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Abstract. Computational agents based upon the belief-desire-intention
(BDI) architecture generally use reactive rules to trigger the execution of
plans. For various reasons, certain plans might be preferred over others
at design time. Most BDI agents platforms use hard-coding these prefer-
ences in some form of the static ordering of the reactive rules, but keeping
the preferential structure implicit limits script reuse and generalization.
This paper proposes an approach to add qualitative preferences over
adoption/avoidance of procedural goals into an agent script, building
upon the well-known notation of conditional ceteris paribus preference
networks (CP-nets). For effective execution, the procedural knowledge
and the preferential structure of the agent are mapped in an off-line
fashion into a new reactive agent script. This solution contrasts with
recent proposals integrating preferences as a rationale in the decision
making cycle, and so overriding the reactive nature of BDI agents.

Keywords: BDI agents - Conditional preferences - Procedural goals -
Goal adoption/avoidance + CP-Nets - Reactive agents

1 Introduction

In decision-making and intelligent systems design, when there are multiple ways
to achieve a certain goal, the best course of action is usually identified as the
one that adheres at best to the user’s (or users’) preferences. Unexpectedly,
current computational models of intentional agents, based upon belief-desire-
intention (BDI) architectures (e.g. AgentSpeak(L)/Jason [4,21], 2APL/3APL
[9,16], GOAL [15]) exhibit a treatment of preferences still relatively underde-
veloped with respect to solutions explored in other AI fields like planning or
decision systems. All these platforms encode preferences in some form of hard-
coded ordering, e.g. of plans, to be used for plan selection. By doing so, the
structure of preferences underlying such ordering remains implicit, thus limit-
ing transparency and traceability of the choices taken by the modeler, as well
as reusability and generalization of the agent scripts (e.g. modifying the pref-
erential structure without modifying the procedural knowledge). Additionally,
leaving preferences implicit is particularly problematic if one is targeting institu-
tional design tasks: BDI agents provide a natural model to reproduce behaviours
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reported in an actual social system, but, without mapping the explicit prefer-
ences of their social referents, one cannot make considerations about to what
extent a certain policy is affecting individuals.

For these reasons, this paper aims to start reducing the preference specifica-
tion gap for BDI agents, by proposing an extension to the BDI architecture that
makes preferences first-class citizens, both w.r.t. representational and computa-
tional dimensions. For a similar purpose, Visser et al. [26] have recently proposed
a method to integrate preferences as a rationale in the decision-making cycle to
guide the selection of an intention amongst possible options. However, because
the agent looks at its script at execution time, their solution builds upon reflec-
tion, and so disrupts the reactive nature of BDI agents. In contrast, we propose
here a method to pre-process (offline) some input procedural knowledge together
with an input preferential structure in order to construct a prioritized script.
For simplicity, in this paper we will focus only on procedural goals and propo-
sitional descriptions. In future work, we will consider extensions to first order
logic descriptions and declarative goals (achievement and maintenance).

The paper is structured as follows. Section 2 provides an introduction to the
BDI architecture and the execution model for reactive agents, an overview of
relevant preference representation methods, and presents an extension/modifi-
cation to the syntax of AgentSpeak(L) to integrate preferences based on CP-
nets. Section3 presents a method to pre-process given procedural knowledge
and preferential structure into an agent script. Section 4 presents an example of
application. Notes about further developments conclude the paper.

2 Preliminaries

2.1 BDI Architecture and Execution Model

BDI frameworks are usually described in terms of an agent theory and an agent
computational architecture [12]. The agent theory usually refer to Bratman’s
theory of practical reasoning [7], describing the agent’s cognitive state and rea-
soning process in terms of its beliefs, desires and intentions. Beliefs are the facts
that the agent believes to be true in the environment. Desires capture the moti-
vational dimension of the agent, typically in the more concrete form of goals,
representing procedures/states that the agent wants to perform/achieve. Inten-
tions are selected conducts (or plans) that the agent commits to (in order to
advance its desires). The agent architecture varies depending on the platform.
In Jason [4], for instance, it consists of: perception and actuation modules, a
belief base, intention stacks and an event queue. The associated BDI execution
model, reproducing the agent’s reasoning cycle, can be summarized as follows:

observe the external world and update the internal state (perception);
update the event queue with perceptions and exogenous events;

select events from the event queue to commit to;

select plans from the plan library that are relevant to the selected event;
select an intended means amongst the applicable plans for instantiation;

Gt o=
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e

push the intended means to an existing or a new intention stack;

select an intention stack and pull an intention, execute the next step of it;
8. if the step is about a primitive action, perform it, if about a sub-goal post it
to the event queue.

~

As this description exemplifies, an essential feature of BDI architectures is the
ability to instantiate plans that can: (a) react to specific situations, and (b) be
invoked based on their purpose [22]. Consequently, the BDI execution model nat-
urally relies on a reactive model of computation (cf. event-based programming),
usually in the form of some type of event-condition-action (ECA) rules.

2.2 Goal-Plan Rules

A general definition of reactive rules for BDI execution models can be derived
from the notion of goal-plan rules, i.e. uninstantiated specifications of the means
for achieving a goal [22], capturing the procedural knowledge (how-to) of the
agent. A goal-plan rule pr is a tuple (e, ¢, p), where:

— e is the invocation condition, i.e. the event that makes the rule relevant;

— ¢, the context condition, is a first-order formula over the agent’s belief base,
which makes the rule applicable;

— p, the plan body, consisting of a finite and possibly empty sequence of steps
[a1, a2, ...,a,] where each a; is either a goal (an invocation attempting to
trigger a goal-plan rule), or a primitive action.

A goal-plan rule pr; is an option or a possibility for achieving a goal-event e,
if the invocation condition of pr; matches with e, and the preconditions pr;
matches the current state of the world, as perceived or encoded in the agent’s
beliefs. In BDI implementations, the preference between these optional conducts
is specified through static rankings assigned by the designer, typically via the
ordering of the rules in the code.

Syntaz. This paper will refer to a syntax close to that of AgentSpeak(L) [21],
introducing a few extensions. If g is the name of a higher-level action®, 'g is
a procedural goal (also action-goal or want-to-do, usually distinguished from
declarative goals/state-goals, or want-to-be), that can be referenced to in a plan
of action, and +!g denotes the goal-event, that acts as triggering event (invoca-
tion condition) initiating the commitment towards a plan aiming to perform it.
As an example of code, consider:

+lg 1 ¢c <= la.
+lg <= Ib.

! Higher-level actions are those that can be decomposed in lower-level actions, e.g. the
higher-level action “booking a travel arrangement” may have “booking a flight” and
“reserving a hotel” as lower-level actions.
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The script means that if the triggering event +!g occurs, if c¢ holds, the agent
commits to a, otherwise (that is, ¢ does not hold) the agent commits to b.?

For the method proposed here, we will need to refer to conditions concerning
adoption and avoidance of certain goals, therefore we extend the previous syntax
with new elements for the conditional part of rules: !g denotes that g is currently
adopted and is active (i.e. present in the intention stack), and not !g states that
g is not active (i.e. absent from the intention stack). Thus, the rule:

+!la : !g, not 'h, ¢ <= Ib.

means that when the goal a is invoked, if g is in the intention stack, h is not in
it, and condition ¢ holds, then the agent adopts the goal b.

In the standard syntax, there is no unique identifier to distinguish goal-plan
rules (although Jason offers some labeling construct). There is also no standard
way to have direct access to the plan component of a rule. A possible solution
to identify a specific plan without explicit labeling is to refer to the invocation
condition of the associated rule alongside its position, e.g. with respect to other
rules with the same invocation condition. Consider for instance:

+lpay <= !cash.
+lpay <= !credit.

Assuming that there is no other rule with the same invocation condition before,
the two plans of cash and credit for the pay goal will be respectively denoted
as !pay[0] and !pay[1]. For more clarity, to better separate goal-adoption from
the treatment of primitive actions, we will not consider primitive actions as part
of preferences (a primitive action a will be denoted as #a).

2.3 Goal-Plan Graph (Procedural Knowledge)

In the BDI literature, the goal-plan structure expressing the procedural knowl-
edge of an agent is often represented as and-or decision trees (see e.g. [8,26]):
sequences of sub-goals in each goal-plan rule form the “and” edges (in order
to complete that plan, all of the steps should be completed), different goal-plan
rules relevant for a goal are the “or” edges (possible plan choices for a given goal).
However, presenting the goal-plan dependencies as a tree is a too strong simpli-
fication on the possible relations between goals and plans. Procedural knowledge
of a BDI agent is often structured by the designer in a manner that plans can be
re-used. For example, a pay goal can be a sub-goal of any plan concerning buying
or reserving something. Further, a tree structure assumes one root goal, when in
reality the procedural knowledge structure does not always start from one single
goal. Besides, exogenous events may initiate a goal at any level in the goal-plan

2 Note the backward sense of the arrow “<="; although counter-intuitive with respect
to the semantics of production rules, it highlights the underlying backward chaining
of instrumental reasoning (the agent commits to a because it aims to perform g),
and consequently, it suggests a priority of evaluation between the rules (the first
plan, if applicable, is preferred to the second).
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Coseommossing > Casporine

laccommodating[0] Itransporting[ 1] Itransporting[0]

Ireserving. ‘checkingcar. Ireserving.
! #checki !

Ireserving[1] Ireserving[0]

#payingcash. !payingonline.

payingonline

Ipayingonline[0]

#authorizing.

Fig. 1. Example of procedural knowledge illustrated in a goal-plan graph.

graph. This being said, we do assume different levels of granularity of goals and
plans, i.e. that there exist higher-level goals/plans and lower-level goals/plans,
in the spirit of hierarchical task networks (HTNs) [11]. For example, it is not
sound having a plan about paying to contain the sub-goal of buying or a plan
about preparing for a trip the sub-goal of going for a trip. This assumption is
reflected in our representation disallowing loops and recursions in the goal-plan
graph. With these constraints, the procedural knowledge of the agent can be
modelled as a directed acyclic graph (DAG).

Ezample. Consider the simple script of an agent assisting the user to plan a
holiday, e.g. to prepare travel and accommodating. Suppose that two plans are
available for the travelling goal: flying and driving; for accommodating, only one:
reserving a hotel; the driving plan only contains a primitive action (reminding
of checking the car), but the flying plan has the sub-goal of reserving, which is
shared with the accommodating plan, etc. The script would be written as:

+!travelling => !reserving.
+!travelling => #checking_car.
+laccommodating => !reserving.
+!reserving => !paying_online.
+!reserving => #checking_wallet.
+!paying_online => #authorizing.

The associated goal-plan graph is illustrated in Fig.1 (goals are drawn with
ellipses and plans with rectangles). Note how here we slightly modified the
AgentSpeak(L) syntax (“=>" instead of “<="), to make clear that there is no
priority of evaluation between these rules (see note 2). For simplicity, plans of
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this running example do not have any context conditions. This is not a limita-
tion: because context conditions only concern the applicability of plans, but not
their preferability, they can be integrated independently to the method that we
will present.

2.4 Preference Languages

Several models of preferences have been presented in the computational litera-
ture, with various levels of granularity and expressiveness.?

The most straightforward quantitative approaches are based upon utility the-
ory and decision theory, under which both planning and action selection prob-
lems have shown to be effectively expressed. Typically, by assigning a utility
function to each action in each state, the agent/the planner system tries to maz-
imise its utility by choosing actions that would result in higher total utility
(including avoiding actions with negative utility, e.g. due to cost). The selected
plan is called policy or strategy. Several recent works have investigated the inte-
gration of these types of preferences in a BDI architecture. In [10], the authors
introduce a utility-based plan selection method triggered at run-time; a similar
approach is followed in [8], but here plan selection depends on a given value
system, including the case of possibly conflicting values. A hybrid quantitative
method is provided by PDDL3 [13], an extension of the planning domain defi-
nition language (PDDL) [19]. PDDL3 preferences rely on linear temporal logic
(LTL) over states of the environment. Although based on qualitative descrip-
tions, these preferences are considered quantitative [2] because the valuation
of each preference is expressed with a numerical value that corresponds to the
number of violations of that preference. This valuation contributes to preference
aggregation strategies in measuring the quality of a plan, alongside other plan
attributes, e.g. resource usage.

While quantitative approaches bring clear advantages in non-deterministic
environments or environments with a large state space, they also suffer from the
non-trivial issue of translating user’s preferences into utility functions. They do
not directly support partial ordering and conditional preferences, which are the
most natural constructs for humans to express preferences. This explains the
existence of a family of qualitative proposals. An example of qualitative pref-
erence language is LPP [3], relying on first-order, linear temporal logic expres-
sions and situation calculus to compute the event dynamics; aggregation is done
through different strategy functions, including lexicographic orderings, but also
numeric methods. In [25,26], LPP is used to specify preferences about properties
of goals and resource usage, and this specification is used during the deliberation
phase of a BDI agent.

Other preference models, as CP-nets (qualitative) [5] and GAI networks
(quantitative) [14], are introduced specifically for taking into account dependen-
cies and conditioning between preferences in terms of compact representations
[20]. This is to address the problem of storing preferences in domains with a

3 For a comprehensive overview (specifically in AT planning), see e.g. [6,17].
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large number of features, separately from the problem of choosing from a set
of alternative options. Whereas CP-nets have weak constraints, GAI networks
build upon the assumption of generalized additive independence, and in doing
so they enable computing the utility contribution of every single attribute/sub-
set of attributes (they can be seen as the preferential counterpart of Bayesian
networks). An additional interesting feature of both CP-nets and GAI-networks
is the possibility to be illustrated as intuitive graphical models. To our knowl-
edge, no work has yet attempted to embed these representational models in a
BDI architecture. Because they rely on weakest assumptions, and they exhibit
primarily a qualitative nature, this work will focus on CP-Nets.

CP-Nets. Conditional ceteris paribus preferences networks (CP-nets) are a
compact representation of preferences in domains with finite attributes of interest
[5]. An attribute of interest is an attribute in the world that the agent has some
sort of preference over its possible values; in our example, travelling can be
seen an attribute of interest, with possible values driving and taking a flight.
CP-nets build upon the idea that most of the preferences people make explicit
are expressed jointly with an implicit ceteris paribus (“all things being equal”)
assumption. For example, when people say “I prefer to fly rather than to drive”,
they do not mean at all costs and situations, but that they prefer to fly, all
other things being equal to their current situation. CP-nets account also for
conditional preferences between attributes and their values. An attribute A is
said to be the parent of attribute B if preferences over B are conditional over
values of A. An example of a preferential system could be “I prefer to go to
a close location for holidays, and if I am going to a close location, I prefer to
drive, but if I am going to a faraway location, I prefer to fly”. Here preference
over location is unconditional but the preference over travelling is conditional,
so location is the parent of the travelling attribute; in practice, location is more
important than travelling. In the graphical presentation of CP-nets, attributes
A, B are seen as vertices, and, if A is a parent of B, there is an edge between
two attributes A and B.

Syntaz. Constraining our attention on procedural goals (want-to-do), the pref-
erences we target are about performance or omission of higher-order actions.
The attributes of interests for the CP-net are then the possible procedural goals
of the agent. Each attribute has two possible values: (1) adoption of the goal,
here denoted with the goal name “!g”, (2) avoiding the goal, denoted as “not
lg”. A preference over performing an action g over omitting it in condition ¢
can be written as a preference of adopting a (procedural) goal g over avoiding it
in condition c:

'g > not g : c.

In general, ¢ might be an higher priority preferential attribute or a logical true
in the case of an unconditional preference.
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3 Prioritizing Procedural Knowledge with Preferences

Consider the unconditional preference “I prefer not to do any sort of travel (all
the rest being equal)” and the conditional preference “If I am planning a travel,
I prefer not to reserve anything”. In the previous syntax, this becomes:

not !travelling > !travelling : true.
not !reserving > !reserving : !travelling.

In this case, the procedural dependency and preferential dependency map well
together: in the procedural knowledge graph of the agent, travelling can only
precede (i.e. is higher-order with respect to) reserving. At the time the agent is
going to plan for reserving, it already knows whether it is reserving a travel by
simply checking the presence of this goal in the intention stack. This is not true
in the general case: the dependency between preferences may be inverse.

For instance, “I prefer not to pay online, but if I'm paying online, I prefer
this to be for paying for a travel (i.e. instrumentally to a travelling goal). I also
prefer not to be paying for a travel if it is not by paying online.” This preferential
structure is written as:

not !paying_online > !paying_online : true.
'travelling > not !travelling : !paying_online.
not !travelling > !travelling : not !paying_online.

As a procedural dependency, travelling precedes paying online, but as a pref-
erential dependency, online payment is higher than travel. So at the time the
agent is choosing to plan a travel, it has not started paying beforehand (either
online or cash), that is, the goal of online payment is not yet adopted.

3.1 Plan Meta-data

To deal with this issue, we have considered four sets of meta-data for each goal-
plan rule pr (and so for each plan p): (1) certain sub-goals as CG(p), (2) possible
sub-goals as PG(p), (3) possible intents PI(p) and (4) certain intents CI(p). A
certain sub-goal is a goal that will certainly be adopted in all refinements of a
plan. A possible sub-goal is one that will possibly be adopted in some refinements
of a plan. Possible intents of a plan are all the goals that at some point in their
refinement (depending on context) may request the execution of the plan. Finally,
we neglect the set of certain intents for a plan because a goal can be adopted for
some exogenous event (e.g. an external request), hence, for any goal-plan rule,
the only certain intent is the goal appearing in its invocation condition.

3.2 Calculating the Plan Meta-data

In order to calculate these sets, we draw on simple definitions from graph theory.
The procedural knowledge is assumed to be an directed acyclic graph G = (V| E),
where V is the set of vertices (goals and plans), and E the set of edges which
either connect goals to plans (relevant plans) or plans to goals (sub-goal). The set
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r C V consists of root vertices (all goals that are never the sub-goal of any plan),
and the set [ C V consists of the leaf vertices (plans that have no sub-goals).
Being v,v’ € V' two vertices, we introduce three definitions:

— there is a path between v and v’ is if there is a finite sequence of distinct edges
that connect v to v'.

— v is said to dominate v’ if all the paths from all members of r to v' in the
graph pass through v; v is also said to be dominator of v'.

— ' is said to post-dominate v if all the paths from v to any member of [ in the
graph pass through v’; v’ is also said to be post-dominator of v.

Let us assume two goals g and ¢’ with g # ¢’ (e.g. 'gl and !'g2) and denote
with ¢; and g§ plans respectively for g and ¢’ (e.g. 'g1[i] and 'g2[j]). The
goal g is a certain sub-goal of a plan g, if g is the post-dominator of g, in the
goal-plan graph (i.e. all paths from g} to a leaf node will visit g). A goal g is
a possible sub-goal of g} if there is a path from g, to g and g is not a certain
sub-goal of gi. A goal g is a possible intent of plan g;, if there is a path from g
to ¢, in the goal-plan tree. By definition, because all g; plans for a goal g have
g as their single shared parent in the graph, then possible intents of these plans
are always the same. Finally the only certain intent for each plan g; is g itself.

For instance, w.r.t. our example, the possible intents of !reserving[0] are
laccommodating and !travelling, that is, !reserving[0] can be executed
while attempting to achieve either of these goals; !paying_online is a possible
sub-goal for the plan !travelling[0], that is, based on the run-time environ-
mental state and contextual conditions, adoption of !paying online may or
may not happen in the execution of !travelling[0], etc.

These four sets are mutually exclusive from each other. The set CI(g;) is
mutually exclusive from other sets because CI(g;) = {g} and as a condition for
a ¢’ tobein CG(g;), PG(g;) or PI(g;), we have g # ¢'. The two sets CG(g;) and
PG(g;) are mutually exclusive by definition, and ¢’ € PG(g;) if ¢’ ¢ CG(g:).
Because the procedural graph is assumed to be a DAG, if there is a path from
g to g, there cannot be a path from ¢} to g, so we infer that PI(g;) is mutually
exclusive from CG(g;) and PG(g;). We have then:

CG(g:) N PG(g:) N PI(g:;) N C(g:) =0

3.3 Rewriting the Agent Script

This section proposes a method to embed a given preferential structure into
the procedural knowledge of the agent. Informally, the script is rewritten in a
manner that the sequential priority between plans follows the explicit CP-net
based specification provided by the modeler/programmer. Under the assumption
that the preferential structure implied by the CP-net enables an effective total
ordering of plans and the execution model of the agent dictates that plans are
considered in a sequential manner (as in Jason/AgentSpeak(L)), more preferred
goal-plan rules will be placed higher in the code. The resulting script is deter-
ministic and keeps the reactivity of the agent intact as it only contains simple
conditions on the intentional stack (in addition to contextual conditions).
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In essence, the preferability of goal-plans is determined by the outcome asso-
ciated with them. To find the best possible outcome of a goal-plan, the algorithm
takes into account what will certainly follow that goal-plan (certain sub-goals),
what may follow that goal-plan (possible sub-goals) and creates an outcome for
each different run-time motivational contexts in which this goal-plan may be
executed (possible intents).

Motivational Contexts. Prior to run-time, there is no certainty about the moti-
vational context of the agent at the time of adopting a goal. To rectify this, we
define the set C(g) as the set of all valid combinations of the adoption/avoidance
of goals present in PI(g;). The index i is omitted in C(g) because all plans of
a given goal share the same intents. Each member of C(g) is representative of a
possible motivational context that g may be adopted in. The “valid” qualifica-
tion means that this combination can occur and this is deduced by the following
simple rules. Given two goals ¢’, ¢"” € PI(g;):

— the adoption of ¢’ can occur together with that of ¢’ if there is a path between
them in the goal-plan graph;

— the adoption of g” can occur together with the avoidance of ¢, iff ¢’ is not a
post-dominator of ¢’ and ¢’ is not a dominator of ¢g”.

Plan Outcomes. An outcome o is an assignment of values (adoption/avoidance)
of the variables of W. If we define Z C W, either adoption or avoidance of
all z € Z is present in 0. An outcome is a partial outcome if Z C W and a
complete outcome if Z = W. For example, if W = {a,b,c} then a possible
complete outcome would be {!'a,not 'b,!c}. In order to find the preferential
priorities between goal-plan rules, the motivational outcomes of each plan should
be calculated. As C(g) is the set of possible motivational contexts that a plan g;
may be executed in, we infer the outcome associated to each g; in each ¢ € C(g),
from here on denoted as o(g;, ¢). To calculate the outcome o(g;, ¢), we follow the
following steps:

add all elements of c;

add the adoption of all the values of CG(g;);

add the adoption of all the values of CI(g;);

add the avoidance of all variables that are not in other sets, i.e. all p such
that (p € W) A (p & (PG(g;) U CG(g:) U PI(g;) UCI(g:))).

Ll e

The step 4 captures that all the goals that are not added in the other steps, are
impossible to be adopted in the outcome of the plan and so they are considered
avoided. Based on the definition of these steps and the mutual exclusion between
these sets, after these steps, for each w € W (all goals) either adoption or
avoidance of the w is present in o(g;, ¢), except the members of PG(g;). So o is
a partial outcome if PG(g;) # (). This reflects the fact that we can not be sure
about the avoidance or adoption of a possible goal in a plan outcome.
Traditionally, an outcome is called reachable if an applicable goal-plan rule
p exists such that all refinements of p will result in that outcome [27]. However,
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as observed in [18], this approach starts from a very pessimistic view, ignoring
the fact that the agent itself (not an adversary) chooses which refinement to
make, so instead of thinking what it might bring about in all refinements, we are
interested in what is the best thing that can happen under some refinement. The
best outcome here indicates the optimal outcome according to the preferences
specified in the CP-net.

Optimal Outcome. To find the optimal complete outcome o(g;, ), we use the
forward sweep procedure presented in [5]. Given the current partial outcome
generated from the previous four steps, the method sweeps through the CP-net
from top to bottom (i.e., from ancestors to descendants), setting each variable
that is not present in partial outcome (i.e the members of PG(g;)) to its most
preferred valid value (adoption/avoidance) given the values of its parents. This
procedure has been proven to return an optimal outcome given the partial out-
come as constraint [5]. We only added the condition of validity, to ensure that
an outcome can happen. By doing this, for each plan g; of each goal g, we have a
the set C'(g;) representing the possible motivational contexts of g; and for each
¢ € C(g;) we have exactly one optimal complete outcome, as o(g;, c).

Plan Priorities. At this point, we need to find a best-to-worst ordering between
the outcomes of plans of each goal g for each condition ¢ € C(g). As these are
already complete outcomes with respect to the variables of W, we can easily use
the preferential comparison algorithm presented in [5]. Under a certain condition
c € C(g), given two outcomes o(g;, ¢) and o(g;, ¢) of two plans g; and g; so that
i # j, we say g; is preferred to g; if o(g;, c) is preferred to o(g;,c), i.e. g; =9 g;
iff 0(gi, ¢) = 0(g;, ).

Script Rewriting. After computing the >=¢ relation between all plans of each
goal g, the script can be rewritten with respect to preferential structure. For all
goals for which there is only one plan, no reordering is needed. For each goal
g with more than one plan, if C(g) = 0, only one ordering is needed and all
plans of g are rewritten in the best-to-worst sequence according to =9, alongside
their context condition. Otherwise if C(g) # 0, for each ¢ € C(g), first the
condition over motivational context is written as a logical expression associated
to ¢, encoded as the conjunction of all members of ¢. Then, same as before, all
the plans of g are written in the best-to-worst sequence based on >9, possibly
with their context condition.

4 Running Example

We illustrate the proposed method on a travel assistant agent, specified with the
following preferences:

not !travelling > !travelling : true.
not !reserving > !reserving : !travelling.
!reserving > not !reserving : not !travelling.
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laccommodating > not 'accommodating : !reserving.
not 'accommodating > 'accommodating : not !reserving.
!paying_online > not !paying_online : !travelling.

not !paying_online > !paying_online : not !travelling.

Table 1. Example of plan meta-data

Plan cG PG PI CcI
'travelling[0]|!reserving !paying_online !travelling
ltravelling[1] Itravelling
Ireserving[0] 'accommodating, !travelling|!reserving
'reserving[1] |!paying_online laccommodating, !travelling|!reserving

The four sets of plan meta-data of the two goals travelling and reserving from
the goal-plan graph of the agent are presented in Table 1. Other plans are omitted
because the other goals have only one relevant plan, and then there is not need
to rewrite their plans.

For both travelling plans, we have PI(-) = (), and so C(-) = (). We calculate
the partial outcome based on the rules specified in Sect. 3.3:

o(ltravelling[0], true) =
{Itravelling, \reserving, not laccommodating)
o(ltravelling[1], true) =

{Mtravelling, not lreserving, not laccommodating, not 'paying_online)

The outcome for ltravelling[l] is already complete. For ltravelling[0], based on
the CP-net and the partial outcome, the most optimistic substitution for goal
paying_online is the adoption of this goal, then the complete outcome will be

o(ltravelling[0], true) =

{Itravelling, !reserving, not laccommodating, paying-online)
Comparing these two outcomes with the improving search method shows that:
o(ltravelling[1], true) = o(ltravelling|0], true)

which in turn gives that
ltravelling[1] =y travelling|0)

This means that, if the agent has to travel, the driving plan is always preferred
and then should always be evaluated before for applicability. The travelling plans
will be then rewritten as follows:
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+!travelling <= #checkingcar.
+!travelling <= !reserving.

Next, for plans of the goal reserving, we have:

C(reserving) = {{!travelling, not laccommodating},
{not ltravelling, not laccommodating},

{not ltravelling, laccommodating}}
Considering the first element of C(reserving), denoted as ¢, we have:

o(Ireserving[0],c1) =
{Mtravelling, \reserving, not laccommodating, 'paying-online}

o(Ireserving[l],c1) =

{Itravelling, reserving, not laccommodating, not !paying_online}
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Note that both outcomes are already complete: this is because the set PG is

empty for both plans. Comparing these two outcomes we can see that:
o(Ireserving[0], c1) = o(lreserving[l], c1)

and then we have:
Ireserving|0] =, Ireserving[1])

This means that, at the point of reserving, if the agent has the intent of travelling
but not the intent of accommodating, the plan with online payment is preferred
to paying with cash and should be considered first. Finding the ordering for

other motivational contexts ¢y and c3, we will have:
Ireserving[l] =.,!reserving|0] and lreserving[l] ., !reserving[0]
and because they result in an equivalent ordering, can be written as
Ireserving[l] =c,veslreserving|0]

To conclude, the reserving plans will be rewritten as follows:

+!lreserving :

!travelling & not !accommodating
<= lpaying_online.

<= #checkingwallet.

+!reserving :

(not !travelling & 'accommodating) |
(not !travelling & not !accommodating)
<= #checkingwallet.

<= !paying_online.



318 M. Mohajeri Parizi et al.

To simplify the code, we omitted the repetition of the head of the rule for
alternative plans associated with the same event/condition coupling, similarly
to LightJason [1]. Additional simplifications of the contextual conditions may be
obtained by boolean simplification and by considering the sequential evaluation
of rules (see e.g. [24] for converting between constraint-based and priority-based
rule-bases).

5 Conclusion and Further Developments

The paper presents an initial contribution towards the integration of the spec-
ification of qualitative conditional preferences, expressed as CP-nets, into a
BDI agent script. This work focused merely on propositional logic and pro-
cedural goals (higher-order actions) and assumed an effective total-ordering on
plans. Therefore, as a necessary step towards actual use, the proposal has to be
extended in the near future to declarative goals (achievement goals and mainte-
nance goals) and to first-order logic descriptions, and joint with an investigation
on how to deal with conflicting partial ordering situations (e.g. forcing total
ordering of plans at need calling for user’s intervention). Additional investiga-
tion is also required for an analysis of the overall algorithmic complexity.

More in detail, for the extension to declarative goals, besides existing propos-
als in the MAS literature, we are investigating characterizations of ought-to-do
and ought-to-be norms explored in deontic logic, and studies on the interac-
tions between HTN (intuitively related to procedural goals) and STRIPS-like
(intuitively related to achievement goals) representations. The core issue we are
exploring at the moment concerns how to take into account side-effects, from first
principles (primitive actions) to higher-order behavioural constructs, acknowl-
edging that the aggregation of side-effects is non-trivial.

Further, in order to enable an extension to first-order logic, the preferential
attitude towards propositional content (which, under a ceteris paribus assump-
tion, captures a fully contextualized situation, albeit implicitly) has to be inter-
preted w.r.t. the internal objects of the proposition and this interpretation seems
to bring different results depending on the specific decision-making context (that
is, contextual conditions) in which the preference is evaluated; typically it mod-
ifies the selection of objects (i.e. in logic programming, it adds additional con-
trols on the unification process), but in certain cases it might entail preparatory
actions or sustain maintenance activities. For instance, “when you want to drink
during winter, prefer to drink warm drinks rather than cold drinks”; then, if the
agent doesn’t have yet a drink, it is rational for him to choose a warm drink;
but, if he knows already what he’ll drink (respectively he is currently drinking),
it is rational to attempt to make it warm (resp. keep it warm).

Said that, although the present contribution is a only a first step towards a
generally applicable solution, the principle of aiming to a transformation com-
patible with the reactive nature of BDI agents is a novel technical contribution
and sets an important precedent (a higher-level discussion on the separation of
reflective from reactive components can be found in [23, Chap. 7]). Replacing
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reasoning functions usually implemented with reflective methods with reactive
solutions is crucial for many application where computational efficiency is at
stake, as for instance model execution for large-scale simulations. In principle, a
similar approach could also be extended to other components of the BDI model
for which certain authors resorted to reflective methods, like intent selection and
event selection [28].
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