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Quantum many-body scars in transverse field Ising ladders and beyond
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We identify quantum many-body scars in the transverse field quantum Ising model on a ladder. We make
explicit how the corresponding (mid spectrum, low entanglement) many-body eigenstates can be approximated
by injecting quasiparticle excitations into an exact, zero-energy eigenstate, which is of valence bond solid type.
Next, we present a systematic construction of product states characterized, in the limit of a weak transverse field,
by a sharply peaked local density of states. We describe how the construction of these ‘peak states’ generalizes
to arbitrary dimension and we show that on the ladder their number scales with system size as the square of the
golden ratio.

DOI: 10.1103/PhysRevB.101.220305

Introduction. Understanding of nonequilibrium dynamics
and thermalization is at the forefront of research on quantum
many-body systems. These developments led to the formula-
tion of the eigenstate thermalization hypothesis (ETH) [1–3],
predicting fast thermalization following a quench from a
generic many-body state. A number of exceptions to this
behavior have been identified, namely integrable [4,5] and
many-body localized systems [6–12], which both preclude
thermalization due to a number of conserved charges. A recent
observation of nonthermalizing behavior in a chain of Ryd-
berg atoms [13] described by a so-called PXP Hamiltonian
[14], has been interpreted in terms of quantum many-body
scars (QMBS) [15,16]. QMBS are an example of weak ETH
breaking, i.e., lack of thermalization for a limited set of initial
states. This observation led to a number of works includ-
ing further studies on the PXP-model [17–25], constrained
[26–29] and topological [30] Hamiltonians, the role of in-
tegrability [31], quantum chaos [32–38], and fragmentation
of Hilbert space [39–42]. Simultaneously, QMBS have been
described in a range of models, including the AKLT model
[43–47], spin chains [48–51] and arrays [52], boson [53] and
spin-boson [54,55], and driven systems [56–62].

Interestingly and to the best of our knowledge, the paradig-
matic model of quantum magnetism, the quantum Ising
model, has not been analyzed from the perspective of QMBS
beyond a chain [25,36]. Here we note that nonthermal behav-
ior following a quench has been investigated in the longitu-
dinal field Ising model [63,64] and in the Ising model with
long range interactions [65], where the absence of thermal-
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ization was interpreted in terms of meson quasiparticles [66].
Additionally, Ref. [67] studied quenches in a one-dimensional
deformed Ising Hamiltonian (see also [68,69] for related
works).

In this work we analyze the transverse field Ising model
on a ladder. We find a number of initial product states which
feature quasiperiodic revivals in the autocorrelation function,
signaling nonthermal behavior. We describe a systematic con-
struction of these states, which in some cases extend from
the ladder to higher dimensions. We further provide a number
of analytical results, namely an expression for a zero energy
transverse field independent eigenstate which we identify as
a valence bond solid [70] and which serves as a starting
point for a systematic construction of scarred eigenstates
[71]. Additional analytical results are obtained for the energy
separation between the scarred eigenstates, the degeneracies
of the zero transverse field manifolds, and the number of ETH-
breaking ‘peak’ states, which scales as the golden ratio. These
results constitute a direct experimental recipe for QMBS in
Ising models which have been already realized with Rydberg
quantum simulators [72–74] including the ladder geometry
[75].

Model. We consider the transverse field Ising model on a
L × 2 ladder, with L even, and Hamiltonian

H = Hz + Hx =
∑
〈i, j〉

σ z
i σ z

j + hx

∑
i

σ x
i , (1)

where 〈i, j〉 denotes nearest neighbors, σ z
i = c†

i ci − ci c†
i ,

σ x
i = c†

i + ci are the Pauli matrices expressed in terms of
the hard-core bosonic operators with the usual commutation
relations [ci, c†

j ] = δi j (1 − 2c†
i ci ). We further assume periodic

boundary conditions c†
x+L,y = c†

x,y, c†
x,y+2 = c†

x,y where we
have introduced real-space coordinates of each site i = (x, y).
The basis states of the Hamiltonian are

|b〉 =
∣∣∣∣n0,1 n1,1 . . . nL−1,1

n0,0 n1,0 . . . nL−1,0

〉
, (2)

where nx,y ∈ {0, 1} is the occupation number.
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FIG. 1. (a) The entanglement entropy and (b) the LDOS|Z2〉
of the eigenvectors of H ′, Eq. (3), in the vicinity of E = 0 for
L = 8, hx = 0.1, and kx = ky = 0. The numbered crosses indicate
the |vQMBS,n〉. The left (right) inset in (b) shows the approximation
|ψ ′

E=0〉 (|ψ ′
SMA,±1〉), Eq. (8) [(9)].

For hx = 0 the eigenvectors of H are the states (2) with
their energy determined by the difference in the number of
equal and unequal neighbor pairs, since each pair 〈i, j〉 with
ni = n j (ni �= n j) adds E = 1 (E = −1). This leads to all
energy levels being degenerate [76]. The highest (lowest)
energy state of E = 4L (E = −4L) is reached when all sites
have the same nx,y (all neighbors of each site have opposite
nx,y). Flipping a single spin changes the sign of the energy
contribution of all neighboring sites, so that the energy differ-
ence between the degenerate manifolds is |�E | = 4 with the
exception of the lowest (highest) and first (de-)excited ones
for which |�E | = 8. Defining the potential Vi ≡ 〈bi | Hz | bi〉,
the above implies Vi = 4mi for integer |mi| � L [76].

Considering hx �= 0, we note that 〈bi|Hx|b j〉 �= 0 only if
|bi〉 and |b j〉 differ by a single spin flip. When Vi �= Vj , the
perturbative correction to the energies Ei, Ej of this matrix
element is of order h2

x , so that it is strongly suppressed when
hx � 1. In contrast, basis states with Vi = Vj will hybridize
under the perturbation. Consequently, considering a perturba-
tion up to first order in hx is equivalent to using the projected
Hamiltonian

H ′ = Hz + H ′
x =

∑
〈i, j〉

σ z
i σ z

j + hx

∑
i

Pσ x
i P, (3)

where P acting on |bi〉 projects it on all |b j〉 with Vj = Vi [77].
Scars. It has been argued that QMBS typically correspond

to low entanglement entropy (EE) states [16,26,44]. To this
end we consider the (second Rényi) EE S = − ln(Tr(ρ2

A)) with
ρA the density matrix of a subsystem A, which we take to
be the half-ladder Lx = L/2. The EE spectrum for the E = 0
manifold perturbed by the transverse field shows a band of low
EE states |vQMBS,n〉 with n = −L/2, . . . , L/2, characteristic
of a QMBS [15], see the crosses in Fig. 1(a).

Additionally, we consider the local density of states of a
state |ψ0〉,

LDOS|ψ0〉(E ) =
∑

j

|〈v j |ψ0〉|2δ(E − Ej ), (4)

where |vi〉 are the eigenvectors of the Hamiltonian. Using H ′,
it can be seen from Fig. 1(b) that the low EE eigenvectors
feature high LDOS for specific product states, namely the
|Z2〉 states, a situation analogous to the PXP model. Here
LDOS|Z2〉 is identical for |Z2〉 being

∣∣Zrung
2

〉 =
∣∣∣∣1 0 1 0 · · ·
1 0 1 0 · · ·

〉
,

∣∣Zleg
2

〉 =
∣∣∣∣1 1 1 1 · · ·
0 0 0 0 · · ·

〉

(5)

and their translations Tx|Zrung
2 〉 and Ty|Zleg

2 〉, where Tx,y trans-
lates the state by one site in the x, y direction. Denoting
by kx,y the eigenvalues of Tx,y, it is convenient to work in
the kx = ky = 0 momentum sector and therefore we consider
either 1/

√
2(1 + Tx )|Zrung

2 〉 or 1/
√

2(1 + Ty)|Zleg
2 〉.

We note from Fig. 1(b) that the |vQMBS,n〉 are nondegen-
erate, except for the one at E = 0, and have momentum
kx = ky = 0. Additionally, the energy separations between the
special eigenstates are approximately equal. In Fig. 2(a) we
show the respective energies E−L/2, . . . , EL/2 and in Fig. 2(b)
the differences �Ej = Ej+1 − Ej between two consecutive
energies [78]. As can be seen, the energy differences tend to
become more equal for increasing L. A linear fit to �E0 shows
that in the limit L → ∞ it becomes �E0 ≈ 3.49hx.

As a direct consequence of the approximately equal �Ej ,
initializing the system in |ψ0〉 = |Z2〉 leads to ETH-breaking
behavior. To characterize the ensuing quench dynamics, we
consider the autocorrelation [79],

A|ψ0〉(t ) = |〈ψ (t )|ψ0〉|2 = |〈ψ0|e−iHt |ψ0〉|2, (6)

which is related to LDOS|ψ0〉 by a Fourier transform [80].
Because of the special properties of LDOS|Z2〉, the auto-
correlation shows revivals of the initial wave function, see
Figs. 3(a) and 3(b), where the full Hamiltonian (1) was used
with hx = 0.1 and hx = 0.7. Here A|Z2〉(t ) shows revivals, in
contrast to the autocorrelation of a typical basis state [76]
(for simplicity, here and in the following we omit the explicit
normalization unless stated otherwise)

|ψtyp〉 =
L−1∑
i=0

1∑
j=0

T i
x T j

y

∣∣∣∣1 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0

〉
.

(7)
To compare the response from different initial states, we
calculate the average autocorrelation 〈A〉 = limτ→∞(τ −
t0)−1

∫ τ

t0
A(t ) dt [81]. We observe that 〈A|Z2〉〉 also remains

significantly higher than that of a typical state for hx beyond
the perturbative regime, far from the integrable point at hx =
0, hinting towards the robustness of the ETH breaking in the
Ising ladder [76].

Analytical construction of QMBS. We identified an hx-
independent E = 0 eigenstate

|ψ ′
E=0〉 =

L∏
i

si|∅〉 ≡
L∏
i

(c†
i,1 − c†

i+1,0)|∅〉, (8)

where |∅〉 = |0 · · ·
0 · · ·〉 is the vacuum state [76]. |ψ ′

E=0〉 is a
product state of singlets aligned diagonally in the ladder,
see the inset in Fig. 1(b), and thus has valence bond solid
(VBS) crystalline order. The knowledge of |ψ ′

E=0〉 allows for a
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FIG. 2. (a) The energies Ei and (b) energy differences �Ej of
∣∣vQMBS,n

〉
as a function of system size for hx = 0.1. The numbering of the

states corresponds to Fig. 1. The red line is a linear fit for �E0.

systematic construction of the descendant scarred eigenstates
|vQMBS,n〉. This is achieved by repeated action of a local
operator creating quasiparticle excitations on top of |ψ ′

E=0〉,
a method termed the single mode approximation (SMA) and
applied to the PXP model using matrix product states [18].
Motivated by the form of |ψ ′

E=0〉, we consider excitations by
locally replacing a size 2 × 2 plaquette with an exact E± =
±2

√
2hx eigenstate Ô±|∅〉 of H ′ (3) with L = 2,

Ô± = 1

4
(1 + Q)(c†

0,0 + c†
0,1 + c†

1,0 + c†
1,1)

± 1

2
√

2
(c†

0,0c†
0,1 + c†

1,0c†
1,1 + c†

0,0c†
1,0 + c†

0,1c†
1,1), (9)

where Q is the particle-hole inversion operator. It has an
overlap of 1 − h2

x/32 + O(h4
x ) with the eigenvector of H

with E± = ±2
√

2hx ∓ h3
x/

√
32 + O(h5

x ). However, in order to
keep the correct energy, no singlet is allowed to be broken
and therefore the excitation operator (9) has to be placed
diagonally on the ladder. Consequently, we define the operator
Ô±

j as placing an excitation according to Eq. (9) on the sites
at (x, y) = ( j, 1), ( j + 1, 1), ( j + 1, 0) and ( j + 2, 0), see the

FIG. 3. The autocorrelation Eq. (6) for a |Z2〉 (solid, blue) and
a typical (dashed, orange) state for L = 8 with (a) hx = 0.1 and
(b) hx = 0.7.

inset in Fig. 1(b), such that

|ψ ′
SMA,±1〉 =

∑
j

Ô±
j

∏
i �= j, j+1

si|∅〉 . (10)

This method can be continued to create approximations to
all |vQMBS,n〉 by adding more local excitations as

|ψ ′
SMA,n〉 =

∑
k1...kn

Ô±
k1

. . . Ô±
kn

∏
i

si |∅〉 , (11)

where the sign in Ô± corresponds to the sign of n, cf. Fig. 1(b).
The excitations are not allowed to overlap, so the indices have
to obey i, k j �= km, km+1 ∀ i, j, m.

The |vQMBS,n〉 states are symmetric under the reflection of
the x coordinates (R : c†

x,y → c†
L−x,y), but the states (8) and

(11) are not, because both the singlets and the excitations are
diagonal. Therefore we consider the symmetrized states

|ψE=0〉 =
√

1

2 + 23−L
(1 + R)|ψ ′

E=0〉 (12a)

|ψSMA, n〉 = Nn (1 + R)|ψ ′
SMA, n〉, (12b)

where Nn denotes the n-dependent normalization, e.g., N±1 =
1/

√
2 + 23−LL [76]. The state |ψE=0〉 is a rather poor ap-

proximation to the exact eigenvector, because |〈ψE=0|Z2〉|2 =
1/(1 + 2L−2) is low compared to the special states shown in
Fig. 1(b). In contrast, the overlap |〈ψSMA,1|Z2〉|2 = L/(2L +
2L−1) corresponds well to that in Fig. 1(b) and the fidelity
Fn = |〈vQMBS,n|ψSMA,n〉|2 with n = 1 and n = 2, plotted in
Fig. 4 for a range of hx values and L = 6, 8, shows that
they are a reasonable approximation to the eigenstates. Fn

decreases with increasing hx and L, which is expected due
to the hx-dependent reduced fidelity of the Ô operator to
the exact plaquette eigenstates. We note a similar decrease
of fidelity also appears in the SMA applied to the PXP
model [18]. In the Supplemental Material [76] we present
a systematic construction, using the forward scattering ap-
proximation (FSA), of a series of states |w( j)〉, with |w(1)〉 =
|ψ ′

SMA,1〉, converging on an eigenstate |v′
QMBS,n〉 of H ′, where

|vQMBS,n〉 = (1 + R)|v′
QMBS,n〉.

Regarding the EE, it follows directly from the structure of
|ψ ′

E=0〉, Eq. (8), that S|ψ ′
E=0〉 = 2 ln(2), independent of L and
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FIG. 4. Fidelity Fn of the first two SMA states vs hx for L = 8
(blue) and L = 6 (orange).

of the size of the subsystem, because the two edges of the
subsystem always have to cut through one singlet bond each.
Furthermore

S|ψE=0〉 = − ln

(
c + w(6 + w)

8(1 + w)2

)
, (13)

with w = 2L−2, and c = 4 (c = 1) for L/2 even (odd)
[76]. It reaches its maximum in the thermodynamic limit,
limL→∞ S = 3 ln(2) for both L/2 odd and even. We thus con-
firm the expected result, namely that, due to the product state
nature of the underlying VBS states, both |ψ ′

E=0〉 and |ψE=0〉
feature area-law EE in contrast to the typical eigenstates as
reflected in Fig. 1(a).

Other ETH-breaking states. In addition to the paradigmatic
|Z2〉 states, we were able to identify a family of ETH-breaking
product states in the hx � 1 limit, which offer a distinct
experimental probe. They are characterized by a number of
sharp peaks in the LDOS as we now describe.

In the small hx limit, any connections between basis states
with a different potential will be strongly suppressed as O(h2

x ).
We can thus identify local spin configurations such that flip-
ping a given spin does not change the potential, which is
equivalent to requiring that flipping the spin does not alter the
number of (un)equal neighbors (we recall that we use periodic
boundary conditions in both directions). This is achieved by
configurations of the form∣∣∣∣· · · n na n · · ·

· · · · 1 − n · · · ·
〉
, (14)

for both n = 0, 1. Here, the underline denotes the spin which
can be flipped (na → 1 − na). The |Z2〉 states are special
in that every site of them is as in Eq. (14). We will now
consider the other extreme, where (almost) no site has this
local configuration. Firstly, there are basis states that do not
have this pattern anywhere, for example

|ψp〉 =
∑
i, j

T i
x T j

y

∣∣∣∣1 1 1 1 0 0 1 0
1 1 1 0 0 0 0 1

〉
, (15)

with V = 8. The action of Hx on any site of this basis state will
change the potential, so up to first order in hx the energy is un-
perturbed and consequently the LDOS|ψp〉 is sharply peaked

around E = V + O(h2
x ) for small values of hx, see Fig. 5(a).

This will be called a peak state. For large L the number of

FIG. 5. (a) LDOS and (b) autocorrelation for the single peak state
|ψp〉, Eq. (15), (dashed, light, orange), and a twin peaks state |ψ2p〉,
Eq. (17), (solid, dark, blue) with L = 8 and hx = 0.1.

peak states scales as φ2L, where φ = (1 + √
5)/2 ≈ 1.618 is

the golden ratio [76].
Secondly, consider a basis state where the configuration

(14) only occurs once, such as

|ψ3p〉 =
∑
i, j

T i
x T j

y

∣∣∣∣1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 1

〉
. (16)

Flipping the marked site results in the basis state

|ψ2p〉 =
∑
i, j

T i
x T j

y

∣∣∣∣1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 1

〉
, (17)

which has two sites that could be flipped without a change in
the potential. Flipping the lower site returns |ψ2p〉 to state (16)
while flipping the other one leads to

|ψ3p′ 〉 =
∑
i, j

T i
x T j

y

∣∣∣∣1 1 1 0 1 1 1 1
1 1 0 1 1 1 0 1

〉
. (18)

Here, the energy conserving flip connects again to |ψ2p〉, such
that there is an effective subspace of the states {|ψ3p〉 ↔
|ψ2p〉 ↔ |ψ3p′ 〉} connected by Hx. The eigenvalues are, to
leading order in hx, V and V ± √

2 hx, where V is the potential
of all three basis states, which in this example is V = 8.
The eigenvector with energy V has no overlap with the state
|ψ2p〉, resulting in LDOS|ψ2p〉 featuring only two peaks at
E = V ± √

2hx + O(h2
x ), see Fig. 5(a). The other two basis

states |ψ3p〉 and |ψ3p′ 〉 do have an overlap with the E = V
eigenvector and therefore their LDOS consist of three peaks,
at E = V ± √

2hx + O(h2
x ) and V + O(h2

x ). These special
overlaps have consequences for the time evolution after a
quench from one of these basis states. On one hand, for the
single peak the autocorrelation (6) will decay slowly, on a
time scale T ∝ 1/O(h2

x ) corresponding to the width of the
peak. On the other hand, the twin peak state results in a clear
oscillation of the autocorrelation with the period given by the
energy separation between the two peaks, T ≈ 2π/(2

√
2hx ),

see Fig. 5(b). When increasing hx, the peaks in the LDOS will
broaden and consequently 〈A〉 will decrease. In this sense, the
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ETH-breaking behavior of the peak states is not robust with
respect to the increase of hx, in contrast to the |Z2〉 states.

Importantly, this construction can be generalized to the
whole 2D plane, as well as to higher dimensions. As an
explicit example, consider the state

∣∣ψ4×4
p

〉 =

∣∣∣∣∣∣∣
0 1 0 1
0 0 1 1
0 1 0 1
1 1 0 0

�

. (19)

We observe that there is no site that is connected to two equal
and two unequal neighbors. Therefore flipping any single spin
necessarily results in a change of the energy and, in analogy
to (15), we conclude that Eq. (19) is a peak state. Next,
we note that repeating (19) in x, y directions, such that the
system size becomes 4m × 4n, m, n ∈ N, results again in a
peak state. This construction can be extended to a hypercubic
lattice. One systematic way to accomplish this is by recur-
sively creating the d + 1-dimensional lattice by layering 4r
copies, r ∈ N, of the d-dimensional lattice, with the seed,
when considering d = 2, being for example the state |ψ4×4

p 〉
extended to 4m × 4n sites. Denoting the ith d-dimensional
layer as Li, acting with the particle-hole conjugate operator Q
on Li when i mod 4 = 2 or i mod 4 = 3 leads to every layer
being connected to one layer with all interlayer neighbors
equal and one with all interlayer neighbors unequal, such that
for every site the total number of equal and unequal neighbors
is still different and therefore this is a peak state.

Outlook. In this work we have analyzed transverse field
Ising ladder and identified families of initial product states re-
sulting in ETH-violating behavior which can be interpreted as
quantum many-body scars. The present analysis allowed us to
identify scarred initial states in higher dimensions on a square
lattice. This opens a way for generalizations to other geome-
tries, for example the honeycomb lattice featuring frustrated
ground states [82]. It would also be interesting to consider the
action of the longitudinal field. In one dimension this results
in meson excitations [63–66], which are low-variance states
[83] akin to the |Z2〉 and peak states, hinting to their relation
to many-body scars. The meson quasiparticles are low-energy
excitations corresponding to pairwise confined domain walls
arising from a doubly degenerate ground state. In contrast,
the scar states studied in this work are higher-energy (mid-
spectrum) states which lack a clear interpretation as pairwise
confined domain walls. Whether such an interpretation can
be found is an interesting open problem. While tackling the
outlined questions is theoretically challenging, they can be
readily addressed with Rydberg atom based platforms and
present thus an ideal testbed for quantum simulations beyond
simple chain geometries.
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(2020).
[23] D. K. Mark, C.-J. Lin, and O. I. Motrunich, Phys. Rev. B 101,

094308 (2020).
[24] C.-J. Lin, V. Calvera, and T. H. Hsieh, arXiv:2003.04516.
[25] Y. Yang, S. Iblisdir, J. I. Cirac, and M. C. Bañuls, Phys. Rev.

Lett. 124, 100602 (2020).
[26] W. W. Ho, S. Choi, H. Pichler, and M. D. Lukin, Phys. Rev.

Lett. 122, 040603 (2019).
[27] K. Bull, I. Martin, and Z. Papić, Phys. Rev. Lett. 123, 030601
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