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1
Introduction

1.1 The spinor norm and determinant of monodromy oper-
ators on K3 surfaces and elliptic curves

Let n ≥ 3 be an integer. There are no elliptic curves over Q whose Q-rational
n-torsion points are isomorphic to (Z/nZ)⊕2. More precisely, the following result
holds.

Proposition 1.1.1. Let E be an elliptic curve over a field k of characteristic 0,
and n ≥ 3 an integer. If E has maximal n-torsion, that is, if E[n](k) ∼= (Z/nZ)⊕2,
then k contains a primitive nth root of unity.

In this thesis we prove, among other things, the following analogue of Propo-
sition 1.1.1 for K3 surfaces.

Proposition 1.1.2. Let S be a K3 surface over a field k of characteristic 0, and
let ` be an odd prime number. If the lattice Λ := Pic(S) has rank 11, and if the
`-part of its discriminant Λ∨/Λ has length 11, then k contains a square root of

(−1)
`−1

2 `.

We prove a stronger version of this proposition in Chapter 5, namely Theo-
rem 5.6.1. Moreover, it is possible to prove a similar theorem for ` = 2, involving
the biquadratic field Q(i,

√
2), see Remark 5.6.2.

Proposition 1.1.1 follows from the following more general theorem.

Theorem 1.1.3. Let E be an elliptic curve over a field k of characteristic 0, and
` a prime number. Then the diagram

Galk GL(H1
ét(Ek,Z`))

Z×`

ρ

χ−1
`

det

commutes, where χ` : Galk ! Z×` denotes the cyclotomic character, and ρ is the
natural action of Galk on H1

ét(Ek,Z`).
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1. Introduction

Proposition 1.1.1 is derived from this as follows. For convenience, we take n = `.
When E[`](k) ∼= (Z/`Z)⊕2, then Galk acts trivially on H1

ét(Ek,Z/`Z). It is easy
to see that the image of{

g ∈ GL(H1
ét(Ek,Z`)) | g ⊗ Z/̀ Z = id

}
under det : GL(H1

ét(Ek,Z`)) ! Z×` is trivial. It follows from Theorem 1.1.3 that
the cyclotomic character χ` has trivial image, which implies that k contains a
primitive root of unity.

One of the main results of this thesis is the following analogue of Theorem 1.1.3
for K3 surfaces, see Theorem 5.2.1. It can be used to prove Proposition 1.1.2 via
an argument similar to the derivation of Proposition 1.1.1 from Theorem 1.1.3. It
makes use of a description of the image of the spinor norm for Z`-lattices, which
can be found in Section 5.1.3

Theorem 1.1.4. Let S be a K3 surface over a field k of characteristic 0. Then
the diagram

Galk O(H2
ét(Sk,Z`(1)))

Z×` /2

ρ

χ`
ν · det

commutes, where χ` : Galk ! Z×` denotes the cyclotomic character, ρ is the nat-
ural action of Galk on H2

ét(Sk,Z`(1)), and ν denotes the spinor norm.

It may not be immediately clear how the spinor norm in Theorem 1.1.4 is
related to the determinant in Theorem 1.1.3. The theory of Shimura stacks provides
us with a link.

1.2 Shimura stacks and moduli spaces

The moduli space of complex elliptic curves is isomorphic to the quotient of the
upper half plane H+ by an action of SL2(Z). The global Torelli theorem for com-
plex K3 surfaces gives a similar description of the moduli space of polarized K3
surfaces.

Let (S, λ) be a complex polarized K3 surface of degree 2d, and let Λ be its prim-
itive second cohomology group. That is, Λ is the orthogonal complement of c1(λ)
in H2(S,Z(1)). Then Λ is a Z-lattice of signature (2, 19). Up to isomorphism, Λ
does not depend on (S, λ). Let Ω be the Hermitian symmetric domain parametriz-
ing the Hodge structures of K3 type on Λ (see Section 2.3 for a definition). The
complex structure of S induces a Hodge structure on Λ, which yields a point of Ω.
Mapping a polarized K3 surface of degree 2d to its primitive degree 2 cohomology
group defines an open immersion from the moduli space of complex polarized K3
surfaces to the quotient of Ω by the action of some arithmetic group Γ.

The theory of Shimura varieties permits us to extend these descriptions to the
moduli spaces of elliptic curves and polarized K3 surfaces over Q.
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1.2. Shimura stacks and moduli spaces

Let Af be the ring of finite adèles, let G be the algebraic group GL2 over Q, let
K be the compact open subgroup GL2(Ẑ) of G(Af), and let H be the double half-
plane C \R. Then there is an isomorphism of complex Deligne-Mumford stacks

[SL2(Z)\H+]
∼−−! ShK[G,H]C := [G(Q)\H×G(Af)/K] ,

where the square brackets indicate that the quotients are taken stackily (or orb-
ifoldily). The stack ShK[G,H]C is known as a Shimura stack. Let Ell be the moduli
stack of elliptic curves over Q. We have an isomorphism

EllC
∼−−! ShK[G,H]C. (1.1)

The theory of canonical models of Shimura varieties shows that ShK[G,H]C de-
scends to a Deligne-Mumford stack over Q, and that the morphism in (1.1) de-
scends to an isomorphism over Q.

Work of Rizov and Madapusi-Pera (see [R3] and [MP1]), refined in [T1], shows
that a similar statement holds for the moduli stack K32d of degree 2d polarized
K3 surfaces over Q. That is, the open immersion K32d,C ↪! [Γ\Ω] descends to an
open immersion of Deligne-Mumford stacks

K32d ↪−! ShK[G,Ω] (1.2)

over Q, where G is the special orthogonal group SO(Λ⊗Q).
In this thesis, we give a detailed exposition of the descent of (1.2), and gen-

eralize it to moduli spaces of polarized hyperkähler varieties. These are higher-
dimensional analogues of K3 surfaces, also referred to as irreducible holomor-
phic symplectic manifolds. One of our results is the following theorem (see Theo-
rem 4.5.2).

Theorem 1.2.1. Let Mor be a connected component of the moduli stack of po-
larized oriented hyperkähler varieties over Q. There exists an orthogonal Shimura
stack ShK[G,Ω] and an étale morphism

Mor −! ShK[G,Ω],

defined over Q.

A key ingredient of the proof of Theorem 1.2.1 is a theorem of Deligne and
Milne which states that many Shimura varieties are moduli spaces of abelian mo-
tives (see [M3]). In order to effectively use this result, we give a more Tannakian
approach to the statement and proof of the result of Deligne and Milne.

Note that Theorem 1.2.1 is weaker than the analogous statement for K3 sur-
faces in two ways.

The first difference is that it is a result about a moduli stack of polarized
oriented hyperkähler varieties (see Section 4.3). This is a degree 2 étale covering of
the moduli stack of polarized hyperkähler varieties. For hyperkähler varieties with
even second Betti number (for example, K3 surfaces), we can follow the arguments
in [T1] to refine Theorem 1.2.1 to get rid of the orientations. See Theorem 4.6.2.
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1. Introduction

The second difference is that the morphism Mor ! ShK[G,Ω] is an étale mor-

phism, rather than an open immersion. For hyperkähler varieties of K3[n]-type, we
are able to refine Theorem 1.2.1 to obtain an open immersion, for suitably chosen
K (see Theorem 4.7.18). The existence of such K is a priori not obvious. We prove
its existence by extending a result of Markman on the monodromy of complex
K3[n]-type hyperkähler varieties to K3[n]-type hyperkähler varieties over Q. This
result may be of independent interest, see Theorem 4.7.12.

1.3 Deligne’s reciprocity law

To link the results in Section 1.2 to the ones in Section 1.1, we use a result of
Deligne on the connected components of Shimura varieties.

Let (G,X) be a Shimura datum with reflex field E. When (G,X) is either
(GL2,H) or (SO(Λ ⊗ Q),Ω), then E = Q. Consider the projective system of
Shimura varieties Sh(G,X) = (ShK(G,X))K, where K ranges over all compact
open subgroups ofG(Af), and let π0(Sh(G,X)E) be the limit limK π0(ShK(G,X)E).
Then Deligne gives an expression of the profinite set π0(Sh(G,X)E) as a quo-
tient of G(Af). Moreover, he gives an explicit description of the GalE-action on
π0(Sh(G,X)E) in terms of the group G(Af) and the class field theory of E. The
full statement of Deligne’s result can be found in Section 5.3.1.

When (G,X) = (GL2,H), it can be shown that the determinant det : G(Af)!

Af
× induces an isomorphism from π0(Sh(G,X)Q) to Ẑ

×
. Moreover, if we endow

Ẑ
×

with the natural GalQ-action coming from the Kronecker-Weber theorem, this
isomorphism is GalQ-equivariant.

In the orthogonal case, the spinor norm G(Af) ! Af
×/2 induces an isomor-

phism from the GalQ-set π0(Sh(G,X)Q) to Ẑ
×
/2, endowed with the GalQ-action

coming from the Kronecker-Weber theorem. A proof of this fact can be found in
Section 5.3.2.

A more careful analysis, which combines these results with the ones in Sec-
tion 1.2, yields Theorem 1.1.3 and Theorem 1.1.4.

We have not been able to generalize Theorem 1.1.4 to higher-dimensional hy-
perkähler varieties. It seems plausible that this can be approached with similar
methods. However, our proof of Theorem 1.1.4 uses that we can get rid of the
orientations in Theorem 1.2.1 for K3 surfaces, and that the second cohomology
group of K3 surfaces is self-dual.

1.4 Overview

In this section, we give a brief overview of the chapters in this thesis. More detailed
descriptions of each chapters’ contents can be found in their respective introduc-
tions.

In Chapter 2, we recall the basic theory of Shimura varieties and motives, and
we give a Tannakian exposition of Milne’s results relating the canonical models
of Shimura varieties to moduli spaces of abelian motives. In Chapter 3, we prove

4



1.4. Overview

that the moduli stack of polarized hyperkähler varieties is, among other things, a
Deligne-Mumford stack. The next chapter contains various generalizations of (1.2)
to hyperkähler varieties of higher dimension. Finally, in Chapter 5, we apply the
existence of (1.2) and Deligne’s results on the connected components of a Shimura
stack to prove Theorem 1.1.4.
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2
Shimura varieties and motives

This chapter is an exposition of the fact that certain Shimura varieties are moduli
spaces of abelian motives. This was originally proved in [D2] and [M3]. We focus
in particular on Shimura varieties of orthogonal type, as these play an important
role in the moduli theory of hyperkähler varieties, which we will see in Chapter 4.

In the first section we briefly go over the basics of the theory of Shimura vari-
eties, primarily to set up notation. Then, in Section 2.2, we collect the features of
André’s category of motives [A2] which we need. The two main facts we will need in
the sequel are Deligne’s result that Hodge cycles on abelian varieties are motivated
(Theorem 2.2.2), and Milne’s theorem that the Hodge structures parametrized
by Shimura varieties of Hodge and orthogonal type come from abelian motives
(Proposition 2.2.4).

In Section 2.3, we give the main result of this chapter, namely a description of
the complex points of an orthogonal Shimura variety in terms of abelian motives
endowed with a symmetric bilinear form and a trivialization of the determinant,
Theorem 2.3.3. In particular we will show that this description is compatible with
the action of Aut(C). We prove this theorem by describing the complex points of a
Hodge type Shimura variety Sh(G,X) in terms of tensor functors from the category
of G-representations to the category of abelian motives, in Theorem 2.3.16. The
reader familiar with [D2] and [M4] will note that all results in this section go
back to Deligne and Milne, with the possible exception of our more Tannakian
treatment of the proof and statement of the theorem.

2.1 Shimura varieties

In this section we establish basic notation regarding Shimura varieties, and in
particular about orthogonal Shimura varieties. See also [M4] and [D2] for a more
detailed account. For the part about orthogonal Shimura varieties, [MP2], [D3],
and [A1] are excellent references.

2.1.1 Generalities

Let (G,X) be a Shimura datum, see [M4, Definition 5.5]. In particular, G is a
connected reductive group over Q, and X ⊆ Hom(S, GR) is a G(R)-conjugacy

7



2. Shimura varieties and motives

class, where S = ResC /R Gm denotes the Deligne torus. Let Z be the center of
G. We assume throughout this thesis that (G,X) satisfies condition SV5 in [M4].
That is, we assume that Z(Q) is discrete in G(Af), where Af is the ring of finite
adèles.

For a commutative C-algebra A, the map A⊗R C! A×A, a⊗ z 7! (za, za)
is an isomorphism of rings. This yields an isomorphism Gm,C×Gm,C ! SC,
which we will use to identify these two group schemes. For h ∈ X, we define
µh : Gm,C ! GC as z 7! hC(z, 1). The reflex field E of (G,X) is by definition the
unique smallest subfield of C such that the G(C)-conjugacy class of µh is defined
over E.

There is an inverse system (ShK(G,X))K of varieties over E associated with
(G,X), where K ranges over all compact open subgroups of G(Af). The varieties
ShK(G,X) are called Shimura varieties. The set of C-points of ShK(G,X) is
the double coset

G(Q)\X ×G(Af)/K .

Here, G(Q) acts on X by conjugation, and on G(Af) by left multiplication. The
group K acts trivially on X, and on G(Af) by right multiplication.

The limit of the inverse system (ShK(G,X))K is denoted Sh(G,X). Proposi-
tion 2.1.10 in [D4], combined with the fact that Z(Q) is discrete in G(Af), implies
that the set of C-points of Sh(G,X) is

Sh(G,X)(C) = G(Q)\X ×G(Af).

The action of G(Af) on Sh(G,X)(C) via right multiplication descends to an action
of G(Af) on Sh(G,X) defined over E.

Example 2.1.1. Let (V, ψ) be a symplectic Q-vector space of dimension 2d. The
group of symplectic similitudes associated with V is defined to be the algebraic
group

GSp(V ) =
{

(g, c) ∈ GL(V )×Gm | ∀v, w ∈ V ψ(gv, gw) = cψ(v, w)
}
.

We defineHV to be the complex manifold consisting of h : S! GSp(V )R such that
h endows V with a Hodge structure of type d(0, 1) + d(1, 0). Now (GSp(V ),HV )
is a Shimura datum with reflex field Q, known as a Siegel Shimura datum.
When there is no possibility for confusion to arise, we use GSp and H to denote
GSp(V ) and HV , respectively. The Shimura varieties associated with (GSp,H) are
moduli spaces for polarized abelian varieties of dimension d with level structure,
as is shown in [D2, § 4].

Definition 2.1.2. A Shimura datum (G,X) is said to be of Hodge type if there
exists a Siegel Shimura datum (GSp,H) as in Example 2.1.1 and a morphism of
Shimura data (G,X)! (GSp,H) such that G! GSp is a closed immersion.

2.1.2 Orthogonal Shimura varieties

In this section we go over the basics of Shimura varieties associated with certain
quadratic spaces.

8



2.1. Shimura varieties

Let V be a quadratic space over Q of signature (2, n) with n ≥ 1. To V
we can associate a Shimura datum (SO(V ),ΩV ), known as a Shimura datum of
orthogonal type, as follows. We let SO(V ) be the group of orthogonal trans-
formations of V with determinant 1. The Hermitian symmetric domain ΩV ⊆
HomRGrp(S,SO(V )R) is defined to be the set of Hodge structures of K3 type on
V . That is, it consists of those Hodge structures on V for which

• V has type (1,−1), (0, 0), (−1, 1),

• V 1,−1 and V −1,1 are one-dimensional and orthogonal to V 0,0,

• the space (V ⊗R) ∩ (V 1,−1 ⊕ V −1,1) is positive-definite.

The space ΩV has two connected components, interchanged by mapping a Hodge
structure on V ⊗R to the one whose (1,−1), (0, 0), and (−1, 1) parts are V −1,1,
V 0,0, and V 1,−1, respectively. When there is no possibility for confusion to arise,
we will use SO and Ω to denote SO(V ) and ΩV , respectively.

There is a natural central extension GSpin(V ) of SO(V ), called the Clifford
group of V , which is constructed using the even Clifford algebra of V . It fits in a
short exact sequence

1! Gm −! GSpin(V ) −! SO(V )! 1,

and comes endowed with a homomorphism N : GSpin(V ) ! Gm whose kernel is
the spin group Spin(V ). Again, when there is no possibility of confusion, we will
use GSpin and Spin to denote GSpin(V ) and Spin(V ), respectively.

For each h : S ! SOR in Ω, there exists a unique h′ : S ! GSpinR making
the diagram

S SOR

Gm,R GSpinR

h

w
h′

commute, where w : Gm,R ! S is the weight homomorphism. The set of such h′

is a GSpin(R)-conjugacy class Ω′ in Hom(S,GSpinR). The pair (GSpin,Ω′) is a
Shimura datum, and the homomorphisms GSpin ! SO and N : GSpin ! Gm

induce morphisms of Shimura data

(SO,Ω) − (GSpin,Ω′) −! (Gm, {Q(−1)}). (2.1)

Note that the map Ω′ ! Ω is a bijection. As can be seen in [MP2, Lemma 3.6],
the Shimura datum (GSpin,Ω′) is of Hodge type.

Lemma 2.1.3. The Shimura data (GSpin,Ω′) and (SO,Ω) have reflex field Q.

Proof. The fact that (GSpin,Ω′) has reflex field Q can be found in [S4]. Apply-
ing [D4, 2.2.1] to the morphism (GSpin,Ω′)! (SO,Ω) now shows that the reflex
field of (SO,Ω) is Q.

9



2. Shimura varieties and motives

2.2 Motives

We will work with the category of motives as constructed by André in [A2]. In
this section we summarize its salient features.

2.2.1 Generalities

Let k be a field of characteristic 0. Let SmPrk be the category of smooth projective
varieties over k, and let Motk be the category of motives over k defined using
motivated cycles. Then Motk is a Q-linear semisimple neutral Tannakian category
endowed with a functor h : SmPropp

k !Motk, sending a variety to its associated
motive. We use 1 to denote the unit motive, and for a motive M and n ∈ Z, we
denote by M(n) its nth Tate twist.

Let σ be an embedding of fields k0 ! k1. Then pullback of schemes yields a
covariant functor from SmPrk0

to SmPrk1
, mapping a smooth projective variety

X over k0 to σ∗X, defined by the cartesian diagram

σ∗X X

Spec(k1) Spec(k0)
Spec(σ)

(2.2)

This extends uniquely to the category of motives. That is, for each motive M ∈
Motk0

we have a motive σ∗M over k1 such that h(σ∗X) = σ∗ h(X) for each
X ∈ SmPrk0 .

Singular cohomology with coefficients in Q induces a fiber functor HB : MotC !
Q-Vect, known as the Betti realization functor. For an embedding σ : k ↪! C, this
gives rise to a fiber functor Hσ : Motk ! Q-Vect, defined as the composition

Motk
σ∗−−!MotC

HB−−! Q-Vect .

Similarly, when k is algebraically closed, étale cohomology with coefficients in the
ring of finite adèles Af induces a fiber functor Hét : Motk ! Af -Mod, known as
the étale realization functor. We use Mσ and Mét as shorthands for the images of a
motive M under Hσ and Hét, respectively. Artin’s comparison isomorphism [SGA4,
Théorème XI.4.4] between étale and singular cohomology allows us to identify Hét

with Hσ ⊗Af as functors from Motk to Af -Mod.
For a smooth projective variety X over C, the cohomology groups Hi(X,Q)

are canonically endowed with a polarizable Hodge structure. This extends to the
Betti realization of motives, leading to a tensor functor which we abusively denote
Hσ : Motk ! Q -HS, where σ is an embedding k ↪! C, and Q -HS is the category
of polarizable Q-Hodge structures.

Let k0 and k1 be algebraically closed fields of characteristic 0, and let σ : k0 !
k1 be an embedding of fields. For a smooth projective variety X over k0, this in-
duces a functorial isomorphism on étale cohomology σ∗ : Hi

ét(X,Af)! Hi
ét(σ

∗X,Af).

10



2.2. Motives

This extends to the category of motives to give a functorial isomorphism

σ∗ : Hét(M) −! Hét(σ
∗M) (2.3)

for motives M over k0.
For later use, it is convenient to phrase the case k0 = k1 = C in terms of the

following 2-commutative diagram:

MotC MotC

Af -Mod

σ∗

Hét Hét
σ∗

(2.4)

That is, σ∗ is an isomorphism of tensor functors Hét ! Hét σ
∗ from MotC to

Af -Mod.

2.2.2 Abelian motives

Let Motab,k be the Tannakian subcategory of Motk generated by the motives of
abelian varieties. The objects of Motab,k are called abelian motives.

Example 2.2.1. Using the Kuga-Satake construction, André has shown that if
X is a hyperkähler variety with b2(X) > 3, then h2(X) is an abelian motive. In
particular, the motive of a K3 surface is abelian. See [A1, Theorem 1.5.1].

For the remainder of the chapter, we only consider motives over C.
The Betti realization functor restricts to a fiber functor HB : Motab,C !

Q-Vect. Let Gab = Aut⊗(HB), so that HB identifies Motab,C with Gab -Rep.
Similarly, we use GHdg to denote the Tannakian fundamental group associated
with the forgetful functor Q -HS ! Q-Vect. The functor Motab,C ! Q -HS
yields a homomorphism GHdg ! Gab. We denote its restriction to S ⊆ GHdg,R by
hab : S! Gab,R.

The following is a restatement of a fundamental result of Deligne, which says
that Hodge cycles on complex abelian varieties are motivated.

Theorem 2.2.2 ([A2, Théorème 0.6.2]). The Betti realization functor restricts to
a fully faithful functor HB : Motab,C ! Q -HS.

Corollary 2.2.3. The homomorphism GHdg ! Gab is surjective.

Proof. According to Theorem 2.2.2, the functor HB : Motab,C ! Q -HS is fully
faithful. Moreover, when M is an abelian motive, then every subobject of HB(M)
is isomorphic to the image of a subobject of M , by the semisimplicity of Q -HS.
This implies that the corresponding homomorphism GHdg ! Gab is surjective.

Milne has shown for a large class of Shimura varieties of abelian type that the
Hodge structures they parameterize are the Betti realizations of abelian motives,
see [M3, Theorem 1.34]. We will only need the following specific instance.

11



2. Shimura varieties and motives

Proposition 2.2.4. Let (G,X) be a Shimura datum of Hodge or of orthogonal

type, and let h ∈ X. Then there exists a unique homomorphism h̃ : Gab ! G such
that the diagram

S GR

Gab,R

h

hab

h̃R

commutes.

Proof. The uniqueness is an immediate consequence of Corollary 2.2.3.
We first prove the existence part of the proposition for (G,X) of the form

(GSp(V ),H). Let h : S ! GSp(V )R be an element of H. Then Riemann’s theo-
rem [D2, Théorème 4.7] shows that there exists an abelian variety A with H1(A,Q)
isomorphic to (V, h) as a Q-Hodge structure. Moreover, the symplectic form ψ is

a morphism of Q-Hodge structures
∧2

V ! Q(−1). By Theorem 2.2.2, ψ yields a

morphism of motives
∧2

h1(A)! 1(−1). It follows that h : S! GSp(V )R lifts to
a morphism Gab ! GSp(V ).

For general (G,X) of Hodge type, pick an embedding (G,X) ↪! (GSp,H).
Then by the preceding argument, the composition GHdg ! G ! GSp factors
through Gab. Since GHdg ! Gab is surjective by Corollary 2.2.3, the image of

Gab ! GSp is contained in G, yielding the desired lift h̃ : Gab ! G of h.
Now let (SO,Ω) be a Shimura datum of orthogonal type. Consider the mor-

phism of Shimura data (GSpin,Ω′)! (SO,Ω) as in (2.1), and let h′ : S! GSpinR

be the unique element of Ω′ lifting h. Since (GSpin,Ω′) is of Hodge type, there

exists a homomorphism h̃′ : Gab ! GSpin with h′ = h̃′ ◦ hab. The composition

Gab
h̃′−! GSpin! SO is the desired lift of h.

2.3 Orthogonal Shimura varieties as moduli of motives

This section contains the main theorem of this chapter, which gives a descrip-
tion of the complex points of a Shimura variety of orthogonal type in terms of
motives endowed with a motivic bilinear form and a motivic trivialization of its
determinant.

Let (V, bV ) be a quadratic space over Q of signature (2, n), with n ≥ 1, and let
ωV : Q! detV be an isomorphism of vector spaces.

As in Section 2.3 we associate with (V, bV ) a Shimura datum (SO,Ω) with reflex
field Q. In particular, we have a set Sh(SO,Ω)(C) endowed with a left Aut(C)-
action and a right SO(Af)-action which commute, an (Aut(C),SO(Af))-set, for
short.

Definition 2.3.1. Let Mot(V ) be the set of isomorphism classes of tuples (M, b, ω, α),
where

12



2.3. Orthogonal Shimura varieties as moduli of motives

• M is an abelian motive over C,

• b is a morphism Sym2M ! 1,

• ω is an isomorphism 1! detM ,

• α is an isomorphism of Af -modules V ⊗Af ! Mét mapping bV to bét and
ωV to ωét.

Two tuples (M1, b1, ω1, α1) and (M2, b2, ω2, α2) are said to be isomorphic if there
is an isomorphism of motives ϕ : M1 ! M2 mapping b1 and ω1 to b2 and ω2 and
such that the diagram

M1,ét M2,ét

V ⊗Af

ϕét

α1 α2

of Af -modules commutes.

Pullback of motives as in (2.4) defines a left Aut(C)-action on Mot(V ). More-
over, by precomposing α with g ∈ SO(Af), we obtain a right SO(Af)-action.
It is easy to verify that these two actions commute, making Mot(V, bV , ωV ) an
(Aut(C),SO(Af))-set.

Definition 2.3.2. Let Mot(V,Ω) be the subset of Mot(V ) consisting of those
tuples (M, b, ω, α) such that there exists an isomorphism

αB : V −!MB (2.5)

mapping bV and ωV to bB and ωB, and such that the Hodge structure on V induced
by αB is an element of Ω.

It is clear that the SO(Af)-action on Mot(V ) restricts to one on Mot(V,Ω).
The following theorem shows that the Aut(C)-action restricts to one on Mot(V,Ω)
as well.

For h ∈ Ω, we denote by h̃ the unique lift of h to a homomorphism Gab ! SO,
as in Proposition 2.2.4.

Theorem 2.3.3. The map Sh(SO,Ω)(C)!Mot(V ) given by

[h, g] 7−! ((V, h̃), bV , ωV , g)

is (Aut(C),SO(Af))-equivariant, and defines a bijection from Sh(SO,Ω)(C) to
Mot(V,Ω).

The proof of this theorem will be given in subsection 2.3.4. The Aut(C)-
equivariance will be deduced from the Shimura-Taniyama formula [D2, Théorème 4.19]
for abelian varieties of CM type.

13



2. Shimura varieties and motives

We will now give a corollary of Theorem 2.3.3 which will be more convenient
in our treatment of moduli stacks of polarized hyperkähler varieties.

Let (W, bW ) be a quadratic space over Q of signature (3, n), with n ≥ 1,
let λW ∈ W be an element of positive length, and let ωW : Q ! detW be an
isomorphism of vector spaces.

Definition 2.3.4. Let Mot(W,λW ) be the set of isomorphism classes of tuples
(M, b, λ, ω, α), where

• M is an abelian motive over C,

• b is a morphism Sym2M ! 1,

• λ is a morphism 1!M ,

• ω is an isomorphism 1! detM ,

• α is an isomorphism of Af -modules W ⊗Af ! Mét mapping bW , λW , and
ωW to bét, λét, and ωét, respectively.

Two tuples (M1, b1, ω1, λ1, α1) and (M2, b2, λ2, ω2, α2) are said to be isomorphic if
there is an isomorphism of motives ϕ : M1 ! M2 mapping b1, λ1, and ω1 to b2,
λ2, and ω2, respectively, and such that the diagram

M1,ét M2,ét

W ⊗Af

ϕét

α1 α2

of Af -modules commutes.

Define V to be the orthogonal complement of λW in W , and bV the pairing
on V induced by bW . Then V is a quadratic space of signature (2, n), and hence
gives rise to an orthogonal Shimura datum (SO,Ω). Let ρ : SO ! SO(W ) be the
homomorphism sending g to g ⊕ idQλW

. Note that similarly to Mot(V ), the set
Mot(W,λW ) comes with an Aut(C)-action, and ρ induces a right SO(Af)-action
on Mot(W,λW ).

The following corollary follows immediately from Theorem 2.3.3.

Corollary 2.3.5. The map Sh(SO,Ω)(C)!Mot(W,λW ) given by

[h, g] 7−! ((W,ρh̃), bW , λW , ωW , g)

is (Aut(C),SO(Af))-equivariant.
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2.3. Orthogonal Shimura varieties as moduli of motives

2.3.1 Mot(G)

Before we start with the proof of Theorem 2.3.3, it will be useful to put the
construction of Mot(V ) and Mot(V,Ω) in a more Tannakian framework.

Let G be an affine group scheme over Q. We denote by G -Rep the category
of finite-dimensional representations of G, and by ωG : G -Rep ! Q-Vect the
forgetful functor.

Definition 2.3.6. Let G be an affine group scheme over Q. Then we denote by
Mot(G) the set of isomorphism classes of pairs (F, η), where F is a tensor functor
from G -Rep to Motab,C, and η : ωG ⊗Af ! Hét F is an isomorphism of tensor
functors from G -Rep to Af -Mod. It will be convenient to represent such a pair
(F, η) as the 2-commutative diagram

G -Rep Motab,C

Af -Mod

F

ωG ⊗Af Hét

η

Here, two pairs (F1, η1) and (F2, η2) are said to be isomorphic if there exists an
isomorphism of tensor functors ϕ : F1 ! F2 from G -Rep to Motab,C for which
the diagram

Hét F1 Hét F2

ωG ⊗Af

Hét(ϕ)

η1 η2

of functors G -Rep! Af -Mod commutes.

Remark 2.3.7. For (F, η) ∈Mot(G), the exactness of fiber functors implies that
F is exact.

There is an alternative description of Mot(G) in terms of G-torsors on Qét,
which we now give.

Definition 2.3.8. We define Mot′(G) to be the set of isomorphism classes of
tuples (T, h, α), where

• T is a G-torsor on Qét,

• h : Gab ! AutG(T ) is a homomorphism of group schemes,

• α ∈ T (Af).

Two tuples (T1, h1, α1) and (T2, h2, α2) are said to be isomorphic if there exists an
isomorphism of G-torsors T1 ! T2 mapping h1 and α1 to h2 and α2, respectively.

15



2. Shimura varieties and motives

Remark 2.3.9. Note that the automorphism scheme AutG(T ) is a pure inner
form of G, which is isomorphic to G if T has a Q-valued point.

We define a map f : Mot(G)!Mot′(G). Let (F, η) ∈Mot(G). The isomor-
phism sheaf T := Isom⊗(ωG,HB ◦F ) is a G-torsor on Qét, satisfying AutG(T ) =
Aut⊗(HB ◦F ) by the equivalence between G-torsors and fiber functors on G -Rep
(see [S1, Proposition III.3.2.5.3]). Consider the canonical homomorphism Aut⊗(HB)!
Aut⊗(HB ◦F ). Since Aut⊗(HB) = Gab and Aut⊗(HB ◦F ) = AutG(T ), this gives a
homomorphism h : Gab ! AutG(T ). By definition of T , the isomorphism of tensor
functors η is an Af -valued point of T . We now set f(F, η) = (T, h, η).

Lemma 2.3.10. The map f : Mot(G)!Mot′(G) is a bijection.

Proof. Let Mot′′(G) be the set of isomorphism classes of tuples (ω, h, α), where

• ω : G -Rep! Q-Vect is a fiber functor,

• h : Gab ! Aut⊗(ω) is a homomorphism of group schemes,

• α : ωG ⊗Af ! ω ⊗Af is an isomorphism of tensor functors from G -Rep to
Af -Mod.

From a fiber functor ω : G -Rep ! Q-Vect we obtain a G-torsor Isom⊗(ωG, ω),
which yields an equivalence between the stack of fiber functors on G -Rep and the
stack of G-torsors, see [S1, Proposition III.3.2.5.3] for more details. This equiva-
lence yields a bijection Mot′′(G)!Mot′(G).

It follows that we need to show that the map Mot(G)!Mot′′(G) given by

(F, η) 7−!
(
HB ◦F, h : Gab ! Aut⊗(HB ◦F ), η

)
is a bijection.

For the surjectivity, consider a tuple (ω, h, α) ∈Mot′′(G). Then ω lifts to an
equivalence ω : G -Rep! Aut⊗(ω), and α fits in the 2-commutative diagram

G -Rep Aut⊗(ω) -Rep

Af -Mod

ω

ωG ⊗Af ωAut⊗(ω) ⊗Af
α

Moreover, h : Gab ! Aut⊗(ω) gives rise to a functor h∗ : Aut⊗(ω) ! Motab,C

compatible with the natural fiber functors. It is easily checked that the outer
triangle in the diagram

G -Rep Aut⊗(ω) -Rep Motab,C

Af -Mod

ωG ⊗Af

ω

Hét

h∗

idα
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2.3. Orthogonal Shimura varieties as moduli of motives

defines an element of Mot(G) mapping to the tuple (ω, h, α).
For the injectivity, let (F1, η1), (F2, η2) ∈Mot(G), and assume that the asso-

ciated tuples (HB ◦F1, h1, η1) and (HB ◦F2, h2, η2) are isomorphic. That is, assume
there is an isomorphism of tensor functors ϕ : HB ◦F1 ! HB ◦F2 such that the
diagram of group schemes

Aut⊗(HB ◦F1) Aut⊗(HB ◦F2)

Gab

ϕ

h1 h2 (2.6)

and the diagram of tensor functors from G -Rep to Af -Mod

(HB ◦F1)⊗Af (HB ◦F2)⊗Af

ωG ⊗Af

ϕ⊗Af

η1 η2 (2.7)

commute. From (2.6) we obtain that for any V ∈ G -Rep, the homomorphism of
vector spaces ϕV : HB ◦F1(V ) ! HB ◦F2(V ) is Gab-equivariant. This implies that
ϕ lifts to an isomorphism of tensor functors ϕ : F1 ! F2 from G -Rep to Motab,C.
Since Hét = Af ⊗HB, Equation (2.7) says that ϕ is compatible with η1 and η2,
and hence that ϕ defines an isomorphism from (F1, η1) to (F2, η2).

Let (V, bV ) be a quadratic space over Q of signature (2, n) with n ≥ 1, and
ωV : Q! detV an isomorphism of vector spaces. We now relate Mot(SO(V )) to
the set Mot(V ) defined in Definition 2.3.1. Note that if we endow Q with the trivial
SO(V )-action, then bV : Sym2 V ! Q and ωV : Q ! detV are both morphisms
in SO(V ) -Rep. As such, we obtain a map Ψ: Mot(SO(V ))!Mot(V ) given by

(F, η) 7−! (F (V ), F (bV ), F (ωV ), ηV ).

Lemma 2.3.11. The map Ψ: Mot(SO(V ))!Mot(V ) is a bijection.

Proof. Let (V ′, b′) be a quadratic space over Q of dimension 2 + n, let ω′ : Q !
detV ′ be an isomorphism of vector spaces, and let α : V ⊗ Af ! V ′ ⊗ Af be
an isometry which maps ωV to ω′. We will show that the isomorphism sheaf
Isom((V, bV , ωV ), (V ′, b′, ω′)) is an SO(V )-torsor on Qét. To do this, it suffices to
show that there is an isomorphism V ⊗Q! V ′ ⊗Q mapping bV to b′ and ωV to
ω′.

First we assign an invariant to the tuple (V, bV , ωV ). Let det(bV ) : (detV )⊗2 !
Q be the isomorphism of vector spaces given by mapping (v1 ∧ . . .∧ v2+n)⊗ (w1 ∧
. . . ∧ w2+n) to the determinant of the matrix (bV (vi, wj))i,j . Now composing the
isomorphism ω⊗2

V : Q ! (detV )⊗2 with det(bV ) yields an element of Q× which
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2. Shimura varieties and motives

we denote with λ. Similarly one defines det(b′) : (detV ′)⊗2 ! Q and λ′ ∈ Q×

using b′ and ω′. Note that the existence of the isomorphism α and the injectivity
of Q× ! Af

× imply that λ = λ′.

Any two quadratic spaces of the same dimension over an algebraically closed
field are isometric, so there exists an isometry ϕ : V ⊗ Q ! V ′ ⊗ Q. Let ρ ∈
Q× be such that ϕ(ω) = ρω′. Taking the tensor square and composing with
det(b′) yields the equality det(b′)ϕ(ω⊗2) = ρ2 det(b′)(ω′)⊗2. The right-hand side
is equal to ρ2λ′, and since det(b′) = det(ϕ(b′)), the left-hand side is equal to
λ. From the fact that λ = λ′, it follows that ρ2 = 1 and hence that ρ = ±1.
Composing ϕ with an element of O(V ′) with determinant −1 if necessary, we
obtain an isomorphism V ⊗ Q ! V ′ ⊗ Q mapping bV to b′ and ωV to ω′. This
proves that Isom((V, bV , ωV ), (V ′, b′, ω′)) is an SO(V )-torsor on Qét.

This yields an equivalence between tuples (V ′, b′, ω′) endowed with an isomor-
phism α : V ⊗ Af ! V ′ ⊗ Af and SO(V )-torsors T endowed with an Af point
α ∈ T (Af). Since an element of Mot(V ) consists of such a tuple (V ′, b′, ω′) en-
dowed with a homomorphism Gab ! SO(V ′), this equivalence gives a bijection
f ′ : Mot(V )!Mot′(SO(V )).

It is now easily verified that the composition f ′Ψ is the bijection f : Mot(SO(V ))!
Mot′(SO(V )) from Lemma 2.3.10, proving that Ψ is itself a bijection. For example,
for (F, η) ∈Mot(SO(V )), we have an SO(V )-equivariant map

Isom⊗(ωSO(V ),HB ◦F ) −! Isom((V, bV , ωV ), (F (V ), F (bV ), F (ωV ))

given by ε 7! εV . This is an isomorphism since the source and target are SO(V )-
torsors.

The set Mot(G) comes with a right G(Af)-action, which we now define. An
element g ∈ G(Af) yields an automorphism of ωG ⊗Af , which we also denote by
g. Such g then acts on a pair (F, η) ∈ Mot(G) by (F, η)g := (F, ηg), that is, g
maps (F, η) to the outer triangle in the diagram

G -Rep G -Rep Motab,C

Af -Mod

F

ηg

Let (G,X) be a Shimura datum of Hodge or of orthogonal type. According to

Proposition 2.2.4, every h ∈ X lifts to a unique homomorphism h̃ : Gab ! G. We
denote the associated tensor functor G -Rep!Motab,C with h̃∗.
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2.3. Orthogonal Shimura varieties as moduli of motives

Lemma 2.3.12. The assignment

[h, g] 7−!

G -Rep Motab,C

Af -Mod

h̃∗

id
g

defines a G(Af)-equivariant injective map

Φ: Sh(G,X)(C) −!Mot(G),

functorial in (G,X).

Proof. Let (h1, g1) ∈ X × G(Af), let γ ∈ G(Q), and define (h2, g2) := γ(h1, g1).

Since γ induces an isomorphism of tensor functors h̃∗1 ! h̃∗2, and since g2 = γg1,
the map Φ is well-defined.

For the injectivity, suppose we are given (h1, g1), (h2, g2) ∈ X × G(Af) and

an isomorphism ϕ : (h̃∗1, g1) ! (h̃∗2, g2). Then from the compatibility of ϕ with g1

and g2 we find that for (V, ρ : G! GL(V )) in G -Rep, the map ϕ(V,ρ) : V ! V is

ρ(g2g
−1
1 ). By taking (V, ρ) to be a faithful representation we obtain that γ := g2g

−1
1

is an element of G(Q), and that γh1 = h2, proving the injectivity.

Remark 2.3.13. We denote by Mot(G,X) the subset of Mot(G) consisting
of those pairs (F, η) for which there exists an isomorphism of tensor functors
ηB : ωG ! HB ◦F , that is,

G -Rep Motab,C

Q-Vect

F

ωG HB

ηB

(2.8)

such that if ψ : Gab ! G is the homomorphism corresponding to (F, ηB), then
ψhab : S! GR is an element of X.

Proposition 2.3.14. Let (G,X) be a Shimura datum of Hodge or of orthogonal
type. The map Φ: Sh(G,X)(C) !Mot(G) from Lemma 2.3.12 has Mot(G,X)
as its image.

Proof. If [h, g] ∈ Sh(G,X)(C), then HB h̃
∗ = ωG. Therefore we can take ηB : ωG !

HB h̃
∗ to be the identity. This shows that Φ([h, g]) ∈Mot(G,X).

To prove that Φ has Mot(G,X) as its image, let (F, η) ∈ Mot(G,X), and
let ηB : ωG ! HB be an isomorphism of tensor functors as in (2.8). Then the
pair (F, ηB) gives rise to a unique homomorphism ψ : Gab ! G such that ηB
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2. Shimura varieties and motives

lifts to an isomorphism of tensor functors ε : ψ∗ ! F . Now the composition h :=
ψRhab : S! GR is an element of X satisfying h̃ = ψ. Now since Hét ψ

∗ = ωG⊗Af ,
the composition

ωG ⊗Af
η−−! Hét F

Hét(ε)
−1

−−−−−−−! Hét ψ
∗

defines an automorphism of ωG ⊗Af and hence an element g ∈ G(Af). It is easy
to verify that ε is an isomorphism from Φ([h, g]) to (F, η), proving that Φ surjects
onto Mot(G,X).

Similarly to Lemma 2.3.11, we now relate the set Mot(V,Ω) from Defini-
tion 2.3.2.

Lemma 2.3.15. Let (V, bV ) be a quadratic space over Q of signature (2, n) with
n ≥ 1, and ωV : Q ! detV an isomorphism of vector spaces, and let (SO(V ),Ω)
be the associated Shimura datum. The bijection Ψ: Mot(SO(V )) ! Mot(V )
given in Lemma 2.3.11 maps Mot(SO(V ),Ω) onto Mot(V,Ω).

Proof. Given (F, η) ∈ Mot(SO(V ),Ω) and ηB : ωSO(V ) ! HB F an isomorphism
of tensor functors as in (2.8), then setting αB := ηB

V : V ! F (V )B shows that
(F (V ), F (bV ), F (ωV ), ηV ) is an element of Mot(V,Ω).

Conversely, let (M, b, ω, α) ∈Mot(V,Ω), and let αB : V ! MB be an isomor-
phism as in (2.5). Then there exists an h ∈ Ω for which the diagram

SO(V ) SO(MB)

Gab

αB

h̃

commutes. Moreover, if we set g = (αB)−1α ∈ SO(V )(Af), then αB is an isomor-

phism from ((V, h̃), bV , ωV , g) to (M, b, ω, α). It follows that Ψ maps Φ([h, g]) to
(M, b, ω, α).

Using pullback of motives as in (2.4) we can define a left Aut(C)-action on
Mot(G) by having σ ∈ Aut(C) act on a pair (F, η) ∈Mot(G) as

σ(F, η) :=

G -Rep Motab,C Motab,C

Af -Mod

F σ∗

σ∗η

It is clear that the G(Af)-action and Aut(C)-action commute.
The subset Mot(G,X) is not necessarily Aut(C)-stable. However, in the next

three subsections we will prove the following result.
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2.3. Orthogonal Shimura varieties as moduli of motives

Theorem 2.3.16. Let (G,X) be a Shimura datum of Hodge or of orthogonal type
with reflex field E. Then Mot(G,X) is an Aut(C /E)-stable subset of Mot(G),
and the bijection Sh(G,X)(C)!Mot(G,X) is Aut(C /E)-equivariant.

Remark 2.3.17. Since the map Mot(SO(V ))!Mot(V ) given in Lemma 2.3.11
is Aut(C)-equivariant, Theorem 2.3.3 is a corollary of Theorem 2.3.16 and Lemma 2.3.15.

2.3.2 Siegel Shimura data

Let (V, ψV ) be a symplectic vector space over Q, and let (GSp,H) be the associated
Shimura datum as in Example 2.1.1.

Definition 2.3.18. Let R be a Q-algebra, and consider R-modules V1, V2, L1,
and L2 endowed with homomorphisms ψ1 :

∧2
V1 ! L1 and ψ2 :

∧2
V2 ! L2. A

similitude from the tuple (V1, L1) to the tuple (V2, L2) is a pair of isomorphisms

(ϕ : V1
∼−−! V2, λ : L1

∼−−! L2)

for which the diagram ∧2
V1 L1

∧2
V2 L2

ψ1

ϕ λ

ψ2

commutes.

Definition 2.3.19. We define the set Mot(V, ψV ) as the set of isomorphism
classes of tuples (M,L,ψ, α, β), where

• M and L are abelian motives over C,

• ψ :
∧2

M ! L is a morphism of motives,

• (α, β) : (V ⊗Af ,Af)! (Mét, Lét) is a similitude.

Here, two tuples (M1, L1, ψ1, α1, β1) and (M2, L2, ψ2, α2, β2) are said to be iso-
morphic if there exists a pair of isomorphisms ϕ : M1 ! M2 and λ : L1 ! L2 for
which the diagrams

∧2
M1 L1

∧2
M2 L2

ψ1

ϕ λ

ψ2

,

M1,ét M2,ét

V ⊗Af

ϕét

α1 α2 ,
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2. Shimura varieties and motives

and

L1,ét L2,ét

V ⊗Af

λét

β1 β2

commute. Pullback of motives gives a left Aut(C)-action on Mot(V, ψV ).

Definition 2.3.20. We define AV(V, ψV ) to be the set of isogeny classes of tuples
(A, λ, α), where

• A is an abelian variety over C,

• λ is a polarization on A,

• α : V ⊗Af ! H1
ét(A,Af) is a similitude, where H1

ét(A,Af) is endowed with
the symplectic form induced by λ.

Two tuples (A1, λ1, α1) and (A2, λ2, α2) are said to be isogenic if there is an isogeny
ϕ ∈ Hom(A1, A2)⊗Q making the diagram

H1
ét(A2,Af) H1

ét(A1,Af)

V ⊗Af

ϕ∗

α2 α1 ,

commute. Pullback of schemes gives a left Aut(C)-action on AV(V, ψV ).

Proposition 2.3.21. The map Sh(GSp,H)(C)!Mot(GSp) given in Lemma 2.3.12
is Aut(C)-equivariant.

Proof. In [D2, §4], Deligne defines a bijection Sh(GSp,H)(C) ! AV(V, ψV ), as
follows. Let (h, g) be an element of Sh(GSp,H)(C). Fix a lattice Λ ⊆ V such
that ψV restricts to a perfect pairing on Λ. Then (Λ, h) is a Z-Hodge structure
of type d(1, 0) + d(0, 1), where 2d is the dimension of V , and ψV |Λ is a polar-
ization on (Λ, h). This gives rise to a polarized abelian variety (A, λ) (unique up
to isomorphism) such that H1(A,Z) is isomorphic to Λ as a polarized Z-Hodge
structure. Pick such an isomorphism f : Λ! H1(A,Z). Now we define α to be the
composition

V ⊗Af
g−−! V ⊗Af

f⊗Af−−−−! H1(A,Af).

The pair (h, g) is mapped to (A, λ, α). As a consequence of the Shimura-Taniyama
formula [D2, Théorème 4.19], this map is Aut(C)-equivariant.

Next, there is a map from AV(V, ψV ) to Mot(V, ψV ), given by mapping
(A, λ, α) to the tuple (h1(A),1(−1), ψλ, α, β), where ψλ is the symplectic form
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2.3. Orthogonal Shimura varieties as moduli of motives

associated with λ, and β is the factor of similitude of α. This map is clearly
Aut(C)-equivariant.

We now define a map Mot(GSp)!Mot(V, ψV ). Denote by χ the 1-dimensional
representation of GSp given by the similitude character. Then we map (F, η) ∈
Mot(GSp) to (F (V ), F (χ), ψV , ηV , ηχ). This map is clearly Aut(C)-equivariant,
and similarly to Lemma 2.3.11, one can show that this map is a bijection.

We now have a diagram

Sh(GSp,H)(C) Mot(GSp)

AV(V, ψV ) Mot(V, ψV )

x

z

w

y

From the constructions of the maps x, y, z, and w it can be seen that for (h, g) ∈
Sh(GSp,H)(C), the tuples yx(h, g) and wz(h, g) have the same Betti realization,
and are therefore isomorphic by Theorem 2.2.2. It follows that the diagram com-
mutes. Since y, z, and w are Aut(C)-equivariant, and since y is injective, we con-
clude that x is Aut(C)-equivariant.

Remark 2.3.22. Note that this proves Theorem 2.3.16 for Siegel Shimura data.

2.3.3 Shimura data of Hodge type

Before proving Theorem 2.3.16 for Shimura data of Hodge type, we need the
following lemma.

Lemma 2.3.23. Let ι : G ! G′ be a homomorphism of affine group schemes
over Q. If ι is a closed immersion, then the induced map Mot(G)!Mot(G′) is
injective.

Proof. In this proof, we will identify Motab,C with Gab -Rep. That is, we think
of an abelian motive M as the vector space HB(M) endowed with a Gab-action.

Let (F1, η1), (F2, η2) ∈Mot(G), and suppose they have the same image under
the map Mot(G)!Mot(G′). That is, assume we have an isomorphism ϕ : F1ι

∗ !
F2ι
∗ of tensor functors from G′ -Rep to Motab,C such that for every W ∈ G′ -Rep,

the diagram of Af -modules

Hét F1(W ) Hét F2(W )

W ⊗Af

Hét(ϕW )

η1,W η2,W

commutes. We wish to show that (F1, η1) is isomorphic to (F2, η2). This amounts
to showing that for V ∈ G -Rep, the functorial isomorphism of Af -modules

η2,V η
−1
1,V : Af ⊗F1V −! Af ⊗F2V
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2. Shimura varieties and motives

restricts to a Gab-equivariant map ϕV : F1V ! F2V .
Since ι is a closed immersion, [DM1, Proposition 2.21] implies that there exist

W ∈ G′ -Rep, Ṽ ∈ G -Rep, an injective G-equivariant map Ṽ ! W , and a
surjective G-equivariant map Ṽ ! V .

We first show that η2,V η
−1
1,V (F1V ) = F2V . From η2,ι∗W η

−1
1,ι∗W = Af ⊗ϕW , it

follows that η2,ι∗W η
−1
1,ι∗W (F1W ) = F2W . Therefore,

η2,Ṽ η
−1

1,Ṽ
(F1Ṽ ) = (Af ⊗F2Ṽ ) ∩ F2W = F2(Ṽ ).

This and the surjectivity of F1Ṽ ! F1V (which follows from Remark 2.3.7) imply
that η2,V η

−1
1,V (F1V ) = F2V . We denote the resulting isomorphisms of vector spaces

ϕṼ : F1Ṽ ! F2Ṽ and ϕV : F1V ! F2V .
We now show that ϕV is Gab-equivariant. Consider the commutative diagram

F1W F1Ṽ F1V

F2W F2Ṽ F2V

ϕW ϕṼ ϕV

The horizontal maps are injective and surjective because F is exact, cf. Re-
mark 2.3.7. A diagram chase combined with the fact that ϕW is Gab-equivariant
shows that ϕV is Gab-equivariant, completing the proof.

Proposition 2.3.24. Let (G,X) be a Hodge type Shimura datum. The map
Sh(G,X)(C)!Mot(G) given in Lemma 2.3.12 is Aut(C)-equivariant.

Proof. Let (G,X) be a Shimura datum of Hodge type with reflex field E, and let
(G,X) ↪! (GSp,H) be an embedding into a Siegel Shimura datum. Then there is
a commutative diagram

Sh(G,X)(C) Mot(G)

Sh(GSp,H)(C) Mot(GSp)

It is clear from the definitions that the map Mot(G) ! Mot(GSp) is Aut(C)-
equivariant, and it is injective by Lemma 2.3.23. Moreover, by Proposition 2.3.21
the map Sh(GSp,H)(C)!Mot(GSp) is Aut(C)-equivariant, and Sh(G,X)(C)!
Sh(GSp,H)(C) is Aut(C /E)-equivariant since (G,X)! (GSp,H) induces a mor-
phism Sh(G,X)! Sh(GSp,H)E . It follows that the map Sh(G,X)(C)!Mot(G)
is Aut(C /E)-equivariant.

Remark 2.3.25. Note that this proves Theorem 2.3.16 for Shimura data of Hodge
type.
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2.3. Orthogonal Shimura varieties as moduli of motives

2.3.4 Shimura data of orthogonal type

We will need that the Picard group of Af is trivial, and later for Lemma 5.1.14
we will also need that the Picard group of A is trivial, where where A denotes the
ring of adèles of Q. This is unsurprising, but it is difficult to find a proof in the
literature, so we include it here.

Lemma 2.3.26. The Picard groups of A and Af are trivial.

Proof. Note that since A = R×Af , we have Pic(A) ∼= Pic(Af), so it suffices to
show that Pic(A) = 1.

For a finite set of primes S, define

RS = R×
∏
p∈S

Qp×
∏
p 6∈S

Zp .

By definition, A is the colimit colimS RS . Therefore [SP, Tag 01ZL] says that
for every line bundle L on Spec(A), there exists an S and a line bundle LS on
Spec(RS) such that L is the pullback of LS to Spec(A). It follows that it suffices
to show that Pic(RS) is trivial.

More generally, suppose that we are given a set of rings {Ri}i∈I with Pic(Ri) =
1 for all i, and set R =

∏
i∈I Ri. If P is a Gm-torsor on Spec(R)Zariski, then P is

affine, since affineness is Zariski-local on the target. Therefore

P (R) =
∏
i∈I

P (Ri),

which is non-empty since P (Ri) is non-empty for every i ∈ I by Pic(Ri) = 1. This
shows that P is the trivial torsor, and hence that Pic(R) = 1. Since the Picard
groups of R, Qp, and Zp are trivial, this proves the lemma.

Proposition 2.3.27. Let (SO,Ω) be a Shimura datum of orthogonal type. The
map Sh(SO,Ω)(C)!Mot(SO) given in Lemma 2.3.12 is Aut(C)-equivariant.

Proof. As in (2.1) , we have a Shimura datum (GSpin,Ω′) of Hodge type and a
morphism (GSpin,Ω′)! (SO,Ω). Since the map GSpin! SO fits in a short exact
sequence

1! Gm −! GSpin −! SO! 1,

and since H1(Af ,ét,Gm) = Pic(Af) = 1 by Lemma 2.3.26, the map GSpin(Af)!
SO(Af) is surjective. Moreover, the map Ω′ ! Ω is a bijection, so the map
Sh(GSpin,Ω′)(C)! Sh(SO,Ω)(C) is surjective. There is a commutative diagram

Sh(GSpin,Ω′)(C) Mot(GSpin)

Sh(SO,Ω)(C) Mot(SO)
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2. Shimura varieties and motives

Because (GSpin,Ω′) is of Hodge type, Proposition 2.3.24 states that the map
Sh(GSpin,Ω′)(C) ! Mot(GSpin) is Aut(C)-equivariant. In addition to this,
Mot(GSpin) ! Mot(SO) and Sh(GSpin,Ω′)(C) ! Sh(SO,Ω)(C) are clearly
Aut(C)-equivariant. It follows that Sh(SO,Ω)(C)!Mot(SO) is Aut(C)-equivariant,
wich was to be shown.

Remark 2.3.28. This concludes the proof of Theorem 2.3.16. By Remark 2.3.17,
this also finishes the proof of Theorem 2.3.3.
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3
Moduli of polarized hyperkähler varieties

The main result of this chapter is that the moduli stack of polarized hyperkähler
varieties is a separated Deligne-Mumford stack over Q (Theorem 3.3.2). In a later
chapter we will also see that it is smooth (Corollary 4.1.16). This result is well
known to the experts. Our account closely follows that in [R4] and [H2, Chap-
ter 5], where the same result is proved for polarized K3 surfaces (that is, for
two-dimensional polarized hyperkähler varieties) in mixed characteristic.

The first section collects the basic definitions and facts about hyperkähler va-
rieties. The second section is about polarizations on hyperkähler varieties, and
Picard schemes. We also state some important results by Matsusaka and Mum-
ford on the moduli of polarized varieties. The final section contains the main result
and its proof.

3.1 Hyperkähler varieties

Definition 3.1.1. A complex scheme X is called a hyperkähler variety if the
following conditions hold:

1. X is connected, smooth, and projective,

2. H0(X,Ω2
X) is spanned by a nowhere degenerate 2-form,

3. π1(X) = 1.

Remark 3.1.2. Since the Hodge–de Rham spectral sequence degenerates at the
E1-page for compact Kähler manifolds (and in particular for smooth projective
complex varieties), the 2-form in the definition is automatically closed. For this
reason, hyperkähler varieties are sometimes called irreducible holomorphic sym-
plectic varieties.

Lemma 3.1.3. LetX be a smooth projective connected complex scheme for which
there exists a nowhere degenerate 2-form in H0(X,Ω2

X). The étale fundamental
group πét

1 (X) is trivial if and only if π1(X) is.

Proof. By [SGA1, Corollaire XII.5.2], πét
1 (X) is the profinite completion of π1(X).

In particular, if π1(X) is trivial, then so is πét
1 (X).
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3. Moduli of polarized hyperkähler varieties

For the converse, note that the Bogomolov decomposition theorem implies that
there exists an exact sequence 1! Z2k ! π1(X)! G! 1, with G a finite group
(this is explained in the statement immediately following [B2, Théorème 1]). Since
the profinite completion πét

1 (X) of π1(X) is trivial, the group G is trivial. Now
π1(X) ∼= Z2k, so that πét

1 (X) = 1 implies that k = 0, showing that π1(X) = 1.

Definition 3.1.4. Let K be a field of characteristic 0, and let K be an algebraic
closure of K. A scheme X over K is called a hyperkähler variety if the following
conditions hold:

1. X is geometrically connected, smooth, and projective,

2. H0(X,Ω2
X/K) is spanned by a nowhere degenerate 2-form,

3. πét
1 (XK) = 1.

Remark 3.1.5. Since K has characteristic 0, the degeneration of the Hodge–
de Rham spectral sequence at E1 again shows that the 2-form is closed.

Remark 3.1.6. Lemma 3.1.3 shows that when K = C, Definitions 3.1.1 and 3.1.4
agree. This allows us to apply the results of [B2], which use definition 3.1.1.

Example 3.1.7. Two-dimensional hyperkähler varieties are K3 surfaces. Con-
versely, every K3 surface over a field of characteristic 0 is a hyperkähler variety.

Example 3.1.8. For higher-dimensional examples, consider a K3 surface S over
a field K of characteristic 0, and n an integer greater than or equal to 2. Then
by [B2, Théorème 3] and the Lefschetz principle, the Hilbert scheme S[n] of n
points on S is a 2n-dimensional hyperkähler variety over K. Deformations of hy-
perkähler varieties of this type are also hyperkähler varieties, known as K3[n]-type
hyperkähler varieties. We will return to these varieties in Section 4.7.

Example 3.1.9. The only other known examples are the so-called generalized
Kummer varieties ([B2, § 7]), which are higher-dimensional analogues of Kummer
K3 surfaces, and the more recent examples in dimension 6 and 10 constructed by
O’Grady as symplectic desingularizations of certain moduli spaces of sheaves on
abelian surfaces and K3 surfaces ([O2] and [O1]).

Proposition 3.1.10. If X/K is a hyperkähler variety of dimension 2n, then

1. for every prime `, H1
ét(XK ,Z`) = 0, and H2

ét(XK ,Z`) is a free Z`-module;

2. dimK Hi(X,OX) = dimK H0(X,ΩiX/K) = (1 + (−1)i)/2, and χ(X,OX) =
n+ 1;

3. Pic(X) is torsion-free;

4. the Kodaira dimension of X is 0.
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3.2. Polarizations on hyperkähler varieties

Proof. The first point follows from the étale analogues of Hurewicz’ theorem and
the universal coefficient theorem. Point 2 follows from [B2, Proposition 3] and the
Lefschetz principle. The torsion-freeness of Pic(X) follows from Point 1 and the
Kummer sequence. The fourth point follows immediately from the triviality of the
canonical sheaf, which is due to the existence of a non-degenerate 2-form.

The following lemma states that small deformations of hyperkähler varieties
are hyperkähler varieties, which will be useful in the sequel.

Lemma 3.1.11. Let S be a scheme over Q, and suppose f : X ! S is a proper
smooth morphism of schemes with projective and geometrically connected fibers.
If s ∈ S is a point for which Xs is a hyperkähler variety, then there exists a open
neighborhood U of s in S such that all fibers of XU ! U are hyperkähler varieties.

Proof. First assume S is reduced and locally Noetherian. Corollaire X.3.9 in [SGA1]
shows that the fundamental group of the geometric fibers of f is constant on the
connected components of S, which are open because S is locally Noetherian, and
hence locally connected [SP, Tag 04MF].

Let 2n be the relative dimension of f . The sets {t ∈ S | χ(Xt,OXt) = n+1} and
{t ∈ S | hi(Xt,OXt

) ≤ 1
2 (1 + (−1)i), i = 0, 1, . . . , 2n} are open and both contain

s by Part 2 of Proposition 3.1.10. Their intersection is {t ∈ S | hi(Xt,OXt
) =

1
2 (1 + (−1)i), i = 0, 1, . . . , 2n}. It follows from this and Hodge symmetry that

h0
(
Xt,Ω

2
Xt/k(t)

)
= 1 for all t in an open neighborhood of s.

The constancy of t 7! h0
(
Xt,Ω

2
Xt/k(t)

)
near s allows us to apply Grauert’s

direct image theorem (which uses the reducedness of S) to extend a symplectic
form on Xs to nearby fibers, proving the lemma for reduced and locally Noetherian
S.

For not necessarily reduced S, we obtain the result by applying the reduced
case to Sred. A standard limit argument gets rid of the Noetherian hypothesis, see
for instance [GW, Theorem 10.66].

3.2 Polarizations on hyperkähler varieties

We need some properties of the Picard sheaf of smooth proper morphisms whose
fibers are hyperkähler varieties. For an algebraic space X over a scheme S, let
PicX/S denote the fppf sheafification of the presheaf T 7! Pic(XT ) on (Sch /S)fppf.

Remark 3.2.1. When S is a scheme over Q, and f : X ! S a smooth proper
morphism of schemes whose fibers are hyperkähler varieties, f∗OX ∼= OS holds
universally because f is proper and has geometrically connected fibers. It follows
that the étale sheafification of T 7! Pic(XT ) is equal to PicX/S [FGI+, pg. 257].
Moreover, for every S-scheme T there is an exact sequence [BLR, Proposition 8.4]

0! Pic(T )! Pic(XT )! PicXT /T (T ).

So given a section λ ∈ PicX/S(S), we can find an étale cover S′ ! S such that the
pullback of λ to XS′ lies in Pic(XS′)/Pic(S′) ⊆ PicXS′/S

′(S′).
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3. Moduli of polarized hyperkähler varieties

Following [BLR], we call a morphism X ! S strongly projective if it is finitely
presented and there exists a locally free sheaf E on S of constant finite rank and
a closed immersion X ! P(E) over S. Let S be a quasi-compact scheme. For
a strongly projective flat morphism X ! S with geometrically integral fibers,
PicX/S is a scheme [BLR, Theorem 8.2.5].

The following proposition is proved for families of K3 surfaces in [R4, Lemma 3.1.6].
The proof applies verbatim to families of hyperkähler varieties of higher dimension.

Proposition 3.2.2. Let S be a quasi-compact scheme over Q, and X/S a strongly
projective smooth morphism whose fibers are hyperkähler varieties. Then multi-
plication by n ∈ Z>0 is a closed immersion [n] : PicX/S ! PicX/S .

Definition 3.2.3. Let S be a Q-scheme, and let X ! S be a smooth proper mor-
phism of algebraic spaces whose fibers are hyperkähler varieties. A polarization
on X/S is an element λ ∈ PicX/S(S) such that for every geometric point s of S,
the pullback λs ∈ Pic(Xs) is ample.

Let P ∈ Q[t] be a polynomial. A polarized morphism of algebraic spaces (X !
S, λ) is said to have Hilbert polynomial P if every geometric fiber (Xs, λs) has
Hilbert polynomial P .

Remark 3.2.4. Polarizations always exist, étale locally. To see this, let X/S be as
in Definition 3.2.3, let s be a geometric point of S, and pick an ample line bundle
L0 on Xs. Then L0 is an element of the stalk of the sheaf PicX/S on Sét, and
therefore extends to a section λ ∈ PicX/S(U), where U is an étale neighborhood of
s. Since ampleness is open on the base, we can find an étale neighborhood V ! U
of s on which λ is a polarization.

Lemma 3.2.5. Let P ∈ Q[t] be a polynomial. There exists an integer m ∈ Z≥0

such that the following holds. For any scheme S over Q and any smooth proper
morphism of schemes X ! S whose fibers are hyperkähler varieties endowed with
a polarization λ ∈ PicX/S(S) with Hilbert polynomial P , there exists an étale
cover U ! S such that

• (f : XU ! U, λU ) is a polarized proper smooth morphism of schemes whose
fibers are hyperkähler varieties with Hilbert polynomial P ,

• λU is the image under Pic(XU )! PicXU/U (U) of a line bundle L on XU ,

• f∗(L⊗m) is free of rank P (m),

• L⊗m is relatively very ample.

Proof. Matsusaka’s big theorem [M2] gives an integer m ∈ Z≥0 such that if K
is a field of characteristic 0 and (X/K, λ) is a polarized hyperkähler variety with
Hilbert polynomial P , then mλ ∈ PicX/K(K) is the class of a very ample line
bundle on XK .

Let (X ! S, λ) be a polarized smooth proper morphism of schemes whose
fibers are hyperkähler varieties with Hilbert polynomial P . Using Remark 3.2.1,
we find an étale cover U ! S such that the first two conditions of the lemma are
satisfied.
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3.3. The moduli stack of polarized hyperkähler varieties

Kodaira vanishing and the triviality of the canonical sheaf of X imply that
H1(Xs, L

⊗m
s ) = 0 for all s ∈ U , so from [MFK, Chapter 0, §5, a)] it follows

that f∗(L
⊗m) is locally free. The statement about the rank follows from Kodaira

vanishing and the definition of the Hilbert polynomial. By further refining the
cover U ! S we can globally liberate f∗(L

⊗m).
The fact that L⊗m is relatively very ample follows from the choice of m.

We will need the following results on moduli of non-ruled polarized varieties,
due to Matsusaka and Mumford. See also [P2, Theorem 4.3, Proposition 4.4].
Note that ruled varieties have Kodaira dimension −∞, so by Point 4 of Proposi-
tion 3.1.10, the lemmas apply to hyperkähler varieties.

Lemma 3.2.6 (Matsusaka-Mumford, [MM1, Chapter 1, Theorem 2]). Let R be
a dvr with fraction field K, and X1, X2 smooth proper R-schemes with non-
ruled special fibers, equipped with relatively ample line bundles L1 and L2. Any
isomorphism f : X1,K ! X2,K with f∗[L2,K ] = [L1,K ] extends uniquely to an
isomorphism X1 ! X2 with f∗[L2] = [L1].

Lemma 3.2.7 (Matsusaka-Mumford, [MM1, Chapter 1, Corollary 2]). Let X be
a non-ruled variety over an algebraically closed field K with H0(X,Ω1

X/K) = 0,
equipped with an ample line bundle L. Then the number of automorphisms of X
preserving the class of L in Pic(X) is finite.

3.3 The moduli stack of polarized hyperkähler varieties

In this section we define the stack of polarized hyperkähler varieties, and prove
some of its properties. We closely follow [R4] and [H2, Chapter 5].

Definition 3.3.1. The moduli stack of polarized hyperkähler varieties is
defined as the groupoid fibration HK ! Sch/Q whose objects are pairs (X !
S, λ ∈ PicX/S(S)) where S is a Q-scheme, X ! S is a smooth proper morphisms
of algebraic spaces whose fibers are hyperkähler varieties, and λ is a polarization
on X. Morphisms (X ′ ! S′, λ′)! (X ! S, λ) are those cartesian squares

X ′ X

S′ S

f

for which f∗λ = λ′ in PicX′/S′(S
′). The functor HK! Sch/Q maps (X ! S, λ)

to S, and a cartesian square as above to the morphism S′ ! S.

The following is the main theorem of this chapter. See also Lemma 3.3.9,
Lemma 3.3.10, and Corollary 4.1.16 in the next chapter.

Theorem 3.3.2. The groupoid fibration HK is a smooth separated Deligne-
Mumford stack over Q. Its dimension at a C-point (X,λ) is equal to b2(X)− 3.
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3. Moduli of polarized hyperkähler varieties

Remark 3.3.3. In this section we will only prove that HK is a separated Deligne-
Mumford stack, locally of finite type over Q. The assertion about the smoothness
and dimension of HK will be proved in a later chapter and is a consequence of
the local Torelli theorem for complex hyperkähler varieties [B2, Théorème 5]. See
Corollary 4.1.16.

Lemma 3.3.4. The groupoid fibration HK is a stack on (Sch /Q)ét.

Proof. This follows immediately from the fact that the groupoid fibration of alge-
braic spaces is a stack [SP, Tag 04UA].

Fix a polynomial P ∈ Q[t] and an integer m,∈ Z≥0, and define N := P (m)−1.

Denote by Hilb the Hilbert scheme Hilb
P (mt)

PN , which parametrizes closed sub-

schemes Z of PN such that O(1)|Z has Hilbert polynomial P (mt). Let Z ⊆
PN×Hilb be the universal family.

Let Hm,P : (Sch/Q)
opp ! Set be the subfunctor of Hilb sending a Q-scheme

S to the set of those Z ∈ Hilb(S) satisfying

1. Z ! S is smooth, and its fibers are hyperkähler varieties,

2. there exists an L ∈ Pic(Z) such that O(1)|Z = mL in Pic(Z)/Pic(S),

3. for any geometric point s of S, the restriction map

H0(PN
s ,O(1))! H0(Zs, L

⊗m
s )

is an isomorphism.

Lemma 3.3.5. The functor Hm,P is representable by a scheme, and the inclusion
Hm,P ! Hilb is an immersion.

Proof. We need to show that the locus in Hilb over which Z satisfies the given
properties is a locally closed subscheme.

Let H1 be the set of s ∈ Hilb such that Zs is a hyperkähler variety over
k(s). This is an open set by the fact that smoothness is an open condition and
Lemma 3.1.11.

Consider the cartesian square

PicZH1
/H1

PicZH1
/H1

H2 H1

[m]

i∗O(1) .

Then H2 ! H1 is a closed immersion by Proposition 3.2.2. Since PicZH2
/H2

is a
scheme by Theorem 8.2.5 in [BLR], there exists a Poincaré bundle on PicZH2

/H2
×H2 ZH2 .

This, combined with the fact that by construction O(1)|ZH2
∈ mPicZH2

/H2
(H2),

shows that Property 2 holds over H2.
That Property 3 defines a locally closed subscheme Hm,P of H2 is proved

exactly as in the final part of the proof of Proposition 5.1 in [MFK].
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3.3. The moduli stack of polarized hyperkähler varieties

Now pick m ∈ Z≥0 associated with P as in Lemma 3.2.5, and let HKP ⊆ HK
be the open substack of pairs (X ! S, λ) with Hilbert polynomial P . Note that
the action of the group scheme PGL := Aut(PN

Q) on Hilb restricts to an action on
Hm,P .

Lemma 3.3.6. The universal family ZHm,P
! Hm,P yields a PGL-invariant mor-

phism Hm,P ! HKP , which in turn induces an equivalence [Hm,P /PGL]
∼−!

HKP . In particular, HKP is an algebraic stack.

Proof. To simplify the notation, we define H = Hm,P .
The natural relatively very ample line bundle on ZH ! H is of the form mλ

for exactly one λ ∈ PicZH/H(H) by the definition of H and Proposition 3.2.2. This

defines the morphism (ZH , λ) : H ! HKP .
To establish the required equivalence, we use [LMB, Proposition 3.8]. This

proposition states that it suffices to show

1. for every Q-scheme U and every morphism ξ : U ! HKP there exists an
étale cover f : V ! U such that f∗ξ is in the essential image of H ! HKP ;

2. H×HKP H is equivalent to H×PGL as an (H×H)-stack, where H×PGL!
H ×H is given by (h, g) 7! (h, hg).

For Point 1, let (X,λ) : U ! HKP , and take an étale cover V ! U as in
Lemma 3.2.5. That is, there exists a line bundle L on XV such that λV is the class
of L in PicX/U (V ), the line bundle L⊗m is relatively very ample, and f∗L is free of
rank N+1. It follows that L⊗m gives rise to a closed immersion XV ! P f∗(L

⊗m)
satisfying the Conditions 1, 2, and 3 preceding Lemma 3.3.5, so that we have a
morphism V ! H. In particular, (XV , λV ) is in the essential image of H ! HKP .

To prove Point 2, define Φ: H×PGL! H×HKP H by (h, g) 7! (h, hg, g−1|h).
This is a morphism of (H ×H)-stacks which is clearly fully faithful. We want to
see that it is an equivalence.

To see the essential surjectivity of Φ, consider Z1, Z2 ∈ H(U) and an isomor-
phism φ : (Z1, L1) ! (Z1, L2), where L1 and L2 are as in the second point of
Lemma 3.3.5. There is a commutative diagram

P(f1,∗L
⊗m
1 ) P(f2,∗L

⊗m
2 )

PN
U PN

U

Z1 Z2
φ

.

The top arrow is the isomorphism induced by the fact that φ∗(L2) ∼= f∗1 (M)⊗L1 for
some M ∈ Pic(U), and the morphisms P(fi,∗L

⊗m
i ) ! PN

U are the isomorphisms
induced by Point 3 of Lemma 3.3.5. All other morphisms are the obvious ones.
The composition of the top arrows is now an element g ∈ PGL(U) = AutU (PN

U )
with Z1g

−1 = Z2, proving the essential surjectivity of Φ.
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3. Moduli of polarized hyperkähler varieties

Lemma 3.3.7. The stack HKP is of finite type over Q.

Proof. Since the Hilbert scheme is of finite type Q, it follows that H is of finite
type over Q. Using [SP, Tags 06U8, 050X], we find that HKP is of finite type over
Q.

Lemma 3.3.8. The stack HK is a Deligne-Mumford stack, locally of finite type
over Q.

Proof. Since HK is the disjoint union of all HKP , where P ranges over all poly-
nomials P ∈ Q[t], Lemmas 3.3.6 and 3.3.7 show that HKP is an algebraic stack,
locally of finite type over Q.

To show that HK is a Deligne-Mumford stack, it suffices to show that the
diagonal ∆: HK ! HK×Q HK is of finite type and that the geometric points
of HK have finite and reduced automorphism groups [O3, Remark 8.3.4].

By Lemma 3.2.7, and because group schemes over a field of characteristic 0
are reduced [SGA3, Corollaire VIB.1.6.1] (see also [P1, Corollaire 4.2.8]), the au-
tomorphism group of a geometric point of HK is finite and reduced.

By [SP, Tag 04XS], the diagonal ∆ is locally of finite type. Since HK is the dis-
joint union of the Noetherian stacks HKP , and since morphisms between Noethe-
rian stacks are quasi-compact, ∆ is also compact, and hence of finite type.

Lemma 3.3.9. The stack HK is a Deligne-Mumford stack, locally of finite type
over Q.

Proof. This follows immediately from the fact that HK is the disjoint union of all
HKP , where P ranges over all of Q[t], Lemma 3.3.8, and Lemma 3.3.7.

Lemma 3.3.10. The Deligne-Mumford stack HK is separated over Q.

Proof. Since HK is locally of finite type over Q by Lemma 3.3.9, we can ap-
ply the valuative criterion for separatedness of morphisms of locally Noetherian
stacks [LMB, Proposition 7.8]. That is, we need to show that for a complete dvr R
over Q with fraction field K and algebraically closed residue field, and two points
(X1, λ1), (X2, λ2) ∈ HK(R), any isomorphism f : (X1, λ1)K ! (X2, λ2)K over K
extends uniquely to an isomorphism (X1, λ1)! (X2, λ2) over R.

Since R is complete and has algebraically closed residue field, the étale covers
of R are all trivial. Therefore, by Remark 3.2.1, the λi are the classes of rela-
tively ample line bundles on X1 and X2, respectively. This allows us to apply
Lemma 3.2.6, which says that the isomorphism f extends uniquely to an isomor-
phism (X1, λ1)! (X2, λ2), proving the lemma.
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Period maps for hyperkähler varieties

It is well-known that the canonical model of a Siegel Shimura stack is the moduli
stack of principally polarized abelian varieties over Q (see [D2]). This follows
almost immediately from Deligne’s definition of canonical models. An analogue of
this result for polarized K3 surfaces over Q was initially proved by Rizov in [R3],
then via a different argument by Madapusi-Pera in [MP1], and finally a slightly
stronger version was proved by Taelman in [T1]. In this chapter, we extend this
result to higher-dimensional polarized hyperkähler varieties over Q. More precisely,
we will construct a degree 2 étale cover HKor of the moduli stack HK of polarized
hyperkähler varieties over Q, and then give an étale morphism from HKor to an
orthogonal Shimura stack, known as the period map.

In the first section we collect some important results from the literature on
hyperkähler varieties over C. In particular, we recall some basic facts about a
quadratic form on the second cohomology of a hyperkähler variety known as the
Beauville-Bogomolov-Fujiki form (the BBF form), and state the global Torelli
theorem of Verbitsky, which roughly says that the geometry of a hyperkähler
variety is largely determined by its second cohomology endowed with the BBF
form (Theorem 4.1.12). We also show that HK is smooth (Corollary 4.1.16).

In the next section, we define a BBF form for hyperkähler varieties over non-
closed fields of characteristic 0. The most important result in this section is the
étale monodromy invariance of this form (Theorem 4.2.4). The third section in-
troduces the notion of an orientation on a hyperkähler variety, which yields the
degree 2 étale cover HKor of HK on which we will construct the period map.

Section 4.4 is an introduction to Shimura stacks, following [T1]. It is also shown
that, over C, orthogonal Shimura stacks are moduli stacks of Hodge structures
endowed with a bilinear pairing and a trivialization of the determinant, known as
an orientation. Then, in Section 4.5, we use this modular interpretation to give a
morphism from HKor,C to an orthogonal Shimura stack, mapping a hyperkähler
variety endowed with an orientation to its second cohomology, endowed with the
BBF form and the orientation. We then use the results in Chapter 2 to prove
the main theorem of this chapter, which states that this morphism descends to Q
(Theorem 4.5.2).

The final two sections give stronger versions of this result for specific examples
of hyperkähler varieties. Following [T1], Section 4.6 shows that we can in fact
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4. Period maps for hyperkähler varieties

obtain a period map on the moduli stack of polarized K3 surfaces, rather than
on the stack of oriented polarized K3 surfaces (Theorem 4.6.4). In Section 4.7,
we consider hyperkähler varieties deformation equivalent to the Hilbert scheme of
points on a K3 surface, known as K3[n]-type hyperkähler varieties. We extend a
result of Markman on the monodromy of K3[n]-type varieties to K3[n]-type varieties
over non-closed fields of characteristic 0 (Theorem 4.7.12), and combine this with
Verbitsky’s Torelli theorem to give a period map for such varieties over Q which
is actually an open immersion (Theorem 4.7.18).

4.1 The global Torelli theorem

In this section, we recall the definition of a quadratic form on the second cohomol-
ogy of a complex hyperkähler variety, known as the Beauville-Bogomolov-Fujiki
form. Endowed with this form and its natural Hodge structure, the second coho-
mology captures much of the geometry of a hyperkähler variety. This is Verbitsky’s
global Torelli theorem, which we state in the first subsection, see Theorem 4.1.12.
In the second subsection we show that the moduli stack of polarized hyperkähler
varieties is smooth, see Corollary 4.1.16.

4.1.1 The global Torelli theorem

In this subsection we define the Beauville-Bogomolov-Fujiki form, state some of
its properties, and state the global Torelli theorem. We will call a complex Kähler
manifold X a hyperkähler manifold if it is compact, simply connected, and if
H0(X,Ω1

X) is spanned by a nowhere degenerate 2-form.

Theorem 4.1.1. Let X be a hyperkähler manifold. Then there exists a unique
primitive quadratic form q : H2(X,Z(1))! Z such that

1. q is a Q-multiple of the quadratic form

Q : α 7−!
∫
X

√
tdX α

2

on H2(X,Q(1)),

2. there exists a Kähler class ω ∈ H2(X,R(1)) with q(ω) > 0.

Proof. In [B2, Théorème 5], Beauville defines a primitive quadratic form qX on
H2(X,Z(1)) which is positive on all Kähler classes. Moreover, it is shown in [F,
Remark 4.12] that qX is a multiple of Q.

Now suppose q is another primitive quadratic form on H2(X,Z(1)) satisfying
the two conditions, and let ω ∈ H2(X,R(1)) be a Kähler class on which q is
positive. Then by the first condition, q is equal to cqX , where c ∈ Q×. Since q
is primitive, c ∈ {±1}. Moreover, c = qX(ω)/q(ω) is positive because qX(ω) is
positive on all Kähler classes. It follows that q = qX .
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4.1. The global Torelli theorem

Definition 4.1.2. Let X be a hyperkähler manifold. The quadratic form on
H2(X,Z(1)) given in Theorem 4.1.1 is called the Beauville-Bogomolov-Fujiki
form or BBF form of X, which we denote qX .

Occasionally it will be more convenient to work with the BBF pairing

bX : Sym2 H2(X,Z(1)) −! Z,

which is defined by

bX(v, w) := qX(v + w)− qX(v)− qX(w).

Remark 4.1.3. As is noted in the proof of Theorem 4.1.1, there holds qX(ω) > 0
for every Kähler class. In particular, if L is an ample line bundle on X, we have
qX(c1(L)) ∈ Z>0.

Example 4.1.4. When S is a complex K3 surface, the BBF form on H2(S,Z(1)) is
simply the quadratic form induced by the cup product. In particular, it is an even
self-dual Z-lattice of signature (3, 19). These properties determine the isometry
class of H2(S,Z(1)) by [S3, Chapter V, Theorem 5].

In general, the BBF form is not necessarily self-dual, as the following example
shows.

Example 4.1.5. Let S be a K3 surface, X = S[n] be the Hilbert scheme of n
points on S. In [B2], Beauville gives the following description of the BBF form on
X. Let S(n) be the nth symmetric product of S. That is, S(n) is the quotient of Sn

by the action of Sn given by permuting the coordinates. Then there is a natural
map S[n] ! S(n), and the inverse image of the singular locus of S(n) is a divisor
E on S[n]. There exists a δ ∈ H2(X,Z(1)) with 2δ = E, and such that

H2(S[n],Z(1)) ∼= H2(S,Z(1))⊕ Z δ

as quadratic spaces. There holds q(δ) = 2− 2n. In particular, the discriminant

∆(H2(X,Z(1))) := H2(X,Z(1))∨/H2(X,Z(1))

is isomorphic to Z /(2n− 2) Z, and is generated by δ.

Example 4.1.6. For the remaining known examples of complex hyperkähler va-
rieties as in Example 3.1.9, the BBF form has also been computed. They can all
be found in the table in [R1].

Let (Λ, b : Sym2 Λ ! Z) be a Z-lattice of signature (3, n), and suppose that
Λ is endowed with a Z-Hodge structure. Then (Λ, b) is called a Hodge lattice
of K3 type if the pairing b : Sym2 Λ! Z(0) is a morphism of Hodge structures,
Λ has type (−1, 1), (0, 0), (1,−1), the spaces Λ1,−1 and Λ−1,1 are one-dimensional
and orthogonal to Λ0,0, and the space (Λ⊗R)∩(Λ1,−1⊕Λ−1,1) is positive-definite.

Proposition 4.1.7 ([GHJ, Section 22.3]). Let X be a hyperkähler manifold. Then
the BBF form has signature (3, b2(X) − 3), and it endows H2(X,Z(1)) with the
structure of a Hodge lattice of K3 type.
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4. Period maps for hyperkähler varieties

The following proposition is a consequence of Point 2 in Theorem 4.1.1.

Proposition 4.1.8. Let X/S be a proper smooth map of complex analytic spaces
whose fibers are hyperkähler manifolds. Then there exists a unique quadratic form

qX/S : R2 f∗ Z(1) −! Z

such that for every s ∈ S, the form qX/S restricts to the BBF form on H2(Xs,Z(1)).

Definition 4.1.9. The quadratic form qX/S in Proposition 4.1.8 is called the
BBF form of X/S. The associated morphism of variations of Hodge structures

bX/S : Sym2 R2 f∗ Z(1) −! Z(0)

given by
bX/S(v, w) = qX/S(v + w)− qX/S(v)− qX/S(w).

is known as the BBF pairing of X/S.

Before we can state the global Torelli theorem, we need the notion of a parallel
transport operator.

Definition 4.1.10. Let X0 and X1 be hyperkähler manifolds. Suppose we have

• a smooth proper morphism of complex analytic spaces f : X! T ,

• 0, 1 ∈ T (C),

• a path γ in T from 0 to 1,

• isomorphisms ψ0 : X0 ! X0 and ψ1 : X1 ! X1, where X0 and X1 are the
fibers of f over 0 and 1, respectively.

Then the induced homomorphism

H2(X0,Z(1))
ψ∗0−−−! H2(X0,Z(1))

γ−−! H2(X1,Z(1))
ψ∗1−−−! H2(X1,Z(1))

is called a parallel transport operator.

Remark 4.1.11. It is easy to verify that the composition of parallel transport
operators is again a parallel transport operator. By Proposition 4.1.8, parallel
transport operators preserve the BBF form.

The following is known as the global Torelli theorem for hyperkähler manifolds.
It was originally proved by Verbitsky in [V]. See also [M1] and [H1].

Theorem 4.1.12. LetX0 andX1 be hyperkähler manifolds, and ϕ : H2(X0,Z(1))!
H2(X1,Z(1)) a homomorphism of abelian groups. Then there exists an isomor-
phism f : X1 ! X0 with ϕ = f∗ if an only if ϕ is a morphism of Hodge structures,
an isometry, a parallel transport operator, and there exists a Kähler class ω on X0

such that ϕ(ω) is a Kähler class on X1.
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4.1. The global Torelli theorem

Remark 4.1.13. When X0 and X1 are complex K3 surfaces, the isomorphism f in
Theorem 4.1.12 is unique by [H2, Proposition 15.2.1]. In general, the isomorphism
f is not unique. For example, if X is a complex generalized Kummer variety
of dimension 2n − 2 with n ≥ 2, then the kernel of Aut(X) ! O(H2(X,Z(1))) is
isomorphic to a semidirect product of Z /2 Z with (Z /nZ)⊕4, as is shown in [BNS,
Corollary 3.3].

Corollary 4.1.14. Let (X0, λ0) and (X1, λ1) be polarized hyperkähler varieties,
and ϕ : H2(X1,Z(1))! H2(X0,Z(1)) a Hodge isometry mapping c1(λ1) to c1(λ0).
If ϕ is a parallel transport operator, then there exists an isomorphism f : (X0, λ0)!
(X1, λ1) inducing ϕ.

Proof. This follows immediately from Theorem 4.1.12 and the fact that if λ is an
ample line bundle, then c1(λ) is a Kähler class.

4.1.2 Deformations of polarized hyperkähler varieties

Let (X0, λ0) be a polarized complex hyperkähler variety. We are interested in the
deformation theory of the pair (X0, λ0). Let ArtC be the category of local Artinian
C-algebras. We define a functor Def(X0, λ0) : ArtC ! Set by mapping a local
Artinian C-algebra A with maximal ideal m to the set of equivalence classes of
tuples

(f : X −! Spec(A), λ ∈ PicX/A(A), ϕ : X0 −! Xm).

Here, f is a smooth proper morphism of algebraic spaces whose fibers are hy-
perkähler varieties, λ ∈ PicX/A(A) is a polarization, and ϕ is an isomorphism
of schemes mapping λ0 to λm. Two such tuples (f : X ! Spec(A), λ, ϕ) and
(f ′ : X ′ ! Spec(A), λ′, ϕ′) are said to be equivalent if there exists an isomor-
phism of algebraic spaces X ! X ′ over A mapping λ to λ′, and such that the
diagram

Xm X ′m

X0

ϕ ϕ′

commutes.

Theorem 4.1.15. Let (X0, λ0) be a polarized complex hyperkähler variety with
second Betti number b2. Then the functor Def(X0, λ0) : ArtC ! Set is prorepre-
sented by the formal power series ring C[[t1, . . . , tb2−3]].

Proof. Let Germs be the category of germs of complex analytic spaces. Its objects
are pairs (S, s), with S a complex analytic space, and s ∈ S. A morphism (S, s)!
(S′, s′) in Germs consists of an open neighborhood U of s, and a morphism
ϕ : U ! S′ mapping s to s′. Define a functor Defan(X0) : Germsopp ! Set by
mapping a germ (S, s) to equivalence classes of pairs (f : X ! U,ϕ : X0 ! Xs),
where U is a neighborhood of s, f is a proper smooth map of complex analytic

39



4. Period maps for hyperkähler varieties

spaces, and ϕ is an isomorphism. Two pairs (f : X ! U,ϕ) and (f ′ : X ′ ! U ′, ϕ′)
are equivalent if there exists a neighborhood V ⊆ U ∩U ′ of s and an isomorphism
of complex spaces XV ! X ′V making the diagram

XV X ′V

X0

ϕ ϕ′

commute. The Bogomolov-Tian-Todorov theorem states that sinceX0 is a compact
Kähler manifold with trivial canonical bundle, the functor Defan(X0) is represented
by the germ (Cn, 0), for some n ∈ Z≥0.

Let Ω±
H2(X0,R(1))

be the complex manifold parametrizing Hodge structures of

K3 type on H2(X0,R(1)), and let X ! Defan(X0) be the universal deforma-
tion of X0. Since Defan(X0) is simply connected, we can canonically identify
H2(Xs,Z(1)) with H2(X0,Z(1)) for each s ∈ Defan(X0). This gives rise to a mor-
phism p : Defan(X0) ! Ω±

H2(X0,Z(1))
. The local Torelli theorem [B2, Théorème 5]

states that p is a local isomorphism. This implies that n = b2 − 2.
Let Defan(X0, λ0) : Germsopp ! Set be the functor parametrizing polarized

deformations of (X0, λ0), defined similarly to Defan(X0) and Def(X0, λ0). Then
Defan(X0, λ0) is a subfunctor of Defan(X0), and is in fact the inverse image of
Ω±

H2(X0,R(1))∩λ⊥0
under p. In particular, Defan(X0, λ0) is represented by the germ

(Cb2−3, 0).
Let A be the category of C-algebras which are isomorphic to quotients of Oan

Cn,0

for some n ∈ Z≥0. Then (S, s) 7! Oan
S,s defines an equivalence Germsopp ! A,

where Oan
S denotes the structure sheaf of S. Since the analytification of a finite

C-scheme is still finite, the category A contains ArtC as a full subcategory, and
there is a 2-commutative diagram

ArtC A

Set

Def(X0, λ0) Defan(X0, λ0)

In particular, since the completion of Oan
Cb2−3,0 is C[[t1, . . . , tb2−3]], and since Ar-

tinian algebras are complete, we have, for any A ∈ ArtC

Def(X0, λ0)(A) = Hom(Oan
Cn,0, A) = Hom(C[[t1, . . . , tb2−3]], A).

The following corollary finishes the proof of Theorem 3.3.2.
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Corollary 4.1.16. The moduli stack HK of polarized hyperkähler varieties over
Q is smooth. Its dimension at a C-point (X,λ) is equal to b2(X)− 3.

Proof. For the smoothness assertion, it suffices to prove that HKC is smooth over
C. We already know that HKC is locally of finite type. From [SP, Tag 02HX]
it follows that we need to check that if A is an Artinian C-algebra, and I ⊆ A
an ideal with I2 = 0, then for any morphism Spec(A/I) ! HK, there exists a
2-commutative diagram

Spec(A/I) HK

Spec(A)

More concretely, this means that given a smooth proper morphismX ! Spec(A/I)
whose fibers are hyperkähler varieties and a polarization λ ∈ PicX/ Spec(A/I)(A/I),
we want to find a smooth proper morphism X ′ ! Spec(A) whose fibers are hy-
perkähler varieties and a polarization λ′ ∈ PicX/ Spec(A)(A) such that the pullback
of the pair (X ′, λ′) to A/I is isomorphic to (X,λ). This follows immediately from
Theorem 4.1.15.

Let (X,λ) be a C-point of HK, and let C[ε] be the ring of dual numbers over
C. Then Def(X,λ)(C[ε]) is a finite-dimensional C-vector space, and the dimension
of HK at the point (X,λ) is equal to that of Def(X,λ)(C[ε]). It therefore follows
from Theorem 4.1.15 that the dimension of HK at (X,λ) is b2(X)− 3.

4.2 The BBF form on étale cohomology

In this section we extend the notion of BBF form to hyperkähler varieties over arbi-
trary fields of characteristic 0. The main result is the étale monodromy invariance
of the BBF form, Theorem 4.2.4.

Lemma 4.2.1. Let X be a hyperkähler variety over a field K of characteristic 0.
Then there exists a unique primitive quadratic form q : H2

ét(XK , Ẑ(1)) ! Ẑ such
that

1. q is a Q-multiple of the quadratic form

QX : α 7−!
∫
X

√
tdXK

α2

on H2
ét(XK ,Af(1)),

2. there exists an ample line bundle L on XK for which q(c1(L)) ∈ Z>0.

Proof. By a spreading out argument, we may assume that K is of finite type over
Q. We choose an embedding of K into C. Now using Artin’s comparison isomor-
phism and Theorem 4.1.1, we obtain a primitive quadratic form on H2

ét(XK , Ẑ(1))
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satisfying the conditions of the lemma. In fact, by Remark 4.1.3, we obtain a
quadratic form q : H2

ét(XK , Ẑ(1)) ! Ẑ satisfying the stronger condition that for
every ample line bundle L ∈ Pic(XK) there holds q(c1(L)) ∈ Z>0.

Now suppose q′ is another primitive quadratic form on H2
ét(XK , Ẑ(1)) satisfying

the conditions of the lemma. Let L be an ample line bundle on XK such that
q′(c1(L)) ∈ Z>0. Since q and q′ both satisfy condition 1, there exists a c ∈ Q×

with q = cq′. Because q and q′ are primitive, we have c ∈ Ẑ
×
∩Q× = {±1}. It now

follows from the fact that q′(c1(L)) and q(c1(L)) are positive integers that c = 1,
proving the uniqueness.

Definition 4.2.2. Let X be a hyperkähler variety over a field K of character-
istic 0. The quadratic form on H2

ét(XK , Ẑ(1)) given in Lemma 4.2.1 is called the
Beauville-Bogomolov-Fujiki form or BBF form of X, and is denoted qX .
The bilinear pairing bX : Sym2 H2

ét(XK , Ẑ(1)) ! Ẑ associated with qX is called
the BBF pairing.

Remark 4.2.3. The proof of Lemma 4.2.1 shows that if X is a hyperkähler variety
over C, then the Artin comparison isomorphism between singular and étale coho-
mology gives an isometry from H2(X,Z(1))⊗ Ẑ endowed with the BBF form from

Definition 4.1.2 to H2
ét(X, Ẑ(1)) endowed with the BBF form from Definition 4.2.2.

Theorem 4.2.4. Let S be a Q-scheme, f : X ! S a proper smooth morphism of
algebraic spaces whose fibers are hyperkähler varieties. Then there exists a unique
quadratic form

qX/S : R2
ét f∗ Ẑ(1) −! Ẑ(0)

such that for every geometric point s of S, the form qX/S restricts to the BBF

form on H2
ét(Xs, Ẑ(1)).

Proof. The uniqueness is clear, so we go on to prove the existence of the form.
First, we prove the existence for those f : X ! S which admit a polarization

λ ∈ PicX/S(S). We assume without loss of generality that S is connected.
Let s and s′ be geometric points of S, and γ a path in Sét from s to s′. Then

γ induces an isomorphism of Ẑ-modules γ∗ : H2
ét(Xs, Ẑ(1)) ! H2

ét(Xs′ , Ẑ(1)). Let

q and q′ be the BBF forms on H2
ét(Xs, Ẑ(1)) and H2

ét(Xs′ , Ẑ(1)), respectively. It
suffices to show that qγ∗ = q′.

For the forms Q := QXs
and Q′ := QXs′ from Lemma 4.2.1 it is clear that

Qγ∗ = Q′. Since q is a primitive Q-multiple of Q, it follows that the form qγ∗ is a
primitive Q-multiple of Q′. Moreover, because λs extends to a section λ of PicX/S
over S, we have (qγ∗)(c1(λs)) = q(c1(λs)), which is an element of Z>0 by part 2 of
Lemma 4.2.1. Since the BBF form is uniquely determined by the two conditions in
Lemma 4.2.1, it follows that qγ∗ = q′, proving the theorem for polarizable families
of hyperkähler varieties.

Now let f : X ! S be as in the statement of the theorem. By Remark 3.2.4,
there exists an étale cover U ! S and a polarization λ ∈ PicX/S(U). Let fU : XU !
U be the pullback of X to U . Then the first part of this proof shows that there
exists a quadratic form

qU : R2
ét fU,∗ Ẑ(1) −! Ẑ(0)
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4.2. The BBF form on étale cohomology

in Uét which restricts to the étale BBF form on geometric fibers. It suffices to show
that qU descends to S.

Let pr1 and pr2 denote the projections U ×S U ! U , and let X1 and X2

be the pullbacks of XU along pr1 and pr2, respectively. Then stalk-wise pr∗1 qU
and pr∗2 qU are the BBF forms of the geometric fibers of X1 and X2, respectively.
From X1

∼= X2 it follows that pr∗1 qU = pr∗2 qU , since isomorphisms of hyperkähler
varieties preserve the BBF form. In particular, qU descends to S, proving the
theorem.

Remark 4.2.5. Let S be a Q-scheme, and let f : X ! S be a proper smooth
morphism of algebraic spaces whose fibers are hyperkähler varieties. The quadratic
form

qX/S : R2
ét f∗ Ẑ(1) −! Ẑ

given in Theorem 4.2.4 is called the BBF form of X/S. The associated bilinear

pairing bX/S : Sym2 R2
ét f∗ Ẑ(1)! Ẑ is known as the BBF pairing of X/S.

This quadratic form is preserved under base change in the following sense.
Suppose we are given a morphism ϕ : S′ ! S of Q-schemes. Define f ′ : X ′ ! S′

by the cartesian square

X ′ X

S′ S

f ′

ϕ

f

Then f ′ is a smooth proper morphism of algebraic spaces whose fibers are hy-
perkähler varieties. Smooth and proper base change for étale cohomology give an
isomorphism

ϕ∗
(

R2
ét f∗ Ẑ(1)

)
−! R2

ét f
′
∗ Ẑ(1)

of local systems on S′ét which is compatible with the BBF forms.

Remark 4.2.6. LetX be a complex hyperkähler variety, and σ ∈ Aut(C). It is not
clear whether X and σ∗X have isometric BBF forms on their singular cohomology.
However, it can be shown that they have the same genus, as follows. Remark 4.2.5
shows that H2(X,Z(1))⊗ Ẑ and H2(σ∗X,Z(1))⊗ Ẑ are isometric. In addition, by
Proposition 4.1.7 they have the same signature, so they have the same genus.

For all known examples of complex hyperkähler varieties (see Examples 3.1.7
through 3.1.9), the BBF form Λ satisfies the inequality rk(Λ) ≥ length(∆(Λ)) + 2,
as can be seen in the table in [R1]. Here, length(∆(Λ)) denotes the minimal number
of elements required to generate ∆(Λ). By [N1, Theorem 1.14.2], this inequality and
the indefiniteness of Λ imply that the genus of Λ contains exactly one isometry
class. In particular, if X is one of the known examples of complex hyperkähler
varieties, then X and σ∗X have isometric BBF forms on their singular cohomology.
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4. Period maps for hyperkähler varieties

4.3 Orientations on hyperkähler varieties

This section serves to introduce the moduli stack HKor of oriented polarized hy-
perkähler varieties. The main result is the rather technical Theorem 4.3.6, which
we need to construct a morphism from a connected component of HKor to an
orthogonal Shimura stack.

We will need to work with motives over a finitely generated field k of charac-
teristic 0. Similarly to the algebraically closed case discussed in Section 2.2, they
form a semisimple Tannakian category Motk.

Let k be an algebraic closure of k. Then the composition of the pullback functor
Motk ! Motk with the fiber functor Hét : Motk ! Af -Mod yields a fiber
functor on Motk, which we denote by Hk,ét. Equation (2.3) shows that Hk,ét gives
rise to a functor Motk ! Galk -RepAf

, where Galk -RepAf
denotes the category

of Af -modules endowed with a continuous Af -linear Galk-action. We will abusively
denote this functor with Hk,ét as well. Similarly, an embedding ι : k ! C and the
Betti realization functor give rise to a fiber functor Hι : Motk ! Q -HS. For a
motive M ∈ Motk, we denote by Mét and Mι the images of M under Hk,ét and
Hι, respectively.

Lemma 4.3.1. Let k be a finitely generated field of characteristic 0, let X be a
hyperkähler variety over k with b2(X) > 3, and let ω[4] : Z /4 Z! det H2

ét(Xk, µ4)
be a Galk-equivariant isomorphism. Then there exists an isomorphism of motives
over k

ω : 1 −! det(h2(X)(1))

such that ωét : Af ! det H2
ét(Xk,Af(1)) of ω restricts to an isomorphism Ẑ !

det H2
ét(Xk, Ẑ(1)) satisfying ωét|Ẑ ⊗ Z /4 Z = ω[4]. Moreover, for every embedding

ι : k ! C, the map ωι : Q ! det H2(X ×k,ι C,Q(1)) restricts to an isomorphism
Z! det H2(ι∗X,Z(1)).

Proof. We first show that det(h2(X)(1)) is isomorphic to 1. Since b2(X) > 3, [A1,
Theorem 1.5.1] shows that det(h2(X)(1)) is an abelian motive over k of rank 1 and
weight 0. It follows that det(h2(X)(1)) is an Artin motive. In particular, since its
rank is 1, it follows that det(h2(X)(1)) is the motive associated with a quadratic
character χ : Galk ! {±1}. For any prime number `, the character χ agrees with
the composition

Galk −! O(H2
ét(Xk,Z`(1)))

det−−! {±1}.

The commutative diagram

O(H2
ét(Xk,Z2(1)))

Galk {±1}

GL(H2
ét(Xk, µ4))

det

det
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4.3. Orientations on hyperkähler varieties

and the existence of ω[4] show that χ is trivial, and hence that there exists an

isomorphism ω : 1 ∼= det(h2(X)(1)).

For ι : k ↪! C, we endow det H2(Xι,C,Z(1)) with the quadratic form induced

by the BBF form. Similarly, det H2
ét(Xk, Ẑ(1)) is also endowed with the quadratic

form induced by the BBF form. Then, by Theorem 4.2.4, det H2(Xι,C,Z(1)) ⊗ Ẑ

and det H2
ét(Xk, Ẑ(1)) are isometric. In particular, since the genus of a rank 1

lattice contains only one isometry class, the discriminant d of det H2(Xι,C,Z(1))
is independent of the choice of ι.

Endow 1 with the unique quadratic form q such that for any ι : k ↪! C, the
quadratic form qι on Q restricts to a quadratic form on Z with discriminant d.
By rescaling the isomorphism ω : 1! det(h2(X)(1)), we may assume that it is an
isometry with respect to q and the BBF form. Let ι : k ↪! C. Then, by construc-
tion, the two sublattices ωι(Z) and det H2(Xι,C,Z(1)) of det H2(Xι,C,Q(1)) have
the same discriminant, and are therefore equal. It follows that ωι restricts to an
isomorphism Z ! det H2(Xι,C,Z(1)). From the Artin comparison isomorphisms

it now follows that ωét restricts to an isomorphism Ẑ! det H2
ét(Xk, Ẑ(1)).

Multiplying ω with −1 if necessary guarantees that ωét ⊗ Z /4 Z = ω[4].

Lemma 4.3.2. Let S be a normal Q-scheme of finite type, f : X ! S a smooth
proper morphism of algebraic spaces whose fibers are hyperkähler varieties satisfy-
ing b2 > 3, and let ω[4] : Z /4 Z! det R2

ét f∗µ4 be an isomorphism of local systems
on Sét. Then there are unique isomorphisms of local systems

ωét : Ẑ −! det R2
ét f∗ Ẑ(1)

on Sét and

ωan : Z −! det R2 fC,∗ Z(1)

on SC satisfying ωét|SC
= ωan ⊗ Ẑ and ω[4] = ωét ⊗ Z /4 Z.

Proof. The uniqueness of the isomorphisms is clear, so we go on to prove existence.

Without loss of generality we may assume that S is connected. Let η be
the generic point of S, and η an algebraic closure of η. Lemma 4.3.1 shows
that the restriction of the local system det R2

ét f∗ Ẑ(1) to η is constant. Since
πét

1 (η, η)! πét
1 (S, η) is surjective by [SGA1, Proposition V.8.2], we conclude that

det R2
ét f∗ Ẑ(1) is constant.

Let s be a C-point of S. Then we have a commutative diagram

GL(H2(Xs,Z(1)))

π1(SC, s) {±1}

GL(H2(Xs, µ4))

det

det

(4.1)
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By the existence of ω[4], the composition π1(SC, s) ! GL(H2(Xs, µ4)) ! {±1}
is trivial, so by (4.1) we conclude that π1(SC, s) ! GL(H2(Xs,Z(1))) ! {±1} is
trivial as well. It follows that the local system det R2 fC,∗ Z(1) is constant on SC.

Since the local systems det R2
ét f∗ Ẑ(1) and det R2 fC,∗ Z(1) are constant, the

isomorphisms given in Lemma 4.3.1, applied to η, give the desired isomorphisms
of local systems ωét and ωan.

Definition 4.3.3. Let S be a Q-scheme, and let f : X ! S be a smooth proper
morphism of algebraic spaces whose fibers are hyperkähler varieties. An orienta-
tion on X/S is an isomorphism of sheaves of finite abelian groups

ω : Z /4 Z −! det R2
ét f∗µ4

on Sét.
The moduli stack of oriented polarized hyperkähler varieties HKor is

defined to be the stack parameterizing tuples (X/S, λ, ω), where (X/S, λ) ∈ HK is
an element such that the fibers of X/S have second Betti number greater than 3,
and ω is an orientation on X/S. Let f : X ! HKor be the universal hyperkähler
variety. We denote by ω[4] the universal orientation Z /4 Z! det R2

ét f∗µ4.

Remark 4.3.4. Since HKor is a degree 2 étale cover of HK, it is itself a smooth
separated Deligne-Mumford stack over Q.

Remark 4.3.5. The condition on the second Betti number of the hyperkähler
varieties parameterized by HKor is there to ensure that their motives are abelian,
cf. Remark 2.2.1. This will allow us to apply Lemma 4.3.2.

Theorem 4.3.6. There are unique isomorphisms of local systems

ωét : Ẑ −! det R2
ét f∗ Ẑ(1)

on HKor,ét and
ωan : Z −! det R2 fC,∗ Z(1)

on HKor,C such that ωét|HKor,C
= ωan ⊗ Ẑ and such that ω[4] = ωét ⊗ Z /4 Z.

Proof. By Corollary 4.1.16, HKor is smooth, and in particular normal and of finite
type over Q. It follows that we can apply Lemma 4.3.2 to conclude the proof.

The following lemma will be useful in our treatment of the moduli stack of
polarized K3 surfaces.

Lemma 4.3.7. There is a rank 1 local Z-system D on HKét, endowed with an
injective morphism of sheaves D ! det R2

ét f∗ Ẑ(1) on HKét and an isomorphism
of sheaves D|HKC

! det R2 fC,∗ Z(1) on HKC such that the diagram

det R2 fC,∗ Z(1)

D|HKC

det R2
ét fC,∗ Ẑ(1)

⊗ Ẑ (4.2)
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4.3. Orientations on hyperkähler varieties

commutes.

Proof. Being a degree 2 étale cover of HK, the stack HKor comes with a natural
{±1}-action making it a {±1}-torsor on HKét. In addition to this, we have a Z×-

torsor Isom(Z,det R2 fC,∗ Z(1)) on HKC, and a Ẑ
×
-torsor Isom(Ẑ,det R2

ét f∗ Ẑ(1)).
Theorem 4.3.6 gives morphisms of sheaves

ωét : HKor −! Isom
(
Ẑ,det R2

ét f∗ Ẑ(1)
)

(4.3)

on HKét and
ωan : HKor,C −! Isom

(
Z,det R2 fC,∗ Z(1)

)
(4.4)

on HKC such that the diagram

Isom(Z,det R2 fC,∗ Z(1))

HKor,C

Isom(Ẑ,det R2
ét f∗ Ẑ(1))|HKC

⊗ Ẑ (4.5)

commutes. It is easily verified that the maps ωét and ωan are {±1}-equivariant.
In particular, ωan is an isomorphism, since its source and target are torsors under
the same group Z× = {±1}.

There is an equivalence from the groupoid of rank 1 local Z-systems on HKét

(respectively HKC) to the groupoid of {±1}-torsors on HKét (respectively HKC)

given by mapping a local system L to Isom(Z, L). Similarly, Isom(Ẑ,−) gives an

equivalence from the groupoid of rank 1 local Ẑ-systems on HKét to the groupoid

of Ẑ
×
-torsors on HKét.

It follows that HKor gives rise to a rank 1 local Z-system on HKét. Equa-
tions (4.3) and (4.4) yield injective morphisms of sheaves D ! det R2

ét f∗ Ẑ(1) and
D|HKC

! det R2 fC,∗ Z(1). The commutativity of the diagram in (4.5) shows that
the diagram in (4.2) commutes, proving the lemma.

Corollary 4.3.8. Let S be a Q-scheme, s a geometric point of S, and X/S a
smooth proper morphism of schemes whose fibers are hyperkähler varieties with
b2 > 3, endowed with a polarization λ ∈ PicX/S(S). For every prime number `,

consider the monodromy representation ρ` : πét
1 (S, s) ! O(H2

ét(Xs,Z`(1))). Then
the composition det ρ` : πét

1 (S, s)! {±1} is independent of `.

Remark 4.3.9. When the base scheme is normal, and the fibers of f are K3
surfaces, this result holds in mixed characteristic, and without the existence of
a polarization. We sketch a proof. By first spreading out and using Chebotarev
density we reduce to the case of a K3 surface X over a finite field. Over a finite
field, the Weil conjectures [D3, Théorème 1.3] imply that the determinant of the
Frobenius on H2 can be expressed in terms of the zeta function of X, which is
independent of `.

Saito uses this argument to prove an analogous result for the middle cohomol-
ogy of any even-dimensional proper smooth variety, see [S2, Lemma 3.2].
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4. Period maps for hyperkähler varieties

4.4 Shimura stacks

In this section, we introduce Shimura stacks (following [T1]), and we give a modular
interpretation of orthogonal Shimura stacks over C in terms of variations of Z-
Hodge structures.

4.4.1 General Shimura stacks

Let (G,X) be a Shimura datum with reflex field E. As in Chapter 2, we assume
that Z(Q) is discrete in G(Af), where Z denotes the center of G. Let K be a
profinite group, and let i : K! G(Af) be a continuous homomorphism with finite
kernel and open image (for example, K ⊆ G(Af) a compact open subgroup).

We define the Shimura stack ShK[G,X] as follows. Let K′ ⊆ K be an open
normal subgroup such that i|K′ : K′ ! G(Af) is injective and has neat image
(see [M4] for the definition of a neat compact open subgroup of G(Af)). Then the
Shimura variety Shi(K′)(G,X) is smooth and defined over E. Moreover, the finite
group K /K′ acts on Shi(K′)(G,X) via right multiplication, and we let ShK[G,X]
be the quotient stack

ShK[G,X] :=
[
Shi(K′)(G,X)/(K /K′)

]
.

Now ShK[G,X] is a smooth separated Deligne-Mumford stack over E, whose
coarse moduli space ShK(G,X) is isomorphic to the Shimura variety Shi(K)(G,X).
The G(Af)-action on Sh(G,X) endows it with the structure of a K-torsor on
ShK[G,X]ét.

Example 4.4.1. Let (G,X) be the Siegel Shimura datum associated with a sym-
plectic Q-vector space of dimension 2, that is, (G,X) = (GL2,H). For K =

GL2(Ẑ), the stack ShK[G,X] is equivalent to the moduli stack of elliptic curves

over Q. More generally, for (G,X) = (GSp2g,H) and K = GSp2g(Ẑ), the stack
ShK[G,X] is equivalent to the moduli stack of principally polarized abelian vari-
eties of dimension g over Q.

Lemma 4.4.2. Let S be a smooth separated C-scheme. Then the functor

Hom(S, ShK[G,X]C) −! Hom(San,ShK[G,X]an
C )

given by analytification is an equivalence of groupoids.

Proof. First supposeK is a neat compact open subgroup ofG(Af), so that ShK[G,X] =
ShK(G,X). Then the lemma is well known and a consequence of [M4, Lemma 5.13]
and Borel’s theorem [M4, Theorem 3.14].

For more general i : K! G(Af), let K′ be a open normal subgroup of K such
that i|K′ is injective, and such that i(K′) is neat. Then ShK[G,X]an

C is the quotient
stack [

Shi(K′)(G,X)an
C /(K /K

′)
]
,

so a morphism ψ : San ! ShK[G,X]an
C corresponds to a (K /K′)-torsor P on San

and a (K /K′)-equivariant holomorphic map ϕ : P ! Shi(K′)(G,X)an
C . By [SGA1,
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Corollaire XII.5.2], the torsor P is the analytification of a (K /K′)-torsor Palg

on S. Moreover, by the case of the lemma for neat compact open subgroups
of G(Af), the map ϕ is the analytification of a (K /K′)-equivariant morphism
ϕalg : P ! Shi(K′)(G,X)C. It follows that ψ is the analytification of a morphism
S ! ShK[G,X]C.

The analytification of ShK[G,X]C can be identified with the quotient stack

[G(Q)\X ×G(Af)/K]

Its groupoid of C-points has as objects pairs (h, g), with h ∈ X and g ∈ G(Af).
A morphism (h, g) ! (h′, g′) consists of γ ∈ G(Q) and k ∈ K with γh = h′ and
γgi(k) = g′.

Let V be a finite-dimensional Q-vector space, endowed with a homomorphism
ρ : G! GL(V ) and a continuous linear right K-action, and assume that these two
actions commute. Then the quotient stack[

G(Q)\X × V ×G(Af)/K
]

is a variation of Q-Hodge structures on ShK[G,X]an
C . Its fiber over a point (h, g) ∈

ShK[G,X]an
C is V , endowed with the Hodge structure ρh.

Now consider a full Ẑ-lattice L ⊆ V ⊗Af such that for all v ∈ L and k ∈ K we
have i(k)vk−1 ∈ L. Then the quotient[

G(Q)\X × {(v, g) ∈ V ×G(Af) | v ∈ g(L) ∩ V }/K
]

(4.6)

is a variation of Z-Hodge structures on ShK[G,X]an
C . The stalk over a point (h, g)

of ShK[G,X]an
C is the finitely generated free abelian group g(L)∩V , endowed with

the Hodge structure given by ρh.

4.4.2 Orthogonal Shimura stacks

We now apply the constructions of Section 4.4.1 to give a modular interpretation
of orthogonal Shimura stacks in terms of variations of Z-Hodge structures. We will
do this for various choices of K, which arise naturally from the moduli stacks of
hyperkähler varieties that we consider in later sections.

Let (Λ0, b0) be a Z-lattice of signature (3, n) with n ≥ 1, let λ0 ∈ Λ0 be an
element with b0(λ0, λ0) > 0, and let ω0 : Z! det Λ0 be an isomorphism of abelian
groups. Define V to be the signature (2, n) quadratic space (Qλ0)⊥ ⊆ Λ0 ⊗ Q,
and let (SO,Ω) be the Shimura datum associated with V as in Section 2.3. Define
K0 to be the profinite group

K0 :=
{
g ∈ SO(Λ0)(Ẑ) | g(λ0) = λ0

}
,

which we endow with the injective map i : K0 ! SO(Af) sending g to the restric-
tion of g⊗Af to V ⊗Af ⊆ Λ0⊗Af . The image i(K0) is a compact open subgroup
of SO(Af), so we have a Shimura stack ShK0

[SO,Ω].
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Let SO act on Λ0 ⊗Q = V ⊕Qλ0 by having g act as g ⊕ id, and let K0 act
trivially on Λ0 ⊗Q. Then Λ0 ⊗Q and the Ẑ-sublattice Λ0 ⊗ Ẑ of Λ0 ⊗Af induce
a variation of Z-Hodge structures

V

on ShK0
[SO,Ω]an

C , as in (4.6). The stalk ofV

over a point (h, g) ∈ ShK0
[SO,Ω]an

C is the finitely generated free abelian group

g(Λ0 ⊗ Ẑ) ∩ Λ0 ⊗Q, endowed with the Hodge structure given by h.
The pairing on Λ0, the element λ0 ∈ Λ0, and the isomorphism ω0 : Z! det Λ0

induce the following morphisms of Z-VHS:

• b : Sym2 V

−! Z(0),

• λ : Z(0) −!

V

,

• ω : Z(0) −! det

V

.

The following lemma gives a universal property for the tuple (

V

, b, λ, ω).

Lemma 4.4.3. Let S be a complex analytic space. Pulling back the tuple (

V

, b, λ, ω)
induces an equivalence of groupoids from Hom(S,ShK0

[SO,Ω]an
C ) to the groupoid

of tuples (Λ, b, λ, ω) where

• Λ is a Z-VHS on S,

• b : Sym2 Λ! Z(0) is a morphism of Z-VHS making the stalks of Λ K3-type
Hodge lattices of signature (3, n),

• λ is a positive global section of Λ of type (0, 0),

• ω : Z(0)! det Λ is an isomorphism of Z-VHS,

such that for every s ∈ S, there exists an isometry Λs ⊗ Ẑ! Λ0 ⊗ Ẑ mapping λs
and ωs to λ0 and ω0, respectively.

Proof. We construct a quasi-inverse of the natural functor from Hom(S, ShK0
[SO,Ω])

to the groupoid of tuples (Λ, b, λ, ω). Without loss of generality we may assume
that S is connected.

We first show that the fibers of Λ ⊗ Q are isomorphic to the tuple (Λ0 ⊗
Q, b0, λ0, ω0). Let s ∈ S, and let ψs : Λ0⊗Ẑ! Λs⊗Ẑ be an isometry mapping λ0 to
λs and ω0 to ωs. The quadratic spaces Λs⊗Q and Λ0⊗Q have the same signature,
and ψs induces an isometry Λs ⊗ Af

∼= Λ0 ⊗ Af , so by the Hasse-Minkowski
theorem [S3, Chapter IV, Theorem 9], there is an isometry ϕs : Λs⊗Q! Λ0⊗Q.
By an argument similar to that in the proof of Lemma 2.3.11, we can use the
existence of ψs to modify ϕs so as to ensure that it maps λs to λ0 and ωs to ω0.

Let K ⊆ K0 be a neat open normal subgroup, so that H := K0 /K is a finite
group, and ShK[SO,Ω]C is equal to the Shimura variety ShK(SO,Ω)C. Define S′

to be the quotient sheaf

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0), (Λ⊗ Ẑ, b, λ, ω)
)
/K

on S. Then S′ is an H-torsor on S. We will construct an H-equivariant map S′ !
ShK(SO,Ω)C. Since ShK0

[SO,Ω] is by definition the quotient stack [ShK(SO,Ω)/H],
this induces a morphism S ! ShK0 [SO,Ω]C.
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Let U ⊆ S′ be a connected open set on which the local system underlying Λ
is constant, and let ϕ : ΛU ⊗Q! Λ0 ⊗Q be an isometry mapping λ to λ0 and ω
to ω0. By the constancy of Λ, we can also find an isometry ψ : Λ0 ⊗ Ẑ ! Λ ⊗ Ẑ
representing the universal section of

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0), (

V

⊗ Ẑ, b, λ, ω)
)
/K

over S′.
By definition of variations of Hodge structures, there is a holomorphic map

f : U ! X mapping s ∈ U to the image under ϕs of the Hodge structure on
Λs ⊗Q. Note that for any s ∈ U , the composition ϕs ◦ ψs defines an element of
SO(Af). The constancy of ΛU and the connectedness of U imply that this element
does not depend on the choice of s, and we will denote it with g. Now define
U ! ShK(SO,Ω)C by mapping a point s ∈ U to (f(s), g). Since

ShK(SO,Ω)C = SO(Q)\X × SO(Af)/K,

this map does not depend on the choice of ϕ and ψ, and it is clearly H-equivariant.
Moreover, [M4, Lemma 5.13] gives a decomposition of ShK(SO,Ω)C into quotients
of the form Γ\X, with Γ a discrete group acting properly discontinuously on X.
This decomposition can be used to show that U ! ShC(SO,Ω)C is holomorphic.

Applying this construction to an open cover of S′ on which the local system un-
derlying Λ is constant gives anH-equivariant holomorphic map S′ ! ShK[SO,Ω]C,
and hence a morphism S ! ShK0 [SO,Ω]C.

Consider an open subgroup K ⊆ K0. We will generalize Lemma 4.4.3 to give a
modular interpretation of ShK[SO,Ω]an

C .
The group K acts from the right on the isomorphism sheaf

I := Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0), (

V

⊗ Ẑ, b, λ, ω)
)

on ShK0 [SO,Ω]an
C . In the proof of the following lemma we will construct a section

α of the quotient sheaf I/K over ShK[SO,Ω]an
C . We will refer to α as the univer-

sal level-K structure on

V

over ShK[SO,Ω]an
C . The following lemma says that

ShK[SO,Ω]an
C is a moduli stack for Z-VHS endowed with a level K-structure.

Lemma 4.4.4. Let S be a complex analytic space. There exists a section α
of the quotient sheaf I/K over ShK[SO,Ω]an

C such that pulling back the tuple
(

V

, b, λ, ω, α) induces an equivalence of groupoids from Hom(S,ShK[SO,Ω]an
C ) to

the groupoid of tuples (Λ, b, λ, ω, α) where (Λ, b, λ, ω) is as in Lemma 4.4.3, and α
is a global section of the quotient sheaf

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0), (Λ⊗ Ẑ, b, λ, ω)
)
/K .

Proof. We will only construct the universal level K-structure on the restriction ofV

to ShK[SO,Ω]an
C . The rest of the proof is similar to that of Lemma 4.4.3, and

therefore omitted.
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Let Ω+ be a connected component of Ω, and let SO(Q)+ ⊆ SO(Q) be the
stabilizer of this component with respect to the action of SO(Q) on π0(Ω). Let
C be a set of representatives of the quotient set SO(Q)+\ SO(Af)/K, and for
g ∈ SO(Af), let Γg be the group SO(Q)+ ∩ gK g−1. Then the stack ShK[SO,Ω]an

C

is equivalent to the disjoint union ∐
g∈C

[
Γg\Ω+

]
, (4.7)

as can be seen in [M4, Lemma 5.13]. Since Ω+ is simply connected, the analytic
stack [Γg\Ω+] is connected, and its fundamental group is Γg.

For g ∈ C, let Λg be the Z-lattice g(Λ0 ⊗ Ẑ) ∩ Λ0 ⊗ Q. Then λ0 ∈ Λg, and
ω0 induces an isomorphism ωg : Z ! det Λg. The pullback of

V

to [Γg\Ω+] is
[Γg\ (Ω+ × Λg)]. To give a section of I/K over [Γg\Ω+] is therefore equivalent to

giving an isometry ψ : Λ0⊗ Ẑ! Λg ⊗ Ẑ preserving λ0 and mapping ω0 to ωg such

that for every γ ∈ Γg, there exists a k ∈ K with γψ = ψk. Since Λg⊗Ẑ = g(Λ0⊗Ẑ),
the choice ψ = g gives an isometry satisfying these conditions.

It can be checked that this defines a section

α : ShK[SO,Ω]C −! I/K,

completing the proof of the lemma.

We now introduce a compact open subgroup KF of SO(Af) that will play
an important role in our treatment of the moduli stack of polarized hyperkähler
varieties which are deformation equivalent to a Hilbert scheme of points on a K3
surface. The group K0 acts on the discriminant group ∆(Λ0) := Λ∨0 /Λ0. This
induces an action on the quotient set F (Λ0) := ∆(Λ0)/{±1}, where −1 acts as
− id∆(Λ0). We define the group KF ⊆ K0 as

KF :=
{
g ∈ K0 | ∆(g) = ± id∆(Λ0)

}
.

The universal level-KF structure α on the restriction of

V

to ShKF
[SO,Ω]an

C induces
an isomorphism of sheaves of finite sets α : F (Λ0)! F (

V

) on ShKF
[SO,Ω]C.

The next lemma follows almost immediately from Lemma 4.4.4.

Lemma 4.4.5. Let S be a complex analytic space. Pulling back the tuple (

V

, b, λ, ω, α)
induces an equivalence of groupoids from Hom(S,ShKF

[SO,Ω]an
C ) to the groupoid

of tuples (Λ, b, λ, ω, α) where (Λ, b, λ, ω) is as in Lemma 4.4.3, and α : F (Λ0) !
F (Λ) is an isomorphism of sheaves of sets on S such that for every s ∈ S, there

exists an isometry ψ : Λ0 ⊗ Ẑ! Λs ⊗ Ẑ mapping λ0 and ω0 to λ and ω, and such
that αs is induced by ψ.

Now suppose that the rank of Λ0 is even. Taelman showed in [T1] that we can
find a Shimura stack parametrizing Hodge lattices of K3 type in the same genus
as Λ0, without the need for adding an orientation.

Let K be the profinite group{
g ∈ O(Λ0)(Ẑ) | g(λ0) = λ0 and det(g) ∈ {±1}

}
. (4.8)
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4.4. Shimura stacks

The requirement that det g ∈ {±1} says that for every prime p the determinant
det gp ∈ {±1} ⊆ Z×p is the same. That is, det gp is either 1 for all p or −1 for all
p. Consider the continuous homomorphism

i : K −! SO(Af), g 7−! det(g)g|V⊗Af
,

where as before V denotes the orthogonal complement of λ0 in Λ0⊗Q. Note that
the determinant of det(g)g|V⊗Af

is 1 by the evenness of rk Λ0, so that i indeed
lands in SO(Af). Moreover, i has open image and a finite kernel (of order ≤ 2), so
this gives rise to a Shimura stack ShK[SO,Ω].

We construct a universal Z-VHS on ShK[SO,Ω]C. As above, let g ∈ SO act on
Λ0⊗Q as g⊕ id, and let K act from the right on Λ0⊗Q via the determinant on V ,
and as the identity on Qλ0. Then these actions and the Ẑ-lattice Λ0⊗Ẑ in Λ0⊗Af

give rise to a Z-VHS

V

as in (4.6). As before, the pairing b0 : Sym2 Λ0 ! Z and
the element λ0 give rise to

• a morphism of Z-VHS b0 : Sym2 V

! Z(0),

• a global section λ of

V

of type (0, 0) satisfying b(λ, λ) > 0.

The following lemma states that the tuple (

V

, b, λ) is universal.

Lemma 4.4.6. Let S be a complex analytic space. Pulling back the tuple (

V

, b, λ)
induces an equivalence of groupoids from Hom(S,ShK[SO,Ω]an

C ) to the groupoid
of tuples (Λ, b, λ) where

• Λ is a Z-VHS on S,

• b : Sym2 Λ! Z(0) is a morphism of Z-VHS making the stalks of Λ K3-type
Hodge lattices of signature (3, n),

• λ is a global section of Λ of type (0, 0) satisfying b(λ, λ) > 0,

such that for every s ∈ S, there exists an isometry ψ : Λs ⊗ Ẑ! Λ0 ⊗ Ẑ mapping
λs to λ0, and mapping the rank 1 free abelian group det(Λs) to det(Λ0).

Proof. We prove the lemma for the case S = Spec(C). The additional details
needed to prove the lemma for more general complex analytic spaces are similar
to the proof of Lemma 4.4.3, and are therefore omitted.

The statement of the lemma gives a functor F from the groupoid

ShK[SO,Ω](C) = [SO(Q)\Ω× SO(Af)/K]

to the groupoid of tuples (Λ, b, λ) on Spec(C). On objects, F is defined by mapping

an object (h, g) to the Z-lattice Λg := g(Λ0⊗ Ẑ)∩Λ0⊗Q endowed with the Hodge
structure h, and the positive type (0, 0) element λ0. A morphism from (h, g) to
(h′, g′) in consists of γ ∈ SO(Q) and k ∈ K with γh = h′ and γgk = g′. Then F
maps (γ, k) to the restriction of (det(k)γ)⊕ idQλ0

to Λg.
To see that F is faithful, suppose we have (γ0, k0) and (γ1, k1) in SO(Q) × K

giving morphisms from (h, g) to (h′, g′). If F (γ0, k0) = F (γ1, k1), then in particular

53



4. Period maps for hyperkähler varieties

det(k0)γ0 = det(k1)γ1. Since det(γ0) = det(γ1) = 1, this implies that γ0 = γ1,
and det(k0) = det(k1). Moreover, we have γ0gi(k0) = g′ = γ1gi(k1), so that
i(k0) = i(k1). Since

k0 ⊗Af = (det(k0)i(k0))⊕ idAf λ0 = (det(k1)i(k1))⊕ idAf λ0 = k1 ⊗Af ,

we obtain k0 = k1.
For the fullness of F , let (h, g) and (h′, g′) be points of ShK[SO,Ω]an

C , and
suppose we have a Hodge isometry ϕ : Λg ! Λg′ preserving λ0. Since Λg ⊗Q and
Λg′ ⊗ Q are equal to Λ0 ⊗ Q, the isometry γ := det(ϕ)ϕ|Qλ⊥0

is an element of

SO(Q). Note that Λg ⊗ Ẑ = g(Λ0 ⊗ Ẑ), and Λg′ = g′(Λ0 ⊗ Ẑ), so we define k to
be the composition

Λ0 ⊗ Ẑ
g−−! g

(
Λ0 ⊗ Ẑ

)
ϕ⊗Ẑ−−−! g′

(
Λ0 ⊗ Ẑ

)
(g′)−1

−−−−! Λ0 ⊗ Ẑ .

Then k satisfies det(k) = det(ϕ) ∈ {±1} so that k ∈ K. It can be verified that
(γ, k) is a morphism from (h, g) to (h′, g′) with ϕ = F (γ, k).

To prove the essential surjectivity, consider a tuple (Λ, b, λ) on Spec(C). Let

ψ : Λ0 ⊗ Ẑ ! Λ ⊗ Ẑ be an isometry mapping λ0 to λ and det(Λ0) to det(Λ). It
follows that if we endow det(Λ0) and det(Λ) with the pairings induced by b0 and
b, then the lattices det(Λ0) and det(Λ) have the same discriminant d ∈ Z.

By the existence of ψ and the fact that Λ and Λ0 have the same signature,
the Hasse-Minkowski theorem [S3, Chapter IV, Theorem 9] gives an isometry
ϕ : Λ ⊗ Q ! Λ0 Q mapping λ to λ0. The sublattices det(Λ0) and ϕdet(Λ) have
the same discriminant d, so it follows that ϕ maps det(Λ) to det(Λ0).

Define h ∈ Ω as the image under ϕ of the Hodge structure on Qλ⊥ ⊆ Λ⊗Q.
Consider the composition g := ϕ|Af λ⊥ψ|V⊗Af

: V ⊗Af ! V ⊗Af , where V denotes
the orthogonal complement of λ0 in Λ0 ⊗ Q. Since ϕ and ψ map the Z-lattices
det(Λ0) and det(Λ) into each other, det g is an element of {±1}. By composing ϕ
with − idV ⊕ idQλ0

if necessary, we ensure that det(g) = 1, so that g ∈ SO(Af).
Note that even after this modification, ϕ : Λ⊗Q! Λ0⊗Q is still a Hodge isometry
mapping λ to λ0.

With these choices it can be checked that ϕ induces a Hodge isometry Λ! Λg
mapping λ to λ0, where Λg is endowed with the Hodge structure given by h. This
shows that F is essentially surjective, completing the proof of the lemma.

4.5 Period maps

Let M /Q be a connected component of the moduli stack HKor of oriented po-
larized hyperkähler varieties over Q. In this section, we will associate to M an
orthogonal Shimura stack ShK0

[SO,Ω] over Q, and we will construct an étale
morphism MC ! ShK0 [SO,Ω]C, called the period map. The main result of this
section is that this period map descends to a morphism M ! ShK0 [SO,Ω], de-
fined over Q. This is a generalization of a result of Rizov ([R3, Theorem 3.16]).
Our treatment closely follows the proof of that result given by Madapusi-Pera
in [MP1].
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4.5. Period maps

Let f : X!M be the universal hyperkähler variety, λ the universal polariza-
tion on X, and ω[4] : Z /4 Z! det R2

ét f∗µ4 the universal orientation. As we saw in
Theorem 4.3.6, ω[4] gives rise to isomorphisms of local systems

ωét : Ẑ −! det R2
ét f∗ Ẑ(1)

on Mor,ét

ωan : Z −! det R2 fC,∗ Z(1)

on Mor,C.
Let x0 := (X0, λx0 , ω[4],x0

) be a C-point of M. Then Λ0 := H2(X0,Z(1))
endowed with the BBF pairing b0 is a Z-lattice of signature (3, n), for some n ≥
1, and λ0 := c1(λx0

) is a positive element of Λ0. Moreover, ω0 := ωan,x0
is an

isomorphism Z! det Λ0. Let V be the orthogonal complement of Qλ0 in Λ0⊗Q.
Then as in Section 4.4.2, the tuple (Λ0, λ0, b0, ω0) gives rise to an orthogonal
Shimura datum

(SO,Ω) := (SO(V ),ΩV ),

and a compact open subgroup K0 ⊆ SO(Af) defined as

K0 :=
{
g ∈ SO(Λ0)(Ẑ) | g(λ0) = λ0

}
.

Lemma 4.5.1. Let x = (X,λx, ω[4],x) be a C-point of M. Then the tuple(
H2(X,Z(1))⊗ Ẑ, bX , c1(λx), ωan,x

)
is isomorphic to (Λ0 ⊗ Ẑ, b0, λ0, ω0).

Proof. This is a consequence of the connectedness of M and the fact that the
BBF pairing on R2 fC,∗ Z(1) and the isomorphism of sheaves ωan on MC extend to
morphisms of local systems on Mét over Q, which is the content of Theorems 4.2.4
and 4.3.6.

On MC, we now have the following Hodge-theoretic data:

• a Z-VHS R2 fC,∗ Z(1),

• the BBF pairing ban : Sym2 R2 fC,∗ Z(1)! Z(0), making the stalks of R2 fC,∗ Z(1)
K3-type Hodge lattices of signature (3, n), by Propositions 4.1.7 and 4.1.8,

• λan := c1 (λ|MC
) is a positive global section of R2 fC,∗ Z(1) of type (0, 0) by

Remark 4.1.3,

• the orientation ωan : Z(0) ! det R2 fC,∗ Z(1) from Theorem 4.3.6, which is
an isomorphism of Z-VHS.

By Lemma 4.4.2, Lemma 4.4.3, and Lemma 4.5.1, these data gives rise to a mor-
phism of complex Deligne-Mumford stacks

MC −! ShK0
[SO,Ω]C,
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4. Period maps for hyperkähler varieties

known as the period map. Note that since the reflex field of (SO,Ω) is Q by
Lemma 2.1.3, ShK0

[SO,Ω] is a stack over Q. We will show that the period map
descends to a morphism defined over Q.

First note that the tuple (R2 fC,∗ Ẑ(1), ban, λan, ωan) on MC,ét extends uniquely
to a tuple on Mét over Q consisting of

• the local Ẑ-system R2
ét f∗ Ẑ(1),

• the étale BBF form bét : Sym2 R2
ét f∗ Ẑ(1)! Ẑ from Theorem 4.2.4,

• the polarization λét := c1(λ) ∈ H0(M,R2
ét f∗ Ẑ(1)),

• the orientation ωét : Ẑ! det R2 f∗ Ẑ(1) from Theorem 4.3.6.

This gives rise to a K0-torsor

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0), (R2
ét f∗ Ẑ(1), bét, λét, ωét)

)
on Mét. Similarly, the SO(Af)-action on Sh(SO,Ω) endows it with the structure
of a K0-torsor on ShK0

[SO,Ω]ét.

Theorem 4.5.2. The period map MC ! ShK0
[SO,Ω]C defined by the tuple

(R2 fC,∗ Z(1), ban, λan, ωan) descends to a morphism M ! ShK0 [SO,Ω] defined
over Q. This morphism is étale, and it pulls theK0-torsor Sh(SO,Ω) on ShK0 [SO,Ω]ét

back to the K0-torsor

Isom
((

Λ0 ⊗ Ẑ, b0, λ0, ω0

)
,
(

R2
ét f∗ Ẑ(1), bét, λét, ωét

))
on Mét.

Proof. Let K ⊆ K0 be a normal neat open subgroup, so that H = K0 /K is a finite
group, ShK[SO,Ω] = ShK(SO,Ω), and

ShK0
[SO,Ω] = [ShK(SO,Ω)/H] .

Now define MK to be the stack of objects of M endowed with a level K-structure.
That is, MK is the H-torsor

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0), (R2
ét f∗ Ẑ(1), bét, λét, ωét)

)
/K (4.9)

on Mét. Then MK is a smooth separated Deligne-Mumford stack. By Lemma 4.4.4
and Lemma 4.4.2, the tuple (R2 fC,∗, ban, λan, ωan) restricted to MK,C, endowed
with the canonical level-K structure, yields an H-equivariant morphism of complex
Deligne-Mumford stacks MK,C ! ShK(SO,Ω)C for which the diagram

MK,C ShK(SO,Ω)C

MC ShK0 [SO,Ω]C

(4.10)
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commutes.

We will show that the morphism f : MK,C ! ShK(SO,Ω)C descends to Q. The
commutative diagram (4.10) will then imply that MC ! ShK0 [SO,Ω]C descends
to Q as well.

Let P be the groupoid of tuples (X,λ, ω[4], α), where x := (X,λ, ω[4]) is a

complex point of M, and α : Λ0 ⊗ Ẑ! H2(X, Ẑ(1)) is an isometry mapping λ0 to
c1(λ), and ω0 to ωan,x. This groupoid comes with a forgetful functor P !MK(C)
mapping (X,λ, ω[4], α) to (X,λ, ω[4], α mod K).

Next, we construct a functor f ′ : P ! Sh(SO,Ω)(C). Let (X,λ, ω[4], α) ∈ P . By
an argument similar to that in the proofs of Lemma 2.3.11 and Lemma 4.4.3, there
exists an isometry ϕ : H2(X,Q(1))! Λ0⊗Q mapping c1(λ) to λ0 and ωan to ω0.
Let h be the image under ϕ of the Hodge structure on Q c1(λ)⊥ ⊆ H2(X,Q(1)),
and define g to be the composition ϕ|Af c1(λ)⊥ ◦ α|V⊗Af

. Then h ∈ X and g ∈
SO(Af), so this yields an element of Sh(SO,Ω)(C) which does not depend on the
choice of ϕ. It can be checked that this gives a functor f ′ : P ! Sh(SO,Ω)(C).

Now we have a commutative diagram of groupoids

P Sh(SO,Ω)(C)

MK(C) ShK(SO,Ω)(C)

f ′

f(C)

If we show that f ′ is Aut(C)-equivariant in the sense that for every σ ∈ Aut(C)
and every (X,λ, ω[4], α) in P there holds

f ′
(
σ∗X, σ∗λ, σ∗ω[4], σ

∗α
)

= σf
(
X, λ, ω[4], α

)
,

then it follows that f(C) is Aut(C)-equivariant in a similar sense, which implies
that f descends to a map MK ! ShK(SO,Ω).

Corollary 2.3.5 gives an Aut(C)-equivariant map Φ: Sh(SO,Ω)(C)!Mot(Λ0⊗
Q, λ0) where Mot(Λ0⊗Q, λ0) is as in Definition 2.3.4. Theorem 2.2.2 and Exam-
ple 2.2.1 imply that the composition P ! Sh(SO,Ω)(C) ! Mot(Λ0 ⊗Q, λ0) is
given by mapping (X,λ, ω[4], α) to the tuple(

h2(X), ban,x ⊗Q, λan,x ⊗Q, ωan,x ⊗Q, α⊗Af

)
,

where x denotes the C-point of M corresponding to (X,λ, ω[4]). The required

Aut(C)-equivariance of f ′ now follows from the fact that σ∗ h2(X) = h2(σ∗X),
and the existence of bét, λét, and ωét.

We now show that the period map pulls theK0-torsor Sh(SO,Ω) on ShK0 [SO,Ω]ét

back to the isomorphism sheaf

I := Isom
((

Λ0 ⊗ Ẑ, b0, λ0, ω0

)
,
(

R2
ét f∗ Ẑ(1), bét, λét, ωét

))
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4. Period maps for hyperkähler varieties

on Mét. It follows from (4.9) that I is the inverse limit limKMK, where K ranges
over all normal neat open subgroups of K0. Since Sh(SO,Ω) is equal to the limit
limK ShK(SO,Ω), it follows from the cartesian squares

MK ShK(SO,Ω)

M ShK0
[SO,Ω]

that the period map pulls Sh(SO,Ω) back to I.

To see that the period map M! ShK0 [SO,Ω] is étale, it suffices to show that
MC ! ShK0

[SO,Ω]C is étale. This is an immediate consequence of the local Torelli
theorem (see [A1, Proposition 3.3.1] and [B2, Théorème 5]) and the decomposition
of ShK0

[SO,Ω]C given in (4.7) and [M4, Lemma 5.13].

Remark 4.5.3. The period map in Theorem 4.5.2 is not in general an open
immersion. In order for it to be an open immersion, it is necessary that it is fully
faithful on C-points. An example where the period map is neither full nor faithful
is when M is a moduli stack of polarized oriented generalized Kummer varieties
(see Example 3.1.9). The fact that the period map is not faithful in this case follows
from [BNS, Corollary 3.3]. The failure of fullness follows from the global Torelli
theorem (Corollary 4.1.14) and the fact that not every Hodge isometry between
generalized Kummers is a parallel transport operator by [M5, Theorem 4.3].

One result pertaining to the failure of faithfulness of the period map is the
result of Hassett and Tschinkel which states that when X is a complex hyperkähler
variety, then the kernel of Aut(X)! O(H2(X,Z(1))) is a deformation invariant of
X. See [HT, Theorem 2.1] for a more precise statement. It implies that the relative
inertia stack of M! ShK0 [SO,Ω] is a local system of finite groups on M.

In contrast with the period map for abelian varieties, the period map for hy-
perkähler is not surjective. See [D1] for a description of the image of the period
map when M is a moduli stack of hyperkähler varieties deformation equivalent to
a Hilbert scheme of points on a K3 surface.

4.6 K3 surfaces

In this section we consider moduli stacks of polarized hyperkähler varieties whose
second Betti number is even (for example K3 surfaces). For such moduli stacks
we can use Lemma 4.4.6 to eliminate the orientations occurring in Theorem 4.5.2.
This results in a period map from a connected component of HK to an orthogonal
Shimura stack, see Theorem 4.6.2. This section follows work on moduli stacks of
K3 surfaces of Taelman in [T1].

Let M be a connected component of HK for which the hyperkähler varieties
parameterized by M have even second Betti number, let f : X ! M be the uni-
versal hyperkähler variety, and let λ be the universal polarization on X.
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4.6. K3 surfaces

Let x0 = (X0, λx0
) be a C-point of M. Then Λ0 := H2(X0,Z(1)) endowed with

the BBF pairing b0 is a Z-lattice of signature (3, n), with n an odd and positive,
and λ0 := c1(λx0

) is a positive element of Λ0. Let V be the orthogonal complement
of λ0 in Λ0 ⊗ Q. Then as in Section 4.4.2, the tuple (Λ0, b0, λ0) gives rise to an
orthogonal Shimura datum

(SO,Ω) := (SO(V ),ΩV ),

and a profinite group K defined as in (4.8), namely

K :=
{
g ∈ O(Λ0)(Ẑ) | g(λ0) = λ0 and det(g) ∈ {±1}

}
.

We endow K with the continuous homomorphism i : K ! SO(Af) given by map-
ping g ∈ K to det(g)g|V⊗Af

. Since the reflex field of (SO,Ω) is Q by Lemma 2.1.3,
this yields a Shimura stack ShK[SO,Ω] over Q.

We will construct a K-torsor on M as follows. On Mét, we have

• the local Ẑ-system R2
ét f∗ Ẑ(1),

• the étale BBF form bét : Sym2 R2
ét f∗ Ẑ(1)! Ẑ,

• the polarization λét := c1(λ) ∈ H0(M,R2
ét f∗ Ẑ(1)).

In addition to this, Lemma 4.3.7 gives a rank 1 local Z-system D on Mét endowed
with an injective morphism of sheaves D ! det R2

ét f∗ Ẑ(1) and an isomorphism
of sheaves D|MC

! det R2 fC,∗ Z(1) for which the diagram

det R2 fC,∗ Z(1)

D|MC

det R2
ét fC,∗ Ẑ(1)

⊗ Ẑ

commutes. Now the isomorphism sheaf

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, det Λ0), (R2 f∗ Ẑ(1), bét, λét, D)
)

is a K-torsor on Mét.

Lemma 4.6.1. Let x = (X,λx) be a C-point of M. Then there exists an isom-

etry ψ : H2(X,Z(1)) ⊗ Ẑ ! Λ0 ⊗ Ẑ mapping c1(λx) to λ0, such that ψ maps
det H2(X,Z(1)) to det Λ0.

Proof. This follows from the connectedness of the stack M over Q, and the exis-
tence of bét, λét and D.

Let Λ be the BBF lattice H2(X,Z(1)), and let γ be a path from x to x0 in

Mét. Then the existence of the local Ẑ-system R2
ét f∗ Ẑ(1) implies that the path γ
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induces an isomorphism ψ : Λ ⊗ Ẑ ! Λ0 ⊗ Ẑ. It follows from the existence of bét

and λét that ψ is an isometry, and that it maps c1(λx) to λ0.
To see that ψ maps det Λ to det Λ0, we consider the local Z-system D on Mét.

The equivalence between rank 1 local Z-systems on Mét and Z×-torsors on Mét

can be used to show that γ induces a functorial isomorphism γD : Dx ! Dx0 . In
particular, since ψ is induced by γ, we have a commutative diagram

Dx det Λ det Λ⊗ Ẑ

Dx0 det Λ0 det Λ0 ⊗ Ẑ

∼

∼

detψγD

It follows from this diagram that ψ maps det Λ into det Λ0, which was to be
shown.

On MC, we have the following Hodge-theoretic data:

• a variation of Z-Hodge structures R2 fC,∗ Z(1),

• the BBF pairing ban : Sym2 R2 fC,∗ Z(1)! Z(0), making the stalks of R2 fC,∗ Z(1)
K3-type Hodge lattices of signature (3, n),

• a positive type (0, 0) global section λan := c1(λ|MC
) of R2 fC,∗ Z(1).

It follows from Lemma 4.6.1, Lemma 4.4.6, and Lemma 4.4.2 that the tuple(
R2 fC,∗ Z(1), ban, λan

)
gives rise to a morphism MC ! ShK[SO,Ω]C, known as the period map.

The following theorem states that the period map descends to Q. Its proof is
similar to that of Theorem 4.5.2, and is therefore omitted.

Theorem 4.6.2. The period map MC ! ShK[SO,Ω]C defined by the tuple(
R2 fC,∗ Z(1), ban, λan

)
descends to a morphism M! ShK[SO,Ω] defined over Q. This morphism is étale,
and it pulls the K-torsor Sh(SO,Ω) on ShK[SO,Ω]ét back to the K-torsor

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, det Λ0), (R2 f∗ Ẑ(1), bét, λét, D)
)

on Mét.

We now apply Theorem 4.6.2 and the global Torelli theorem (Corollary 4.1.14)
to K3 surfaces to show that the stack of primitively polarized K3 surfaces is an open
substack of a Shimura stack. Let K32d be the moduli stack over Q of primitively
polarized K3 surfaces of degree 2d, and f : X ! K32d the universal K3 surface.
Then K32d is a connected component of HK parametrizing hyperkähler varieties
with even second Betti number. We maintain the notations from earlier in the
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section. That is, Λ0 is the BBF lattice of a C-point of K32d, we denote by (SO,Ω)
the associated orthogonal Shimura datum, and so on.

In this case, the lattice Λ0 is the K3 lattice ΛK3, which is the unique even
self-dual lattice of signature (3, 19), and λ0 is a primitive element of ΛK3 of length
2d.

For polarized K3 surfaces, the global Torelli theorem (see Corollary 4.1.14) has
the following form.

Theorem 4.6.3 ([H2, Theorem 5.3 and Proposition 15.2.1]). Let (X0, λ0) and
(X1, λ1) be polarized K3 surfaces, and

ϕ : H2(X1,Z(1)) −! H2(X0,Z(1))

a Hodge isometry mapping c1(λ1) to c1(λ0). Then there exists a unique isomor-
phism f : (X0, λ0)! (X1, λ1) inducing ϕ.

Combining this with Theorem 4.6.2 yields the following theorem, which states
that K32d is an open substack of an orthogonal Shimura stack.

Theorem 4.6.4. The period map K32d,C ! ShK[SO,Ω]C defined by the tuple(
R2 fC,∗ Z(1), ban, λan

)
descends to a morphism K32d ! ShK[SO,Ω] defined over Q. This morphism is an
open immersion, and it pulls the K-torsor Sh(SO,Ω) on ShK[SO,Ω]ét back to the
K-torsor

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, det Λ0), (R2 f∗ Ẑ(1), bét, λét, D)
)

on K32d,ét.

Remark 4.6.5. The only other known examples of complex hyperkähler varieties
with even second Betti number are O’Grady’s examples, see Example 3.1.9. Let
OG6 and OG10 be O’Grady’s examples of dimension 6 and 10, respectively.

By [MW, Theorem 5.2], the kernel of Aut(OG6) ! O(H2(OG6,Z(1))) is iso-
morphic to (Z /2 Z)⊕8. It follows that the period map is not faithful. Since open
immersions of stacks are representable, it follows that Theorem 4.6.4 does not
extend to the moduli space of polarized hyperkähler varieties deformation equiv-
alent to OG6. However, the period map is full on C-points in this case by [MR,
Theorem 5.4].

For OG10 the map Aut(OG10) ! O(H2(OG10,Z(1))) is injective, by [MW,
Theorem 3.1], so the period map in Theorem 4.6.2 is faithful. However, by [M5,
Theorem 5.3], the analogue of Theorem 4.6.3 with K3 surfaces replaced with vari-
eties deformation equivalent to OG10 does not hold, which shows that the period
map is not full, and hence not an open immersion.

4.7 The K3[n] deformation type

Throughout this section, n is an integer greater than or equal to 2. In this section
we consider hyperkähler varieties that are deformation equivalent to the Hilbert
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scheme of n points on a K3 surface, known as K3[n]-type hyperkähler varieties.
In the first subsection we extend a theorem of Markman on the monodromy of
such varieties over C to such varieties over non-closed fields of characteristic 0, see
Theorem 4.7.12. In the second subsection, we use this to give an open immersion
from a connected component of the moduli stack of polarized oriented K3[n]-type
hyperkähler varieties to an orthogonal Shimura stack.

4.7.1 K3[n]-type hyperkähler varieties and their monodromy

Definition 4.7.1. A hyperkähler variety X over C is said to be of K3[n] type if
there exists a proper smooth morphism X ! T of complex analytic spaces, with
T connected, such that one of the fibers of f is isomorphic to X, and another is
isomorphic to S[n] for some projective K3 surface S over C.

By [H2, Theorem 7.1.1], any two complex K3 surfaces are deformation equiva-
lent in a complex analytic sense. The following lemma is an algebraic analogue of
this result for projective complex K3 surfaces. The lemma is well known, but it is
difficult to find an argument in the literature, so we sketch a proof.

Lemma 4.7.2. Let S1 and S2 be two projective complex K3 surfaces. Then there
exists a smooth proper morphism of complex schemes f : S! T whose fibers are
K3 surfaces, with T connected, such that one fiber of f is isomorphic to S1, and
another is isomorphic to S2.

Proof sketch. Pick primitive polarizations on S1 and S2 of degrees 2d and 2e,
respectively.

Let N ⊆ ΛK3 be a signature (1, 1) lattice with primitive elements λ and µ of
length 2d and 2e, respectively. Moreover, assume that the orthogonal complements
of λ and µ inN do not contain any δ with δ2 = −2. Now consider the period domain

Ω := {[z] ∈ ΩΛK3 | zN = 0} .

It parametrizes K3-type Hodge structures on ΛK3 for which all of N is of type
(0, 0). Let Ω0 be the open subset

Ω

∖ ⋃
δ∈ΛK3

δ2=−2, δN=0

Wδ,

where Wδ denotes the subset of Ω orthogonal to δ. Then Ω0 is non-empty, because
it is the complement of countably many hyperplanes. The surjectivity of the period
map [H2, Theorem 6.3.1] implies that there exists a complex K3 surface S with
N ⊆ Pic(S) such that if δ ∈ Pic(S) with δ2 = −2, then δλ 6= 0 and δµ 6= 0.

Let C be the subset of {x ∈ Pic(S)⊗R | x2 > 0} containing the ample cone of
S. By [H2, Corollary 8.1.6], the ample cone of S is a connected component of

Y := C

∖ ⋃
δ∈Pic(S)

δ2=0

Hδ
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where Hδ ⊆ Pic(S) ⊗R denotes the orthogonal complement in Pic(S) ⊗R of δ.
By construction, λ and µ are elements of Y . By [H2, Proposition 8.2.6] there is a
subgroup of O(Pic(S)) that acts transitively on the set of connected components
of Y . It follows that there exist ϕ,ψ ∈ O(Pic(S)) such that ϕ(λ) and ψ(µ) are
ample. It follows that S has primitive polarizations of degree 2d and 2e.

Let K32d,C and K32e,C be the moduli stacks of primitively polarized com-
plex K3 surfaces of degree 2d and 2e, respectively. These are irreducible Deligne-
Mumford stacks of finite type over C. By [DM2, Proposition 4.14], there ex-
ist connected schemes T1 and T2 and surjective morphisms T1 ! K32d,C and
T2 ! K32e,C.

The polarizations on S of degree 2d and 2e give rise to C-points x1 and x2 of
T1 and T2. Let t1 and t2 be C-points of T1 and T2 lifting x1 and x2, respectively.
Gluing T1 and T2 at the points t1 and t2 we obtain a scheme T . By pulling back
the universal K3 surfaces on K32d,C and K32e,C to T1 and T2, and gluing them
along the fibers over the points f1(t) and f2(t), we obtain the desired morphism
S! T deforming S1 to S2.

The following lemma shows that in the definition of K3[n]-type hyperkähler
varieties, one can replace the complex analytic spaces by algebraic spaces over C.

Lemma 4.7.3. Let X be a hyperkähler variety over C of K3[n] type, and S a
projective complex K3 surface. Then there exists a smooth proper morphism of
complex algebraic spaces f : X! T whose fibers are hyperkähler varieties, with T
connected, such that one fiber of f is isomorphic to X, and another is isomorphic
to S[n].

Proof. In [MP3, Corollary 1.2], Mongardi and Pacienza show that varieties bira-
tional to the Hilbert scheme of points on a projective complex K3 surface are dense
in the moduli space of polarized complex hyperkähler varieties of K3[n] type. It fol-
lows that there exists a projective complex K3 surface S′, a complex hyperkähler
variety X ′ birational to (S′)[n], and a smooth proper morphism of complex al-
gebraic spaces X1 ! T1, one of whose fibers is isomorphic to X, and another is
isomorphic to X ′.

Since X ′ and (S′)[n] are birational complex hyperkähler varieties, [R2, Propo-
sition 2.1] says that there exists a smooth proper morphism of complex algebraic
spaces X2 ! T2 whose fibers are hyperkähler varieties, one of whose fibers is
isomorphic to X ′, and another isomorphic to (S′)[n].

By Lemma 4.7.2, there exists a smooth proper morphism of complex algebraic
spaces S ! T3 whose fibers are K3 surfaces, one of which is S′, and another is
S. It follows that there is a smooth proper morphism of complex algebraic spaces
X3 ! T3 whose fibers are the Hilbert schemes of n points on the fibers of S! T3.

By gluing X1 ! T1, X2 ! T2, and X3 ! T3 together along appropriate points,
we obtain a smooth proper morphism of complex algebraic spaces whose fibers are
hyperkähler varieties, one of which is isomorphic to X, and another to S[n].

Lemma 4.7.4. Let X be a complex hyperkähler variety of K3[n] type, and let
σ ∈ Aut(C). Then the pullback σ∗X of X along σ is a hyperkähler variety of K3[n]

type. Moreover, the BBF forms on H2(X,Z(1)) and H2(σ∗X,Z(1)) are isometric.
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Proof. Let S, T , and f : X! T be as in Lemma 4.7.3. Then σ∗f : σ∗ X! σ∗T is a
smooth proper morphism of algebraic spaces such that one of the fibers is isomor-
phic to σ∗X, and another is isomorphic to σ∗(S[n]). Since σ∗(S[n]) = (σ∗S)[n], and

since σ∗S is a K3 surface, it follows that σ∗X is of K3[n] type. In particular, X and
σ∗X have isometric BBF forms on singular cohomology by Proposition 4.1.8.

Definition 4.7.5. A hyperkähler variety X over a field k of characteristic 0 is
said to be of K3[n] type if X descends to a hyperkähler variety XK over a subfield
K of C such that XC is of K3[n] type.

Remark 4.7.6. Lemma 4.7.4 shows that when k = C, Definition 4.7.5 is equiva-
lent to Definition 4.7.1.

Lemma 4.7.7. Let X be a hyperkähler variety of K3[n] type over an algebraically
closed field k of characteristic 0, and S a K3 surface over k. Then there exists a
smooth proper morphism of algebraic spaces f : X ! T over k whose fibers are
hyperkähler varieties, with T connected, such that one fiber of f is isomorphic to
X, and another is isomorphic to S[n].

Proof. This follows from Lemma 4.7.3 by a spreading out argument.

Lemma 4.7.8. Let S be a connected finite type Q-scheme, and X/S a smooth
proper morphism of algebraic spaces whose fibers are hyperkähler varieties. If there
exists a C-point s0 of S such that Xs0 is of K3[n] type, then every fiber of X/S is

of K3[n] type.

Proof. Let s be a C-point of S. We will show that the fiber Xs is of K3[n] type.
By the connectedness of S, we can find a σ ∈ Aut(C) such that σs0 is in the same

component of San
C as s. By Lemma 4.7.4, Xσs0 = σ∗Xs0 is of K3[n] type, so it

follows that Xs is of K3[n] type.
Now let k be a field of characteristic 0, and s ∈ S(k). Since S is of finite type,

we can find a finitely generated subfield k′ ⊆ k and a point s′ ∈ S(k′) such that s
factors through s′. Next, we choose an embedding k′ ⊆ C. By the above, Xs′,C is

of K3[n] type, so by definition Xs is of K3[n] type.

Let S be a Q-scheme, and f : X ! S be a smooth proper morphism of al-
gebraic spaces whose fibers are hyperkähler varieties of K3[n] type. Consider the
discriminant

∆(X/S) := ∆
(

R2
ét f∗ Ẑ(1)

)
,

which is a local system of finite abelian groups on Sét, with fibers isomorphic to
Z /(2n−2) Z, see Example 4.1.5. Now let F (X/S) be the local system of finite sets
on Sét defined as the quotient of ∆(X/S) by the action of {±1}, with −1 acting
as − id∆(X/S).

Theorem 4.7.9 (Markman). Let S be a scheme over an algebraically closed field
of characteristic 0, and let X/S be a smooth proper morphism of algebraic spaces

whose fibers are hyperkähler varieties of K3[n] type. Then the local system F (X/S)
on Sét is constant.
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Proof. For S of finite type over C, this follows from [M1, Lemma 9.2] and [SGA1,
Corollaire XII.5.2]. A spreading out argument shows that the result holds for any
scheme S over C. We obtain the result for general algebraically closed ground
fields of characteristic 0 via the Lefschetz principle.

Lemma 4.7.10. Let S be a K3 surface over a field k of characteristic 0. Then the
local system F (S[n]/k) on két is constant.

Proof. We will show that the local system ∆(S[n]/k) is constant. A fortiori its
quotient F (S[n]/k) is then also constant.

As in Example 4.1.5, there is a natural morphism S[n] ! S(n), and the inverse
image of the singular locus defines a divisor E on S[n]. Then ∆(S[n]/k) is generated

by δ ∈ H2
ét(S

[n]

k
, Ẑ(1)) satisfying 2δ = E. Since E is Galk-invariant, and since

H2
ét(S

[n]

k
, Ẑ(1)) is a free Ẑ-module, it follows that δ is Galk-invariant. This shows

that Galk acts trivially on ∆(S[n]/k).

Lemma 4.7.11. Let k be a perfect field, let k be an algebraic closure of k, letM
be a stack on (Sch /k)ét, and let F be a local system of finite sets on the big étale
site Mét of M. If

1. for any algebraically closed extension Ω of k and y, z ∈ Mk(Ω) there exists
a connected algebraic space T over Ω and a morphism T !Mk which has
y and z in its image,

2. the restriction of F to Mk is constant, and

3. there exists a point x ∈M(k) such that x∗F is constant,

then F is constant.

Proof. Let LS(Mk) be the category of local systems of finite sets on Mk,ét. For

an algebraically closed extension Ω of k, a geometric point x0 ∈Mk(Ω) induces a
functor x∗0 from LS(Mk) to the category fSet of finite sets, via pullback. For two
geometric points x0 and x1 of Mk, a path from x0 to x1 in Mk consists of an
isomorphism of functors x∗0 ! x∗1. Assumption 1 implies that we can find a path
between any two geometric points of Mk.

Let x be the k-point of Mk corresponding to the k-point x of M in assump-
tion 3. We define F0 to be the finite set x∗F . Let F0 ∈ LS(M) be the constant
sheaf of finite sets on Mét associated with F0. We will show that F is isomorphic
to F0.

By assumption 2, the sheaf F |Mk
is constant, so there exists an isomorphism

β : F |Mk
! F0 |Mk

which satisfies x∗β = idx∗F .

We claim that the condition that x∗β = idx∗F determines β uniquely. To see
this, first note that the big étale site ofMk has enough points by [SP, Tag 06W4],
so β is determined by the morphisms y∗β : y∗F ! y∗F0, where y ranges over all
geometric points of Mk. For a geometric point y of Mk, let γ be a path from x
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to y. Then by the functoriality of γ there is a commutative diagram of bijections

x∗F x∗F0

y∗F y∗F0

x∗β

γF

y∗β

γF0

This shows that y∗β is determined by x∗β, so that the condition x∗β = idx∗F
uniquely determines β.

Let σ ∈ Galk. Then σ acts trivially on x∗F0 because F0 is constant, and it acts
trivially on x∗F by assumption 3. It follows that σβ : F |Mk

! F0 |Mk
satisfies

x∗(σβ) = id, so that σβ = β. It follows that β induces an isomorphism F ! F0,
showing that F is constant on Mét.

Theorem 4.7.12. Let S be a scheme over Q, and let X/S be a smooth proper

morphism of algebraic spaces whose fibers are hyperkähler varieties of K3[n] type.
Then the local system F (X/S) on Sét is constant.

Proof. Let K3[n] be the groupoid fibration on Sch /Q whose objects are proper
smooth morphisms of algebraic spaces f : Y ! S, where S is a Q-scheme, such
that all fibers of f are hyperkähler varieties of K3[n] type. Then K3[n] is a stack
for the étale topology. The assignment

Y/S 7−! F (Y/S)(S)

defines a local system F of finite sets on the big étale site K3
[n]
ét of K3[n]. The

theorem is equivalent to F being constant. Lemma 4.7.7, Theorem 4.7.9, and
Lemma 4.7.10 show that K3[n] and F satisfy the hypotheses of Lemma 4.7.11, so
F is constant.

Remark 4.7.13. The results proved in this section have analogues for generalized
Kummer varieties (see Example 3.1.9).

The main results used in proving that being of K3[n] type is an algebraic condi-
tion (see Lemma 4.7.3 and Lemma 4.7.4) are [MP3, Corollary 1.2] and [R2, Proposi-
tion 2.1]. These results hold for generalized Kummer varieties, and the arguments

given here for K3[n]-type varieties carry over almost verbatim to such varieties
(with the complex K3 surface and its Hilbert scheme of points in Lemma 4.7.3
replaced by a complex abelian surface and the associated generalized Kummer
variety).

Let S be a Q-scheme. For a smooth proper morphism X ! S whose fibers are
generalized Kummer varieties, we denote by F (X/S) the quotient by {±1} of the
sheaf of finite abelian groups

∆(R2
ét f∗ Ẑ(1))

on Sét. It follows from [M5, Theorem 4.3] that if S is a scheme over an algebraically
closed field of characteristic 0, and if X/S admits an orientation, then the local
system of finite sets F (X/S) is constant, giving an analogue of Theorem 4.7.9.
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Suppose X is the generalized Kummer variety associated with an abelian sur-
face over a field k of characteristic 0. Then the description given in [B2] of the BBF

lattice H2
ét(Xk, Ẑ(1)) shows that its discriminant is generated by an algebraic cycle

on X, which allows one to prove an analogue of Lemma 4.7.10. Ultimately this
leads to an analogue of Theorem 4.7.12 for oriented generalized Kummer varieties.

4.7.2 Period maps for K3[n]-type hyperkähler varieties

We will now apply the results of the preceding subsection to obtain a period map
over Q for oriented polarized hyperkähler varieties of K3[n]-type which is an open
immersion.

Let M be a connected component of HKor such that one of the points of
M is a K3[n]-type hyperkähler variety. We use the notation from Section 4.5. In
particular, we let f : X!M be the universal hyperkähler variety, λ the universal
polarization, and ω[4] the universal orientation on X. By Lemma 4.7.8, every fiber

of X /M is of K3[n] type.

The constructions in Section 4.5 yield a Z-VHS R2 fC,∗ Z(1) on MC, endowed
with data ban, λan, and ωan, arising from the BBF form, the polarization, and
the orientation on X, respectively. They also yield a local Ẑ-system R2

ét f∗ Ẑ(1)
on Mét, endowed with data bét, λét, and ωét. Moreover, we pick a C-point x0 =
(X0, λx0

, ω[4],x0
), which gives rise to Λ0 := H2(X0,Z(1)), endowed with the BBF

form b0, the polarization λ0 := λan,x0
, and the orientation ω0 := ωan,x0

.

Theorem 4.7.12 gives rise to extra structure on R2 fC,∗ Z(1) and R2
ét f∗ Ẑ(1), as

follows. As in the proof of Theorem 4.7.12, let K3[n] be the stack over Qét whose
objects are smooth proper morphisms of algebraic spaces f : X ! S, where S is
a Q-scheme, such that all fibers of f afe hyperkähler varieties of K3[n] type. The
assignment

Y/S 7−! F (Y/S)(S)

defines a local system F of finite sets on the big étale site of K3[n]. Let F0 be the
constant sheaf of finite sets associated with F (X0). Then Theorem 4.7.12 shows
that we can pick an isomorphism of sheaves

β : F0 −! F (4.11)

such that β is the identity over the point X0 of K3[n]. Now X /M yields a mor-

phism M ! K3[n], which allows us to pull the isomorphism β back to give an
isomorphism

α : F0 −! F (X /M)

of sheaves of finite sets on Mét. Note that αx0
is the identity.

Since F (X /M) is a constant local system of finite sets, there is an isomorphism
of sheaves α : F0 ! F (X /M) such that αx0 is the identity.

The proof of the following lemma is similar to that of Lemma 4.5.1, and hence
omitted.
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Lemma 4.7.14. Let x = (X,λ, ω[4]) be a C-point of M. Then there exists an

isometry ψ : Λ0 ⊗ Ẑ ! H2(X,Z(1)) ⊗ Ẑ mapping λ0 and ω0 to λan,x and ωan,x,
and such that ψ induces αx.

Let (SO,Ω) be the orthogonal Shimura datum associated with (Λ0, b0, λ0, ω0)
as in Section 4.5. Moreover, let KF be the profinite group{

g ∈ K0 | ∆(g) = ± id∆(Λ0)

}
,

viewed as a compact open subgroup of SO(Af) by mapping g ∈ KF to g|Af λ⊥0
.

Now Lemma 4.7.14, Lemma 4.4.5, and Lemma 4.4.2 show that the tuple

(R2 fC,∗ Z(1), ban, λan, ωan, α)

gives rise to a morphism of complex Deligne-Mumford stacks MC ! ShKF
[SO,Ω]C.

Note that the isomorphism sheaf

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0, idF (Λ0)), (R
2
ét f∗ Ẑ(1), bét, λét, ωét)

)
is a KF -torsor on Mét. Moreover, Sh(SO,Ω)) is a KF -torsor on Sh[SO,Ω]ét. The
following theorem states that the period map MC ! ShKF

[SO,Ω]C descends to
Q. Its proof is similar to that of Theorem 4.5.2.

Theorem 4.7.15. The period map MC ! ShKF
[SO,Ω]C defined by the tuple

(R2 fC,∗ Z(1), ban, λan, ωan, α)

descends to a morphism M ! ShKF
[SO,Ω] defined over Q. This morphism is

étale, and pulls the KF -torsor Sh(SO,Ω) on ShKF
[SO,Ω]ét back to the KF -torsor.

Isom
(

(Λ0 ⊗ Ẑ, b0, λ0, ω0, idF (Λ0)), (R
2
ét f∗ Ẑ(1), bét, λét, ωét)

)
on Mét.

We wish to show that this period map is an open immersion. For this, we
need the following two lemmas. The first implies that the period map is faithful.
The second is a consequence of characterization of parallel transport operators for
K3[n]-type hyperkähler varieties, due to Markman. In conjunction with Verbitsky’s
global Torelli theorem (Corollary 4.1.14), this will allow us to show that the period
map is full.

Lemma 4.7.16 ([B1, Proposition 10] and [HT, Theorem 2.1]). Let X be a com-

plex hyperkähler variety of K3[n] type. Then the natural homomorphism Aut(X)!
O(H2(X,Z(1))) is injective.

Lemma 4.7.17. Let x = (X,λ, ω[4]) and x′ = (X ′, λ′, ω′[4]) be C-points of M, and

let ϕ : H2(X ′,Z(1)) ! H2(X,Z(1)) be a Hodge isometry mapping λan,x′ , ωan,x′ ,
and αx′ to λan,x, ωan,x′ , and αx. Then ϕ is induced by an isomorphism x! x′ in
M.
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Proof. By the global Torelli theorem for polarized hyperkähler manifolds, Corol-
lary 4.1.14, it suffices to show that ϕ is a parallel transport operator in the sense
of Definition 4.1.10.

By applying Lemma 4.7.3 to both X and X ′, we can find a smooth proper
morphism of algebraic spaces f : Y ! T whose fibers are hyperkähler varieties,
with T connected, such that one fiber of f (over t ∈ T , say) is isomorphic to X,
and another (over t′ ∈ T ) is isomorphic to X ′.

Pick a path γ in T an from t to t′. Then γ induces a parallel transport operator
ψ : H2(X,Z(1))! H2(X ′,Z(1)). Since f defines a morphism T ! K3[n], it follows

that ψβX = βX′ , where β is the isomorphism of sheaves on K3
[n]
ét given in (4.11).

Now the composition ϕψ is an element of O(H2(X,Z(1))). Since αx = βX
by definition of α, it follows that ϕψ(αx) = αx, so that ϕψ acts as ± id on
∆(H2(X,Z(1))). By [M1, Lemma 9.2], this implies that ϕψ is a parallel trans-
port operator. Since ψ is a parallel transport operator, and since the composition
of parallel transport operators is a parallel transport operator, it follows that ϕ is
a parallel transport operator.

The following theorem is an immediate consequence of Lemma 4.7.16 and
Lemma 4.7.17.

Theorem 4.7.18. The period map M! ShKF
[SO,Ω] from Theorem 4.7.18 is an

open immersion.

Remark 4.7.19. By Remark 4.7.13, we can prove a statement similar to Theo-
rem 4.7.18 for moduli spaces of oriented polarized hyperkähler varieties deforma-
tion equivalent to a generalized Kummer variety. The resulting period map is full
by [M5, Theorem 4.3] and Corollary 4.1.14. However it is not an open immersion,
since it is not faithful by [BNS, Corollary 3.3].

69





5
The spinor norm of monodromy operators

In this chapter, we will compute the spinor norm of monodromy operators on K3
surfaces.

In the first section, we recall the definition and basic facts about the spinor
norm. In the second section, we state the main result, and compare it to known
results. The proof of the result makes use of a theorem of Deligne on the connected
components of Shimura varieties, which is stated in the third section. The proof of
the main result is given in the fourth section. In the final two sections, we apply
the result to sharpen a theorem of Elsenhans and Jahnel on the zeta function of
K3 surfaces over finite fields, and to give a necessary condition for a lattice to be
the Néron-Severi lattice of a K3 surface over a non-closed field.

5.1 The spinor norm

5.1.1 Generalities

In this section we recall the definition of the spinor norm, and list some results
which we will need in later sections. None of the results in this section are original,
and proofs for most of them can be found in [C, Appendix C], [K], and [MM2].
We provide proofs for the results which are harder to find in the literature.

Throughout this section, (V, q) will be a quadratic form of over a commutative
ring R. That is, V is a locally free R-module of constant finite rank, and q is a
map V ! R such that q(λv) = λ2q(v) for all λ ∈ R and v ∈ V , and such that the
map bq : V × V ! R given by

(v, w) 7−! q(v + w)− q(v)− q(w)

is a bilinear form. The map bq is known as the bilinear form associated with q.
Moreover, in this section, we assume that V is self-dual in the sense that bq

induces an isomorphism V ! V ∨. In case 2 is not invertible in R, we additionally
assume that V has even dimension.

The reason for restricting our attention to quadratic forms satisfying these
conditions is that for such quadratic forms, the group scheme O(V ) admits a
natural central extension in the fppf topology, namely

1 −! µ2 −! Pin(V ) −! O(V ) −! 1. (5.1)
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5. The spinor norm of monodromy operators

The group Pin(V ) is known as the Pin group of V , and is constructed using the
Clifford algebra of V . See [C, Appendix C.5].

Definition 5.1.1. The connecting homomorphism O(V )(R)! H1(Rfppf, µ2) com-
ing from (5.1) is known as the spinor norm, and will be denoted νV .

Remark 5.1.2. We denote by −V the quadratic form (V,−q). Note that O(V ) =
O(−V ). In general, ν−V does not coincide with νV , see Lemma 5.1.9. Some authors
refer to ν−V as the spinor norm, notably [H2].

Remark 5.1.3. In working with the spinor norm, we will frequently make use of
the exact sequence

1 −! R×/2 −! H1(Rfppf, µ2) −! Pic(R)[2] −! 1

coming from the Kummer sequence. In particular, when Pic(R) is trivial, we will
identify the spinor norm with a map O(V )(R)! R×/2.

Example 5.1.4. In later sections, we will frequently consider self-dual even Z-
lattices Λ. Such lattices arise as the associated bilinear form of a self-dual quadratic
form over Z. Moreover, these lattices have even rank by [H2, Theorem 14.1.1], so
we have a spinor norm νΛ : O(Λ)(Z)! Z×/2 = {±1}.

The following lemmas collect some basic identities for the spinor norm.

Lemma 5.1.5. Let V and W be quadratic spaces over R. For g ∈ O(V )(R) and
h ∈ O(W )(R), the direct sum g ⊕ h is an orthogonal transformation of V ⊕W ,
and

νV⊕W (g ⊕ h) = νV (g)νW (h).

Lemma 5.1.6. Let V be a quadratic space over R, and R! R′ a ring homomor-
phism. Then the diagram

O(V )(R) O(V )(R′)

H1(Rfppf, µ2) H1(R′fppf, µ2)

νν

commutes.

Similarly to (5.1), the group O(V ) also admits a natural central extension
GPin(V ) by Gm, constructed using the Clifford algebra of V , see [C, Appendix C.4].
This group scheme comes with a morphism N : GPin(V ) ! Gm known as the
Clifford norm, the kernel of which is Pin(V ). The facts we need about GPin(V )
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5.1. The spinor norm

and Pin(V ) are summarized by the following commutative diagram:

1 1

1 µ2 Pin(V ) O(V ) 1

1 Gm GPin(V ) O(V ) 1

Gm Gm

1 1

N2

id

id

.

The two columns on the left are fppf exact sequences, and the two top rows
are central extensions. The top left square is cartesian.

The group scheme GPin(V ) is related to the group scheme GSpin(V ) of Sec-
tion 2.3 by the cartesian square

GSpin(V ) GPin(V )

SO(V ) O(V )
.

The following lemma relates the spinor norm to the Clifford norm. This is
useful because the Clifford norm is a morphism of group schemes, whereas the
spinor norm is not.

Lemma 5.1.7. Let V be a quadratic space over R. Then the diagram

GPin(V )(R) R×

O(V )(R) H1(Rfppf, µ2)

N

ν ,

commutes, where the map R× ! H1(Rfppf, µ2) is the connecting homomorphism
coming from the Kummer sequence.

Proof. The short exact sequence

1! µ2 −! Gm×Pin(V ) −! GPin(V )! 1,
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5. The spinor norm of monodromy operators

gives rise to a connecting homomorphism δ : GPin(V )(R) ! H1(Rfppf, µ2). The
commutative diagram

1 µ2 Gm×Pin(V ) GPin(V ) 1

1 µ2 Pin(V ) O(V ) 1

shows that δ coincides with the composition GPin(V )(R)! O(V )(R)
ν−! H1(Rfppf, µ2).

Similarly, the commutative diagram

1 µ2 Gm×Pin(V ) GPin(V ) 1

1 µ2 Gm Gm 1

N

2

shows that δ coincides with the composition GPin(V )(R)
N−! R× ! H1(Rfppf, µ2).

From this we conclude the lemma.

Suppose v ∈ V with q(v) ∈ R×. Then

w 7−! w − bq(v, w)

q(v)
v

defines an element rv ∈ O(V )(R), called the reflection through v. The following
lemma computes the spinor norm on reflections.

Lemma 5.1.8. Let v ∈ V be such that q(v) ∈ R×. Then ν(rv) is the image of
q(v) under the map R×/2! H1(Rfppf, µ2) coming from the Kummer sequence.

5.1.2 Quadratic forms over fields of characteristic 6= 2

In this subsection, we take R to be a field k of characteristic 6= 2.
The Cartan-Dieudonné theorem says that O(V )(k) is generated by reflections,

so Lemma 5.1.8 allows us to compute the spinor norm of any orthogonal transfor-
mation. We can also use this to see how νV relates to ν−V .

Lemma 5.1.9. Let V be a quadratic form over a field k of characteristic 6= 2.
Then for all g ∈ O(V )(k),

νV (g) = det(g)ν−V (g)

in k×/2.

Proof. By the Cartan-Dieudonné theorem it suffices to check this on reflections,
which can be done using Lemma 5.1.8 and the fact that the determinant of a
reflection is −1.
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5.1. The spinor norm

Remark 5.1.10. This result holds for more general base rings. For instance,
suppose Λ is an even self-dual lattice. Then the injectivity of Z×/2! R×/2 and
Lemma 5.1.9 applied to Λ⊗R show that νΛ = det ·ν−Λ.

Over fields of characteristic 6= 2 there is another convenient way to compute
spinor norms, given by the Zassenhaus formula.

Lemma 5.1.11 (Zassenhaus formula, [C, Theorem C.5.7]). Let V be a quadratic
space over a field k of characteristic 6= 2. For g ∈ O(V )(k), let V0 ⊆ V be the maxi-
mal subspace on which 1+g is nilpotent, and let V1 be its orthogonal complement.
Then

ν(g) = disc(V0) det

(
1 + g

2

∣∣∣∣
V1

)
in k×/2,

where disc(V0) is defined to be the determinant of the Gram matrix of V0 with
respect to any basis of V0.

By applying the Zassenhaus formula to − idV , we immediately obtain the fol-
lowing identity.

Lemma 5.1.12. If V is a quadratic space over a field k of characteristic 6= 2, then

ν(− idV ) = disc(V )

holds in k×/2.

The Zassenhaus formula also has the following consequence, which we will use
in Section 5.5.

Lemma 5.1.13. Let k be a field of characteristic 6= 2, let V be a quadratic form
over k, and g ∈ O(V )(k). If g does not have −1 as an eigenvalue, then det(g) is a
square in k×.

Proof. Lemma 5.1.11, applied to both V and −V , says that

νV (g) = det

(
1 + g

2

)
= ν−V (g)

in k×/2. Combining this with Lemma 5.1.9, which states that ν−V (g) = det(g)νV (g),
yields the result.

5.1.3 The image of the spinor norm over arithmetically interesting rings

In this subsection we collect some results on the image of the spinor norm.
The first says that the spinor norm is surjective on adelic points and Q-points

for indefinite quadratic spaces of rank ≥ 3 over Q.

Lemma 5.1.14. Let V be an indefinite quadratic space over Q of rank ≥ 3.
The Clifford norms NA : GSpin(V )(A)! A× and NQ : GSpin(V )(Q)! Q× are
surjective. The spinor norms νA : SO(V )(A)! A×/2 and νQ : SO(V )(Q)! Q×/2
are surjective.
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5. The spinor norm of monodromy operators

Proof. We will use Spin, GSpin, and SO to denote Spin(V ), GSpin(V ), and SO(V ),
respectively.

If R is a Q-algebra with Pic(R) = 1, then the map GSpin(R) ! SO(R) is
surjective. Therefore we can conclude from Lemma 5.1.7 that if NR is surjective,
then νR is also surjective. As such, since A and Q have trivial Picard groups (see
Lemma 2.3.26), we only have to show the surjectivity of NA and NQ.

By [C, Lemma C.4.1, Proposition C.4.10] Spin is simply connected, from which
it follows that H1(Qp,ét,Spin) = 1 for every prime p ([PR, Theorem 6.4]), and
hence that NQp

is surjective for all p. Let Λ ⊆ V be a full Z-lattice. This yields
integral models GSpin(Λ) and Spin(Λ) of the group schemes GSpin and Spin.
Given the surjectivity of NQp

for all p, to show that NAf
is surjective, it suffices

to show that NZp : GSpin(Λ)(Zp)! Z×p is surjective for all but finitely many p.
Let p be an odd prime number coprime to the discriminant of Λ, so that

Spin(Λ⊗ Zp) is a smooth connected group scheme, which follows from [C, Theo-
rem C.1.5], the smoothness of µ2 over Zp, and the short exact sequence

1! µ2 −! Spin(Λ⊗ Zp) −! SO(Λ⊗ Zp)! 1.

For λ ∈ Z×p , we wish to find an element of GSpin(Λ)(Zp) lifting λ. That is, we
want to show the existence of the diagonal dashed arrow in the diagram

GSpin(Λ⊗ Zp) Gm

Spec(Fp) Spec(Zp)

N

λ

Since the kernel Spin(Λ ⊗ Fp) of N over Fp is connected, Lang’s theorem [PR,
Theorem 6.1] shows the existence of the dashed arrow on the left. The smoothness
of the kernel Spin(Λ⊗Zp) of N implies the smoothness of N itself [EvdGM, Corol-
lary 4.33]. This allows us to apply Hensel’s lemma [EGAIV, Théorème 18.5.17] to
show the existence of the diagonal dashed arrow.

Let e1, e2 ∈ VR be orthogonal elements with e2
1 = −1 and e2

2 = 1, which
exist because V is indefinite. Then for λ ∈ R we have NR(λe1e2) = −λ2 and
NR(λ) = λ2, proving the surjectivity of NR, which, combined with the surjectivity
of NAf

, implies the surjectivity of NA.
To see that NQ is surjective, it suffices to show the triviality of the connecting

homomorphism δ : Q× ! H1(Qét,Spin) derived from the short exact sequence

1! Spin −! GSpin −! Gm ! 1.

From the surjectivity of NR it follows that R× ! H1(Rét,Spin) is trivial, and in
particular that the composition Q× ! H1(Qét,Spin) ! H1(Rét,Spin) is trivial.
From the Hasse principle for simply connected groups ([PR, Theorem 6.6]), which
says that H1(Qét,Spin)! H1(Rét,Spin) is a bijection, we obtain that δ is trivial.
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5.1. The spinor norm

Let ` be a prime number, and Λ a Z`-lattice. When ` = 2 we require Λ to be
even, to ensure that it has an associated quadratic form. Note that Λ is automati-
cally even when ` is odd. We denote by ∆(Λ) the discriminant form of Λ, i.e., the
group Λ∨/Λ endowed with the natural quadratic form Λ∨/Λ! Q /Z induced by
the extension of the bilinear form on Λ to Λ∨. Note that O(Λ) acts on ∆(Λ). We

denote by Õ(Λ) the group{
g ∈ O(Λ) | g|∆(Λ) = id∆(Λ)

}
.

On this group, we can define a Z×` /2-valued spinor norm νΛ, as the following
lemma shows.

Lemma 5.1.15. Let Λ be an even Z`-lattice. There is a unique homomorphism
νΛ : Õ(Λ)! Z×` /2 for which the square

Õ(Λ) Z×` /2

O(Λ⊗Q`) Q×` /2

νΛ

νΛ⊗Q` .

commutes.

Proof. The uniqueness of νΛ follows from the injectivity of Z×` /2! Q×` /2.
Note that even though Λ need not be self-dual, Λ⊗Q` is self-dual, so we have

a spinor norm νΛ⊗Q`
: O(Λ ⊗Q`) ! Q×` /2. We need to prove that the image of

the composition
Õ(Λ) −! O(Λ⊗Q`) −! Q×` /2

is contained in Z×` /2.
Let Λ′ be a self-dual even Z`-lattice into which Λ embeds. Then Definition 5.1.1

gives a spinor norm ν : O(Λ′)! Z×` /2. Moreover, the map O(Λ⊗Q`)! O(Λ′⊗Q`)

given by g 7! g ⊕ idΛ⊥ restricts to an injective map Õ(Λ) ! O(Λ′). Now the
diagram

Õ(Λ) O(Λ′)

O(Λ⊗Q`)) O(Λ′ ⊗Q`) Z×` /2

Q×` /2

ν

ν

ν

which commutes by Lemma 5.1.5 and Lemma 5.1.6, shows that νΛ lands in Z×` /2.
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5. The spinor norm of monodromy operators

Remark 5.1.16. When confusion is unlikely to arise, we will denote the map νΛ

by ν.

We are interested in the image of (det, ν) : Õ(Λ) ! {±1} × Z×` /2. We now
define some invariants of Λ in terms of which completely determine the image of
(det, ν).

For a finite abelian group A, we denote by length(A) the minimal number of
elements needed to generate A. Note that rk Λ ≥ length(∆(Λ)).

Let ` be an odd prime number, and Λ an even Z`-lattice. Then by [N1, The-
orem 1.9.1], there exists a unique (up to isomorphism) Z`-lattice Λ1 of rank
length(∆(Λ)) whose discriminant form is isomorphic to ∆(Λ). It is clear that
disc(Λ1) ∈ Z×` /2 only depends on the discriminant form ∆(Λ).

Definition 5.1.17. For Λ and Λ1 as above, we denote the invariant disc(Λ1) ∈
Z×` /2 of ∆(Λ) with disc(∆(Λ)).

Theorem 5.1.18 ([MM2, Theorem VII.12.1]). Let ` be an odd prime number,
and Λ an even Z`-lattice. Then

(det, ν) Õ(Λ) =


{(1, 1)} if rk Λ = length(∆(Λ))

{(1, 1), (−1, 2 disc(∆(Λ)))} if rk Λ = length(∆(Λ)) + 1

{±1} × Z×` /2 otherwise,

as a subgroup of {±1} × Z×` /2.

Remark 5.1.19. For ` = 2, the image of (det, ν) is also completely determined
by ∆(Λ) and rk Λ, but the result is much more complicated than for odd `. The
interested reader is referred to [MM2, Theorems VII.12.2, VII.12.3, VII.12.4] for
the full statement.

For an even self-dual Z`-lattice Λ′ and a sublattice Λ of Λ′, we denote by
O(Λ′,Λ) the group

O(Λ′,Λ) = {g ∈ O(Λ′) | g|Λ = idΛ} . (5.2)

Consider the product det ·ν : O(Λ′)! Z×` /2 of the spinor norm ν : O(Λ′)! Z×` /2
with the composition

O(Λ′)
det−−! µ2(Z`) −! Z×` /2.

In Section 5.6, it will be useful to know when the image of O(Λ′,Λ) under det ·ν
is trivial. The following corollary of Theorem 5.1.18 gives a necessary and suffi-
cient criterion in terms of the ranks of Λ′ and Λ, the invariant disc(∆(Λ)), and
length(∆(Λ)).

Corollary 5.1.20. Let ` be an odd prime number, Λ′ a self-dual even Z`-lattice,
and Λ a primitive sublattice of Λ′. Then det ·ν(O(Λ′,Λ)) = 1 if and only if

rk Λ + length(∆(Λ)) = rk Λ′ − 1
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and the product
(−1)rk Λ2 disc(∆(Λ))

is equal to 1 in Z×` /2, or if

rk Λ + length(∆(Λ)) = rk Λ′.

Proof. Let Λ⊥ be the orthogonal complement of Λ in Λ′. Since Λ′ is self-dual,
there is an isomorphism O(Λ′,Λ) ! Õ(Λ⊥) mapping g to its restriction to Λ⊥.
Similarly to the proof of Lemma 5.1.15, there is a commutative diagram

O(Λ′,Λ) Õ(Λ⊥)

Z×` /2

∼

det ·ν
det ·ν

,

so that det ·ν(O(Λ′,Λ)) = det ·ν(Õ(Λ⊥)). It now follows from Theorem 5.1.18
applied to Λ⊥ that det ·ν(O(Λ,Λ′)) is trivial if and only if

rk Λ⊥ = length(∆(Λ⊥)) + 1

and −2 disc(∆(Λ⊥)) is a square in Z×` , or if rk Λ⊥ = length(∆(Λ⊥)).
We will now restate these conditions in terms of invariants of Λ. Let Γ be the

unique even Z`-lattice of rank equal to length(∆(Λ)) whose discriminant form is
isomorphic to ∆(Λ) (see [N1, Theorem 1.9.1]). Then disc(∆(Λ)) is equal to disc(Γ).
Moreover, since Λ⊥ is the orthogonal complement of Λ in the self-dual lattice Λ′,
we have ∆(Λ⊥) ∼= −∆(Λ). It follows that

disc(∆(Λ⊥)) = disc(−Γ) = (−1)rk Γ disc(Γ) = (−1)length(∆(Λ)) disc(∆(Λ)).

Moreover, length(∆(Λ⊥)) = length(∆(Λ)), and rk Λ⊥ = rk Λ′− rk Λ. This finishes
the proof of the corollary.

5.2 Statement of the result

In this section we state the main result of this chapter, which computes the spinor
norm of monodromy operators on K3 surfaces. We also give some corollaries of
the main theorem which are proved in later sections.

Before stating the main theorem, we introduce some notation.

Recall that the Kronecker-Weber theorem identifies Galab
Q with Ẑ

×
. Let ` be

a prime number. The surjection Ẑ
×
! Z×` /2 gives rise to a number field K.

For ` = 2, the ring of integers OK is Z[ζ8], where ζ8 is a primitive 8th root

of unity, and for odd ` the ring of integers is Z
[

1+
√
`∗

2

]
, where `∗ = (−1)

`−1
2 `.

Since K is unramified away from `, the ring OK
[

1
`

]
is étale over Z[ 1

` ]. Moreover,

the action of Gal(K/Q) ∼= Z×` /2 on K extends to an action on OK
[

1
`

]
, making
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5. The spinor norm of monodromy operators

T` := Spec(OK [ 1
` ]) a Z×` /2-torsor on Z[ 1

` ]ét. In particular, T` has degree 2 over
Z[ 1

` ] when ` is odd, and degree 4 when ` = 2.

For a Z[ 1
` ]-scheme S, we denote by T`,S the (Z×`/2)-torsor on Sét defined by the

cartesian diagram

T`,S T`

S Spec
(
Z
[

1
`

])
.

(5.3)

Given a geometric point s of S, we denote the homomorphism πét
1 (S, s) ! Z×`/2

associated with T`,S by χ`.

The following is the main result of this chapter. It is proved in Section 5.4.

Theorem 5.2.1. Let ` be a prime number, d ∈ Z>0, S a scheme over Z
[

1
2d`

]
, and

s a geometric point of S. For a projective K3 surface f : X ! S of degree 2d, the
following diagram commutes:

πét
1 (S, s) O(H2

ét(Xs,Z`(1)))

Z×` /2

det ·ν
χ`

,

where ν denotes the spinor norm.

Using the triviality of χ` when S = Spec(F ), with F an algebraically closed
field, we immediately obtain the following corollary.

Corollary 5.2.2. Let S be a scheme over an algebraically closed field F of
characteristic p, let ` be a prime number distinct from p, s ∈ S(F ), and X
a projective K3 surface over S, of degree coprime to p. Then the composition

πét
1 (S, s)! O(H2

ét(Xs,Z`(1)))
det ·ν−−−! Z×` /2 is trivial.

As a corollary, we obtain [H2, Proposition 7.5.5], which states the same result
for complex K3 surfaces. Note that if X is a complex K3 surface, [H2] works with
ν−H2(X,Z(1)) instead of νH2(X,Z(1)). As is shown in remark 5.1.10,

ν−H2(X,Z(1)) = det ·νH2(X,Z(1)).

Corollary 5.2.3. Let S be a scheme over C, s ∈ S(C), and X a projective K3

surface over S. Then the composition π1(S, s) ! O(H2(Xs,Z(1)))
det ·ν−−−! Z×/2 is

trivial.

Proof. This follows by applying Corollary 5.2.2 and using the injectivity of Z×/2!
Z×` /2 for ` ≡ 3(4).
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The result also allows us to compute the spinor norm of the Frobenius operator
acting on the second cohomology of a K3 surface over a finite field. The proof is
contained in Section 5.5. The corollary also gives rise to a restriction on the zeta
function of a K3 surface over a finite field, see Corollary 5.5.3

Corollary 5.2.4. Let Fq be a finite field, X a K3 surface over Fq of degree
coprime to q, and ` a prime number coprime to q. Then

ν

(
Frobq

∣∣
H2

ét

(
XFq

,Z`(1)
)) = q · det

(
Frobq

∣∣
H2

ét

(
XFq

,Z`(1)
))

in Z×` /2.

The theorem also gives rise to a necessary condition for the realizability of
sublattices of the K3 lattice as Néron-Severi groups of K3 surfaces over a given
field, as the following corollary shows. See Theorem 5.6.1 for a slightly stronger
statement.

Corollary 5.2.5. Let k be a field, let ` be an odd prime number, and let X/k be
a K3 surface of degree coprime to the characteristic of k. If

rk(Pic(X)) + length(∆(Pic(X)⊗ Z`)) = 22

then `∗ is a square in k.

5.3 The reciprocity law for Shimura stacks

This section contains some Shimura-theoretic preliminaries necessary for the proof
of Theorem 5.2.1. The first subsection is about Deligne’s reciprocity law for the
connected components of a Shimura variety. In the second subsection we apply
Deligne’s reciporicity law to orthogonal Shimura stacks.

5.3.1 The reciprocity law for Shimura stacks

In this subsection we recall a result of Deligne on the structure of the set of
connected components of a Shimura varieties and the Galois action on it, known
as Deligne’s reciprocity law. All of these results can be found in [D4]. We work in
the slightly more general setting of Shimura stacks, but the results carry over to
our setting with minimal modifications.

If G is a reductive group over a number field E, we denote by G̃ the universal
covering of the derived subgroup of G. We then define π(G) to be the quotient set

π(G) = G(AE)/G(E)G̃(AE).

Lemma 5.3.1 ([D4, Corollaire 2.0.8, (2.4.0.1)]). Let E be a number field, and G

a reductive group over E. Then G(E)G̃(AE) ⊆ G(AE) is a normal subgroup, and
the quotient π(G) is a locally compact Hausdorff abelian group. This construction
defines a functor

π :
(

reductive E-groups
)
−!

(
locally compact Hausdorff

abelian groups

)
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5. The spinor norm of monodromy operators

Remark 5.3.2. If E′/E is a finite extension, and GE a reductive E-group, Deligne
constructs a natural homomorphism

NE′/E : π(GE′) −! π(GE),

called the norm, see [D4, (2.4.0.1)]. This homomorphism is needed to state Deligne’s
reciprocity law in full generality. In all Shimura data we will deal with outside this
section the reflex field is Q, so all norms we encounter are the identity.

Example 5.3.3. If G = GL2 over Q, then G̃ = SL2, so the determinant yields
an isomorphism π(G) ∼= Q× \A×. In the next subsection we will see that when
G = SO(V ), where V is a quadratic space over Q of signature (2, n) with n ≥ 1,
then the spinor norm yields an isomorphism π(SO(V )) ∼= Q× \A×/2.

Example 5.3.4. If E is a number field, and G = Gm,E , then π(G) = E×\A×E .

Artin’s reciprocity law is a homomorphism π(Gm,E)! Galab
E inducing an isomor-

phism π0π(Gm,E)! Galab
E . We will denote its reciprocal by

artE : π0π(Gm,E) −! Galab
E .

We now restrict our attention to reductive Q-groups G. Let Gad be the adjoint
group of G. We use G(R)+ to denote the inverse image of the identity component
of Gad(R) under G(R)! Gad(R). By π0π(G) we denote the quotient group

π0π(G) =
(
π0π(G)

)
/π0(G(R)+).

This construction is relevant to us because of the following result.

Lemma 5.3.5 ([D4, Proposition 1.2.7, Résumé 2.1.16]). Let (G,X) be a Shimura
datum with reflex field E, and π0 Sh(G,X) the E-scheme of connected components
of Sh(G,X). Then π0π(G) is profinite, and the G(Af)-action on π0 Sh(G,X) fac-
tors through G(Af) ! π0π(G), endowing π0 Sh(G,X) with the structure of a
π0π(G)-torsor on E. Moreover, π0(X) is a G(R)/G(R)+-torsor.

Example 5.3.6. Consider the Siegel Shimura datum (G,X) associated with a
symplectic Q-vector space of dimension 2, as in Example 2.1.1. That is, (G,X) =
(GL2,H), where H is the double half plane, which parametrizes Hodge structures
on R2 of type (0, 1) + (1, 0). The reflex field of (G,X) is Q. It is easy to see that
GL2(R)+ is connected, so that π0π(G) = π0π(G). The determinant and Artin
reciprocity therefore yield an isomorphism

π0π(G)
det−−! π0(Q× \A×)

artQ−−−! Galab
Q . (5.4)

Lemma 5.3.5 gives a Galab
Q -action on the source, and Galab

Q acts on the target by
translation. We will see in Example 5.3.8 that Deligne’s reciprocity law implies
that the isomorphism above is Galab

Q -equivariant.

For a commutative C-algebra A, the map A⊗R C! A×A, a⊗ z 7! (za, za)
is an isomorphism of rings. This yields an isomorphism Gm,C×Gm,C ! SC,
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5.3. The reciprocity law for Shimura stacks

which we will use to identify these two group schemes. Let (G,X) be a Shimura
datum. For h ∈ X, we define µh : Gm,C ! GC as z 7! hC(z, 1). The reflex field
E of (G,X) is by definition the unique smallest subfield of C such that the G(C)-
conjugacy class of µh is defined over E. Then E is a number field. It can be shown
that µh induces a continuous group homomorphism π(Gm,E)! π(GE), which we
denote with πµh, see [D4, §2.4].

We now define a continuous homomorphism

r(G,X) : GalE −! π0π(G), (5.5)

as the following composition

GalE ! Galab
E

art−1
E−−−! π0π(Gm,E)

π0π(µh)−−−−−! π0π(GE)
π0NE/Q−−−−−! π0π(G)! π0π(G).

We now have two π0π(G)-torsors on E, namely π0 Sh(G,X), and the one defined
by (5.5). The following theorem of Deligne says that these two torsors are isomor-
phic.

Theorem 5.3.7 (Deligne’s reciprocity law, [D4, Théorème 2.6.3]). Let (G,X) be
a Shimura datum with reflex field E. Then the π0π(G)-torsor π0 Sh(G,X) on E
is isomorphic to the one defined by (5.5).

Example 5.3.8. We again consider the Shimura datum (G,X) = (GL2,H), as in
Example 5.3.6. Let h : S ! GR be an element of H. Then the composition deth
corresponds to the Tate Hodge structure Q(−1), so that detµh : Gm,C ! Gm,C

is the identity. From Deligne’s reciprocity law it now follows that (5.4) is GalQ-
equivariant.

We will rephrase 5.3.7 in a way which is more convenient for our purposes. Let
(G,X) be a Shimura datum with reflex field E, and K a profinite group endowed
with a continuous homomorphism K! G(Af) with finite kernel and open image.
The G(Af)-action on Sh(G,X) turns Sh(G,X) into a K-torsor on ShK[G,X]ét.
For a geometric point s of ShK[G,X], and a geometric point s̃ of Sh(G,X) lying
over s, this K-torsor gives rise to a homomorphism πét

1 (ShK[G,X], s)! K.

Lemma 5.3.9. Let s̃ be a geometric point of Sh(G,X), s its image in ShK[G,X],
and ρ : πét

1 (ShK[G,X], s)! K the resulting homomorphism. Then the diagram

πét
1 (ShK[G,X], s) K

G(Af)

GalE π0π(G)

ρ

r(G,X)

commutes, where r(G,X) is defined by (5.5).
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5. The spinor norm of monodromy operators

Proof. Let θ be the composition K ! G(Af) ! π0π(G). Using θ to change
the structure group of the K-torsor Sh(G,X) gives rise to a π0π(G)-torsor on
ShK[G,X]ét, which we denote θ∗ Sh(G,X). By Theorem 5.3.7, it suffices to show
that θ∗ Sh(G,X) is isomorphic to the pullback of π0 Sh(G,X) to ShK[G,X].

Consider the commutative diagram

Sh(G,X) π0(Sh(G,X))

ShK[G,X] Spec(E)
.

Here, K acts on π0(Sh(G,X)) via θ, and the map Sh(G,X) ! π0(Sh(G,X)) is
K-equivariant. This proves the lemma.

Example 5.3.10. As in Example 5.3.8, consider the Shimura datum (GL2,H).

Let K be the compact open subgroup GL2(Ẑ) of GL2(Af), and s a geometric point
of ShK[GL2,H]. Then Lemma 5.3.9 and Example 5.3.8 can be used to show that
the diagram

πét
1 (ShK[GL2,H], s) K

GalQ Ẑ
×
det

χ

commutes. Here, χ : GalQ ! Ẑ
×

is the cyclotomic character, that is, it is the

composition of GalQ ! Galab
Q with the isomorphism Galab

Q ! Ẑ
×

given by the
Kronecker-Weber theorem. Note that ShK[GL2,H] is the moduli stack of elliptic
curves over Q. This can be used to show that for any scheme S over Q with
geometric point s, and any family E of elliptic curves over S, the diagram

πét
1 (S, s) GL(H1(Es, Ẑ))

GalQ Ẑ
×
det

χ−1

commutes.

5.3.2 Orthogonal Shimura stacks

In this section, we apply Deligne’s reciprocity law to orthogonal Shimura stacks.
Before stating the main result, we need to introduce some notation.

Throughout this section, V is a quadratic space over Q of signature (2, n), with
n ≥ 1. We denote by (SO,Ω) the associated Shimura datum as in Section 2.3.
That is, SO = SO(V ) is the special orthogonal group, and Ω = ΩV is the period
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5.3. The reciprocity law for Shimura stacks

domain of Hodge structures of K3 type on V ⊗Q R. By Lemma 2.1.3, the reflex
field of (SO,Ω) is Q. In addition, we let K be a profinite group endowed with a
continuous homomorphism K ! SO(Af) with open image and finite kernel. As
we saw in Section 4.4, this gives rise to a Shimura stack ShK[SO,Ω], which is a
smooth separated Deligne-Mumford stack over Q.

Remark 5.3.11. Artin reciprocity yields a map

GalQ −! Galab
Q /2 −! π0(Q×\A×/2) = Q×\A×/2

which we denote cft. Moreover, note that since Q×\A×/2 is 2-torsion, it does
not matter whether we use Artin’s reciprocity law or its reciprocal artQ to define
this map.

The following is the main result of this section.

Proposition 5.3.12. Let s̃ be a geometric point of Sh(SO,Ω), and s its image in
ShK[SO,Ω]. Define ξK : K! Q×\A×/2 to be the composition

K −! SO(Af)
ν−−! Af

×/2 −! Q×\A×/2,

where ν denotes the spinor norm, see Section 5.1. Then the diagram

πét
1 (ShK[SO,Ω], s) K

GalQ Q×\A×/2
cft

ξK

commutes.

Remark 5.3.13. Let GSpin = GSpin(V ) be the Clifford group of V , andN : GSpin!
Gm the Clifford norm (see Section 2.3). The proof will show that a similar state-

ment involving GSpin(Af)
N−! A× ! Q×\A× and the composition

GalQ −! Galab
Q

art−1
Q−−−! π0

(
Q×\A×

)
holds for the Shimura datum (GSpin,Ω)

The proof will make use of the morphisms of Shimura data from (2.1), namely

(SO,Ω) − (GSpin,Ω)
N−−! (Gm, {Q(−1)}),

and the relation of the spinor norm to the Clifford norm given by Lemma 5.1.7.
Note that by Lemma 2.1.3, the reflex fields of each of these Shimura data is Q.

Lemma 5.3.14. Let V be a quadratic space over R of signature (2, n), with
n ≥ 1. Both SO(R)+ and GSpin(R)+ are connected.
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5. The spinor norm of monodromy operators

Proof. It is well known that SO(R) has two connected components. Moreover, by
the last part of Lemma 5.3.5, [SO(R) : SO(R)+] = |π0(Ω±)| = 2, proving the first
assertion.
For the second assertion, note that [GSpin(R) : GSpin(R)+] = 2 by Lemma 5.3.5,
so it suffices to show that π0(GSpin(R)) ∼= {±1}. For this, we use that if G is a
Lie group with closed subgroup H, then the sequence

π0(H)! π0(G)! π0(G/H)! 1

is exact and functorial in (G,H). We apply this to the exact sequences 1 !
{±1} ! Spin(R) ! SO(R)+ ! 1 and 1 ! R× ! GSpin(R) ! SO(R) ! 1,
and use the connectedness of Spin(R) ([PR, Proposition 7.6]) to conclude that
π0(GSpin(R)) ∼= π0(SO(R)) ∼= {±1}.

Corollary 5.3.15. Let V be a quadratic space over Q of signature (2, n) with
n ≥ 1. Then π0π SO = π0π SO and π0πGSpin = π0πGSpin.

Note that SO(Af)
ν−! Af

×/2 ! Q×\A×/2 factors through π0π(SO), yielding a
morphism π0π(SO) ! Q×\A×/2 which we also denote with ν. Moreover, Corol-
lary 5.3.15 identifies π0π(SO) with π0π(SO), so Deligne’s reciprocity law results
in a homomorphism

GalQ
r(SO,Ω)−−−−! π0π(SO) = π0π(SO)

ν−−! Q×\A×/2.

The following lemma states that this homomorphism coincides with the one coming
from class field theory.

Proposition 5.3.16. Let V be a quadratic space over Q of signature (2, n) with
n ≥ 1. The diagram

GalQ π0π(SO)

Q×\A×/2

r(SO,Ω)

ν
cft

commutes.

Proof. Recall that Lemma 5.1.7 gives a commutative diagram relating the spinor
norm to the Clifford norm. If we apply π0π to this commutative diagram, and
factor out Q× in the bottom right corner, we obtain

π0π(GSpin) π0π(Gm)

π0π(SO) Q×\A×/2

N

ν

(5.6)
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5.3. The reciprocity law for Shimura stacks

On the other hand, let h : S ! SOR be an element of Ω, and h̃ : S ! GSpin the
unique lift of h to GSpin for which N ◦ h̃ : S! Gm,R corresponds to the Lefschetz
Hodge structure Q(−1), cf [D3, 4.2]. Since the reflex field of (SO,Ω), (GSpin,Ω),
and (Gm, {Q(−1)}) is Q, we obtain a commutative diagram

π0π(SO)

π0π(Gm) π0π(GSpin)

π0π(Gm)

π0π(µh̃)

π0π(µh)

π0π(µNh̃)
π0π(N)

(5.7)

Note that since Nh̃ corresponds to Q(−1), there holds µNh̃ = idGm,Q
, so the

bottom map in the commutative diagram is the identity.
By combining (5.7) and (5.6) with the definition of r(SO,Ω), we find that

GalQ π0π(Gm)

π0π(GSpin) π0π(Gm)

π0π(SO) Q×\A×/2

cft

r(SO,Ω)

µh

id

N

ν

commutes. Since the map GalQ ! Q×\A×/2 given by composing the maps along
the top of the diagram is precisely the one coming from class field theory, we obtain
the desired result.

Finally, we are able to prove Proposition 5.3.12.

Proof of Proposition 5.3.12. Note that π0π(SO) = π0π(SO) by Lemma 5.3.14.
Therefore Lemma 5.3.9 and Proposition 5.3.16 yield a commutative diagram

πét
1 (ShK[SO,Ω], s) K

GalQ π0π(SO)

Q×\A×/2

r(SO,Ω)

cft
ν
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5. The spinor norm of monodromy operators

proving the proposition.

Remark 5.3.17. Lemma 5.1.14 shows that the spinor norm induces an isomor-
phism π0π(SO) ! Q×\A×/2. Combining this with Proposition 5.3.16 and the
fact that the scheme of connected components of Sh(SO,Ω) is a π0π(SO)-torsor
on Qét shows that π0(Sh(SO,Ω)) ∼= Spec(Qquad). Similarly, π0(Sh(GSpin,Ω)) ∼=
Spec(Qab), where Qab is the maximal abelian extension of Q.

We end this section by making Proposition 5.3.12 more explicit in the case that
is most relevant to our purposes.

Let Λ be a self-dual even Z-lattice of signature (3, n), with n odd, and λ ∈ Λ
a primitive vector of positive length. By setting V = λ⊥ ⊗Q, this gives rise to an
orthogonal Shimura datum (SO,Ω) := (SO(V ),ΩV ). Let K be the profinite group
defined in (4.8). That is,

K =
{
g ∈ O(Λ⊗ Ẑ)

∣∣∣gλ = λ and det g ∈ µ2(Z) ( µ2(Ẑ)
}
.

We endow K with the homomorphism i : K ! SO(Af), g 7! det(g)g|VAf
, yielding

a Shimura stack ShK[SO,Ω] over Q.
Note that the fact that Λ is self-dual and of even rank implies that we have

a spinor norm ν : O(Λ ⊗ Ẑ) ! Ẑ
×
/2, see Definition 5.1.1. Combining this with

the determinant det : O(Λ ⊗ Ẑ) ! µ2(Ẑ), we obtain a map det ·ν : K ! Ẑ
×
/2,

sending g ∈ K to det(g)ν(g). We can use this map to change the structure group

of the K-torsor Sh(SO,Ω) on ShK[SO,Ω]ét, yielding a Ẑ
×
/2-torsor which we de-

note (det ·ν)∗ Sh(SO,Ω). Aside from this we have another Ẑ
×
/2-torsor, namely

Spec(Qquad)× ShK[SO,Ω].

Proposition 5.3.18. Let (SO,Ω,K) and ν be as above. Then

(det ·ν)∗ Sh(SO,Ω) ∼= Spec(Qquad)× ShK[SO,Ω]

as Ẑ
×
/2-torsors on ShK[SO,Ω]ét.

Proof. Define a map ψ : Q×\A×/2! Ẑ
×
/2 to be the composition

Q×\A×/2
artQ−−−! Gal(Qquad /Q) −! Ẑ

×
/2,

where the second map is the isomorphism given by the Kronecker-Weber theorem.
It can be shown that ψ is given explicitly by

(av)v 7−!

(
ap sgn(a∞)

∏
q

qordq(aq)

)
p

.

In particular,
ψ(1R,−1,−1, . . .) = −1, (5.8)

and
ψ((av)v) = (av)v, for (av)v ∈ Ẑ

×
/2 ⊆ A×/2. (5.9)
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The composition GalQ
cft−−! Q×\A×/2 ψ−! Ẑ

×
/2 corresponds to the Ẑ

×
/2-torsor

Spec(Qquad) on Qét. It now follows from Proposition 5.3.12 that it suffices to
show that

K i−−! SO(Af)
ν−−! Q×\A×/2

ψ−−! Ẑ
×
/2

is equal to det ·ν.
Let g ∈ K. First, note that by applying the identities in Lemma 5.1.5 and

Lemma 5.1.12 to VQp
and VQp

⊕Qp λ = ΛQp
for all p, and using that det(v) ∈

{±1}, we obtain

νi(g) = ν(det(g)g|VAf
) = disc(VAf

)
1−det(g)

2 ν(gAf
).

Note that since Λ is self-dual and of even rank, we have ν(gAf
) = ν(g) ∈ Ẑ

×
/2.

Write λ2 = 2d, with d ∈ Z>0, so that disc(VAf
) = −2d < 0. Combining this with

ν(g) ∈ Ẑ
×
and (5.8) and (5.9), we find that applying ψ to the equation above yields

ψνi(g) = det(g)ν(g), which was to be shown.

The following remark relates the proposition to the Z×` /2-torsors T` defined
in (5.3), and hence to the maps χ` occurring in Theorem 5.2.1.

Remark 5.3.19. Note that Qquad is a Galois extension of Q with Galois group

Ẑ
×
/2, so that Spec(Qquad) is a (Ẑ

×
/2)-torsor on Qét. We denote by ζ8 a primitive

8th root of unity, and for an odd prime `, we define `∗ = (−1)
`−1

2 `. The diagram

Qquad

Q(ζ8) Q(
√
`∗)

Q

Ẑ
×
/2

Z×2/2 Z×`/2

shows that T`,Q is obtained by changing the structure group of Spec(Qquad) to
Z×` /2.

5.4 Proof of Theorem 5.2.1

We use the notation of Theorem 5.2.1. In particular, S is a Z[ 1
2d` ]-scheme, and

f : X ! S a projective K3 surface of degree 2d. Recall the Z×`/2-torsor T`,S on Sét

defined in (5.3). The K3 surface f : X ! S gives rise to an O(ΛK3⊗Z`)-torsor on
Sét, namely

IsomS

(
ΛK3 ⊗ Z`,R

2
étf∗ Z`(1)

)
,

where ΛK3 denotes an even self-dual lattice over Z of signature (3, 19), and R2
ét f∗ Z`(1)

is endowed with the cup product pairing. By changing the structure group of this
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5. The spinor norm of monodromy operators

torsor using the map det ·ν : O(ΛK3⊗Z`)! Z×` /2, we obtain a Z×` /2-torsor on Sét,
which we denote (det ·ν)`,X/S . Now Theorem 5.2.1 is equivalent to (det ·ν)`,X/S
and T`,S being isomorphic as torsors on Sét. Note that these torsors are stable
under base change along morphisms S′ ! S.

Let K32d be the moduli stack over Z[1/2d`] of polarized K3 surfaces of degree
2d, and f : X ! K32d the universal K3 surface. Then it suffices to show that
(det ·ν)`,X /K32d

and T`,K32d
are isomorphic. We will obtain the characteristic 0

case using Shimura-theoretic methods, and later deduce the general case.
Let λ ∈ ΛK3 be a primitive element of length 2d, and define V to be the

orthogonal complement of λ in ΛK3 ⊗ Q. Let (SO,Ω) be the Shimura datum
associated with V as in Section 2.3, and let K be the profinite group defined
in (4.8), namely

K :=
{
g ∈ O(ΛK3)(Ẑ) | g(λ) = λ and det(g) ∈ {±1}

}
.

We endow K with the continuous homomorphism i : K ! SO(Af) given by map-
ping g ∈ K to det(g)g|V⊗Af

, yielding a Shimura stack ShK[SO,Ω] over Q. Theo-
rem 4.6.4 gives a morphism P : K32d,Q ! ShK[SO,Ω], defined over Q.

Lemma 4.3.7 gives a rank 1 local Z-system D on K32d,Q, endowed with an

injective map D ! det R2
ét fQ,∗ Ẑ(1). This gives rise to a K-torsor

I := Isom
(

(ΛK3, λ,det ΛK3),
(

R2
ét fQ,∗ Ẑ(1), b, λ,D

))
on K32d,Q,ét, where b is the pairing coming from the cup product. Consider the
composition

K det ·ν−−−! Ẑ
×
/2 −! Z×` /2.

Then changing the structure group of I using this homomorphism is precisely the
restriction to K32d,Q,ét of the torsor (det ·ν)`,X /K32d

. Theorem 4.6.4 says that P
pulls the K-torsor Sh(SO,Ω) on ShK[SO,Ω]ét back to I, so combining this with
Proposition 5.3.18 and Remark 5.3.19 proves that

T`,K32d,Q
∼= (det ·ν)`,X /K32d,Q

. (5.10)

The following lemma will allow us to deduce the general case from the charac-
teristic 0 case.

Lemma 5.4.1. Let S be a normal locally Noetherian scheme, and G a finite group
acting on S. If x is a geometric point of [S/G]Q, then

πét
1 ([S/G]Q, x) −! πét

1 ([S/G], x)

is surjective.

Proof. Without loss of generality, [S/G] is connected. Let T be a connected com-
ponent of S, and H the subgroup {g ∈ G | gT ⊆ T} of G. Then T is a connected
H-torsor on [S/G], and the resulting map πét

1 ([S/G], x) ! H is surjective. Now
let η be the generic point of T , and y a geometric point of TQ lying over x. Then
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by [SGA1, Proposition V.8.2], πét
1 (η, y)! πét

1 (T, y) is surjective. Moreover, η ! T
factors through TQ, so

πét
1 (TQ, y) −! πét

1 (T, y)

is surjective. The diagram

1 πét
1 (T, y) πét

1 ([S/G], x) H 1

1 πét
1 (TQ, y) πét

1 ([S/G]Q, x) H 1

id

now shows the surjectivity of πét
1 ([S/G]Q, x)! πét

1 ([S/G], x).

Lemma 5.4.2. Let S be a quasi-separated normal Noetherian algebraic space,
and G a finite group acting on S. If x is a geometric point of [S/G]Q, then

πét
1 ([S/G]Q, x) −! πét

1 ([S/G], x)

is surjective.

Proof. Let y be a geometric point of SQ lying over x. We will show that the map

πét
1 (SQ, y) −! πét

1 (S, y)

is surjective. Given the surjectivity of this map, the rest of the proof proceeds
exactly as the proof of Lemma 5.4.1, and is therefore omitted.

Since S is quasi-separated, normal, and Noetherian, [LMB, Corollaire 16.6.2]
shows that there exists a normal scheme S′ and a finite group G′ acting on S′ such
that S is isomorphic to the quotient S′/G′. Note that S is the coarse moduli space
of [S′/G′], so we have a canonical morphism [S′/G′] ! S. Let z be a geometric
point of [S′/G′]Q lying over y, and consider the commutative diagram

πét
1 ([S′/G′]Q, z) πét

1 (SQ, y)

πét
1 ([S′/G′], z) πét

1 (S, y)

By Lemma 5.4.1, the map πét
1 ([S′/G′]Q, z) ! πét

1 ([S′/G′], z) is surjective, and
by [N2, Theorem 7.11], the horizontal maps in the diagram are surjective. It follows
that πét

1 (SQ, y)! πét
1 (S, y) is surjective.

We now finish the proof of Theorem 5.2.1. Consider the sheaf of isometries

K32d,4 := Isom
(
(ΛK3 ⊗ Z /4 Z, λ), (R2

ét f∗µ4, b, λ)
)

on K32d,ét, where b is the cup product pairing. Since K32d is a smooth separated
Deligne-Mumford stack over Z[1/2d] by [R4, Theorem 4.3.3, Proposition 4.3.11],
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it follows that K32d,4 is a smooth separated Deligne-Mumford stack over Z[1/2d].
An argument similar to that in the proof of [R4, Lemma 6.1.3] shows that the
automorphism groups in K32d,4 are trivial, so that K32d,4 is an algebraic space.

The finite group O(ΛK3 ⊗ Z /4 Z) acts on K32d,4. It is clear that K32d is
isomorphic to the quotient stack [K32d,4 /O(ΛK3 ⊗ Z /4 Z)]. It now follows from
Lemma 5.4.2 and (5.10) that

T`,K32d
∼= (det ·ν)`,X /K32d

,

which was to be shown.

5.5 The spinor norm of the Frobenius

In this section we apply our result to K3 surfaces over a finite field Fq of char-
acteristic p to compute the spinor norm of the Frobenius acting on the second
cohomology. As a corollary, we obtain a special case of a theorem of Elsenhans
and Jahnel.

We first compute the value of χ` on Frobq, where χ` : GalFq
! Z×`/2 is defined

by (5.3).

Lemma 5.5.1. Assume that p is an odd prime, and let ` be a prime distinct from
p. Then χ`(Frobq) = q in Z×` /2.

Proof. Let r ∈ Z>0 be such that q = pr. If r is even, then q = 1 in Z×` /2. Moreover,
all elements of Fp are squares in Fq. In particular, `∗, −1, and 2 are all squares
in Fq, so that χ`(Frobq) = 1. If r is odd, then q = p in Z×` /2. Moreover, every
element of Fp is a square in Fp if and only if it is a square in Fq, so we may assume
r = 1.

If ` is odd, then quadratic reciprocity states that `∗ has a square root in Fp if
and only if p has a square root in F`. By Hensel’s lemma the latter statement is
equivalent to p having a square root in Z`. We conclude that χ`(Frobp) = p.

If ` = 2, then it follows from
(
−1
p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 that we

need to show that if p = m mod 8, then p = m ∈ Z×2 /2, wherem ∈ {±1,±5}. This
follows immediately from the fact that reduction modulo 8 induces an isomorphism
Z×2 /2! (Z /8 Z)

×
.

We are now able to prove Corollary 5.2.4, which gives an expression for the
spinor norm of Frobq acting on the second cohomology of a K3 surface. For the
remainder of the section, X denotes a K3 surface over Fq.

Proof of Corollary 5.2.4. Assume that X admits a polarization of degree coprime
to p, and let ` be a prime distinct from p. By Theorem 5.2.1 and Lemma 5.5.1,

det

(
Frobq

∣∣
H2

ét

(
XFq

,Z`(1)
)) · ν(Frobq

∣∣
H2

ét

(
XFq

,Z`(1)
)) = χ` (Frobq) = q ∈ Z×` /2.
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5.6. Néron-Severi lattices over non-closed fields

Let ` be a prime distinct from p, and Φ the characteristic polynomial of Frobq
acting on H2

ét(XFq
,Q`(1)). Then Φ has coefficients in Q, and does not depend on

`. We will use Corollary 5.2.4 to compute Φ(−1) up to squares in case Φ(−1) 6= 0.
First, we need the following lemma on K3 surfaces satisfying Φ(−1) 6= 0.

Lemma 5.5.2. Let ` be a prime distinct from p. If Φ(−1) 6= 0, then

det H2
ét(XFq

,Q`(1)) ∼= Q`(0)

as GalFq
-representations.

Proof. We need to show that det Frobq = 1. If ` ≡ 3(4), then det Frobq = 1
follows from Lemma 5.1.13. For other `, we use that det Frobq is `-independent
(this follows from the Weil conjectures, proved for K3 surfaces in [D3]) to reduce
to the case where ` ≡ 3(4).

Corollary 5.5.3. Let X be a K3 surface over Fq of degree coprime to q, let ` be
a prime coprime to q, and assume that Φ(−1) 6= 0. Then

Φ(−1) = q

holds in Q×` /2.

Proof. Let F denote Frobq acting on H2
ét(XFq

,Q`(1)). Combining Lemma 5.5.2

and Corollary 5.2.4 yields ν(F ) = q as elements of Q×` /2. Since Φ(−1) 6= 0, the
Zassenhaus formula (Lemma 5.1.11) says that

ν(F ) = det

(
1 + F

2

)
= (−2)22 det(−1− F )

which is equal to Φ(−1) by the definition of Φ and the fact that (−2)22 is a square.
This proves the corollary.

Remark 5.5.4. In [EJ, Proposition 3.11], Elsenhans and Jahnel obtain the same
result using different methods.

5.6 Néron-Severi lattices over non-closed fields

In this section we apply Theorem 5.2.1 to give a necessary condition for a lattice
to be the Néron-Severi lattice of a K3 surface over a non-closed field.

For a finite abelian group A and a prime number `, we denote by A[`∞] the
subgroup of those a ∈ A for which there exists an r ∈ Z≥0 with `ra = 0. For a
Z-lattice Λ we have ∆(Λ)[`∞] = ∆(Λ⊗ Z`). In particular, Definition 5.1.17 gives
an invariant

disc
(

∆(Λ)[`∞]
)
∈ Z×` /2

of Λ.
The following theorem is the main result of this section.
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5. The spinor norm of monodromy operators

Theorem 5.6.1. Let k be a field, let ` be an odd prime number, and let X/k be
a K3 surface of degree coprime to the characteristic of k. We denote by ρ(X) the
rank of Pic(X), and

r`(X) := length
(

∆
(

Pic(X)
)
[`∞]

)
.

If r`(X) + ρ(X) = 21 and the product

(−1)r`(X)+12 disc
(

∆
(

Pic(X)[`∞]
))

is equal to 1 in Z×` /2, or if r`(X) + ρ(X) = 22, then `∗ is a square in k.

Proof. If ` is equal to the characteristic of k, then `∗ is trivially a square in k.
Suppose that ` is coprime to the characteristic of k. Then `∗ is a square in k

if and only if the image of χ` : Galk ! Z×` /2 is trivial, where χ` is the quadratic
character defined by (5.3). Therefore we need to prove that when the conditions
of the theorem are satisfied, then χ` has trivial image.

By Theorem 5.2.1, χ` is equal to the composition

Galk −! O(Hét(Xk,Z`(1)))
det ·ν−−−! Z×` /2.

The image of Pic(X) under c1 in Hét(Xk,Z`(1)) is invariant under the Galk-
action. That is, each of its elements is Galk-stable. It follows that the image of χ`
is contained in

det ·ν
(
O
(
Hét(Xk,Z`(1)), c1Pic(X)

))
where we use the notation from (5.2). Corollary 5.1.20 states that this is trivial if
and only if the conditions of the theorem are satisfied, completing the proof.

Remark 5.6.2. The main lattice-theoretic input into Theorem 5.6.1 is Theo-
rem 5.1.18. As was noted in Remark 5.1.19, this theorem has a more complicated
analogue for ` = 2. One can use this to prove a version of Theorem 5.6.1 for even
primes.

Example 5.6.3. Let ` be an odd prime, and Λ a lattice of signature (1, 10) whose
discriminant form is `-primary and has length 11. By [M6, Remark 2.11], there
exists a complex projective K3 surface whose Picard lattice is isomorphic to Λ.
However, since rk Λ+length(∆(Λ)) = 22, it follows from Theorem 5.6.1 that there
is no K3 surface over Q whose Picard lattice is isomorphic to Λ (or indeed over
any field of characteristic 0 not containing

√
`∗).
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[A2] Y. André. Pour une théorie inconditionnelle des motifs. Publ. Math.
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Summary

In this thesis I study to what extent the moduli stacks of polarized hyperkähler
varieties (for example, K3 surfaces) are related to Shimura stacks. I focus in partic-
ular on hyperkähler varieties defined over non-closed fields, and the ramifications
of Deligne’s reciprocity law for such varieties. Chapters 1 and 2 serve as introduc-
tions to Shimura stacks and moduli of polarized hyperkähler varieties, respectively,
and can be read independently of each other. From Chapter 3 on, every chapter
depends on all chapters preceding it.

Chapter 1 is an introductory chapter, and gives a detailed global overview of
the thesis and the main results.

The second chapter is an expository chapter about Shimura varieties and mo-
tives. The main result is that the canoncial model of a Shimura variety of abelian
type (for example, an orthogonal Shimura variety) is a moduli space of abelian mo-
tives. This result is due to Deligne and Milne, and this chapter is a more Tannakian
exposition of their work.

Chapter 3 gives an introduction to polarized hyperkähler varieties and their
moduli. The main result, which is well known to the experts, is that the moduli
stack of polarized hyperkähler varieties is a separated Deligne-Mumford stack over
Q.

In Chapter 4 I study the period map for hyperkähler varieties. This is a mor-
phism from a degree 2 étale covering of the moduli stack of complex polarized
hyperkähler varieties to an orthogonal Shimura stack. One of the main results of
this chapter is that this map descends to a morphism over Q. This is proved by
combining the results of Chapter 2 and 3 with André’s result that the motive of
a hyperkähler variety is abelian. Furthermore, the chapter contains stronger ver-
sions of this main result for two specific families of hyperkähler varieties, namely
K3 surfaces and hyperkähler varieties of type K3[n].

The final chapter applies the results of Chapter 4 to obtain more concrete
results about K3 surfaces, namely a computation of the spinor norm of monodromy
operators on the second cohomology. The proof makes use of a result Deligne on the
connected components of the canonical model of a Shimura variety, of which the
chapter contains an exposition. This is then used to sharpen a result of Elsenhans
and Jahnel on K3 surfaces over finite fields, and to give a non-trivial necessary
condition for a lattice to be the Néron-Severi lattice of a K3 surface over a non-
closed field.
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