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Age-variant and age-invariant features of
functional brain organization in middle-
aged and older autistic adults
Joe Bathelt, P. Cédric Koolschijn and Hilde M. Geurts*

Abstract

Background: The majority of research effort into autism has been dedicated to understanding mechanisms during
early development. As a consequence, research on the broader life course of an autism spectrum condition (ASC)
has largely been neglected and almost nothing is known about ASC beyond middle age. Differences in brain
connectivity that arise during early development may be maintained across the lifespan and may play protective or
detrimental roles in older age.

Method: This study explored age-related differences in functional connectivity across middle and older age in
clinically diagnosed autistic adults (n = 44, 30–73 years) and in an age-matched typical comparison group (n = 45).

Results: The results indicated parallel age-related associations in ASC and typical aging for the local efficiency and
connection strength of the default mode network and for the segregation of the frontoparietal control network. In
contrast, group differences in visual network connectivity are compatible with a safeguarding interpretation of less
age-related decline in brain function in ASC. This divergence was mirrored in different associations between visual
network connectivity and reaction time variability in the ASC and comparison group.

Limitations: The study is cross-sectional and may be affected by cohort effects. As all participants received their
autism diagnosis in adulthood, this might hinder generalizability.

Conclusion: These results highlight the complexity of aging in ASC with both parallel and divergent trajectories
across different aspects of functional network organization.

Keywords: Aging, Autism spectrum disorder, Graph theory, Functional connectivity

Introduction
An autism spectrum condition (ASC)1 is a neurodeve-
lopmental condition that is commonly characterized by
impairments in social interaction, social communication,
and restricted and stereotyped behaviors and interests
(American Psychiatric Association 2013). The earliest

signs of ASC emerge early in life, typically in infancy.
While the nature of symptoms may change with increas-
ing chronological and developmental age, ASC is consid-
ered a chronic condition with no known spontaneous
remissions. Hitherto, most research has focused on chil-
dren and adolescents with an ASC, but much less is
known about the lifespan trajectory of ASC beyond early
to mid-adulthood. It is vital to develop a more complete
understanding of aging in individuals with ASC to better
address their needs in old age and to distinguish typical
aging in autistic adults from age-related disorders like
dementia.
There are some indications that aging is of particular

concern for people with ASC. First, the epidemiological
evidence suggests a two- to three-fold increase in the
mortality rate of middle-aged adults with ASC [2, 3].

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

1We use the term of “autism spectrum condition” throughout this
manuscript because the traditionally used term “autism spectrum
disorder” carries unjustified negative connotations. Further, we refer to
adults with an ASC diagnosis as ‘autistic adults’ because recent
research indicates that identity-first language (as opposed to person-
first language) is the terminology that adults themselves prefer [1].
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Second, older adults with an ASC report more cognitive
failures in everyday life [4]. Yet, cognitive assessments
show little evidence of a steeper age-related decline in
ASC [4]. A potential reason for this discrepancy is the
limitation of lab-based assessments of cognitive function
[5].While older individuals may have learned to com-
pensate for difficulties on laboratory tasks, their neu-
rocognitive systems may struggle with the complex
demands of everyday situations. Non-invasive neuro-
imaging methods like functional MRI (fMRI) provide
an insight into brain mechanisms that are difficult to
distinguish at a behavioral level and so-called resting-
state fMRI (rsfMRI) reproduces the same large-scale
functional networks that are also picked up by fMRI
under cognitive tasks [6]. A large body of literature
documents differences in rsfMRI connectivity in chil-
dren and adolescents with ASC [7]. The current
synthesis of this literature suggests a pattern of al-
tered segregation and integration characterized by
local hyper-connectivity and global hypoconnectivity
in ASC [8, 9]. Furthermore, reduced connectivity of
nodes within the default mode network (DMN) and
between the DMN and other functional networks is a
consistent finding [10–12]. These brain-level differ-
ences have been found to be associated with cognitive
differences in social processing and executive function
[13, 14]. It is not currently known if these differences
in functional brain organization and their association
with cognitive differences are maintained across the
lifespan and what role they may play in older age.
Several candidate accounts of age-related trajectories

in ASC have been put forward [15]. On the one hand,
neural and cognitive differences in ASC may be main-
tained across the lifespan and follow the same age-
related decline as in typical individuals (parallel develop-
ment hypothesis). On the other hand, individuals with an
ASC may be predisposed to a more rapid age-related
decline (accelerated aging hypothesis), either due to
mechanisms that are specific to aging in ASC or due to
increased vulnerability associated with ASC that lead to
accelerated aging, e.g., because of differences in lifestyle.
Similar accelerated aging has been suggested in other
neurocognitive disorders, most notable schizophrenia
[16]. Biological processes or differences in cognition or
lifestyle associated with ASC may also protect against
age-related decline (safeguard hypothesis), e.g., at the
biological level because of protective effects afforded by
cortical hyperplasticity in ASC [17] or redundancies in
network connections [18] as theoretical work and inves-
tigations in other syndromes suggest. The current study
set out to explore age-related differences in rsfMRI in
individuals with an ASC and a typical comparison group
across the whole brain and within functional networks.
To characterize functional network organization, we

focused on graph theoretical measures and comparisons
of large-scale functional networks that have been impli-
cated in aging and ASC research. We explored whether
we observe indications for either parallel age-related tra-
jectories or an increased or decreased age-related decline
in ASC. Further, we expected a relationship between
functional brain organization and cognitive assessments
that are sensitive to ASC and aging, specifically reaction
time variability and social processing.

Methods and materials
Participants
The study was carried out in agreement with the Declar-
ation of Helsinki. All participants provided written in-
formed consent. The study was approved by the university
ethics reviewer board (#2013-PN-2668). Fifty-one individ-
uals with an ASC (Age [means ± SD]: 45.9 ± 13.71 years, 35
male) and 49 comparison individuals without ASC (CMP
group; age [means ± SD]: 50.1 ± 11.81 years, 32 male) be-
tween 30 and 74 years were recruited from a cohort of par-
ticipants (estimated IQ > 80) of a large-scale behavioral
study [4, 19, 20]. Details on inclusion criteria have been de-
scribed earlier [20]. In short, all autistic individuals received
their clinical ASC diagnosis by a multidisciplinary specialist
team. To further ascertain the ASC diagnosis, the following
inclusion criteria were applied: (1) formal clinical diagnosis
of ASC prior to inclusion; (2) confirmation of diagnosis
with the Autism Diagnostic Observation Schedule Module
4 [21] and/or Autism-Spectrum Quotient (50-item list,
[22]). According to the clinical cut-offs, 31 individuals
scored above the critical Autism Diagnostic Observation
Schedule (ADOS) score (≥ 7) and those who did not score
above this threshold did score above the clinical cut-off on
the autism spectrum quotient AQ (≥ 26) (also see [23, 24]
for similar approaches). (3) No self-reported history of
neurological disorders, chronic illness, learning disabilities,
or schizophrenia. Participants in the comparison group
also had to meet this criterion. (4) Participants in the com-
parison group could not have an ASC diagnosis or a first
or second-degree family member with ASC. Seven partici-
pants in the ASC group and four in the CMP group were
excluded due to low-quality fMRI data (see Additional file 1
for quality control) leaving a final sample of 44 ASC and
45 CMP. We did not find evidence for between-group dif-
ferences in full-scale IQ or age, nor differences in the sex
or handedness ratio per group (see Table 1).

Data acquisition and pre-processing
MR data were acquired on a 3-T Achieva TX scanner
(Philips Medical Systems, Best, The Netherlands) using a
32-channel head coil. Functional imaging data were ac-
quired in a resting-state and two task paradigms all using
a gradient-echo, echo-planar pulse sequence covering the
whole brain (TR = 2000 ms; TE = 2763 ms; FA = 76.1°; 37
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axial slices with ascending acquisition; 3 mm× 3 mm×
3.3 mm voxel size; 80 × 80 matrix; 240 × 121.80 × 240
FoV). A high-resolution 3D T1-weighted image was
also acquired for spatial normalization (TR =
8.506 ms; TE = 3.94 ms; FA = 8°; 1 mm3 voxel size;
240 × 220 × 188 FoV). Participants were trained in a
mock-scanner, were instructed to lie still during the
scan, and to not fall asleep. None of the participants
fell asleep during the scan. Head motion was further re-
stricted with foam inserts around the head. Pre-processing
of the T1-weighted and fMRI sequences was carried out
using fmriprep v1.2.1 [25]. The details of the pre-
processing pipelines are available in the Additional file 1.
The code for all parts of the analysis is available online
(Link: Open Science Framework).

Functional connectivity analysis
The functional connectome was calculated as the Pearson
correlation between time series within regions of interest
(ROI). ROIs were defined according to a meta-analytic
parcellation that identified independent functional regions
[26]. ROIs that did not contain sufficient signal due sus-
ceptibility artifacts were removed (total remaining: 237,

see Additional file 1). A minimum fMRI acquisition length
of more than 20 min is required to estimate stable individ-
ual features of functional connectivity [27–29]. The
current analysis relied on pre-collected data from a short
resting-state acquisition (~ 5 min). To obtain sufficient
data, functional connectivity from a resting-state sequence
was combined with general functional connectivity from
two task sequences [30, 31]. One task was a social process-
ing paradigm in which participants had to discriminate
faces from face-like Mooney images [32]. The other task
was an Eriksen Flanker-type response inhibition paradigm
[33], see Additional file 1 for detailed task descriptions).
Both tasks were selected as autistic individuals are thought
to perform differently on tasks related to (a) perceptual
processing such as face processing and (b) executive func-
tions such as inhibitory control [34]. To obtain generalized
functional connectivity from the task fMRI data, the task-
related activity was regressed from the task fMRI time
series data as described in [30]. Using this procedure,
more than 20 min of good quality data could be obtained
from 89 participants (44 ASC, 45 CMP). The functional
connectome was calculated separately for all acquisitions
and was then averaged over acquisition to generate one

Table 1 Characteristics of the ASC and CMP groups. Note: Numbers in bold reflect significant between group differences
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functional connectome per participant. To reduce the in-
fluence of motion on the functional connectivity results
[35], we employed a combination of approaches. First, we
assessed raw data quality using a comprehensive set of
quality indicators [36]. Second, we employed regression of
noise and motion parameters [37], bandpass-filtering
(0.009–0.1 Hz), and spatially smoothing (3 mm full-width-
half-maximum). Third, we controlled for image quality in
the statistical analysis (see Additional file 1). These proce-
dures were carried out using nilearn v0.50 [38].
The functional connectome shows modular structure

that is highly similar to the large-scale functional net-
works that are identified through other methods and
that are found to be active during particular tasks [35].
To determine the module structure, we employed con-
sensus community detection [39], an optimization clus-
tering approach based on the Louvain method [40], and
tuned the resolution of the clustering using a mutual in-
formation criterion (see Additional file 1 for a detailed
description).

Graph theory analysis
Graph theory measures were used to characterize the
functional brain networks and compare them across par-
ticipants. All graph analyses were based on weighted
networks after applying the optimal density threshold.
The purpose of thresholding is to remove the influence
of weak connections that may be spurious [41]. Here, we
applied the method described in a previous study on
aging [37]. This method tunes the optimal threshold by
optimizing the information that can be obtained at the
group level. After thresholding, the results of graph theory
analysis may be influenced by unconnected nodes. We
carried out an additional analysis that just focused on the
largest connected component in each functional connec-
tome. The results were consistent with the findings based
on the thresholded functional connectomes. The detailed
analysis is presented in the Additional file 1.
The functional brain network shows a small-world

topology, characterized by regional clustering and a short
average path length (high efficiency) [18]. This organization
is thought to maximize regional communication and retain
efficient global communication. In addition, the human
brain exhibits a modular structure with a few highly con-
nected hub nodes that are thought to be central for infor-
mation transfer [42, 43]. To characterize the organization
of the functional brain network in the current analysis, we
focused on three graph metrics, i.e., the average clustering
coefficient, CG, global efficiency, EG, and the participation
coefficient PG. The global clustering coefficient is an index
of clustering within a graph. Global efficiency is the inverse
of path length and indicates the ease of transfer within a
graph. Global measures for both metrics are calculated by
averaging across all nodes within the network. Further, to

characterize the modular organization of the functional
connectomes, module-level metrics of local efficiency, Eg,
and participation coefficient, Pg, were calculated. Eg is the
inverse of the shortest path length of nodes within a given
module g. Pg indicates the diversity of intermodular connec-
tions within a given module g. The graph theory measures
were calculated as described by Rubinov and Sporns [44].
Because the data-driven modularity solution did not distin-
guish some of the canonical functional networks, additional
analyses were carried out with the modularity solution pre-
sented in Power et al. 2011.

Default mode network connectivity
Differences in the default mode network (DMN) are
consistently identified in ASC. Further, age-related
changes in DMN connectivity have been documented in
ASC [10–12] and in typical groups [45, 46]. Further,
specific connections within the DMN may be increased
in ASC, i.e., connection between the posterior cingulate
cortex (PCC) and the parietal cortex, while other are
decreased [14]. Because of the central importance of the
DMN in ASC indicated by the literature, we focused
specifically on connections within the DMN in add-
itional analyses.
To obtain connection strength between DMN regions,

the averaged blood oxygen level dependent signal
(BOLD) signal within 5 mm spheres was calculated for
ROIs placed in the PCC (MNI: − 2, − 36, 18), medial
prefrontal cortex (MNI: 0, 52, − 6), and left and right
parietal cortex (MNI [left]: − 48, − 62, 36; MNI [right]:
46, − 62, 32). The ROI definitions were based on a sem-
inal large-N study that established the reliability of
DMN functional connectivity [47]. Subsequently, the
partial correlation between signals of all binary combina-
tions of these ROIs was calculated controlling for signal
in the other ROIs. We employ partial correlations here
to disambiguate specific connections within the DMN
from general connectivity patterns.

Cortical morphology
Age- or group-related differences in cortical morphology
may influence functional connectivity estimates. Our
previous analysis of cortical morphology in the same
sample as the current analysis indicated significant age-
related differences across the ASC and CMP groups
[20]. To ascertain that differences in functional connect-
ivity were not due to differences in cortical morphology,
we present additional statistical models that include
morphology (intracranial volume, cortical thickness,
cortical surface area) as regressors following studies on
aging [37, 48]. To this end, global measures (cortical
thickness, surface area) were extracted from the FreeSur-
fer summary statistics. For local measures of cortical
morphological, maps of cortical thickness and cortical

Bathelt et al. Molecular Autism            (2020) 11:9 Page 4 of 14



surface area were extracted via FreeSurfer and trans-
formed from a surface- to a volume-representation. Sub-
sequently, the morphology maps were transformed to
MNI152 space and morphology values were extracted by
averaging values within a 5-mm radius around the ROI
coordinates. A detailed analysis of differences in cortical
morphology in this sample is presented in [20].

Statistical analysis
For the statistical analysis of the association between
age, group, and their interaction with graph measures,
we employed a non-parametric permutation-regression
analysis. A multiple regression model was fitted with the
graph theory measure as the outcome and predictors of
age, participant group, and their interaction. The
summed functional connection strength was included as
a nuisance regressor to account for non-specific differ-
ences in connectivity [49]. There was no significant dif-
ference between the groups in summed connection
strength (ASD: mean = 6411.35, SE = 394.429; CMP:
mean = 6043.71, SE = 327.247; Welch-corrected t test: t
(83.79) = 0.72, p = 0.475). In addition, the AFNI image
quality index (aqi) was included as a nuisance regressor
because this index showed a significant association with
age (see Additional file 1). Further, functional connectiv-
ity may be influenced by medication [50]. Therefore, we
ran additional models with psychotropic medication as a
regressor.2 For each model, the outcome variable was
randomly shuffled 10,000 times to obtain a null distribu-
tion of regression coefficients. Then, the observed re-
gression coefficient was compared to this distribution.
Further, the confidence interval for each regression coef-
ficient was obtained by randomly selecting 80% of the
data across the 10,000 permutations. Bonferroni-
correction was applied to account for multiple compari-
sons across modules and the corrected p values are re-
ported. For the comparison of connection strength
within and between modules, false discovery rate (FDR)
correction using the Benjamini-Hochberg procedure was
applied.

Behavioral tasks
To relate functional differences to behavior, we investigated
the association between functional brain organization and
performance for two out-of-scanner tasks. Participants were
assessed on a Flanker task [51] that has been shown to be

challenging for both individuals with ASC and older adults
[52, 53]. Following our previous analysis of the behavioral
data [19], we focused on intra-individual variation of reac-
tion time (IIVRT) which is a sensitive measure of cognitive
aging [54, 55]. Two measures were used to characterize
IIVRT, i.e., the standard deviation of reaction time (sdRT)
and mean reaction time (MRT) variation (CV = sdRT/
MRT). For statistical analysis, the partial correlation be-
tween sdRT or CV with graph measures controlling for
image quality (aqi) were calculated and transformed using
Fisher’s r-to-z. Subsequently, z values were compared be-
tween the groups (see Additional file 1 for details).
Individuals with an ASC often have difficulties with

processing social information and this has been related
to functional connection strength, particularly within the
DMN [56, 57]. Further, social processing ability has been
found to decline in typical aging [58]. To assess social
processing, a verbal Faux-pas task [59] was administered.
The number of correctly identified faux-pas relative to
the number of correctly answered factual questions was
used for the analysis.

Results
Functional networks
Functional modules were identified using consensus
community detection alongside a tuning procedure to
identify the optimal community resolution [37]. There
was no significant effect of age, group, or their inter-
action on the modularity index (age: β = − 0.18, (− 0.03,
− 0.32) [median, (5%ile, 95%ile)], p = 0.237; group: β = −
0.05, (− 0.23, 0.14), p = 0.835; age × group: β = − 0.10, (−
0.31, 0.09), p = 0.663). The optimal community reso-
lution for the ASC group was identified at γ = 1.3 and a
modularity index of 0.61 (SE = 0.015, range 0.34–0.77;
see Fig. 1a). The optimal solution for the CMP group
was found at γ = 2.7 and at a modularity index of 0.60
(SE = 0.015, range = 0.27–0.76). In both groups, the iden-
tified modules were similar to modules previously de-
scribed for typical adults [26], specifically the canonical
visual, frontoparietal control (FPCN), and default mode
network (DMN) could be clearly identified. In contrast
to previous results, there was no distinction between the
somatomotor network and the insula nodes of the
cingulo-operacular networks in either group. These
nodes were assigned to one network, labeled the soma-
tomotor network here. The module solution for the
CMP group contained two additional modules, namely a
hand region subgraph of the somatomotor network and
higher-level visual network. For consistency across the
groups, these additional modules were subsumed in the
somatomotor and visual network respectively. Using this
assignment, there was good agreement with 189 out of
237 nodes being assigned to the same module across

2We summarized all psychotropic medication in a dummy variable
with 0 for “no psychotropic medication” and 1 for “takes psychotropic
medication.” The effect of specific medication could not be assessed,
because the medication prescribed to participants in the sample was
varied with only few participants taking the same medication. Both the
ASC and CMP group were included in this analysis. Please note that
psychotropic medication use was more common in the ASC group
(see Table 1).
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Fig. 1 a Illustration of the functional modules identified in the ASC group (left) and in the CMP group (right). b Presentation of the functional
networks in Force Atlas layout [60]. Only positive connections are shown for the purpose of this illustration. The top figures show the network
with the module assignment identified within each group. The bottom figures show the module assignment of nodes that were assigned to the
same network in the ASC and CMP group. c Final assignment of nodes to modules based on the overlap between both groups. d Node
assignment according to the modularity solution presented in Power et al. 2011
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both groups (79.75% overlap, see Table 2 and Fig. 1b).
These common labels were used to create an overlap
module solution for further analysis (see Fig. 1c). For
reference, the original labels reported by Power et al.
[26] are shown in Fig. 1d.

Differences in graph metrics
Regarding brain-wide global graph metrics, statistical
analysis indicated a significant effect of age for the global
clustering coefficient CG with older age being associated
with lower CG (see Fig. 2a, age: β = − 0.36, (− 0.47, −
0.28) [median, (5%ile, 95%ile)], p = 0.0122). This effect
was robust to the inclusion of psychotropic medication
use as a regressor (age: β = − 0.36, (− 0.47, − 0.28), p =
0.0132) but was no longer significant when controlling
for whole-brain cortical thickness, cortical surface area,
and intracranial volume (age: β = − 0.32, (− 0.49, − 0.19),
p = 0.097). There was no significant association for
global efficiency EG.
For module-level graph measures, statistical analysis

indicated a significant effect of decreasing EDMN with
age (see Fig. 2b, β = − 0.36 (− 0.48, − 0.24), p = 0.015).
Further, older age was associated with a higher PFPCN
(β = 0.32 (0.21, 0.42), p = 0.031). A significant group dif-
ference was indicated for PDMN with lower PDMN in the
CMP group compared to the ASC group (β = − 0.63 (−
0.82, − 0.47), p = 0.003). These effects remained when
controlling for regional cortical thickness and cortical
surface area (EDMN - age: β = − 0.36 (− 0.51, − 0.24), p =
0.013; PDMN - group: β = − 0.63 (− 0.81, − 0.47), p =
0.003). The association between age and EDMN was also
indicated when controlling for psychotropic medication
use (EDMN-age: β = − 0.36 (− 0.50, − 0.24), p = 0.016), but
the group differences in PDMN was no longer significant
(PDMN - group: β = − 0.31 (− 0.57, − 0.09), p = 0.226). The
association between age and PFPCN was no longer signifi-
cant when controlling for regional morphology (β = 0.28
(0.16, 0.37), p = 0.068) or psychotropic medication use
(β = 0.28 (0.18, 0.39), p = 0.059). Using the Power et al.

2011 module solution, the results indicated an additional
age × group interaction for EVisual whereby the CMP
group showed lower EVisual with age while there was no
age-related difference in the ASC group (see Fig. 2c, age
× group: β = − 0.41 (− 0.63, − 0.22), p = 0.038). This effect
was no longer significant when controlling for cortical
morphology (β = − 0.41 (− 0.62, − 0.22), p = 0.061) or
psychotropic medication (β = − 0.41 (− 0.61, − 0.17), p =
0.071). The other findings matched the results obtained
with the data-driven modularity solution. There were no
other significant effects of age, participant group, or the
age × group interaction for Eg or Pg for any other mod-
ule in either modularity solution. See Fig. 2d for a graph-
ical overview of the results. See Table 3 for an overview
of the results.
Analysis of the association between IIVRT and

module-level graph metrics indicated a significant differ-
ence for Pvisual between the groups. The ASC group
showed a negative correlation between Pvisual and sdRT,
while the CMP group showed a positive correlation
(ASC: r = − 0.31, CMP: r = 0.26, Δz = − 2.54, p = 0.044).
There were no significant effects of age, group, or their
interaction for the Faux-pas task (all p > 0.2).

Differences in module connection strength
Differences in connection strength associated with age
and ASC status were evaluated to assess general shifts in
functional connectivity patterns. Within-network con-
nection strength was negatively associated with age (age:
β = − 0.29 (− 0.47, − 0.17) [median, (5%ile, 95%ile)], p =
0.003). There were no effects of age, group, or their
interaction for between-module connection strength (all
p > 0.3). Analysis of positive and negative connection
strength for individual modules indicated that positive
DMN connection strength declined with age (see Fig. 3b,
age: β = − 0.38 (− 0.49, − 0.26), p = 0.011). This effect
remained when controlling for cortical thickness and
cortical surface area (age: β = − 0.47 (− 0.61, − 0.29), p =
0.005), but not when controlling for psychotropic medi-
cation (β = 0.09 (− 0.08, 0.25), p = 0.671). Further, there
was an age × group interaction for negative connections
between the visual network and the FPCN (age × group:
β = 0.75 (0.56, 0.91), p = 0.006). Visual-FPCN connec-
tions became less negative with age in the CMP group,
but showed no association with age in the ASC group
(see Fig. 3b). This effect remained when controlling for
differences in cortical morphology (age × group: β = 0.67
(0.49, 0.84), p = 0.003), but not when controlling for the
effect of psychotropic medication (β = 0.22 (0.01, 0.41),
p = 0.286).
The analysis of connection strength using the Power

et al. 2011 parcellation indicated an additional significant
negative association between age and within-module

Table 2 Overview of agreement between modules identified in
the ASC and CMP group

ASD

Visual Somatomotor FPCN DMN Other Total

CMP

Visual 35 4 0 0 4 43 81%

Somatomotor 0 62 15 0 5 82 76%

FPCN 2 0 29 2 1 34 85%

DMN 2 1 5 42 6 56 75%

Other 1 0 0 0 21 22 95%

Total 40 67 49 44 37 237

% in common 88% 93% 59% 95% 57%
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Fig. 2 Overview of graph theory results. a Global graph theory metrics global efficiency (EG) and average clustering coefficient (CG). b Module-
level graph metrics local efficiency (Eg) and participation coefficient (Pg) for the module solution identified in the current sample. c Module-level
graph metrics for the major networks in the modularity solution presented in Power et al. 2011. For all the figures, the residuals are shown after
regressing the effect of image quality (aqi) and total connection strength. The shaded area around the regression line shows the 5–95%ile
confidence interval based on a bootstrap sample with 5000 permutations. Legend: **p < 0.01, *p < 0.05. vis. visual, aud. auditory, s.-m.
somatomotor, c.-o. cingulo-opercular, DAN dorsal attention network, FPCN frontoparietal control network, DMN default mode network
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Table 3 Overview of the graph theory results. A: Results using the data-driven module solution B: Results using the Power et al. 2011 solution

Schematic overview of the results. Orange squares indicate significant effects after controlling for multiple comparisons across modules. Gray squares indicate that no
significant effect was found. C clustering coefficient, E efficiency, P participation coefficient, Vanilla: model that does not include brain volume and cortical morphology,
Morph. Cont.: model that does include brain volume and cortical morphology as regressors, Med. Cont.: model that includes medication use as a regressor
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connection strength of the cingulo-opercular network
(β = − 0.33 (− 0.43, − 0.22), p = 0.023). This effect was
robust to the inclusion of psychotropic medication use
(β = − 0.33 (− 0.43, − 0.22), p = 0.023), but was not sig-
nificant when controlling for cortical morphology (β = −
0.26 (− 0.36, − 0.15), p = 0.081). There were no other sig-
nificant effects of age, group, or their interaction for ei-
ther parcellation.
Regarding the relationship with behavioral perform-

ance, the analysis of the association between connection
strength and IIVRT indicated no significant difference
between the groups for any positive or negative within-
or between-module connection (all p > 0.1). There were
no significant effects of age, group, or their interaction
for the Faux-pas task (all p > 0.1).

Differences in DMN connection strength
Analysis of DMN connections indicated a significant re-
duction in the strength of the connection between the
left temporoparietal junction (TPJ) and the posterior
cingulate cortex with age (see Fig. 4, age: β = − 0.29 (−
0.47, − 0.17) [median, (5%ile, 95%ile)], p = 0.043). This

effect was no longer significant when controlling for dif-
ferences in cortical thickness and surface area (β = − 0.28
(− 0.49, − 0.13), p = 0.065) or psychotropic medication
(β = − 0.27 (− 0.44, − 0.15), p = 0.057). Further, a group ×
age interaction was indicated for the connection between
the right TPJ and the PCC with an age-related reduction
in connection strength for the CMP group but not for
the ASC group (age × group: β = − 0.48 (− 0.66, − 0.28),
p = 0.027), which remained when controlling for cortical
morphology (β = − 0.49 (− 0.68, − 0.29), p = 0.022) or
psychotropic medication use (β = − 0.49 (− 0.68, − 0.31),
p = 0.019).
Regarding the relationship with the behavioral mea-

sures, there were no significant differences between the
groups in the association of IIVRT and connection
strength for any DMN connection (all p > 0.1) or any
significant effects of age, group, or their interaction for
the Faux-pas task (all p > 0.1).

Discussion
The current study investigated age-related differences in
functional brain organization in autistic adults of middle

Fig. 3 Differences in connection strength. a Average connection matrices for the ASC and CMP group ordered according to the data-driven
module solution. The outlines indicate the module boundaries. b Summed positive connection strength within the DMN and summed negative
connections strength of connections between the visual network and the FPCN. The shaded areas indicate the 5–95%ile confidence interval for
each group based on a bootstrap sample with 5000 repetitions. Legend: **p < 0.01, *p < 0.05
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and older age. The results indicated both parallel and di-
vergent brain aging in autistic adults.
On one hand, this study indicated age-related reduc-

tions in the connection strength and local efficiency of
the DMN in both the ASC and the comparison group.
Several studies of typical aging indicate that DMN con-
nectivity is a sensitive and robust marker of brain age
[37, 61–63]. In addition, several risk factors for dementia
have been found to relate to DMN activity [48, 64–67].
Based on the current study, we found no indication of
age-related differences in DMN connectivity in ASC as
compared to typical aging consistent with a parallel
aging account.
Further, the current study suggested that reduced inte-

gration of the DMN is a stable feature of ASC across
middle and older age. This result mirrors similar findings
in young people with an ASC. For instance, Nomi et al. re-
ported an age-related pattern of hyper-connectivity of the
DMN in childhood. Yet, no such differences were found
in middle adulthood in the same study [68]. In light of
these findings, the current results suggest that hyper-
connectivity of the DMN may recur in middle and older
age in ASC. Alternatively, age-related decline in DMN in-
tegration may already be present at middle age in typical
aging [69]. Extrapolating from these findings, the higher
participation coefficient in the ASC group could poten-
tially reflect a more “youthful” connectivity pattern. How-
ever, this is currently only speculative and further studies
that span childhood and older age are needed to distin-
guish these alternative accounts and establish if higher
DMN integration is a protective or risk factor for aging in
ASC. In summary, the results of this study suggest that a
higher participation coefficient of the DMN is a stable
feature of ASC across middle and older age.
In addition to the DMN-related differences, our results

indicated an age-related increase in the participation co-
efficient of the frontoparietal control network in the
ASC and CMP group. This finding is in line with the

general age-related decrease in network segregation
across functional networks [70] and specific age-related
associations for the FPCN [71, 72]. The FPCN may play
a central role in brain aging due to its role in controlling
other functional networks [73], particularly the DMN
[74]. Further, FPCN integration may be particularly im-
portant for ASC. The only published study on functional
brain aging in ASC found a significant reduction in FPCN
connection strength in a small sample of middle-aged
adults with an ASC that related to impaired social pro-
cessing. The greater integration of the FPCN indicated in
the current study may reflect part of a compensatory
mechanisms as has been suggested in typical aging [73,
75].
We also observed some divergent patterns of age-

related changes between the ASC and CMP group. Specif-
ically, the CMP group showed an age-related reduction in
the connectivity of the visual network. In contrast, there
was no age-related change in the ASC group. Further,
negative connections between the visual network and
FPCN that became less negative with age in the control
group did not change in the ASC group. The observed
associations may indicate dedifferentiation by which the
visual network becomes less segregated and shows less
decoupling with the FPCN in typical aging. Similar age-
related reductions in sensory networks and their de-
segregation from cognitive networks have been observed
in studies of typical aging [76, 77]. In fact, degradation in
sensory processing commonly precedes and later aggra-
vates cognitive problems in typical aging [78]. Notably,
behavioral studies indicated that older individuals with
ASC seem to show less age-related differences in visual
memory but not verbal memory [4, 15]. The reduced age-
related differences in visual network function in ASC may
be neural substrates of the persevered visual memory
function. The different association with reaction time vari-
ability in ASC indicated by the current study may suggest
that the differences in visual network integration are

Fig. 4 Connection strength within the default mode network (DMN). The left panel illustrates the connections of the DMN included in the
analysis. The color indicates the relative connection strength. (1) Left temporo-parietal junction (TPJ), (2) right TPJ, (x) posterior cingulate cortex
(PCC). The right panels show the relationship between the connection strength, age, and group. Legend: *p < 0.05
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meaningful for cognitive performance. In brief, visual
network integration appears stable across middle and
older age in ASC but may show age-related decline in
typical aging.
Contrary to our expectations, we did not find an effect of

ASC status or age for the relationship between performance
on the Faux-pas task and any functional connectivity meas-
ure. There are several potential reasons for these negative
findings. First, the number of older participants (> 67 years
[79]) may have been too small to detect the decline in social
processing associated with typical aging. Second, older aut-
istic adults may no longer show difficulties on social pro-
cessing tasks [4], despite continuing challenges with social
functioning [80]. Future studies with dedicated task assess-
ments, e.g., [81], will be needed to firmly establish the link
between brain function and social processing in older autis-
tic adults.
It is important to keep in mind some limitations of

this study. First, the study was cross-sectional. Conse-
quently, the associations that were identified may be
confounded with differences between age cohorts. Fur-
ther, all included adults had received their official ASC
diagnosis during adulthood—note that the participants
were over 10 years old when autism was introduced in
the DSM-III [82]. Several steps were taken to ensure a
valid diagnosis (see [20] for a detailed discussion), but a
late diagnosis may still imply that we included a sample
with relatively mild ASC symptomatology. A further
limitation is the difference in medication between the
ASC and CMP groups in the current study. Psychotropic
medication exposure is an important potential confound
in adult ASD research given that such medication is
commonly prescribed [83] and is known to influence
brain functional connectivity [50]. We aimed to investi-
gate the influence of psychotropic medication in add-
itional regression models. However, the current analysis
could not distinguish between type of medication, dos-
age, and duration of treatment that may affect connect-
ivity differently. In addition, the control analyses of
medication may introduce additional confounds because
psychotropic medication use was more prevalent in the
ASC group and because individuals with more age-
related complaints are more likely to be treated with
medication. These limitations will need to be addressed
in future studies based on broader samples.
Another limitation is that the current study did not as-

sess cardiovascular health that may show differences in
older age and in ASC that may affect the fMRI BOLD sig-
nal [84, 85]. Future studies should include parallel heart
rate recording and corroborate findings with other im-
aging modalities, e.g., M/EEG, PET. Moreover, many of
the aging effects in functional connectivity may reflect
early stages of dementia that are not apparent in cognitive
assessments. Future studies of aging in ASC should

employ a broader set of sensitive cognitive measures [86]
and potentially incorporate biomarkers [87]. Furthermore,
the current study cannot distinguish between direct effect
of ASC and effects that arise from differences in life ex-
perience that are associated with ASC, e.g., see [88]. Fu-
ture studies that assess lifestyle differences, ideally in a
longitudinally sample, will need to disentangle these
effects.
In conclusion, the current study finds support for both

parallel and divergent aging in ASC in middle and older
age. Similar selective differences in some aspects of aging
alongside parallel aging in other indicators have been re-
ported in schizophrenia and ADHD [16, 89, 90]. Specif-
ically, the current study found that age-related negative
associations in the connectivity of the default mode net-
work and diminishing segregation of the frontoparietal
control network with age were found to be similar in
ASC. In addition, the current results indicated reduced
age-related negative association in the visual network in
ASC that showed a different relation with reaction time
variability in ASC. A potential interpretation of this find-
ing is that the biological processes associated with ASC
protect against age-related decline in functional connect-
ivity of the visual network. In sum, the results highlight
the complexity of brain organization in ASC with simi-
larities and differences to CMP groups across different
segments of the lifespan.
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