V)K,BE /K324.q" (5.10)

The following lemma will allow us to deduce the general case from the charac-
teristic 0 case.

Lemma 5.4.1. Let S be a normal locally Noetherian scheme, and G a finite group
acting on S. If x is a geometric point of [S/G|q, then

1'([S/Glq,z) — 71*([S/G], z)
is surjective.

Proof. Without loss of generality, [S/G] is connected. Let T" be a connected com-
ponent of S, and H the subgroup {g € G | ¢T C T} of G. Then T is a connected
H-torsor on [S/G], and the resulting map 7$*([S/G],z) — H is surjective. Now
let 77 be the generic point of 7', and y a geometric point of Tq lying over z. Then
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5.4. Proof of Theorem 5.2.1

by [SGAL, Proposition V.8.2], ¢*(n, y) — 7$4(T, y) is surjective. Moreover, n — T
factors through Tq, so ) )
Tr(ft (TQ7 y) - Tr(ft (Ta y)

is surjective. The diagram

1 —— 7T, y) —— #$4([S/G),z) —— H —— 1

| L

1 —— m(Tq,y) — 7¢([S/Glq, ) — H —— 1

now shows the surjectivity of 7¢¢([S/Glq, ) — 7$4([S/G], z). O

Lemma 5.4.2. Let S be a quasi-separated normal Noetherian algebraic space,
and G a finite group acting on S. If z is a geometric point of [S/G]q, then

' ([S/Glq. ) — 7{*([S/G],z)
is surjective.
Proof. Let y be a geometric point of Sq lying over . We will show that the map
1" (Sq,y) — 7" (S, y)

is surjective. Given the surjectivity of this map, the rest of the proof proceeds
exactly as the proof of Lemma 5.4.1, and is therefore omitted.

Since S is quasi-separated, normal, and Noetherian, [LMB, Corollaire 16.6.2]
shows that there exists a normal scheme S’ and a finite group G’ acting on S’ such
that S is isomorphic to the quotient S’/G’. Note that S is the coarse moduli space
of [S’/G'], so we have a canonical morphism [S’/G’] — S. Let z be a geometric
point of [S"/G']q lying over y, and consider the commutative diagram

()G, 2) — 7{"(Sq,v)

| |

m([$"/G),2) ——— 7{"(S.y)

By Lemma 5.4.1, the map 7$'([S"/G'|q,z) — w$¢([S'/G'], 2) is surjective, and
by [N2, Theorem 7.11], the horizontal maps in the diagram are surjective. It follows
that ¢*(Sq,y) — (S, y) is surjective. O

We now finish the proof of Theorem 5.2.1. Consider the sheaf of isometries
K324, := Isom ((Axs ® Z /AZ, \), (RZ, fupia, b, \))

on K354 ¢, where b is the cup product pairing. Since K354 is a smooth separated
Deligne-Mumford stack over Z[1/2d] by [R4, Theorem 4.3.3, Proposition 4.3.11],
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5. The spinor norm of monodromy operators

it follows that K324 4 is a smooth separated Deligne-Mumford stack over Z[1/2d].
An argument similar to that in the proof of [R4, Lemma 6.1.3] shows that the
automorphism groups in K34 4 are trivial, so that K324 4 is an algebraic space.

The finite group O(Axs ® Z /AZ) acts on K39q4. It is clear that K3o4 is
isomorphic to the quotient stack [K3244 / O(Aks ® Z /4Z)]. It now follows from
Lemma 5.4.2 and (5.10) that

To k3., = (det V) x /K3y,

which was to be shown. O

5.5 The spinor norm of the Frobenius

In this section we apply our result to K3 surfaces over a finite field F, of char-
acteristic p to compute the spinor norm of the Frobenius acting on the second
cohomology. As a corollary, we obtain a special case of a theorem of Elsenhans
and Jahnel.

We first compute the value of x, on Frob,, where x,: Galp, — Z,/2 is defined
by (5.3).

Lemma 5.5.1. Assume that p is an odd prime, and let £ be a prime distinct from
p. Then x,(Frob,) = q in Z, /2.

Proof. Let r € Z~( be such that ¢ = p". If r is even, then ¢ = 1 in Z; /2. Moreover,
all elements of F, are squares in F,. In particular, £*, —1, and 2 are all squares
in Fy, so that x¢(Frob,) = 1. If r is odd, then ¢ = p in Z; /2. Moreover, every
element of F), is a square in F,, if and only if it is a square in Fy, so we may assume
r=1.

If ¢ is odd, then quadratic reciprocity states that ¢* has a square root in F,, if
and only if p has a square root in Fy. By Hensel’s lemma the latter statement is
equivalent to p having a square root in Z,. We conclude that x,(Frob,) = p.

p=1 p’=1

If ¢ = 2, then it follows from (%) =(—-1) 2 and (%) = (—1) 8 that we
need to show that if p = m mod 8, then p = m € ZJ /2, where m € {£1,+5}. This
follows immediately from the fact that reduction modulo 8 induces an isomorphism
Z5/2 — (Z /8Z)". O

We are now able to prove Corollary 5.2.4, which gives an expression for the
spinor norm of Frob, acting on the second cohomology of a K3 surface. For the
remainder of the section, X denotes a K3 surface over F,.

Proof of Corollary 5.2.4. Assume that X admits a polarization of degree coprime
to p, and let ¢ be a prime distinct from p. By Theorem 5.2.1 and Lemma 5.5.1,

det <F1robq|Hgt (XFq,Z@(l))) : V<F1robq|Hgt (Xquze(l))) = x¢ (Froby) = q € Z /2.

O
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5.6. Néron-Severi lattices over non-closed fields

Let ¢ be a prime distinct from p, and ® the characteristic polynomial of Frob,
acting on HZ, (XF—q, Q,(1)). Then ® has coefficients in Q, and does not depend on
£. We will use Corollary 5.2.4 to compute ®(—1) up to squares in case (—1) # 0.
First, we need the following lemma on K3 surfaces satisfying ®(—1) # 0.

Lemma 5.5.2. Let £ be a prime distinct from p. If ®(—1) # 0, then

det HZ, (Xg-, Q/(1)) = Q,(0)
as Gaqu -representations.

Proof. We need to show that detFrob, = 1. If £ = 3(4), then detFrob, = 1
follows from Lemma 5.1.13. For other ¢, we use that det Frob, is /-independent
(this follows from the Weil conjectures, proved for K3 surfaces in [D3]) to reduce
to the case where ¢ = 3(4). O

Corollary 5.5.3. Let X be a K3 surface over F, of degree coprime to g, let { be
a prime coprime to q, and assume that ®(—1) # 0. Then

o(-1)=¢
holds in Q; /2.

Proof. Let F' denote Frob, acting on He?t(XF—q, Q,(1)). Combining Lemma 5.5.2

and Corollary 5.2.4 yields v(F) = ¢ as elements of Q; /2. Since ®(—1) # 0, the
Zassenhaus formula (Lemma 5.1.11) says that

1+ F

v(F) = det = (=2)*#2det(—1 - F)
()

which is equal to ®(—1) by the definition of ® and the fact that (—2)? is a square.
This proves the corollary. O

Remark 5.5.4. In [EJ, Proposition 3.11], Elsenhans and Jahnel obtain the same
result using different methods.

5.6 Néron-Severi lattices over non-closed fields

In this section we apply Theorem 5.2.1 to give a necessary condition for a lattice
to be the Néron-Severi lattice of a K3 surface over a non-closed field.

For a finite abelian group A and a prime number ¢, we denote by A[¢*°] the
subgroup of those a € A for which there exists an r € Z>¢ with ¢"a = 0. For a
Z-lattice A we have A(A)[(*°] = A(A ® Z;). In particular, Definition 5.1.17 gives
an invariant

disc (A(A)[Z“]) €Z)/2

of A.
The following theorem is the main result of this section.
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5. The spinor norm of monodromy operators

Theorem 5.6.1. Let k be a field, let ¢ be an odd prime number, and let X/k be
a K3 surface of degree coprime to the characteristic of k. We denote by p(X) the
rank of Pic(X), and

re(X) := length (A( Pic(X)) [m).
If ro(X) 4+ p(X) = 21 and the product
(—1)")+1g gise (A(Pic(X)[E‘X’]))

is equal to 1 in Z; /2, or if r¢(X) + p(X) = 22, then (* is a square in k.

Proof. If ¢ is equal to the characteristic of k, then £* is trivially a square in k.
Suppose that ¢ is coprime to the characteristic of k. Then £* is a square in k
if and only if the image of x¢: Gal, — Z, /2 is trivial, where y, is the quadratic
character defined by (5.3). Therefore we need to prove that when the conditions
of the theorem are satisfied, then x, has trivial image.
By Theorem 5.2.1, x¢ is equal to the composition

Galy — O(He (X7, Zo(1))) 2% 75 /2.

The image of Pic(X) under ¢; in He (X5, Z(1)) is invariant under the Gal-
action. That is, each of its elements is Galg-stable. It follows that the image of x,

is contained in
det -v (O(He (X7, Ze(1)), e1Pic(X)))

where we use the notation from (5.2). Corollary 5.1.20 states that this is trivial if
and only if the conditions of the theorem are satisfied, completing the proof. [

Remark 5.6.2. The main lattice-theoretic input into Theorem 5.6.1 is Theo-
rem 5.1.18. As was noted in Remark 5.1.19, this theorem has a more complicated
analogue for ¢ = 2. One can use this to prove a version of Theorem 5.6.1 for even
primes.

Example 5.6.3. Let £ be an odd prime, and A a lattice of signature (1, 10) whose
discriminant form is ¢-primary and has length 11. By [M6, Remark 2.11], there
exists a complex projective K3 surface whose Picard lattice is isomorphic to A.
However, since rk A 4+ length(A(A)) = 22, it follows from Theorem 5.6.1 that there
is no K3 surface over Q whose Picard lattice is isomorphic to A (or indeed over
any field of characteristic 0 not containing v/¢* ).
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Summary

In this thesis I study to what extent the moduli stacks of polarized hyperkahler
varieties (for example, K3 surfaces) are related to Shimura stacks. I focus in partic-
ular on hyperkahler varieties defined over non-closed fields, and the ramifications
of Deligne’s reciprocity law for such varieties. Chapters 1 and 2 serve as introduc-
tions to Shimura stacks and moduli of polarized hyperkahler varieties, respectively,
and can be read independently of each other. From Chapter 3 on, every chapter
depends on all chapters preceding it.

Chapter 1 is an introductory chapter, and gives a detailed global overview of
the thesis and the main results.

The second chapter is an expository chapter about Shimura varieties and mo-
tives. The main result is that the canoncial model of a Shimura variety of abelian
type (for example, an orthogonal Shimura variety) is a moduli space of abelian mo-
tives. This result is due to Deligne and Milne, and this chapter is a more Tannakian
exposition of their work.

Chapter 3 gives an introduction to polarized hyperkéhler varieties and their
moduli. The main result, which is well known to the experts, is that the moduli
stack of polarized hyperkahler varieties is a separated Deligne-Mumford stack over
Q.

In Chapter 4 I study the period map for hyperkahler varieties. This is a mor-
phism from a degree 2 étale covering of the moduli stack of complex polarized
hyperkéahler varieties to an orthogonal Shimura stack. One of the main results of
this chapter is that this map descends to a morphism over Q. This is proved by
combining the results of Chapter 2 and 3 with André’s result that the motive of
a hyperkéahler variety is abelian. Furthermore, the chapter contains stronger ver-
sions of this main result for two specific families of hyperkéhler varieties, namely
K3 surfaces and hyperkahler varieties of type K3,

The final chapter applies the results of Chapter 4 to obtain more concrete
results about K3 surfaces, namely a computation of the spinor norm of monodromy
operators on the second cohomology. The proof makes use of a result Deligne on the
connected components of the canonical model of a Shimura variety, of which the
chapter contains an exposition. This is then used to sharpen a result of Elsenhans
and Jahnel on K3 surfaces over finite fields, and to give a non-trivial necessary
condition for a lattice to be the Néron-Severi lattice of a K3 surface over a non-
closed field.
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