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ABSTRACT
This paper addresses the analysis of the queue-length process
of single-server queues under overdispersion, i.e., queues fed
by an arrival process for which the variance of the number of
arrivals in a given time window exceeds the corresponding
mean. Several variants are considered, using concepts as mix-
ing and Markov modulation, resulting in different models with
either endogenously triggered or exogenously triggered ran-
dom environments. Only in special cases explicit expressions
can be obtained, e.g., when the random arrival and/or service
rate can attain just finitely many values. While for more gen-
eral model variants exact analysis is challenging, one can
derive limit theorems in the heavy-traffic regime. In some of
our derivations we rely on evaluating the relevant Laplace
transform in the heavy-traffic scaling using Taylor expansions,
whereas other results are obtained by applying the continu-
ous mapping theorem.
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1. Introduction

After the publication, fifty years ago, of The Single Server Queue[10], much
research effort has been devoted to relaxing modeling assumptions that are
commonly imposed in queueing theory. Over the past decades this led to
various generalizations of the standard single-server queue, thus getting a
handle on more versatile and realistic model variants.
Arguably the most prominent generalization concerned the introduction

of Markov modulation[34]. Under this paradigm, one can depart from the
usual assumption that the arrival and service processes are of the renewal
type. In its most elementary form, the distributions of the interarrival times
and service times change at transition epochs of a Markovian background
process; in addition, there are variants where this happens at arrival or
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service completion epochs. A key model is the Markov-modulated M/M/1
queue: when the background process moves to, say, state j, the arrival rate
becomes kj while the service rate becomes lj. Service modulation comes in
different flavors: (i) customer-based, (ii) server-based, and what could be
called (iii) real-time updated service modulation. In the first case the state
of the background process determines the service requirement of a cus-
tomer upon arrival, whereas in the second case the service duration is
determined by the background state at service initiation. However, only
models with real-time updated service rates fit in the so-called Quasi-Birth-
Death (QBD) framework: they are described by Markov chains defined on
a level-phase state space, where level transitions are skipfree.
Queues with a Quasi-Birth-Death structure form a particularly interest-

ing class of Markov-modulated queues. Triggered by the pioneering work
of Neuts[34], and thanks to major contributions by e.g., Latouche,
Ramaswami, and Taylor, the theory of QBD queues is well developed. It
provides elegant matrix expressions for key performance measures which
can be evaluated through efficient numerical algorithms[29]. For general
overviews we refer to the book[30] and the proceedings[31,32]. An important
generalization is provided by queues with Markov additive input, which can
be viewed as Markov-modulated L�evy processes that are reflected at 0; we
refer to[7, Ch. XI] for an authoritative exposition.
Recently the single-server queue has been generalized in other directions

as well. Various data studies indicated that often the variance of the num-
ber of arrivals in a given time window exceeds the corresponding mean, a
phenomenon often referred to as overdispersion. This observation led one
to question the standard assumption of Poisson arrivals (under which the
variance would equal the mean). In order to create overdispersion in a
model for call center traffic, in Jongbloed and Koole[22] the authors suggest
to use a Poisson mixture model for the number of arrivals in an isolated
time slot: the deterministic arrival rate k of the Poisson distribution is
replaced by a random variable K.
Following up on the idea of a random arrival rate, the standard Poisson

arrival process as a whole can be replaced by a Coxian arrival process, i.e., by a
Poisson process for which the intensity itself is a stochastic process Kð�Þ �
fKðtÞ, t � 0g: Infinite-server queues with Coxian input can be analyzed in
great detail, essentially due to the property that individual customers do not
interfere with each other. The most elementary variant is the one in which the
intensity is resampled, in an i.i.d. manner, at equidistant epochs[20]. This
framework is extended in Heemskerk et al. [21], allowing the sample rates to be
dependent in an autoregressive manner. In Koops et al.[26] the object of study
is the infinite-server queue with Kð�Þ corresponding to a ‘shot-noise’ intensity
process, whereas in other recent papers Kð�Þ is a (generalized) Hawkes, or
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‘self-exciting’ process[13,14,27]. While infinite-server queues with Coxian input
allow explicit analysis, this usually does not hold for their single-server coun-
terparts. See Albrecher and Asmussen[4] for an early contribution to the ana-
lysis of a specific insurance risk model (which can be considered dual to a
single-server queue) with a Coxian claim arrival process; the authors derive
large-deviations results for the ruin probabilities.
The aim of the present paper is to explore single-server queues under

overdispersion, where this overdispersion is realized by imposing specific
mixing mechanisms. It turns out that for these models exact analysis is in
general highly challenging. This is why we resort to the heavy-traffic scal-
ing, in which the system load approaches unity. In this regime for various
model variants explicit limiting results can be derived.

1.1. Related literature – Markov modulation and mixing

Above we already gave a few key references on QBD processes and
Markov-modulated queues. In addition, we would like to mention a paper
of Regterschot and de Smit[37], making an important methodological con-
tribution by developing a matrix Wiener-Hopf approach to study the M/G/
1 queue with Markov-modulated arrivals and service requirements (where
the service modulation is customer-based). Another notable contribution is
by Prabhu and Zhu[35], who work with a very similar but more compre-
hensive model, using techniques based on infinitesimal generators to ana-
lyze the waiting time, idle time, and busy period.
An early example of mixing in the queueing literature is provided in Abate

et al.[1]. Here a GI/G/1 queue is considered, with the service times being exponen-
tially distributed, but with a mean that is a Pareto distributed random variable.
The attractive feature of this construction is that the resulting service-time distri-
bution has an explicit Laplace transform, even though the distribution is heavy-
tailed. A similar procedure has been followed in Cohen[11]: for Pareto distributed
service times with one of its parameters being Gamma distributed, a mathematic-
ally convenient Laplace transform was identified. This class of distributions was
further generalized in Abate and Whitt[2], considering two classes of so-called
Beta mixtures of exponentials. In Raaijmakers et al.[36], the waiting-time distribu-
tion of a single-server queue is analyzed for models in which the arrival rate, the
service rate or the traffic load, is random. The paper also covers a duality result
between such queueing models and a class of insurance risk models, thus allowing
one (i) to obtain some new results for insurance risk models in which a parameter
is random, and (ii) to translate some insurance risk results, with mixing, from
Albrecher et al.[5] to queueing results. Other references on single-server queues
with random arrival and/or service rates are[18,19].
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In the references featuring in the previous paragraph, the random par-
ameter was sampled once and for all. In Klaasse[25] other sampling proce-
dures are explored; specifically, if parameters are resampled after each busy
period, then quite detailed results can be obtained.

1.2. Related literature – heavy-traffic

Heavy-traffic analysis has a tradition within the queueing literature that
goes back to the 1960s. It concerns the study of scaled random quantities
within the framework of queueing systems, in the asymptotic regime where
the queue’s load is increasingly heavy. One of its pioneers, Kingman[23,24],
derived the asymptotic distribution of the scaled steady-state sojourn time
and queue length (and the waiting time) in a GI/G/1 queue; both quantities
converge to exponentially distributed random variables, under the condi-
tion that the interarrival times and service times have finite variance. The
proof is classical: in the corresponding transform the load of the system is
increased to 1, so as to obtain the transform of the exponential distribution
in the limit. Later also path-level heavy-traffic limit results were established:
when scaling time as well, usually relying on the continuous mapping the-
orem, it was shown that the queue-length process weakly converges to
reflected Brownian motion. Such limit theorems are particularly useful for
queues that do not allow an explicit performance analysis, bearing in mind
that, conveniently, for the limiting (Brownian-motion related) objects a
broad range of closed-form expressions is known. In Whitt[41] an overview,
covering various heavy-traffic limit results, is given, including an account
of its relation to the vast literature on diffusion approximations. We also
refer to the textbook treatments in Asmussen[7, Section X.7] and Dȩbicki, K.;
Mandjes[15, Ch. V]. Heavy-traffic analyses for Markov-modulated single-ser-
ver queues and their QBD counterparts are given in e.g.,[6,9,16,40].

1.3. Main results and organization of the paper

Section 2 sketches an approach to analyze the M/M/1 queue in which the
arrival rate K and the service rate M are resampled at i.i.d. exponentially
distributed intervals. The main goal of the section is to point out that exact
analysis is within reach when K and M can attain only finitely many val-
ues, but complications arise otherwise. With these complications in mind,
in the remainder of the paper we mainly focus on heavy-traffic analysis. In
the next section we analyze three different overdispersed queueing models,
each with its own resampling mechanism.
In Section 3 we consider the most basic model: an M/M/1 queue where

the rate vector ðK,MÞ is resampled (in an i.i.d. manner) at Poisson epochs,
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with ðK,MÞ attaining only finitely many values. It takes a little thought to
realize that this model is a special case of the Markov-modulated M/M/1
queue, with the Markovian background process having a finite state space.
For this more general model we first show how the Laplace transform of
the steady-state distribution of the number of customers Q, jointly with the
background state J, can be determined (Section 3.1). Then in Section 3.2
we study the heavy-traffic scaling limit of Q: by letting the traffic load q
tend to 1 in the Laplace transform we prove that ð1� qÞQ converges to an
exponentially distributed random variable. In Section 3.3 we narrow our
scope to the case where ðK,MÞ are resampled, under which the parameter
of the limiting exponential distribution simplifies considerably.
Section 4 is also concerned with an M/M/1 queue with resampling of the

arrival rate and service rate, but now the support of ðK,MÞ is not
restricted to finitely many values, and the resampling intervals are not
necessarily exponentially distributed. We first determine the mean, variance
and covariance of the cumulative arrival process and cumulative potential
service process. Those results are subsequently used to show, using the con-
tinuous mapping theorem, that an appropriately scaled version of the
queue-length process converges to reflected Brownian motion when
the traffic load approaches unity. Our result does not directly imply that
the stationary number of customers under the heavy-traffic scaling con-
verges to the stationary version of reflected Brownian motion (which has
an exponential distribution).
While the resampling mechanisms featuring in Sections 3 and 4 can be

seen as exogenously triggered, the resampling in Section 5 is endogenous:
we consider an M/G/1 queue in which at every service completion the
arrival rate is resampled. After providing an exact analysis of the transient
queue-length distribution right after service completions, we use the
obtained results to show that a scaled version of the transient queue length
(where the scaling involves both space and time) converges to its counter-
part for reflected Brownian motion when the traffic load q approaches 1.
Also in this context we succeed in proving that the scaled stationary queue
length ð1� qÞQ converges to an exponentially distributed random variable.
We conclude the paper in Section 6 with a brief discussion and some

suggestions for further research. Importantly, the Sections 3–5 focus on
three different models; for this reason, we introduce for each of them spe-
cific notation in the corresponding section.

2. Exact results: an exploration

In this section we consider an M/M/1 queue with the special feature that at
Poisson epochs, the underlying rate vector ðK,MÞ, which is component
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wise non-negative, is resampled from a given distribution. In particular, we
do not assume that K and M are independent. Let q�1 be the value of the
mean ‘inter-sample time’. The main objective of this section is to examine
to what extent the resulting queueing system allows a closed-form solution.
Starting point are the following results from Cohen [10, Section I.4.4] for the

transient behavior of a birth-death process with constant birth and death
rates. Let Qt denote the number of customers in the M/M/1 queue at time
tP0: Assume that, at time 0 and until n�exp(q), the rates are given by
K0 ¼ k and M0 ¼ l, with traffic load q :¼ k=l: To describe the number
of customers at the random epoch n, the following quantities play a role
[10, Section I.4.4]. Let x1 � x1ðk, l, qÞ and x2 � x2ðk, l, qÞ be the roots of
FðzÞ � Fðz j k, l, qÞ :¼ kz2 � ðkþ lþ qÞz þ l, where x1 is the larger one:

x1 ¼
kþ lþ qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ lþ qÞ2 � 4kl

q
2k

,

x2 ¼
kþ lþ q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ lþ qÞ2 � 4kl

q
2k

:

(1)

Then, according to[10, (4.27) on p. 80] (taking into account the scaling with
respect to l mentioned there), for jzj6 1 and i ¼ 1, 2, :::,

EðzQn jðQ0,K0,M0Þ ¼ ði, k, lÞÞ

¼
X1
j¼0

zj
ð1
t¼0

qe�qt
PðQt ¼ jjðQ0,K0,M0Þ ¼ ði, k, lÞÞdt

¼ q
l

ð1� zÞxiþ1
2 � ð1� x2Þziþ1

ð1� x2Þðqz2 � ð1þ qþ q=lÞz þ 1Þ

¼ q
ð1� zÞxiþ1

2 � ð1� x2Þziþ1

ð1� x2ÞFðzÞ :

(2)

As is well-known[10, p. 190], the smaller root x2 can be interpreted as the
Laplace-Stieltjes transform E½e�qP� of the busy period P in an M/M/1 queue
with arrival rate k and service rate l, given that k < l:
From now on we assume that E½K� < E½M�, implying that the system is

stable. If the system was already in steady state at time 0, and with Q
denoting the steady-state queue length, then we can write Q0 ¼ Q and

E zQn jðK0,M0Þ ¼ ðk, lÞ
� �

¼ qð1� zÞx2 E xQ2
� �

ð1� x2ÞFðzÞ � qz E zQ½ �
FðzÞ : (3)

Note that the queue length Qn at the resample epoch n has the same
steady-state distribution as Q0, as at time n rates ðK1,M1Þ are resampled
in an i.i.d. fashion from the same distribution as ðK0,M0Þ: Hence we can
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obtain an expression for the probability generating function (PGF) of Q
from (3) by integrating both sides with respect to k and l (recalling the
dependence of F(z) and x2 on k and l):

E zQ½ � ¼ qð1� zÞ
ð1
k¼0

ð1
l¼0

x2E xQ2
� �

ð1� x2ÞFðzÞPðK 2 dk,M 2 dlÞ

� qz E zQ½ �
ð1
k¼0

ð1
l¼0

1
FðzÞPðK 2 dk,M 2 dlÞ:

(4)

Hence,

E zQ½ � ¼ qð1� zÞ
Ð1
k¼0

Ð1
l¼0

x2E xQ2½ �
ð1�x2ÞFðzÞPðK 2 dk,M 2 dlÞ

1þ qz
Ð1
k¼0

Ð1
l¼0

1
FðzÞPðK 2 dk,M 2 dlÞ

0
@

1
A: (5)

The crucial insight is that a major complication arises from the fact that
the numerator in the right-hand side of (5) still contains an unknown
expression. More than that, since x2 is a function of k and l, there may be

multiple unknowns E½xQ2 �; even infinitely many as K and M need not live
on a finite state space.
To study this complication in greater detail, we proceed by briefly point-

ing out the crucial difference between the case in which the vector ðK,MÞ
has a finite support (i.e., can attain finitely many values), and the case in
which this vector can take on infinitely many values. First consider the case
that ðK,MÞ can attain two values, i.e., we assume that, for p1 2 ð0, 1Þ,

PðK ¼ k1,M ¼ l1Þ ¼ p1, PðK ¼ k2,M ¼ l2Þ ¼ p2 ¼ 1� p1: (6)

In this case, writing x2i to indicate its dependence on the values of ki and
li, and with FiðzÞ :¼ kiz2 � ðki þ li þ qÞz þ li, (5) reduces to

E zQ½ � ¼ qð1� zÞ
P2

i¼1
pi x2iE xQ2i½ �
ð1�x2iÞFiðzÞ

1þ qz
P2

i¼1
pi

FiðzÞ

0
B@

1
CA, (7)

the only unknowns being E½xQ2i� for i¼ 1, 2. After multiplication by
F1ðzÞ F2ðzÞ, the denominator in the right-hand side of (7) is a polynomial
D(z) in z of order 4, with a zero at z¼ 1 and three other zeros which can
be explicitly obtained via Cardano’s formula. When the stability condition
p1k1 þ p2k2 < p1l1 þ p2l2 holds, one of those zeros lies in (0, 1). In fact,
it is easily verified that Dð0Þ ¼ l1l2 > 0, Dð1Þ ¼ 0, and D0ð1Þ > 0 iff that
stability condition holds. The zero in (0, 1) and the zero z¼ 1 should also
be zeros of the numerator in (7), which gives rise to two linear equations
in the two above-mentioned unknowns. We conclude that this problem
is solvable.
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When the vector ðK,MÞ can attain a larger, but still finite, number of
values, one typically aims for a Rouch�e-type argument to prove that there
is a specific number of zeros in jzj6 1: We do not discuss this further,
because this model can be viewed as a special case of a Markov-modulated
M/M/1 queue, which has been analyzed in detail, cf.[37]. Via an intricate
argument, it is there proven for the case of a background process with d
states (and while studying the waiting time rather than queue length) that
a particular determinant has, in steady state, exactly d� 1 zeros in the
right-half plane and one at zero. That knowledge can be exploited to deter-
mine the vector of waiting-time transforms (of length d, distinguishing
between waiting times of customers arriving in different back-
ground states).
However, this approach breaks down when the state space of the back-

ground process is not finite. In particular, when the support of ðK,MÞ is
uncountable, the numerator in the right-hand side of (5) is an unknown
function of z, and the denominator may have zeros on a contour in jzj6 1:
It is far from obvious how to exploit that knowledge to find the numerator
in (5).
The main conclusion of this section is that, in order to obtain exact

results, complications arise when the support of ðK,MÞ is not finite.
Classical queueing-theoretic techniques fail, and new approaches need to be
developed. In the next sections we focus on the heavy-traffic regime, in
which rather explicit results can be obtained.

3. Exogenously triggered resampling, finite support

In this section we consider a heavy-traffic analysis of a Markov-modulated
M/M/1 queue with finitely many background states. It covers the setting
discussed in Section 2: an M/M/1 queue in which at Poisson epochs the
arrival rate and service rate are resampled from a distribution with finite
state space. As turns out in Section 3.3, in this special case the (parameter
of the) heavy-traffic limiting distribution simplifies considerably.

3.1. Model description

In this section we consider the following Markov-modulated M/M/1 queue.
There is a background process, which is assumed to be irreducible, and
which jumps from i to j 6¼ i with rate qij, with i, j 2 f1, :::, dg: We define
qi :¼ �qii :¼

P
j 6¼i qij: When the background state is i, the arrival rate is

kiP0 and the service rate is liP0: As before, Qt denotes the queue length
at time t and Q the steady-state queue length.
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As a first step, we characterize the PGF of Q. Let ptðk, iÞ be the probabil-
ity that at time t there are k customers (with k 2 N0) and the background
state is i (with i 2 f1, :::, dg). As D # 0, we obtain by a classical Markovian
argumentation, for any k 2 N0,

ptþDðk, iÞ ¼ kiD ptðk� 1, iÞ1fkP1g þ liD ptðkþ 1, iÞ þ
X
j6¼i

qjiD ptðk, jÞ

þ ð1� ðki þ li1fkP1g þ qiÞDÞ ptðk, iÞ þ oðDÞ:
Multiplying by zk and summing over k yields, in a standard manner, a rela-
tion in terms of the PGF of QtþD and Qt, jointly with the corresponding
states of the background process. By subtracting E½zQt1fJt¼ig� from both
sides of this relation, dividing by D, and letting D # 0, we obtain the differ-
ential equation

d
dt

E zQt1fJt¼ig
h i

¼ kiðz � 1Þ E zQt1fJt¼ig
h i

þ li
1
z
� 1

� �
E zQt1fJt¼i,Qt>0g
h i

þ
Xd
j¼1

qji E zQt1fJt¼jg
h i

:

We send t to 1 to obtain a system of differential equations for the steady-
state queue length Q, jointly with the state J of the background process.
Denoting the corresponding PGF by fiðzÞ :¼ E½zQ1fJ¼ig�, it thus follows
that

0 ¼ kiðz � 1Þ fiðzÞ þ li
1
z
� 1

� �
ðfiðzÞ � biÞ þ

Xd
j¼1

qji fjðzÞ, (8)

where bi denotes PðQ ¼ 0, J ¼ iÞ: This equation can, for any z 2 ð0, 1Þ and
for a given vector of probabilities b, be rewritten as a system of linear
equations. Concretely, with the (i, j)-th entry of the matrix A(z) given by

aijðzÞ :¼ ki ðz � 1Þ1fi¼jg þ li
1
z
� 1

� �
1fi¼jg þ qji,

and the i-th entry of the vector bðz j bÞ given by

biðz j bÞ :¼ li
1
z
� 1

� �
bi,

we arrive at the equation AðzÞ f ðzÞ ¼ bðz j bÞ: We thus obtain, modulo
the invertibility of the matrix A(z),

f ðzÞ ¼ ðAðzÞÞ�1 bðz j bÞ:
By Cramer’s rule, we have that, with AiðzÞ defined as A(z) but with the i-th
row replaced by bðz j bÞ, and with aiðzÞ :¼ det AiðzÞ and aðzÞ :¼ det AðzÞ,
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fiðzÞ ¼ aiðzÞ
aðzÞ : (9)

We have thus found the PGF of Q, jointly with the background state J,
in terms of the vector of probabilities b: Using the fact that zeros of the
denominator of (9) should be zeros of the corresponding numerator as
well, these probabilities can in principle be found. As it will turn out
below, however, their precise value does not affect the heavy-traf-
fic results.

3.2. Heavy-traffic scaling limit

Now that we have an expression for the PGF of Q, this can be exploited to
get insight into its heavy-traffic behavior. Following the ideas of
Abhishek[3, Ch. VI], we do so by expanding f ðzÞ in z ¼ e�ð1�qÞs as q " 1,
with q :¼ pk=pl: Here p denotes the row vector of steady-state probabil-
ities for the background process.

Remark 3.1. We let the heavy-traffic regime be reached by scaling k in a
uniform fashion, in the sense that a vector of fixed arrival rates k0 is multi-
plied by a constant, namely by c> 0 such that q ¼ pk=pl ¼ pðck0Þ=pl ¼
cq0 " 1 as c " q�1

0 , with q0 :¼ pk0=pl < 1: Note that the results derived in
this section are not affected by this choice, as they only depend on l,
which is kept fixed. A similar procedure has been followed in Sections 3.3,
4.3 and 5.3.
The underlying idea is that we show that, as q " 1, E½e�sð1�qÞQ� con-

verges to the Laplace-Stieltjes transform of an exponentially distributed ran-
dom variable (with a specific rate). By L�evy’s convergence theorem this
thus implies that ð1� qÞQ converges in distribution to this exponentially
distributed random variable.
As a first step, we study the behavior of aðzÞ and aiðzÞ as z " 1:

� Note that aijð1Þ ¼ qji; due to the singularity of the transition rate matrix
ðqijÞdi, j¼1, it is directly seen that að1Þ ¼ 0:

� As fiðzÞ 2 ½0, 1� for all z 2 ð0, 1Þ, we conclude that also aið1Þ ¼ 0,
for i ¼ 1, :::, d:

� To study a0ð1Þ, we first observe that aðzÞ ¼ det �AðzÞ, with �AðzÞ defined
as A(z) with the first row replaced by the sum of all rows; i.e., the ð1, jÞ-th
entry is cjðzÞ :¼ kjðz � 1Þ þ ljð1=z � 1Þ (recalling that the rows of the
transition rate matrix sum to 0). Using standard rules for evaluating deter-
minants,
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aðzÞ ¼
Xd
j¼1

cjðzÞ djðzÞ,

where djðzÞ is the determinant of the appropriate ðd � 1Þ 	 ðd � 1Þ
cofactor matrix. We hence find

a0ð1Þ ¼
Xd
j¼1

ðc0jð1Þ djð1Þ þ cjð1Þ d0jð1ÞÞ:

To evaluate the right-hand side of this equation, we first note that
cjð1Þ ¼ 0: Also, c0jð1Þ ¼ kj � lj: We are thus left with evaluating djð1Þ:
We proceed by showing that djð1Þ is proportional to pj, as follows. The
vector p can be found by solving the linear system of equationsPd

j¼1 pjqji ¼ 0 for i ¼ 1, :::, d (of which one equation is redundant)
together with p1 ¼ 1: It follows that this system of equations can be
written as Tp> ¼ e1, with the (i, j)-th element of T being defined by 1
if i¼ 1 and by qji else, and e1 defining the first unit vector. The vector
p can again be evaluated using Cramer’s rule. More concretely, with Tj

being equal to the matrix T but with the j-th column replaced by ej
and s :¼ det T, we find

pj ¼ s�1 � detTj:

It is immediately verified that det Tj ¼ djð1Þ ¼ spj (recalling that
aijð1Þ ¼ qji).
Upon combining the above, we get a0ð1Þ ¼ s ðpk� plÞ ¼
�s pl ð1� qÞ:

� In addition, by L’Hôpital’s rule,

1 ¼
Xd
i¼1

PðJ ¼ iÞ ¼ lim
z"1

Xd
i¼1

E zQ1fJ¼ig
h i

¼ lim
z"1

Xd
i¼1

aiðzÞ
aðzÞ ¼

Xd
i¼1

a0ið1Þ
a0ð1Þ ,

so that
Pd

i¼1 a
0
ið1Þ ¼ a0ð1Þ ¼ �s pl ð1� qÞ as well. Realize that s

depends on the transition rates qji only, i.e., not on the arrival rates ki
and service rates li.

We thus find that, for a given sP0,

aðe�ð1�qÞsÞ ¼ að1� ð1� qÞsþ 1
2
ð1� qÞ2s2 þ O ð1� qÞ3

� �
Þ,

which further expands to

að1Þ þ a0ð1Þð�ð1� qÞsþ 1
2
ð1� qÞ2s2Þ þ 1

2
a00ð1Þð1� qÞ2s2 þ O ð1� qÞ3

� �
¼ s pl ð1� qÞ2sþ 1

2
a00ð1Þð1� qÞ2s2 þ O ð1� qÞ3

� �
:

(10)
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Along the same lines,

Xd
i¼1

aiðe�ð1�qÞsÞ ¼ s pl ð1� qÞ2sþ 1
2

Xd
i¼1

ai
00ð1Þð1� qÞ2s2 þ O ð1� qÞ3

� �
:

We conclude that

lim
q"1

E e�sð1�qÞQ½ � ¼ s plþ 1
2 limq"1

Pd
i¼1ai

00ð1Þ s

s plþ 1
2 limq"1 a00ð1Þ s

: (11)

As PðQ ¼ 0Þ vanishes when q " 1, we deduce that the expression in (11)

goes to 0 as s ! 1: This immediately entails that
Pd

i¼1 ai
00ð1Þ ! 0 as

q " 1: Recognizing the Laplace transform of the exponential distribution,
and defining a
 :¼ limq"1 a00ð1Þ, we have proven the following result.

Theorem 3.1. Consider the Markov-modulated M/M/1 queue. As q " 1, we
have that ð1� qÞQ converges to an exponentially distributed random vari-
able with mean a
=ð2s plÞ:
Upon inspecting the above derivation, we see that we have in addition

proven the asymptotic independence of Q and J in the regime where q " 1:
More precisely, as q " 1, using that PGFs uniquely characterize their
underlying (joint) distribution, we have that the bivariate random vector
ðð1� qÞQ, JÞ converges to ð�Q,�JÞ, where �Q is exponentially distributed with
the mean we identified above and �J such that Pð�J ¼ iÞ ¼ pi, where,
remarkably, �Q and �J are independent; cf. the results in e.g.,[6,16,40]. Hence
we have the following result.

Corollary 3.1. As q " 1, ðð1� qÞQ, JÞ converges to ð�Q,�JÞ, where �Q is expo-
nentially distributed with mean a
=ð2s plÞ and �J has distribution
Pð�J ¼ iÞ ¼ pi, where �Q and �J are independent.

3.3. Heavy-traffic scaling limit in the resampling model

We proceed by considering a special case of a Markov-modulated M/M/1
queue, namely the one that corresponds to resampling the arrival rate and
service rate at Poisson epochs, as was introduced in Section 2. We do so
following similar steps as in the proof of Theorem 3.1, but in the resam-
pling context the parameter of the limiting exponential distribution turns
out to simplify considerably.
We follow the construction introduced in Constantinescu et al.[12, Section 3].

Let p be some row vector of probabilities summing to 1. Take, for a given
q> 0, the transition rate matrix equal to q 1p� qId, with 1 an all-ones
vector and Id the d-dimensional identity matrix. As follows from the
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reasoning in Constantinescu et al.[12], we have thus constructed a model in
which the arrival and service rate pair ðK,MÞ is resampled, in an i.i.d. man-
ner, after exponentially distributed times (with mean q�1). At every resam-
pling time, they attain the values ðki, liÞ with probability pi. Notably, this
construction allows for the K and M to be dependent, but their support
needs to be finite. We call the resulting model the resampled M/M/1 queue.
In Section 3.2 we determined the heavy-traffic scaling limit by expanding

the determinants of A(z) and AiðzÞ as z " 1: In the special resampling set-
ting defined above, however, it turns out that these expansions take an
explicit form. Define EðsÞ ¼ AðesÞ, i.e.,
EðsÞ :¼ �EðsÞ þ q 1p, �EðsÞ :¼ �qId þ diagfkgðes � 1Þ þ diagflgðe�s � 1Þ:

Due to the fact that E(s) can be written as the sum of a diagonal matrix
and a rank-one matrix, its eigenvalues can be characterized as roots of a
function from R to R, as can be seen as follows. To this end, we write

detðEðsÞ � hIdÞ ¼ detð�EðsÞ � hIdÞ detðId þ ð�EðsÞ � hIdÞ�1q 1pÞ:
For A and B matrices of dimensions m	 n and n	m, respectively, we
have detðIm � ABÞ ¼ detðIn � BAÞ: We thus conclude that

detðEðsÞ � hIdÞ ¼ detð�EðsÞ � hIdÞ detð1þ pð�EðsÞ � hIdÞ�1q 1Þ

¼ detð�EðsÞ � hIdÞ 1�
Xd
i¼1

pi
q

q� kiðes � 1Þ � liðe�s � 1Þ þ h

 !
:

We conclude that the eigenvalues h1ðsÞ up to hdðsÞ (for a fixed s, that is)
are the solutions to

1
q
¼
Xd
i¼1

pi
1

q� kiðes � 1Þ � liðe�s � 1Þ þ h
¼: WsðhÞ:

The existence of these (real) eigenvalues follows from the fact that there
are poles at h ¼ �qþ kiðes � 1Þ þ liðe�s � 1Þ, i ¼ 1, :::, d, at which Wsð�Þ
jumps from �1 to 1, whereas Wsð�Þ converges to 0 as h ! 61: This
means that d� 1 of the roots are between two subsequent poles, whereas
the largest root is larger than the largest pole.

� As s ! 0, by observing that the locations of all poles converge to – q, it
follows that all but one eigenvalues, say h1ðsÞ up to hd�1ðsÞ, converge to –
q. Also, the largest one, say hdðsÞ, converges to 0 as s ! 0:

� We then determine h0jð1Þ for j ¼ 1, :::, d� 1: For the moment we assume
that the ji :¼ ki � li are all distinct; the case in which some of the ji
coincide can be dealt with analogously, with slightly more effort. Without
loss of generality we can put the ji in increasing order, i.e. j1 < ::: < jd:
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Recalling that es � 1 ¼ sþ oðsÞ and e�s � 1 ¼ �sþ oðsÞ as s ! 0, it thus
follows that, as s ! 0, hjðsÞ 2 ½�qþ jjs, � qþ jjþ1sÞ: Write hjðsÞ ¼
�qþ fjsþ oðsÞ for fj 2 ½jj, jjþ1Þ: To find the fj, we wish to solve, in the
regime where s ! 0,

1
q
¼
Xd
i¼1

pi
1

ðfj � jiÞs :

Multiplying both sides by s, sending s to 0, and distinguishing between
positive and negative terms, we conclude that we have to solve

Xj
i¼1

pi
1

fj � ji
¼
Xd
i¼jþ1

pi
1

ji � fj
:

Observe that the left-hand side is 1 for fj ¼ jj and is decreasing in
½jj, jjþ1Þ, whereas the right-hand side is increasing in the same interval
and is 1 for fj ¼ jjþ1: This implies that there is a unique solution to
the equation, which we simply call fj. We have thus determined h0jð0Þ ¼
fj, for j ¼ 1, :::, d � 1:
We proceed by computing h0dð0Þ: From the relation q�1 ¼ WsðhðsÞÞ it
follows by implicit differentiation to s, for any j 2 f1, :::, dg, with
nijðsÞ :¼ q� kiðes � 1Þ � liðe�s � 1Þ þ hjðsÞ,

0 ¼
Xd
i¼1

pi
�kies þ lie

�s þ h0jðsÞ
nijðsÞ2

:

Inserting s¼ 0 directly yields that h0dð0Þ ¼ �pl ð1� qÞ, which in the
sequel we will write as �ð1� qÞ EM:

� Differentiating once more, we arrive at

0 ¼ 2
Xd
i¼1

pi
�kies þ lie

�s þ h0jðsÞ
	 
2

nijðsÞ3
�
Xd
i¼1

pi
�kies � lie

�s þ h00j ðsÞ
nijðsÞ2

:

Again plugging in s¼ 0, we obtain in self-evident notation (with e.g.
EK :¼ pk) that

h00dð0Þ ¼ EKþ EMþ 2 EðK�MÞ2
q

:

The values of h001ð0Þ, :::, h00d�1ð0Þ are not relevant in our analysis, as will
turn out below.

Using that a determinant is the product of the eigenvalues, we have that
eðsÞ :¼ det EðsÞ ¼ h1ðsÞ � � � hdðsÞ: Noting that eð0Þ ¼ 0, we wish to expand
e(s) as e0ð0Þsþ 1

2 e
00ð0Þs2 þ Oðs3Þ as s ! 0: Using that hdð0Þ ¼ 0 and hjð0Þ ¼

�q for j ¼ 1, :::, d � 1 we find, by applying the standard rules for differenti-
ation of products, that

210 O. BOXMA ET AL.



e0ð0Þ ¼ h0dð0Þ
Yd�1

j¼1

hjð0Þ ¼ �ð1� qÞ EM � ð�qÞd�1:

Likewise, for the second derivative we find

e00ð0Þ ¼ h00dð0Þ
Y
j6¼d

hjð0Þ þ h0dð0Þ
Xd�1

j¼1

hj
0ð0Þ

Y
k 6¼j, d

hkð0Þ

¼ h00dð0Þ � ð�qÞd�1 � ð1� qÞ EM �
Xd�1

j¼1

fj � ð�qÞd�2:

The next step is to use the above findings to expand the determinant e(s)
of EðsÞ ¼ AðesÞ around s¼ 0 and evaluated it in �ð1� qÞs: Similar to Eqn.
(10), we obtain that, for any given s,

eð�ð1� qÞsÞ ¼ � e0ð0Þ ð1� qÞsþ 1
2
e00ð0Þ ð1� qÞ2s2 þ O ð1� qÞ3

� �
¼ ð1� qÞ2 EM � ð�qÞd�1sþ 1

2
ð1� qÞ2h00dð0Þ � ð�qÞd�1s2

þ O ð1� qÞ3
� �

:

Next we can, in a fully analogous fashion, do the same for the determinants
eiðsÞ of EiðsÞ :¼ AiðesÞ, and sum these over i. We thus obtain, by dividing

the numerator and denominator by ð1� qÞ2s, that

lim
q"1

E e�sð1�qÞQ½ � ¼ 1
1þ ds

,

with d :¼ h00dð0Þ=ð2 EMÞ; in the limiting regime (q " 1), we find that

h00dð0Þ converges to

lim
q"1

h00dð0Þ ¼ r2K,M :¼ ðVar K� 2 CovðK,MÞþ Var MÞ 2
q
þ 2 EM:

Theorem 3.2. Consider the resampled M/M/1 queue. As q " 1, we have that
ð1� qÞQ converges to an exponentially distributed random variable with
mean r2K,M=ð2 EMÞ:
Note that in this special case we are able to fully determine the term

a
 ¼ limq"1 a00ð1Þ that appears in Thm. 3.1; it turns out that limq"1 a00ð1Þ=s
equals r2K,M and s ¼ ð�qÞd�1:

3.3.1. Numerical example: convergence to heavy-traffic limiting distribution
We conclude this subsection with a numerical example, assessing the accur-
acy of an approximation based on the above theorem. In our experiment
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we consider a two-dimensional background process in which the arrival
rate is resampled at exponentially distributed epochs with mean q�1 : it is
k with probability p1 ¼ 1

2 and 0 else. Observe that this means that the
uninterrupted time the arrival rate is k (0, respectively) is exponentially dis-
tributed with parameter q=2: The service rate l¼ 1 we hold fixed. In this
setting the load is q ¼ k=2: We compute the distribution of the scaled
queue length, and compare it with its heavy-traffic limit as q " 1 (or, alter-
natively, k " 2Þ:
As can be found in e.g.,[34], with fki :¼ PðQ ¼ k, J ¼ iÞ, the stationary

queue length has a matrix-geometric distribution:

ðfk1 fk2Þ ¼ ðf01 f02Þ Rk,

where the matrix R is the minimal nonnegative solution of the nonlinear
matrix equation

k 0
0 0

� �
þ R

�q=2� k� 1 q=2
q=2 �q=2� 1

� �
þ R2 1 0

0 1

� �
¼ 0,

with 0 denoting a 2	 2 all-zeros matrix. The probabilities f0i, i¼ 1, 2 fol-
low from

ðf01 f02Þ �q=2� k q=2
q=2 �q=2

� �
þ R

1 0
0 1

� �� �
¼ ð0 0Þ,

in combination with the normalization ðf01 f02ÞðI2 � RÞ�11 ¼ 1, where

1 ¼ ð1 1Þ> and I2 is the two-dimensional identity matrix. The entries of R
and ðf01 f02Þ can be found numerically.
In Table 1, R and ðf01 f02Þ are given for different values of k and q. We

consider two cases where the system approaches heavy traffic, namely k ¼
1:8 and k ¼ 1:9: The corresponding loads are q ¼ 0:9 and q ¼ 0:95,
respectively. Note that Ri, j describes the probability that the background
state is j when level nþ 1 is first hit given that we start in (n, i). Observe
that in this light it makes sense that R1, 1 decreases when q gets larger
(faster resampling), while R1, 2 increases. Also observe that the probability
of an empty system f01 þ f02 equals 1� q, as expected.

Table 1. R and f01 f02ð Þ for different values of k and q.
k ¼ 1:8 q¼ 0.5 q¼ 1 q¼ 2

R 0:963 0:837
0 0

� �
0:946 0:854
0 0

� �
0:930 0:870
0 0

� �
f01 f02ð Þ 0:0187 0:0813

� �
0:0270 0:0730
� �

0:0349 0:0652
� �

k ¼ 1:9 q¼ 0.5 q¼ 1 q¼ 2
R 0:982 0:918

0 0

� �
0:974 0:926
0 0

� �
0:966 0:934
0 0

� �
f01 f02ð Þ 0:0088 0:0412

� �
0:0130 0:0370
� �

0:0171 0:0330
� �
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Using R and ðf01 f02Þ as given in Table 1, we determine the exact tail

probability PðQ > nÞ of the queue length, given by 1�Pn�1
k¼1ðfk1 þ fk2Þ;

see the orange dotted line in the plots in Figure 1. The numerical/exact
results based on the above exact approach are to be compared with the

limiting result of Theorem 3.2. To this end, observe that Var K ¼
k2=2� ðk=2Þ2 ¼ k2=4, so that

r2K,M ¼ k2

2q
þ 2:

Hence, as k " 2, ð1� k=2ÞQ is approximately exponentially distributed
with mean k2=ð4qÞ þ 1: The blue line in the plots in Figure 1 depicts this
exponential tail probability.
From the plots we conclude that, especially for the larger values of q, the

approximation of the queue length distribution by the heavy-traffic limiting dis-
tribution is highly accurate for the considered values of q. Note that the approxi-
mation gets near-perfect for any value of q as we increase the load further.

4. Exogenously triggered resampling, uncountable support

The model considered in this section is an M/M/1 queue in which the
arrival rate and service rate are resampled, but now the support of ðK,MÞ
can be uncountable. Another difference with the previous section is that
the resampling does not necessarily take place at Poisson epochs.

4.1. Model description

The inter-sample intervals are i.i.d. and distributed according to a non-
negative random variable n with density fnð�Þ: We assume that at time 0,

Figure 1. Plots of tail probabilities: exact solution (orange dotted line) vs. exponential limiting
distribution of the heavy-traffic result in Thm. 3.2 (blue line). The leftmost plots correspond to
q¼ 0.5, the middle ones to q¼ 1, and the rightmost ones to q¼ 2; the top plots correspond to
k ¼ 1:8, the bottom ones to k ¼ 1:9::
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the time until the next resampling (say �n) has the residual lifetime distribu-
tion, i.e., it has the density

f�n ðxÞ :¼
Pðn > xÞ

En
¼ 1

En

ð1
x
fnðyÞ dy;

in other words, the resampling process is in stationarity. Above we tacitly
assumed that En < 1; in the sequel we also need that E½n2� < 1:
We proceed by describing the cumulative input process Að�Þ and cumu-

lative potential service process Sð�Þ: At any resample epoch the new arrival
rate and service rate are sampled; these bivariate random quantities are
i.i.d. and distributed as a componentwise non-negative two-dimensional
random vector ðK,MÞ: In addition, we let KðtÞ and MðtÞ be the arrival
rate and service rate, respectively, that apply at time t. Throughout this sec-
tion we assume that both Var K and Var M are finite.

4.2. Arrival and potential service process

As the resampling process starts in stationarity, it is clear that EAðtÞ ¼
t � EK and ESðtÞ ¼ t � EM: We therefore shift our attention to computing
the variances and the covariance, relying on the law of total variance. The
starting point is the representation of A(t) and S(t) in terms of Poisson
processes with random parameter:

AðtÞ ¼ Pois
ðt
0
KðsÞ ds

 !
, SðtÞ ¼ Pois

ðt
0
MðsÞ ds

 !
:

We show how the calculation for Var AðtÞ is done; the calculation for
Var SðtÞ can be done fully analogously. The law of total variance entails,
with Kð�Þ � ðKðsÞÞs2½0, t�,

vAðtÞ :¼ Var AðtÞ ¼ E VarðAðtÞ j Kð�ÞÞ½ � þ Var E AðtÞ j Kð�Þ½ �ð Þ: (12)

Clearly,

E AðtÞ j Kð�Þ½ � ¼ VarðAðtÞ j Kð�ÞÞ ¼
ðt
0
KðsÞ ds:

The first term in (12) therefore equals

E VarðAðtÞ j Kð�ÞÞ½ � ¼ E

ðt
0
KðsÞ ds

" #
¼
ðt
0
EKðsÞ ds ¼ EAðtÞ ¼ t � EK:

Now focus on the second term in (12). Using standard properties, we
obtain
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Var E AðtÞ j Kð�Þ½ �ð Þ ¼ 2
ðt
0

ðs
0
Cov KðrÞ,KðsÞð Þ dr ds:

The crucial insight is that CovðKðrÞ,KðsÞÞ equals Var K if r and s are in
the same resampling interval, and 0 else. With �n denoting the stationary
residual lifetime pertaining to n, we thus obtain

Var E AðtÞ j Kð�Þ½ �ð Þ ¼ 2 Var K
ðt
0

ðs
0
Pð�n > s� rÞ dr ds:

Notice that, by a standard calculation, with gðuÞ :¼ Pðn > uÞ,

En
ðt
0

ðs
0
Pð�n > s� rÞ dr ds

¼
ðt
0

ðs
0

ð1
s�r

gðuÞ du dr ds ¼
ðt
0

ðt�r

0

ð1
y
gðuÞ du dy dr

¼
ð1
0

ðt
0

ðminfu, t�rg

0
gðuÞ dy dr du

¼
ðt
0

ðt�u

0

ðu
0
gðuÞ dy dr þ

ðt
t�u

ðt�r

0
gðuÞ dy dr

 !
du

 

þ
ð1
t

ðt
0

ðt�r

0
gðuÞ dy dr du

!

¼
ðt
0

tu� 1
2
u2

� �
gðuÞ duþ 1

2
t2
ð1
t
gðuÞ du

 !
:

We have thus found the following expression (and its counterpart for the
service process); here vSðtÞ :¼ Var SðtÞ:
Proposition 4.1. The variances of the cumulative arrival and service process
are given by, for tP0,

vAðtÞ ¼ t � EKþ 2
Var K
En

ðt
0

tu� 1
2
u2

� �
Pðn > uÞ du

 

þ 1
2
t2
ð1
t
Pðn > uÞ du

�
,

and

vSðtÞ ¼ t � EMþ 2
VarðMÞ

En

ðt
0

tu� 1
2
u2

� �
Pðn > uÞ du

 

þ 1
2
t2
ð1
t
Pðn > uÞ du

�
:
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Example 4.1. It can be checked that for the special case that n is exponen-
tially distributed with parameter d > 0 (implying that �n is exponentially
distributed with parameter d as well),ðt

0

ðs
0
Pð�n > s� rÞ dr ds ¼ t

d
� 1

d2
ð1� e�dtÞ: (13)

As a consequence

vAðtÞ ¼ t � EKþ 2 Var K
t
d
� 1

d2
ð1� e�dtÞ

� �
,

for tP0:

The next step is to evaluate CovðAðtÞ, SðtÞÞ by the law of total covari-
ance. We have, with Pð�Þ � ðKðsÞ,MðsÞÞs2½0, t� denoting the parameter pro-

cess in the interval s 2 ½0, t�,
cA, SðtÞ :¼ CovðAðtÞ, SðtÞÞ

¼ E CovðAðtÞ, SðtÞ j Pð�ÞÞ½ � þ CovðE AðtÞ j Pð�Þ½ �,E SðtÞ j Pð�Þ½ �Þ:
The first term on the right-hand side is clearly 0: conditioned on Pð�Þ, the
arrival and service processes are independent. The second term on the
right-hand side can be dealt with as before. We thus obtain the follow-
ing result.

Proposition 4.2. The covariance between the cumulative arrival and service
process is given by, for tP0,

cA, SðtÞ ¼ 2
CovðK,MÞ

En

ðt
0

tu� 1
2
u2

� �
Pðn > uÞ du

 

þ 1
2
t2
ð1
t
Pðn > uÞ du

�
:

Our next objective is to show that vAðtÞ, vSðtÞ, and cA, SðtÞ behave essen-
tially linear as t ! 1; this finding will later play a role in the derivation of
functional limit theorems. We start by considering vAðtÞ=t as t ! 1: By
L’Hôpital’s theorem, this limit equals

lim
t!1 v0AðtÞ ¼ EKþ lim

t!1 2
Var K
En

ð1
0
minfu, tgPðn > uÞ du:

By a straightforward calculation (applying dominated convergence and
integration by parts), we obtain

vA :¼ lim
t!1

vAðtÞ
t

¼ EKþ Var K
E n2
� �
En

:
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The limit of vSðtÞ=t as t ! 1 (which we call vS) and the limit of cA, SðtÞ=t
as t ! 1 (which we call cA, S) can be determined in the same fashion. We
state this result as a corollary.

Corollary 4.1. The constants vA, vS, and cA, S are given by

vA ¼ EKþ Var K
E n2
� �
En

, vS ¼ EMþ Var M E n2
� �
En

,

cA, S ¼ CovðK,MÞ E n2
� �
En

:

An alternative derivation of these expressions can be found in Appendix
A; the methodology presented there is particularly useful, as it also facili-
tates the derivation of higher moments in a relatively straightfor-
ward manner.

4.3. Weak convergence to reflected Brownian motion

After having studied some properties of the arrival and potential service
process, we now shift our attention to the queueing process. Our objective
is to establish in the heavy-traffic regime, under a time-scaling, weak con-
vergence of the queueing process to reflected Brownian motion.
Assuming the system starts empty at time 0, the number of customers in

the queue at time t can be written as

sup
06 s6 t

ðAðtÞ � AðsÞ � ðSðtÞ � SðsÞÞÞ;

this representation involving the potential service process applies due to
the fact that the service times are exponential (albeit with some random
value), cf. the remark in Whitt[41, bottom of p. 290].
In this subsection we impose the parameterization EK ¼ q EM, and

consider the regime q " 1 (cf. Remark 3.1 for more details). Clearly, the
queueing process, which we denote by ðQqðtÞÞtP0 to stress the dependence
on q, blows up as q " 1: However, after appropriately rescaling time and
space, one obtains a non-trivial limiting process. More specifically, we will
study the behavior of

ð1� qÞQq
t

ð1� qÞ2
� �� �

tP0

(14)

for q " 1; observe that time is stretched by a factor ð1� qÞ2 where space is
compressed by a factor 1� q: We do so by showing that the process
ðBqðtÞÞtP0, with
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BqðtÞ :¼ ð1� qÞ Aq
t

ð1� qÞ2
� �

� ð1� qÞ S
t

ð1� qÞ2
� �

,

converges weakly to a Brownian motion; we write Aqð�Þ, with subscript q,
to make visible that we choose EK equal to q EM: By ‘continuous map-
ping’ this convergence then also yields that (14) converges weakly to
reflected Brownian motion.
Let P1ð�Þ and P2ð�Þ be defined as two independent unit-rate Poisson

processes. Then, with fq :¼ 1=ð1� qÞ2,

BqðtÞ ¼ ð1� qÞP1
ðtfq
0
KqðsÞ ds

 !
� ð1� qÞP2

ðtfq
0
MðsÞ ds

 !
, (15)

where the subscript q has been added to Kð�Þ to indicate the dependence
on q.
In the first place,

lim
q"1

EBqðtÞ ¼ lim
q"1

t
1� q

ðEK� EMÞ ¼ �t EM:

Also, representation (15) implies that, for some martingale Kqð�Þ,
dBqðtÞ ¼ ð1� qÞfq KqðtfqÞ dt � ð1� qÞfq MðtfqÞ dt þ dKqðtÞ:

Using similar computations as before,

lim
q"1

Var ð1� qÞ
ðtfq
0
KqðsÞ ds� ð1� qÞ

ðtfq
0
MðsÞ ds

 !

¼ lim
q"1

ð1� qÞ2 Var
ðtfq
0
KqðsÞ ds�

ðtfq
0
MðsÞ ds

 !

¼ lim
q"1

ð1� qÞ2 VarðK�MÞ
ðtfq
0

ðs
0
Pð�n > s� rÞdr ds

¼ t VarK� 2 CovðK,MÞþ VarMð ÞE n2
� �
E n½ � :

In addition, with hXð�Þit denoting the quadratic variation process of Xð�Þ at
time t, using standard properties of pure jump processes,

d
dt

hKqð�Þit ¼ ð1� qÞ2fq KqðtfqÞ þ ð1� qÞ2fq MðtfqÞ ¼ KqðtfqÞ þMðtfqÞ,

so that, as q " 1,

hKqð�Þit ¼
1
fq

ðtfq
0
KqðsÞ dsþ

ðtfq
0
MðsÞ ds

 !
! 2t � EM:
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Combining the above, we conclude that, as q " 1, Bqð�Þ converges weakly
to a process Bð�Þ given by

BðtÞ ¼ �t EMþ rK,M �WðtÞ,
with Wð�Þ a standard Brownian motion and

r2K,M :¼ VarK� 2 CovðK,MÞþ VarMð ÞE n2
� �
E n½ � þ 2 EM: (16)

After applying the continuous mapping theorem, we have thus found the
following result.

Theorem 4.1. As q " 1, with QðtÞ :¼ sup06 s6 tðBðtÞ � BðsÞÞ,
ð1� qÞQq

t

ð1� qÞ2
� �� �

tP0

!d ðQðtÞÞtP0:

Remark 4.1. In this remark we analyze how large r2K,M can be. Given that
both K and M are non-negative, one is inclined to believe that one cannot
achieve a correlation coefficient between K and M with value –1. This is,
however, not true, as follows from the following argument.

Consider two non-negative random variables X and Y, having (without
losing any generality) unit mean. Let X have a given distribution, and
define

Y :¼ 1
wðsÞ � 1

s
X þ 1

� �
1f06X6 sg,

where, with pðsÞ :¼ PðX6 sÞ,

wðsÞ :¼ E � 1
s
X þ 1

� �
1f06X6 sg

� �
¼ � 1

s
E X 1f06X6 sg½ � þ pðsÞ:

It is immediately seen that Y is indeed non-negative with mean equal to 1.
Now, under obvious mild regularity conditions that ensure the existence

of the expectations involved, as s ! 1,

CovðX,YÞ ¼ E XY½ � � 1 ¼ 1
wðsÞE � 1

s
X2 þ X

� �
1f06X6 sg

� �
� 1

¼ �s�1E X2 1f06X6 sg
� �þ ð1þ s�1ÞE X 1f06X6 sg½ � � pðsÞ

�s�1E X 1f06X6 sg½ � þ pðsÞ

� �VarðXÞ � ðE X½ �Þ2 þ E X½ �
s

¼ �VarðXÞ
s

:

Likewise, again as s ! 1,
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VarðYÞ ¼ E Y2½ � � 1 ¼ 1

w2ðsÞE
1
s2
X2 � 2

s
X þ 1

� �
1f06X6 sg

� �
� 1

¼ s�2
E X2 1f06X6 sg
� �� 2s�1

E X 1f06X6 sg½ � þ pðsÞ � ð�s�1
E X 1f06X6 sg½ � þ pðsÞÞ2

ð�s�1E X 1f06X6 sg½ � þ pðsÞÞ2

� VarðXÞ
s2

:

Conclude that this choice of Y (for a given X) yields a correlation coeffi-
cient �1 as s grows large. This means that one can achieve a correlation
coefficient arbitrarily close to �1.
Applying this observation to the expression for the variance in (16) for

any e > 0 and any non-negative K, one can construct a non-negative M
that is negatively correlated with K in such a way that

r2K,MP
ffiffiffiffiffiffiffiffiffiffiffi
VarK

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarM

p� �2 E n2
� �
E n½ � þ 2 EM� e:

Remark 4.2. Based on Theorem 4.1 one would expect that the stationary
number of customers under the heavy-traffic scaling would converge to the
stationary version of Bð�Þ reflected at 0, which has an exponential distribu-
tion with mean r2K,M=ð2 EMÞ: Establishing such a result, however, would
require interchanging two limits, namely t ! 1 and q " 1: For specific
models, an argumentation developed in Shneer and Wachtel[38] can be fol-
lowed, but it is not clear how this could be applied in our setting.

5. Endogenously triggered resampling

In this section we consider an M/G/1 queue with the special feature that at
every service completion the arrival rate is resampled. We refer to this
mechanism as ‘endogenously triggered resampling’, as the resampling is not
due to an exogenous, independently evolving process.

5.1. Model description

In the model we consider, the service times are i.i.d. samples from some
general non-negative distribution, distributed as a generic random variable
S with Laplace-Stieltjes transform rð�Þ: The distinguishing feature of the
model we study in this section is that at every service completion the
arrival rate is resampled from a general distribution with non-negative sup-
port; the sequence of arrival rates is assumed i.i.d., each of them being dis-
tributed as the generic random variable K.
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To make sure the queueing system under study is stable, we have to
assume EK6ES: Later, when considering the heavy-traffic regime, we will
assume the finiteness of the corresponding second moments.

5.2. Transform of the stationary number of customers

Let Nn be the number of customers arriving during the n-th service time,
and Qn the stationary number of customers present at the n-th service
completion. It is evident that Qnþ1¼dðQn � 1Þþ þ Nnþ1, with the two terms
in the right-hand side of this distributional equality being independent. We
obtain the following relation:

EzðQn�1Þþ ¼
X1
j¼0

zj PððQn � 1Þþ ¼ jÞ ¼ PðQn ¼ 0Þ þ
X1
j¼1

zj�1
PðQn ¼ jÞ

¼ PðQn ¼ 0Þ þ 1
z

X1
j¼0

zjPðQn ¼ jÞ � PðQn ¼ 0Þ
 !

¼ 1� 1
z

� �
PðQn ¼ 0Þ þ EzQn

z
:

With, for n 2 N0, jnðzÞ :¼ EzQn and �ðzÞ :¼ EzNn (which evidently does
not depend on n), we thus obtain the recursion

�ðzÞ 1� 1
z

� �
PðQn ¼ 0Þ þ jnðzÞ

z

� �
¼ jnþ1ðzÞ:

Our next step is that we consider the transform of jnðzÞ at a geometrically
distributed time epoch, which, as it turns out, can be expressed in closed
form. To this end, we multiply the above recursion by ð1� rÞnr (for some
r 2 ½0, 1Þ) and sum over n 2 N0: We thus obtainX1
n¼0

ð1� rÞnr �ðzÞ 1� 1
z

� �
PðQn ¼ 0Þ þ jnðzÞ

z

� �
¼
X1
n¼0

ð1� rÞnr jnþ1ðzÞ;

(technically, the geometric distribution is a shifted geometric distribution,
having probability mass at 0). Our objective is to identify the double trans-
form

Kðr, zÞ :¼
X1
n¼0

ð1� rÞnr jnðzÞ,

assuming that we know the distribution of Q0 (i.e., j0ðzÞ is known).
Observing that PðQn ¼ 0Þ ¼ jnð0Þ, we thus obtain the identity

�ðzÞ 1� 1
z

� �
Kðr, 0Þ þ �ðzÞ

z
Kðr, zÞ ¼ 1

1� r
ðKðr, zÞ � rj0ðzÞÞ:
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Isolating K(r, z), we can express this double transform in terms of Kðr, 0Þ
and j0ðzÞ : some elementary algebra yields

Kðr, zÞ ¼ rz j0ðzÞ � ð1� rÞð1� zÞ�ðzÞ Kðr, 0Þ
z � ð1� rÞ�ðzÞ :

The unknown function Kð� , 0Þ can be eliminated by observing that, for a
given r 2 ½0, 1�, each root of the denominator must correspond to a root of
the numerator. Observe that, for a given r 2 ð0, 1Þ, the function z 7!ð1�
rÞ�ðzÞ is increasing and convex, and attains values in (0, 1), which immedi-
ately implies that z ¼ ð1� rÞ�ðzÞ has a unique root z0ðrÞ 2 ð0, 1Þ: The fact
that this is a root of the numerator as well yields that

Kðr, 0Þ ¼ rz0ðrÞ j0ðz0ðrÞÞ
ð1� rÞð1� z0ðrÞÞ�ðz0ðrÞÞ ¼

r j0ðz0ðrÞÞ
1� z0ðrÞ :

We thus arrive at the following result.

Theorem 5.1. For r, z 2 ð0, 1Þ,

Kðr, zÞ ¼ rz j0ðzÞ
z � ð1� rÞ�ðzÞ �

ð1� rÞð1� zÞ�ðzÞ
z � ð1� rÞ�ðzÞ � r j0ðz0ðrÞÞ

1� z0ðrÞ :

In the same way, the stationary behavior can be dealt with; the object of
study is the stationary number of customers Q. We have to impose EN <
1 to ensure the existence of a stationary distribution. It is evident that,
under the stability assumption imposed, Q¼dðQ� 1Þþ þ N, with the two
terms in the right-hand side being independent. Then a standard argumen-
tation, similar to the one used above, yields

EzðQ�1Þþ ¼
X1
j¼0

zj PððQ� 1Þþ ¼ jÞ ¼ PðQ ¼ 0Þ þ
X1
j¼1

zj�1
PðQ ¼ jÞ

¼ PðQ ¼ 0Þ þ 1
z

X1
j¼0

zjPðQ ¼ jÞ � PðQ ¼ 0Þ
 !

¼ 1� 1
z

� �
PðQ ¼ 0Þ þ EzQ

z
:

Upon combining the above, with jðzÞ :¼ EzQ,

jðzÞ ¼ �ðzÞ 1� 1
z

� �
PðQ ¼ 0Þ þ jðzÞ

z

� �
:

Solving jðzÞ from this equation directly yields (where one should recall
that �ðzÞPz for all z 2 ½0, 1�, which is due to PðN ¼ 0Þ > 0 and �0ð1Þ ¼
EN < 1, in combination with the fact that �ð�Þ is convex on ½0, 1�)
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jðzÞ ¼ �ðzÞ 1� z
�ðzÞ � z

PðQ ¼ 0Þ:

Because of jð1Þ ¼ 1, we find by L’Hôpital’s rule that PðQ ¼ 0Þ ¼
1� �0ð1Þ ¼ 1� EN:
The above reasoning has been frequently used to obtain the stationary

distribution in the M/G/1 queue, but it is important to observe that it does
not use that the interarrival times are i.i.d. random variables from the same
exponential distribution. Indeed, it allows for the arrival rate to be
resampled at every service completion. In the resampling model we study
in this section, with gð�Þ denoting the density of K,

�ðzÞ ¼
ð1
0
rðkð1� zÞÞ gðkÞ dk ¼ ErðKð1� zÞÞ: (17)

We end up with the following result, using that EN ¼ EK ES:

Theorem 5.2. Under the stability constraint EK ES < 1, for z 2 ð0, 1Þ,
jðzÞ ¼ �ðzÞ 1� z

�ðzÞ � z
1� EK ESð Þ, (18)

with �ð�Þ given by (17).

5.3. Heavy-traffic scaling limit

In this subsection we consider the regime in which q :¼ EK ES goes to 1
(cf. Remark 3.1 for more details). The main result is that the distribution
of ð1� qÞQ converges to an exponential distribution, in line with classical
heavy-traffic results that have been derived in a plethora of queueing mod-
els. As we will see, the parameter of the exponential distribution features
the second moments of K and S, which from now on we assume to exist.
As a first result, however, we will show that, under a certain time-scaling,

the marginal transient distributions of the process ðQnÞn converge to their
reflected Brownian motion counterpart. We follow an argumentation devel-
oped in Dȩbicki and Mandjes[15, Chapter 5]. We scale the queueing process

by ð1� qÞ and time by a factor ð1� qÞ�2, in line with the usual heavy-
traffic scaling. We wish to find the limit, as q " 1, for given r, s > 0, of

K ð1� qÞ2r, e�ð1�qÞs
	 


:

To this end, we first wish to identify s0ðr, qÞ solving, in the regime q " 1,

e�ð1�qÞs ¼ 1� ð1� qÞ2r
� �

� e�ð1�qÞsð Þ:
We do so by expanding both sides as polynomials in 1� q, so as to obtain
the following equation:
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1� ð1� qÞsþ 1
2
ð1� qÞ2s2 ¼ 1� ð1� qÞ2r

� �
�

ð1� �0ð1Þðð1� qÞs� 1
2
ð1� qÞ2s2Þ þ 1

2
�00ð1Þð1� qÞ2s2Þ þ Oðð1� q3ÞÞ:

Using that q ¼ �0ð1Þ, we obtain the following equation after subtracting 1

from both sides and dividing by ð1� qÞ2 :
1
2
�00ð1Þ s2 þ s� r ¼ Oð1� qÞ:

We thus conclude that

s0ðrÞ ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�00ð1Þ r

p
�00ð1Þ þ Oð1� qÞ:

We assume that, as q " 1, j0ðe�ð1�qÞsÞ ! �j0ðsÞ for some transform �j0ð�Þ;
this means that the initial distribution converges to some limiting distribu-
tion under the heavy-traffic scaling. Now using the result stated in
Theorem 5.1, we conclude after some standard computations that, as q " 1,

K ð1� qÞ2r, e�ð1�qÞs
	 


! r
r � s� 1

2 �
00ð1Þs2 �j0ðsÞ � s

s0ðrÞ �j0ðs0ðrÞÞ
� �

:

In this expression we recognize the Laplace transform for the position of
reflected Brownian motion after an exponentially distributed time (with
mean r�1), given the initial level has transform �j0ð�Þ; cf. for example[15,
Theorem 4.1]. A direct verification yields that �00ð1Þ ¼ ENðN � 1Þ ¼
E½K2� E½S2�: Define B(t) as �t þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�00ð1Þ=2p �WðtÞ, with Wð�Þ standard

Brownian motion. In addition, let Q½x�ð�Þ be the reflection of Bð�Þ at 0, with
initial condition Q½x�ð0Þ ¼ x: From the above argumentation, an application
of the L�evy convergence theorem provides us with the following result.

Theorem 5.3. Suppose ð1� qÞQ0 ¼ xP0. Then we have for any t> 0 that
ð1� qÞQt=ð1�qÞ2 converges to Q½x�ðtÞ as q " 1:

To study the stationary heavy-traffic behavior, we use a classical argu-
mentation based on the Laplace-Stieltjes transform (18). Based on the fact
that the stationary distribution of reflected Brownian motion is exponential,
Theorem 5.3 suggest that ð1� qÞQ converges in distribution to an expo-
nentially distributed random variable with mean 1

2 E½K2� E½S2�: In the
remainder of this subsection we make this claim precise.
We evaluate jðe�ð1�qÞsÞ, for sP0 given, in the regime that q " 1: The

starting point is

�ðe�ð1�qÞsÞ ¼
ð1
0
rðkð1� e�ð1�qÞsÞÞ gðkÞ dk:
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By expanding e�ð1�qÞs, we first rewrite the expression from the previous
display asð1

0
r kð1� qÞs� k

2
ð1� qÞ2s2 þ Oðð1� q3ÞÞ

� �
gðkÞ dk:

Subsequently applying a Taylor expansion of rð�Þ at 0, we obtain that
�ðe�ð1�qÞsÞ can be expressed asð1

0

�
1þ r0ð0Þ kð1� qÞs� k

2
ð1� qÞ2s2

� �
þ r00ð0Þ

2
k2ð1� qÞ2s2

þ Oðð1� q3ÞÞ
�

gðkÞ dk,

which can be interpreted as

1� ð1� qÞs EK ESþ 1
2
ð1� qÞ2s2 EK ESþ 1

2
ð1� qÞ2s2 E K2½ � E S2½ �

þ Oðð1� q3ÞÞ:
To study the behavior in the heavy-traffic limit, we now consider the indi-
vidual elements in the right-hand side of (18), evaluated in e�ð1�qÞs: The
numerator reads

�ðe�ð1�qÞsÞ ð1� e�ð1�qÞsÞ 1� EK ESð Þ�ð1� qÞ2sþ Oðð1� q3ÞÞ,
with ‘�’ denoting that the ratio of the left- and right-hand side converges
to 1 as q " 1: The denominator expands as

ð1� qÞ2sþ 1
2
ð1� qÞ2s2 E K2½ � E S2½ � þ Oðð1� q3ÞÞ:

Upon combining the above, and by dividing both numerator and denomin-

ator by ð1� qÞ2s, we obtain that, as q " 1,

jðe�ð1�qÞsÞ ! 1

1þ 1
2 E K2½ � E S2½ � s :

We thus obtain the following result.

Theorem 5.4. As q " 1, we have that ð1� qÞQ converges to an exponentially
distributed random variable with mean 1

2 E½K2� E½S2�:

Remark 5.1. Theorem 5.4 covers the heavy-traffic distribution in the ordin-
ary M/G/1 queue as a special case. In that case the arrival rate is determin-

istic, such that E½K2� ¼ ðEKÞ2: With a bit of rewriting, we find that in this
case ð1� qÞQ converges to an exponentially distributed random variable

with mean 1
2E½S2�=ðESÞ2:
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6. Conclusions and suggestions for further research

In this paper we have considered various single-server queues under over-
dispersion. While their infinite-server counterparts allow for explicit ana-
lysis, these queues can rarely be dealt with in a straightforward manner.
Focusing on M/M/1 queues with resampled arrival and service rates,
closed-form expressions for the queue length can only be derived if these
rates can attain just finitely many values (Section 2). In the heavy-traffic
regime, however, explicit convergence results can be derived; specifically,
we have shown that a scaled version of the steady-state queue length con-
verges to an exponentially distributed random variable (Sections 3 and 4).
We also considered a model in which the arrival rate is resampled upon
service completion (rather than at i.i.d. resampling times, independently of
the queue’s dynamics); also in this setting heavy-traffic analysis has been
performed (Section 5).
In the area of queues under overdispersion there are still many open

problems. The most prominent question is posed in Section 2: can we find
the queue-length distribution if the arrival and service rates are repeatedly
sampled from a distribution with countably infinite or even uncountable
support? As we demonstrated, the conventional queueing-theoretic
approach, expressing the corresponding Laplace transform through a sys-
tem of finitely many equations with equally many unknowns, clearly does
not apply.
As overdispersion was observed in various types of service systems[8,33,42]

that are typically modeled as many-server queues (such as call centers), one
would like to get a handle on such queues with resampled rates as well.
The ultimate goal would be to design staffing rules for many-server queues
under overdispersion; see e.g.,[21].

A. Appendix: alternative computation of the asymptotic variance

The asymptotic (co-)variances vA, vS, and cA, S can be computed in an alternative way, using
results from large deviations theory[17]; a similar approach has been followed in e.g.,[28,39].
With this approach, also higher (centered) moments of AðtÞ=t and SðtÞ=t can be calculated
in closed form in the regime that t ! 1, as we point out below.

Let Xð�Þ be a stochastic process with stationary increments, and let c be larger than
EXð1Þ: Define the asymptotic cumulant generating function

cðhÞ :¼ lim
t!1

1
t
logE exp ðhXðtÞÞ,

assumed to be finite in an open neighborhood of the origin. Then, according to[17], as
u ! 1,

1
u
logPð9t > 0 : XðtÞ � ct � uÞ ! �h?,

where h? solves ch ¼ cðhÞ, or
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lim
t!1

1
t
logE exp ðhXðtÞÞ � ch ¼ 0:

Interestingly, in case there is a regenerative structure underlying the process Xð�Þ, there is
a second way of computing h?: Let Tn be time epochs such that XðTnÞ � XðTn�1Þ are i.i.d.,
and let T :¼ T1: Then we equivalently have

1
u
logPð9n > 0 : XðTnÞ � cTn � uÞ ! �h?,

where (the same!) h? solves

logE exp ðhðXðTÞ � cTÞÞ ¼ 0: (19)

The idea is that we are going to exploit the fact that, obviously, both procedures should
lead to the same ðc, hÞ pairs.

In our setup, we identify n with T: the regeneration points are the resample epochs. For
reasons that will become clear later, we study the process XaðtÞ that is a linear combination
of the arrival and service process: we define XaðtÞ :¼ aAðtÞ þ ð1� aÞSðtÞ for a 2 R: We
show how to compute

vðaÞX ¼ lim
t!1

Var XaðtÞ
t

,

which can be checked to equal c00ð0Þ: In the sequel, we study the function cðhÞ :¼ cðhÞ=h;
as both cð�Þ and cð�Þ depend on a, we will consistently write cað�Þ and cað�Þ: Once having

found vðaÞX , it turns out that with the right choices of a we can compute vA, vS, and cA, S:
Let Nð�Þ be the moment generating function of the resampling time n. It takes an elem-

entary calculation (by conditioning on the value of K and M in the interval under consid-
eration, as well as on the duration of the inter-sample interval) to verify that

uaðc, hÞ :¼ E exp ðhðXaðTÞ � cTÞÞ ¼ E exp ðhðaAðTÞ þ ð1� aÞSðTÞ � cTÞÞ
¼ E NðKðeha � 1Þ þMðehð1�aÞ � 1Þ � chÞ

h i
:

Applying (19), we find that caðhÞ is the value of c for which loguaðc, hÞ ¼ 0; differentiating
the equivalent relation uaðcaðhÞ, hÞ ¼ 1 with respect to h gives

d
dh

uaðcaðhÞ, hÞ ¼
d
dh

E NðKðeha � 1Þ þMðehð1�aÞ � 1Þ � caðhÞhÞ
h i

¼ E N0ðKðeha � 1Þ þMðehð1�aÞ � 1Þ � caðhÞhÞ
� aKeha þ ð1� aÞMehð1�aÞ � caðhÞ � hc0aðhÞ
h i

¼ 0:

Inserting h¼ 0 gives the (obvious, but reassuring) identity

lim
t!1

EXaðtÞ
t

¼ cað0Þ ¼ a EKþ ð1� aÞ EM: (20)

Again differentiating the above equation gives

d2

dh2
uaðcaðhÞ, hÞ ¼ E N00ðKðeha � 1Þ þMðehð1�aÞ � 1Þ � caðhÞhÞ

� aKeha þ ð1� aÞMehð1�aÞ � caðhÞ � hc0aðhÞ
h i2

þ E N0ðKðeha � 1Þ þMðehð1�aÞ � 1Þ � caðhÞhÞ
� a2Keha þ ð1� aÞ2Mehð1�aÞ � 2c0aðhÞ � hc00aðhÞ
h i

¼ 0:
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Evaluating this equality in h¼ 0 gives

En2 � E aKþ ð1� aÞM� cað0Þ½ �2 þ En � ða2EKþ ð1� aÞ2EM� 2c0að0ÞÞ ¼ 0,

or, equivalently, using (20),

vðaÞX ¼ c00að0Þ ¼ 2c0að0Þ ¼
En2

En
� VarðaKþ ð1� aÞMÞ þ ða2EKþ ð1� aÞ2EMÞ: (21)

We are now in a position to compute vA, vS, and cA, S: To this end, first realize that insert-
ing a¼ 0, a¼ 1 and a ¼ 1

2 yields, respectively,

vð1ÞX ¼ vA, vð0ÞX ¼ vS, vð1=2ÞX ¼ 1
4
vA þ 1

4
vS þ 1

2
cA, S,

where, by virtue of (21),

vð1ÞX ¼ EKþ Var K
E n2
� �
En

, vð0ÞX ¼ EMþ Var M E n2
� �
En

,

vð1=2ÞX ¼ 1
4
EKþ 1

4
EMþ E n2

� �
En

Var
1
2
Kþ 1

2
M

� �
E n2
� �
En

:

The claim of Corollary 4.1 now follows immediately.
The technique presented here has a clear advantage over the direct approach that was

used at the end of Section 4:2 : it can be used to find higher cumulant moments. As is
readily checked, for instance for the third asymptotic cumulant moment

lim
t!1

EðXaðtÞ � EXaðtÞÞ3
t

¼ c000a ð0Þ ¼ 3c00að0Þ:

The value of c00að0Þ can be found by differentiating the relation uaðcaðhÞ, hÞ ¼ 1 three times
with respect to h; the corresponding calculations are straightforward yet tedious.
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