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tensive study of hidden sector dark matter, covering a wide range of dark matter spins,

mediator spins, interaction diagrams, and annihilation final states, in each case determining

whether the annihilations are s-wave (thus enabling efficient annihilation in the universe to-
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from relic density requirements and dwarf spheroidal galaxy observations. In the scenario

that the hidden sector was in equilibrium with the Standard Model in the early universe, we

place a lower bound on the portal coupling, as well as on the dark matter’s elastic scatter-

ing cross section with nuclei. We apply our hidden sector results to the observed Galactic

Center gamma-ray excess and the cosmic-ray antiproton excess. We find that both of these

excesses can be simultaneously explained by a variety of hidden sector models, without any

tension with constraints from observations of dwarf spheroidal galaxies.
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1 Introduction

Weakly interacting thermal relics have long constituted the most widely studied class of

candidates for dark matter [1]. In recent years, however, many examples of such candidates

have been excluded by the null results of direct detection experiments [2–4], as well as ac-

celerators [5–14] (see refs. [15–20] for reviews). In light of these developments, it is well

motivated to consider models in which the dark matter does not couple directly to the par-

ticle content of the Standard Model (SM), but instead annihilates to produce other particles

which then decay through small couplings to the SM. Such hidden sector models have been

studied extensively in the literature, increasing in interest in recent years [21–29, 29–41].

In this paper, we explore a wide range of annihilating dark matter models, covering

an extensive combination of dark matter spins, mediator spins, interaction types, and
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annihilation final states. For each of these combinations, we determine whether the dark

matter annihilates through an s-wave amplitude (enabling the dark matter annihilation

cross section to not vanish at low-velocities) and present this information in our tables 1

and 2. We also consider the decays of hidden sector particles through a variety of portal

interactions that connect the hidden sector to the SM (or to an extension of the SM).

Within the context of hidden sector models, we evaluate the ability of annihilating dark

matter particles to produce the Galactic Center gamma-ray excess [42–51], as well as the

more recently identified cosmic-ray antiproton excess [52–55]. Although two groups in 2015

claimed that the data favored the existence of a population of astrophysical point sources

which was likely responsible for the Galactic Center gamma-ray excess [56, 57], more recent

work has shown these results to be problematic. At this point in time, the available gamma-

ray data does not favor the presence of a significant unresolved point source population

near the Galactic Center [58, 59], revitalizing interest in dark matter interpretations of this

signal. The antiproton excess has been a more recent development in the field, and is inher-

ently subject to a larger range of uncertainties than its gamma ray counterpart (arising e.g.

from the effects of the Solar wind and the production cross section, among others). While

various studies have found the excess to be robust to robust to these uncertainties [54, 55],

at least one group has claimed the excess could be consistent with a secondary origin [60].

In this study, we show that a wide variety of hidden sector dark matter models can

simultaneously accommodate both of these excesses (for earlier related work, see refs. [40,

61–66]). We attempt to broadly characterize the ingredients of a hidden sector model that

would be required in order to (1) produce s-wave annihilation (and thus produce a sufficient

number of gamma-rays and anti-protons), (2) have a final state gamma-ray and anti-

proton spectrum peaked in the energy ranges of the respective excesses, (3) evade current

constraints, and (4) achieve kinetic equilibrium in the early Universe. As a consequence of

living in a hidden sector, these ingredients can to large degree be addressed individually. For

example, the first point above concerns (i.e. the existence of s-wave annihilation) only the

spin of the dark matter, the spin of dark mediator, and their respective interaction vertex,

while the second point (i.e. producing the correct spectra) constrains the relative masses

of the dark matter and dark mediator, and the interaction between the dark mediator and

the standard model. We study these requirements individually, which when collectively

considered contain all the ingredients to explain both excesses. We emphasize, however,

that most of these results are quite general, and can in part be applied to hidden sectors

in other contexts as well.

The remainder of this paper is structured as follows. In section 2, we consider dark

matter annihilation within a wide range of models, determining which scenarios allow for

efficient low-velocity annihilation, and thus to potentially observable indirect detection

signatures. In section 3 we consider several portals through which hidden sector particles

could decay to the SM, calculating in each case the corresponding branching fractions. In

section 4 we discuss the Galactic Center gamma-ray excess and the cosmic-ray antiproton

excess, describing the observed characteristics of each of these signals. In section 5 we

describe how we calculate the gamma-ray and antiproton spectra in these models, and

in section 6 we discuss the constraints derived from gamma-ray observations of dwarf
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spheroidal galaxies. In section 7, we present our main results, showing the range of masses

and other parameters that can accommodate the observed features of the gamma-ray and

antiproton excesses. In section 8, we discuss the cosmological considerations in regard to

these models and comment on the prospects for future direct detection experiments. We

draw conclusions and summarize our results in section 9.

2 Hidden sector dark matter annihilation

In this section, we consider the annihilation of dark matter particles. Although we are

primarily interested in this study in dark matter that resides within a hidden sector, the

contents of this section can be applied to non-hidden sector scenarios as well. In order

for annihilating dark matter to generate signals that are consistent with the observed

gamma-ray and antiproton excesses, they must proceed predominantly through s-wave

processes. Here we will enumerate the varieties of dark matter models that can give rise to

s-wave dark matter annihilation. Since a truly comprehensive list would be near impossible

to enumerate, we restrict our attention to renormalizable interactions between fermions,

vectors, and scalars that lead to 2 ↔ 2 annihilations in the hidden sector. For each

operator listed below, we calculate the σ ·v, and expand to the leading orders, to determine

if it is a s-wave process or not.

We begin by considering the case of fermionic dark matter. Generically, spin-1/2

particles can interact with spin-1 states through an arbitrary combination of vectorial and

axial couplings,1 and to spin-0 states through any combination scalar and pseudoscalar

couplings. To be concrete, the Lagrangian could contain any of the following interactions:

L(V ) ⊃ gV χiγ
µχjZ

′
µ + h.c. (2.1)

L(A) ⊃ gA χiγ
µγ5χjZ

′
µ + h.c.

L(S) ⊃ gSχi χj φ+ h.c.

L(P ) ⊃ gP i χiγ
5χjφ+ h.c. ,

where χi, Z
′
µ and φ denote spin-1/2, spin-1 and spin-0 states, respectively. In these expres-

sions, we remain fully general by considering the possibility that i 6= j, unless the fermions

are assumed to account for dark matter, in which case we enforce i = j, limiting ourselves

to the case of a single dark matter species.

Annihilation diagrams can also include vertices which contain multiple spin-0 particles:

L(φijk) ⊃ λφijkφi φj φk (2.2)

L(φijkl) ⊃ λφijkl φi φj φk φl ,

where φ’s are real scalar fields. Note that the repeated indices do not indicate summation

in these expressions. Alternatively, we can consider the following interactions involving

1Majorana fermions interact with spin-1 states only through axial couplings.
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gauge bosons:

L(φijzkm) ⊃ λφijzkm φi φj Z
′µ
k Z ′m,µ + h.c. (2.3)

L(φzkm) ⊃ λφzkm φi Z
′µ
k Z ′m,µ + h.c.

L(φijz) ⊃ λφijz φi
↔
∂µ φj Z

′
µ + h.c.

Note that some of these interactions while considered alone, may not be gauge invariant

in their current form. In complete UV theories, it may be that several interactions are

required in order to not violate unitarity (see e.g. refs. [33, 34, 67–71]). More importantly,

when constructing portals between the dark sector and the Standard Model, we will define

interactions that respect gauge invariance of the Standard Model.

In addition, we can also consider interactions involving complex scalars. Although this

allows for the possibility of many different interactions, we include in our study only the

following case which can potentially lead to s-wave dark matter annihilation:

L(Φz) ⊃ λΦz iΦ
∗
i

↔
∂µ Φi Z

′
µ + h.c. , (2.4)

where Φi is a complex scalar field.

Lastly, we consider interactions that take place exclusively between spin-1 particles.

Such interactions can naturally appear in hidden sector models which feature more complex

gauge symmetries (see, for example, refs. [72–76]). Specifically, we allow for the following

interactions:

L(zijk) ⊃ λzijk ∂
µ Z ′i,µ Z

′ ν
j Z ′k,ν + h.c. (2.5)

L(zijkm) ⊃ λzijkm Z
′µ
i Z ′j,µ Z

′ ν
k Z ′m,ν + h.c.

Note that in the first line of this expression, the derivative could act on a vector that is an

initial state, final state, or mediator.

In tables 1 and 2, we list each of the processes through which a fermionic or bosonic

dark matter particle could annihilate through an s-wave amplitude (see also, refs. [77, 78]).

We use the labels as indicated in eqs. (2.1)–(2.5) to denote the types of interactions that

in each case leads to an s-wave annihilation amplitude. An entry containing V ⊗ A, for

example, should be understood to lead to s-wave annihilation if the two vertices of the

diagram correspond to vectorial and axial interactions, respectively (as defined in eq. (2.1)).

The presence of multiple rows within the same table entry implies that there are multiple

interaction combinations that can lead to s-wave annihilation. Those cases denoted with a

‘-’ do not correspond to any renormalizable model within our framework. Asterisks indicate

cases in which the amplitude is s-wave but (if the dark matter is its own antiparticle) the

cross section is helicity suppressed (σv ∝ m2
f/m

2
χ).

Although the range of interactions described in tables 1 and 2 does not strictly cover

all of the possibilities that could give rise to s-wave annihilation (in particular, our treat-

ment may leave unaddressed some models featuring composite particles [79] or 2→ 3 pro-

cesses [37]), it is quite general and captures a broad range of phenomenological possibilities.
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Dark Matter Mediator
Annihilation Products

f1+f2 φ1+φ2 Z′
1+Z

′
2 φ+Z′

spin-1/2

s-channel
spin-0

ΓDM⊗Γf :

P ⊗P
P ⊗S

ΓDM⊗Γφ:

P ⊗φijk
ΓDM⊗ΓZ′ :

P ⊗φzkm

ΓDM⊗ΓφZ′ :

P ⊗φijz
P ⊗Φz

spin-1

ΓDM⊗Γf :

V ⊗V
V ⊗A
A⊗A∗

ΓDM⊗Γφ:

V ⊗φijz
V ⊗Φz

A⊗φijz

ΓDM⊗ΓZ′ :

V ⊗zijk
A⊗zijk

ΓDM⊗ΓφZ′ :

V ⊗φzkm
A⊗φzkm

t-channel
spin-1/2 —

Γφ1⊗Γφ2 :

S⊗P

ΓZ′
1
⊗ΓZ′

2
:

V ⊗V
V ⊗A
A⊗A

Γφ⊗ΓZ′ :

S⊗V
P ⊗V

spin-0

Γf1⊗Γf̄2 :

S⊗S
P ⊗P
S⊗P

— — —

spin-1

Γf1⊗Γf̄2 :

V ⊗V
A⊗A
V ⊗A

— — —

Table 1. For each annihilation diagram, mediator spin, and choice of annihilation products, we

identify the combinations of interactions that could enable a fermionic dark matter candidate to

annihilate with an s-wave amplitude. We use the labels as indicated in eqs. (2.1)–(2.3) to denote

the types of interactions that lead to an s-wave annihilation amplitude. Those cases denoted with

a ‘-’ do not correspond to any renormalizable model within our framework. Asterisks indicate cases

in which the amplitude is s-wave but (if the dark matter is its own antiparticle) the cross section

is helicity suppressed (σv ∝ m2
f/m

2
χ).

3 Portals between the hidden sector and the standard model

In the previous section, we identify a wide range of hidden sector models in which the

dark matter annihilates through an s-wave amplitude. While this is a necessary condition

to generate the gamma-ray and antiproton excesses, it is not necessarily sufficient. In

addition, these annihilations must produce spectra of gamma rays and antiprotons that

are consistent with the signals measured by Fermi and AMS. Within the context of hidden

sector models, this occurs through the decays of the dark matter annihilation products into

SM states through a small “portal” interaction. In this section, we discuss a range of such

hidden sector portals and their prospects for generating the Galactic Center gamma-ray

and cosmic-ray antiproton excesses.
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Dark Matter Mediator
Annihilation Products

f1+f2 φ1+φ2 Z′
1+Z

′
2 φ+Z′

spin-0

s-channel spin-0

ΓDM⊗Γf :

φijk⊗S
φijk⊗P

ΓDM⊗Γφ:

φijk⊗φijk
ΓDM⊗ΓZ′ :

φijk⊗φzkm
ΓDM⊗ΓφZ′ :

φijk⊗φijz

s-channel spin-1 None None None None

t-channel
spin-0 —

Γφ1⊗Γφ2 :

φijk⊗φijk

ΓZ′
1
⊗ΓZ′

2
:

φijz⊗φijz
Φz⊗Φz

Γφ⊗ΓZ′ :

φijk⊗φijz

spin-1/2

Γf1⊗Γf̄2 :

S⊗S
P ⊗P
S⊗P

— — —

spin-1 —
Γφ1
⊗Γφ2

:

φijz⊗φijz
ΓZ′

1
⊗ΓZ′

2
:

φzkm⊗φzkm
Γφ⊗ΓZ′ :

φijk⊗φijz

spin-1

s-channel
spin-0

ΓDM⊗Γf :

φzkm⊗S
φzkm⊗P

ΓDM⊗Γφ:

φzkm⊗φijk
ΓDM⊗ΓZ′ :

φzkm⊗φzkm
ΓDM⊗ΓφZ′ :

φzkm⊗φijz

spin-1

ΓDM⊗Γf :

zijk⊗V ∗

zijk⊗A∗
None

ΓDM⊗ΓZ′ :

zijk⊗zijk
ΓDM⊗ΓφZ′ :

zijk⊗φzkm

t-channel
spin-0 —

Γφ1
⊗Γφ2

:

φijz⊗φijz
Φz⊗Φz

ΓZ′
1
⊗ΓZ′

2
:

φzkm⊗φzkm
Γφ⊗ΓZ′ :

φijz⊗φzkm

spin-1 —
Γφ1⊗Γφ2 :

φzkm⊗φzkm
ΓZ′

1
⊗ΓZ′

2
:

zijk⊗zijk
Γφ⊗ΓZ′ :

φzkm⊗zijk

spin-1/2

Γf ⊗Γf̄ :

V ⊗V
A⊗A
V ⊗A

— — —

Table 2. As in table 1, but for spin-0 or spin-1 dark matter candidates. We use the labels as

indicated in eqs. (2.1)–(2.5) to denote the types of interactions that lead to an s-wave annihilation

amplitude. In those entries labeled “none”, we found that none of the interactions described in this

section lead to an s-wave amplitude for dark matter annihilation.
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In the subsections below, we will discuss a number of simple and well-motivated portals

capable of connecting a hidden sector to the particle content of the SM. In figure 1, we

summarize the branching fractions that result from several of these portal couplings. It is

important to note that in order to produce gamma-rays and antiprotons with the spectra

observed by Fermi and AMS-02, it is typically necessary to have mediator masses in the

range 20 . mmed . 100 GeV. This range of masses is sufficiently above the b-quark thresh-

old and below the threshold for electroweak gauge boson contributions that the branching

ratios shown in figure 1 are, to a large degree, independent of mass. Nevertheless, we

include the mass dependent branching ratios in all calculations. While this list should not

be considered extensive, it should be considered as representative of the final states that

may appear in viable hidden sector models.

3.1 Hypercharge portal

One of the renormalizable portals to the SM is the so-called hypercharge portal, arising from

the kinetic mixing between SM hypercharge, U(1)Y , and a new U(1)D gauge symmetry.

This portal corresponds to a term in the Lagrangian of the form εFµνF
′µν , where Fµν and

F ′µν are the hypercharge and dark field strength tensors, respectively [21, 80–82]. Upon

restoring the kinetic normalization, the dark gauge boson develops an ε-suppressed coupling

to the hypercharge current. Consequently, the decay width of the Z ′ to SM fermions is

given by:

ΓZ′ =
∑
f

mZ′Nc

12π

√
1−

4m2
f

m2
Z′

[
g2
fV

(
1 +

2m2
f

m2
Z′

)
+ g2

fA

(
1−

4m2
f

m2
Z′

)]
, (3.1)

where Nc is the color factor corresponding to fermion, f . Following ref. [83], the vector

and axial couplings are given by gfV,fA ≡ (gfR ± gfL)/2, where

gfR,fL = ε

(
m2
Z′gY YfR,L

−m2
Zg sin θWQf

m2
Z −m2

Z′

)
. (3.2)

Here, gY and g are the SM gauge couplings, YfR,L
and Qf are the SM hypercharge and

electric charge assignments, and θW is the weak mixing angle.

Models in which the dark matter is part of a hidden sector that is connected to the

SM through the hypercharge portal have been previously shown to provide a good fit to

the Galactic Center gamma-ray excess [40].

3.2 B − L portal

Although kinetic mixing with hypercharge is the only renormalizable portal capable of

connecting a hidden sector Z ′ to the particle content of the SM, one could also consider

scenarios in which the SM is extended by one or more additional gauge symmetries, leading

to additional vectors which could mix with a hidden sector Z ′. In this and the following

two subsections, we will consider several examples of such scenarios.

A well-motivated extension of the SM arises from gauging the combination of baryon

number minus lepton number, B − L, which is anomaly free after the inclusion of three

– 7 –
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right-handed neutrinos. This model has been explored extensively over the years as it

provides a simple framework for the implementation of the seesaw mechanism, and is thus

capable of explaining the smallness of the neutrino masses (see, e.g., [84–86]).

Here, we consider a scenario in which the gauge boson associated with the group

U(1)B−L undergoes kinetic mixing with a gauge boson within a hidden sector, Z ′. Similar

to the case of the hypercharge portal, upon restoring the canonical normalization of the

kinetic terms, the dark gauge boson develops the following couplings to the B−L current:

gfV ∼= ε gB−L (B − L)f

∣∣∣∣m2
ZB−L

+m2
Z′

m2
ZB−L

−m2
Z′

∣∣∣∣ , (3.3)

gfA = 0 ,

where gB−L is the gauge coupling associated with U(1)B−L and (B − L)f is the baryon

number minus lepton number of fermion, f . The decay width of the Z ′ can then be

calculated using eq. (3.1) with couplings as given above in eq. (3.3) [87].2

3.3 Baryon portal

Next, we consider the case in which we gauge the baryon number (see, e.g., [88–90]). The

kinetic mixing between the gauge boson associated with this symmetry, ZB, and a hidden

sector Z ′ leads to couplings similar to those shown in eq. (3.3):

gfV ∼= ε gB Bf

∣∣∣∣m2
ZB

+m2
Z′

m2
ZB
−m2

Z′

∣∣∣∣ , (3.4)

gfA = 0,

where gB is the gauge coupling associated with U(1)B and Bf is the baryon number of

fermion, f . Again, the decay width of the Z ′ can then be calculated using eq. (3.1) with

couplings from eq. (3.4).

3.4 Li − Lj portal

Lastly, we consider the case in which we gauge the difference of two lepton families, Le−Lµ,

Lµ − Lτ or Le − Lτ . This class of extensions of the SM is particularly attractive given

that they do not require any additional particle content to cancel anomalies [91, 92]. The

kinetic mixing between Li − Lj and a hidden sector Z ′ leads to couplings that are similar

to those shown in eqs. (3.3) and (3.4) [93]:

gfV ∼= ε gLi−Lj (Li − Lj)f
∣∣∣∣m2

ZLi−Lj
+m2

Z′

m2
ZLi−Lj

−m2
Z′

∣∣∣∣ , (3.5)

gfA = 0 ,

where gLi−Lj is the gauge coupling associated with U(1)Li−Lj . Given that these couplings

lead the Z ′ to decay entirely to leptons (at tree level [94–96]), this portal cannot generate the

measured flux of the cosmic-ray antiproton excess. We include it here only for completeness.

2In scenarios in which a hidden sector Z′ mixes with ZB−L (or with ZB or ZLi−Lj , as discussed in

the followings subsections), hypercharge will also participate in the mixing. In generality, we expect the

branching fractions of such a Z′ to be an admixture of these two cases.

– 8 –
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3.5 Higgs portal

A hidden sector scalar can decay to the SM through mass mixing with the SM Higgs boson

(see, e.g., [28, 97]). As the Higgs couples to fermions proportionally to their mass, the decay

of the Z ′ will in this case be predominantly to b quarks in the mass range that we are con-

sidering, here. In our calculations, however, we include all SM decay products. As loop de-

cays and higher-order corrections can be relevant in this case, we use the Fortran package

HDecay [98] to calculate these branching fractions, which takes these effects into account.

3.6 Two-Higgs doublet portal

While the Higgs portal (described above) provides perhaps the simplest way for a hidden

sector scalar to decay to the SM, it is also straightforward to construct models in which a

hidden sector scalar decays to one or more particle species within an extended Higgs sector.

A model that is comparable in complexity to the Higgs portal, but that allows for a richer

phenomenology, is that in which a hidden sector scalar mixes with the scalars found within

a two-Higgs doublet model (2HDM). In this case, the inclusion of a second Higgs doublet

allows for a spin-0 particle to couple, for example, asymmetrically to up-like and down-like

fermions, preferentially to charged leptons, or even in a gauge-phobic manner. Rather than

exploring the full range of possibilities here, we will focus on some of the limiting cases

in which the two Higgs doublets couple in a manner that is noticeably different from that

found in the case of the Higgs portal, with the understanding that a 2HDM portal could

also easily mimic the behavior found in the conventional Higgs portal. A more extensive

review of this model can be found in ref. [99].

Type I. In this case, the couplings of fermions to the lighter Higgs boson are modified by

a factor of cosα/ sinβ, while the couplings to W+W− and ZZ are modified by sin(α− β),

where α and β are free parameters of the theory. For the heavy Higgs, the corresponding

factors are sinα/ sinβ and cos(α− β), respectively. Particularly interesting limits of such

models exist in which one of the Higgs states couples preferentially to gauge bosons (fermio-

phobic) or to fermions (gauge-phobic).

Type II (MSSM-like). In this model, the couplings of the light Higgs to up-type quarks

are similar to those found in the Type-I model. The couplings of the light Higgs to down-

type quarks and to leptons, in contrast, are modified relative to that of the SM Higgs by

a factor of − sinα/ cosβ. Again, there are a number of interesting limits of this model to

consider, giving rise to different branching fractions. First, one can quite easily enhance the

coupling to b quarks, leading to phenomenology similar to that found in the standard Higgs

portal scenario. Alternatively, one can suppress the coupling to b quarks while enhancing

the branching fraction to τ+τ−, or to cc̄, τ+τ− and gg [100].

3.7 Neutrino portal

In the case of the neutrino portal, a spin-1/2 hidden sector particle, N , can decay through

mixing with an SM neutrino, resulting in the production of a lepton along with an on- or

– 9 –



J
H
E
P
0
7
(
2
0
2
0
)
1
6
3

off-shell gauge or Higgs boson. If mN is large enough to enable on-shell decays, the partial

widths are given by [101]:

Γ(N →W±`∓α ) =
g2

64π
|UαN |2

M3
N

M2
W

(
1− M2

W

M2
N

)2 (
1 +

2M2
W

M2
N

)
, (3.6)

Γ(N → Zνα) =
g2

64πc2
w

|CαN |2
M3
N

M2
Z

(
1− M2

Z

M2
N

)2 (
1 +

2M2
Z

M2
N

)
,

Γ(N → hνα) =
g2

64π
|CαN |2

M3
N

M2
W

(
1− M2

h

M2
N

)2

.

Alternatively, if mN . mW , the decays will be dominated by three-body final states:

Γ(N → νqq) = 3ACNN
[
2(a2

u + b2u) + 3(a2
d + b2d)

]
f(z) , (3.7)

Γ(N → 3ν) = ACNN

[
3

4
f(z) +

1

4
g(z)

]
,

Γ(N → `qq) = 6ACNNf(ω, 0) ,

Γ(N → ν``) = ACNN
[
3(a2

e + b2e)f(z) + 3f(ω)− 2aeg(z, ω)
]
,

where

A ≡ G2
FM

5
N

192π3
, Cij ≡

3∑
α=1

UαiU
∗
αj , z ≡

(
MN

MZ

)2

, ω ≡
(
MN

MW

)2

, (3.8)

and af , bf are the left and right neutral current couplings to fermion, f , and the functions

f(z), f(ω, 0), and g(z, ω) are given in ref. [102].

As this portal typically involves 3-body boosted decays, we do not include an analysis

of this case in our study. We do note, however, that this model has previously been shown

to be capable of fitting the Galactic Center gamma-ray excess [35, 36, 64, 66] as well as

the cosmic-ray antiproton excess [66].

4 Characteristics of the gamma-ray and antiproton excesses

A number of ingredients are necessary in order for a hidden sector to be capable of ex-

plaining the astrophysical excesses. As discussed in previous sections, the dark matter

must annihilate to dark mediators through a s-wave process (see section 2), and the me-

diator must decay to SM particles through a weak portal coupling (see section 3). The

final requirement is that the final state gamma-ray and antiproton spectra resemble the

observed features of each excess. In general, the final state spectra is independent of the

interaction vertex that lead to the s-wave annihilation, but it does strongly depend on the

mediator mass and the branching fractions to final state particles. In the following section

we will address the extent to which the portals introduced in section 3 can produce the

robust features of these anomalies, however before doing so we must define the features of

each excess which have been identified as robust — that is the purpose of this section.
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qq
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Figure 1. Branching fractions of hidden sector particles decaying through various portal interac-

tions. In each case, we have adopted a mass of 50 GeV for the decaying particle. In the case of the

two-Higgs doublet model, we show results for a Type-II model with tan β = 1, sinα = 0. Note that

qq̄ in this figure denotes any of the four lightest quark species (u, d, s, c).
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4.1 The galactic center gamma-ray excess

A bright excess of GeV-scale gamma-rays has been observed from the region surrounding

the Galactic Center, with a spectral shape, morphology and intensity that are each consis-

tent with the signal predicted from annihilating dark matter [42–51]. Although this signal

has received a great deal of interest within the context of dark matter [40, 51, 61–65, 78,

103–126], astrophysical explanations of this emission have also been extensively considered.

In particular, scenarios have been proposed in which the gamma-ray excess is generated by a

large population of unresolved millisecond pulsars [43, 45, 46, 56, 57, 127–134], or by a series

of recent cosmic-ray outbursts [135–137]. Outburst scenarios, however, have been shown to

require a large degree of tuning in their parameters in order to produce the observed features

of this signal [135], leaving pulsars as the primary astrophysical explanation for this excess.

The pulsar interpretation of the GeV excess was elevated substantially in 2015, when

two independent groups presented evidence that the gamma-ray emission from the direc-

tion of the Inner Galaxy contains a significant degree of small-scale power, suggestive of a

point source origin for the excess emission [56, 57]. It has recently been shown, however,

that these analyses are each subject to significant limitations, which bring their conclusions

into considerable doubt. In particular, in ref. [58], it was shown that the non-Poissonian

template fit technique utilized in ref. [56] can misattribute smooth gamma-ray signals (such

as that predicted from annihilating dark matter) to point source populations. While it was

recently shown that this in part was likely due to mismodeling of the diffuse model [138],

more serious issues with this technique have been identified [139, 140]. It has been shown

that systematics arising from mismodeling give rise to spurious point source evidence for

the GCE, and once correcting for this systematic, the evidence for point sources disap-

pears [139, 140]. Given such systematics, the Fermi data cannot be said to favor (or disfa-

vor) a pulsar interpretation, as previously claimed. Also recently, the authors of ref. [59]

showed that when updated point source catalogs are taken into account, the wavelet tech-

nique employed in ref. [57] does not favor the presence of an additional unresolved point

source population. Instead, strong constraints can be placed on the luminosity function

of any such source population that might exist. It is now clear that if a population of

millisecond pulsars does generate this excess, it must feature a very different luminosity

function (containing far fewer bright members) than those observed in globular clusters or

in the field of the Milky Way [127, 130, 131, 141]. These considerations, along with the

low number of low-mass X-ray binaries observed in the Inner Galaxy [142], increasingly

disfavor pulsar interpretations of the GeV excess.

The spectrum, morphology and overall intensity of the Galactic Center gamma-ray

excess have each been found to be in good agreement with the expectations from anni-

hilating dark matter [48, 49, 51]. In particular, the angular distribution of the excess is

approximately azimuthally symmetric with respect to the Galactic Center, and is consis-

tent with arising from annihilating dark matter with a halo profile with an inner slope of

γ ∼ 1.1 − 1.3 [48–51, 134, 143], only slightly steeper than the canonical Navarro-Frenk-

White profile [144, 145] and consistent with recent dynamical determinations based on

Gaia data [146]. We also note that while it has been argued that the morphology of the
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Figure 2. The spectrum of the Galactic Center gamma-ray excess as reported in ref. [51]. The

black squares (and dashed line) is the result found using their default background model, while the

red circles and blue diamonds represent that found for representative variations in this model (see

text for more details). The grey band represents the envelope of the results found across all of the

background models considered in ref. [51].

gamma-ray excess prefers the shape of the stellar bulge over that of a dark matter-like tem-

plate [147–149], this preference is sensitive to the details of the background model adopted

and on spatial tails of the excess. Additionally, the spectral shape of this excess is uniform

throughout the Inner Galaxy, without any detectable variations [49], peaking at an energy

of ∼ 1-5 GeV and falling off at both higher and lower energies (in E2dN/dE units). If

interpreted as the products of dark matter annihilation, the spectral shape of this signal

implies a dark matter candidate with a mass in the range of ∼ 40-70 GeV (for the case of

annihilations to bb̄). Additionally, the overall intensity of this excess is consistent with that

expected from a dark matter candidate with an annihilation cross section on the order of

〈σv〉 ∼ 10−26 cm3/s.

Although the gamma-ray excess described above has by now been quite robustly de-

tected, the precise spectrum of this signal is subject to significant systematic uncertainties

associated with the astrophysical backgrounds. In figure 2, we show the spectrum of this ex-

cess as reported by the Fermi Collaboration in ref. [51]. The black squares and dashed line

denote the spectrum of the excess, as found using their default model for the astrophysical

backgrounds (referred to in ref. [51] as the “Sample Model”). Reasonable variations in this

model, however, can substantially alter the shape of the spectrum that is extracted from

the data. As examples, we show as red circles in figure 2 the spectrum that is found when
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the spectra of the known point sources are allowed to float in the fit. This has the effect of

shifting the peak of the spectrum downward and substantially reducing the intensity of the

excess at energies above ∼10 GeV. We also show, as blue diamonds, an example in which

an alternative gas distribution was used to derive the diffuse emission model, leading to a

greater flux of excess emission below ∼1 GeV. The grey band in this figure represents the

envelope of the results found across of all background models considered in ref. [51].

With these substantial systematic uncertainties in mind, it seems prudent to keep a

fairly open mind regarding the precise spectral shape of the excess emission. Throughout

this study, we simply require that in order to provide a viable explanation for the gamma-

ray excess, a given dark matter model must produce a spectrum that peaks in the range of

1.4 to 4.0 GeV (in E2 dN/dE units), a feature that is found nearly universally across the

range of background models considered in ref. [51] and elsewhere in the literature [48, 49].

4.2 The cosmic-ray antiproton excess

Over the past several years, a number of groups [52–55] have reported the presence of an

excess of ∼10-20 GeV antiprotons in the cosmic-ray spectrum as measured by AMS-02 [150]

relative to that predicted from secondary production. Remarkably, it has been shown that

this excess could be generated by annihilating dark matter particles with masses and cross

sections in the same range as to those required to produce the Galactic Center gamma-

ray excess (see, for example, figure 8 of ref. [54]). Although this excess appears to be

statistically significant, estimates of the systematic uncertainties have varied. The authors

of refs. [54, 55] have each argued that the presence of the antiproton excess is robust to

astrophysical uncertainties, while acknowledging that the uncertainties associated with the

antiproton production cross section [54, 55, 151] and the impact of the Solar Wind on the

cosmic-ray spectra observed at Earth [54, 152] are each difficult to rigorously quantify. In

refs. [60, 153], the authors argued that the systematic uncertainties related to this signal are

significantly larger than had previously been estimated, reducing the overall significance

of the excess. In ref. [54], it was found that dark matter annihilating directly to bb̄ could

potentially provide a good fit to this signal for masses in the range of 46-94 GeV, a range

over which the injected antiproton spectrum peaks at energies between 6.2 and 12.6 GeV

(in E2dN/dE units).

With these results in mind, we consider a dark matter candidate to be potentially

capable of producing both the gamma-ray and antiproton excesses if its injected spectra of

gamma rays and antiprotons fall within the range of 1.4 to 4.0 GeV and 6.2 and 12.6 GeV,

respectively. We also require that the low-velocity annihilation cross section falls within the

range presented in refs. [154] and ref. [54], to accommodate the gamma-ray and antiproton

excesses, in each case corrected for the spectrum produced per annihilation in a given model

(see section 5). For the simple case of direct annihilation to bb̄ this corresponds to 〈σv〉 =

(0.6−7)×10−26 cm3/s for the gamma-ray excess and 〈σv〉 = (0.3−20)×10−26 cm3/s for the

antiproton excess. We further require that the ratio of the peak gamma-ray to antiproton

flux (at injection, per annihilation) falls within the range implied by refs. [54, 154], properly

accounting for the correlated uncertainties in the overall normalization of the Milky Way’s

dark matter halo.
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5 Energy spectra generation

In the previous section, we clarified that analyses of the gamma-ray and antiproton data

have roughly agreed upon the energy range in which each signal peaks, as well as the excess

flux contributed above the expected background. We have yet to clarify, however, whether

there exists a dark matter mass, a dark mediator mass, and a portal interaction which

is capable of simultaneously producing gamma-ray and antiproton fluxes consistent with

both measurements. In this section we outline the procedure by which we identify models

consistent with both anomalies, and we defer the results of this analysis to section 7.

In order to generate the spectrum of gamma rays and antiprotons produced through

dark matter annihilations in a given model, we utilize Pythia8.2. In each case, we create

an effective resonance with ECM = 2mDM by colliding two back-to-back neutral beams.

The energy resonance is then allowed to decay as specified, and a total of 400,000 events

per diagram are accepted. For diagrams that can produce two different final states of

spin-X and spin-Y , we first produce one diagram with two spin-X particles, and then two

spin-Y particles, each with effective resonances in their center of mass frames. We then

average these results to produce the effective spectra for a given choice of masses. This is a

necessary step to ensure the correct fraction of energy is put into each final state particle’s

decay products. Specifically, this means that the effective resonances for two different final

state particles with masses m1 and m2 are given by the following [155]:

Em1
CM =

s+m2
1 −m2

2

2
√
s

, Em2
CM =

s+m2
2 −m2

1

2
√
s

. (5.1)

In the case of m1 = m2, the same amount of energy is given to each final state particle’s

decay products. These particles are then decayed with branching fractions specified by the

portal under consideration.

The spectral shape of the gamma rays and antiprotons produced through dark matter

annihilation depends significantly on 1) the mass of the dark matter particle, 2) the mass

of mediator and 3) the portal connecting the hidden sector to the SM. In principle, these

spectra could also depend on the spin of the mediating particle. In practice, however, this

dependence is very small, and can safely be neglected [156] (see figure 3).

In figure 4, we plot the spectra of gamma rays and antiprotons predicted in five repre-

sentative hidden sector dark matter models. As described in section 4, we consider a given

model to provide an adequate fit to the spectral shapes of the gamma rays and antiprotons

peak within the purple (Eγ = 1.4 − 4.0 GeV) and green (Ep̄ = 6.2 − 12.6 GeV) bands, re-

spectively. From this figure, it is clear that the gamma-ray and antiproton excesses can be

simultaneously accommodated within a wide range of hidden sector dark matter models.

Note that as various portals have several decay channels, their total energy spectra will

contain a sum of varied final state spectra, which explains i.e. the multi peaks in figure 4.

6 Constraints from dwarf spheroidal galaxies

Hidden sector models are naturally hidden from collider and direct dark matter searches due

to their weak portal interaction with SM particles. Such model cannot, however, hide from
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Figure 3. An illustration of the minimal impact of the mediator’s spin on the gamma-ray and

antiproton spectra from dark matter annihilations. The solid and dotted curves represent the

spectra predicted for a spin-1 or spin-0 mediator, respectively, for the representative case of 50 GeV

dark matter particles annihilating to a pair of 20 GeV hidden sector particles which decay to b quark

pairs. The solid and dotted curves are virtually indistinguishable from each other in this case, and

across the entirety of the parameter space relevant to this study.

indirect searches, since the portal coupling allows does not suppress the annihilation rate.

Consequently, it is necessary to determine the extent to which any model identified as ca-

pable of producing the observed excesses has been probed by alternative indirect searches.

The Milky Way’s population of dwarf spheroidal galaxies provides one of the most

powerful tests of annihilating dark matter, as they are relatively nearby, abundant in dark

matter, and emit little gamma-ray background. The Fermi Collaboration has published

limits on gamma-ray fluxes from a collection of known dwarf spheroidals [157, 158], iden-

tifying no statistically significant signals as of yet.

To derive limits on hidden sector dark matter models, we follow the official Fermi

analysis on Pass 8 LAT data [158] and consider a total of 41 dwarf galaxies (including

both kinematically confirmed dwarfs, as well as unconfirmed but likely galaxies).3 When

provided, we use the measured J-factor and corresponding uncertainty for each galaxy.

For those dwarfs without spectroscopic information, we use J-factors estimated from their

distances, adopting a nominal uncertainty of 0.6 dex (following ref. [158]).

Note that modest (∼ 2σ) gamma-ray excesses have been observed from four of these

galaxies (Reticulum II, Tucana III, Tucana IV, Indus II) [158]. While this could potentially

be attributed to dark matter, this potential signal is not globally significant at this time, and

we simply use this data to derive upper limits on the dark matter annihilation cross section.

3The bin-by-bin likelihoods for each dwarf galaxy can be downloaded from http://www-

glast.stanford.edu/pub data/1203/.
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Figure 4. Gamma-ray and antiproton spectra for a selection of representative hidden sector dark

matter models, each of which can simultaneously accommodate both the Galactic Center gamma-

ray and cosmic-ray antiproton excesses. The target regions that the spectra are required to peak

in are shown as the purple and green shaded regions, as described in the text.
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For each of these dwarf galaxies, the Fermi Collaboration [158] provides the likelihood

as a function of the integrated energy flux:

ΦE =
〈σv〉

8πm2
χ

[∫ Emax

Emin

E
dN

dE
dE

]
Ji , (6.1)

where Ji is the J-factor for dwarf, i. Following ref. [157], we treat the energy bins as

independent, and obtain the full likelihood, Li (µ|Di), which is a function of the model

parameters, µ, and data, Di, by multiplying together the likelihoods for each of the 41

dwarfs. The uncertainty in the J-factor is included as a nuisance parameter on the global

likelihood, modifying the likelihood as follows [159]:

L̃i (µ, Ji|Di) = Li (µ|Di)×
1

ln(10)Ji
√

2πσi
exp

[−( log10(Ji)− log10(Ji) )2

2σ2
i

]
. (6.2)

We use the values of log10(Ji) and σi provided in ref. [158] for the case of a Navarro-Frenk-

White profile [144, 145]. The likelihood is maximized to produce an upper limit on the

annihilation cross section at the 95% confidence level.

7 Results

In this section, we present the main results of our analysis, identifying which of the hidden

sector dark matter models discussed in sections 2 and 3 are capable of producing signals

that are consistent with the observed features of the Galactic Center gamma-ray excess

and the cosmic-ray antiproton excess (see section 4). While this section does not directly

rely on the results presented in section 2, it is important to bear in mind that all viable

dark sectors must allow for a vertex list in section 2 in order to have s-wave annihilation.

For the following discussions, the hidden sector dark matter particles we consider are Dirac

fermions, unless stated otherwise.

In figure 5, we summarize our results for the case of hidden sector dark matter that

annihilates into a pair of spin-1 particles that decay to the SM through the hypercharge

portal. In the upper left frame, we show the regions of the mχ-mZ′ plane that can produce

the observed spectrum and intensity of the Galactic Center gamma-ray excess (GCE), the

cosmic-ray antiproton excess (Antip), or both. In this model, the gamma-ray spectrum is

dominated by tau decays, requiring a relatively small value of mχ in order to accommodate

the observed spectral shape of the gamma-ray excess. For these reasons, there is relatively

little parameter space in this model in which both excesses can be accommodated, although

models with mχ ≈ 50 − 100 GeV and mZ′ ≈ 20 − 100 GeV can be capable of generating

both of these signals.

In the remaining three frames of figure 5, we plot the low-velocity, thermally-averaged

annihilation cross section predicted in this model (after requiring that the thermal relic

abundance equals the measured density of dark matter, which is determined for each model

using micromegas [160]), for three representative values of mZ′ . The green shaded regions

represent the parameter space in which the spectrum and intensity of the gamma-ray and

antiproton excesses can both be accommodated (as described in section 4). In each case,
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Figure 5. A summary of our results for the case of hidden sector dark matter that annihilates to

particles that decay through the hypercharge portal. In the upper left frame, we show the regions

of the mχ-mZ′ plane that can produce the observed spectrum and intensity of the Galactic Center

gamma-ray excess (GCE), the cosmic-ray antiproton excess (Antip), or both. In the remaining

three frames, we plot the low-velocity, thermally-averaged annihilation cross section predicted in

this model, for three representative values of mZ′ . Each line corresponds to a different ratio of the

vector and axial couplings, λv/λa. The green shaded regions labeled “BOTH” denote the parameter

space in which both excesses can be simultaneously accommodated. We also show the regions ruled

out by gamma-ray observations of dwarf galaxies.
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Figure 6. As in figure 5, but for the case of hidden sector dark matter that annihilates to particles

that decay through the B − L portal.

we allow for the dark matter to have both vector and axial-vector couplings to the Z ′, and

plot results for values of λv/λa between 0.01 and 100. We also show the constraints from

dwarf galaxies (see section 6), finding no tension with the favored parameter space.

We next turn our attention to dark matter candidates that annihilate into particles that

decay to the SM through either the B−L portal or through the baryon portal. In figures 6

and 7, we show our results for this class of scenarios. In the case of the B − L portal, we

find only small regions of parameter space that can produce the observed characteristics of

the gamma-ray and antiproton excesses. For the baryon portal, larger regions of parameter

space (with mχ ≈ 50 − 100 GeV and mZ′ ≈ 10 − 100 GeV) can produce signals that can

accommodate both excesses.
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Figure 7. As in figure 5, but for the case of hidden sector dark matter that annihilates to particles

that decay through the baryon portal.

As shown in figure 8, models in which the dark matter’s annihilation products decay

through the Higgs portal are particularly well suited to produce the observed features of the

gamma-ray and antiproton excesses, favoring parameter space in which mχ ≈ 50−150 GeV

and mZ′ ≈ 10 − 150 GeV. In the case of the 2HDM portal, our results depend on the

parameters chosen. Across much of the parameter of this scenario, the branching fraction

to b quarks is large, leading to results similar to those shown for the case of the Higgs portal

in figure 8. Alternatively, we have also considered the limit of the Type-II model in which

tanβ = 1 and sinα = 0, for which the lightest Higgs decays largely to a combination of c

quarks, tau leptons, and gluons (see figure 1). As shown in figure 9, however, we find no

combination of masses in this scenario that can simultaneously accommodate the observed

spectra of the gamma-ray and antiproton excesses.
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Figure 8. As in the previous three figures, but for the case of hidden sector dark matter that

annihilates to particles that decay through the Higgs portal. Each line corresponds to a different

ratio of the scalar and pseudoscalar couplings, λs/λp. This class of models provides the largest

regions of parameter space that can accommodate both excesses.

Lastly, in figure 10, we consider models in which the dark matter annihilates into a

combination of spin-1 and spin-0 states, χχ→ Z ′+φ, which then decay to the SM through

the hypercharge and Higgs portals, respectively. Such a scenario is well-motivated within

the context of generating masses in the dark sector, as well as by the requirement of dark

gauge invariance [33, 34, 69, 161]. For simplicity, we focus on the case in which mφ = mZ′ ,

and in which the dark matter is a Dirac fermion with equal vector, axial, scalar, and

pseudoscalar couplings. We also introduce a µφZµZ
µ interaction between the vector and

scalar in the hidden sector. The quantity µ, being dimensionful, is typically expected to

be proportional to the hidden sector vev, and we show results for µ =0 or 10 GeV.
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Figure 9. As in figure 5, but for the case of hidden sector dark matter that annihilates to particles

that decay through the 2HDM portal, considering a Type-II model with tan β = 1 and sinα = 0.

In this scenario, there is no parameter space that can simultaneously accommodate the observed

spectra of the gamma-ray and antiproton excesses.

Note that as we are considering annihilation of hidden sectors, the results presented in

this section rely solely on the dark coupling, rather than the coupling to SM. As such, there

are a range of coupling values that can be taken to suppress direct detection or collider

constraints without tension. We provide a detailed discussion of potential reach of direct

detection in the following section.

8 Cosmological considerations and prospects for direct detection

Throughout this study, we have calculated the dark matter’s relic abundance assuming

that the hidden sector was in equilibrium with the particle content of the SM during the

process of freeze-out. This will be the case only if the scattering rate between the two

sectors exceeded the rate of Hubble expansion during or prior to the era in which freeze-

out occurred.

It is possible that the dark matter is part of a hidden sector that was never in equi-

librium with the SM. In that case, however, we would have no reason to expect the dark

matter’s annihilation cross section to be near the range of values that are required to pro-

duce the Galactic Center gamma-ray excess or cosmic-ray antiproton excess, 〈σv〉 ∼ 10−26

cm3/s. With this in mind, we chose to focus on scenarios in which the portal interaction

is strong enough to maintain equilibrium between the two sectors prior to dark matter

freeze-out — that is to say, we impose a minimum on the portal coupling based on the

requirement that the hidden sector was in equilibrium at high energies.

To evaluate the constraint on the portal coupling that is imposed by this requirement,

we calculate the scattering rates associated with the processes Z ′f ↔ γf, Zf [23, 25] and

hh ↔ φφ [40], for the case of portals involving spin-1 or spin-0 particles, respectively. In
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Figure 10. As in the previous figures, but for the case of hidden sector dark matter that annihilates

to particles that decay through both the hypercharge and Higgs portals. We have chosen to show

results here for the case of mφ = mZ′ . For consideration of other values of mφ/mZ′ , see refs. [34, 40].

In this figure, we have taken the dark matter candidate to be a Dirac fermion with equal vector,

axial, scalar, and pseudoscalar couplings. We have also introduced an interaction of the form

µφZµZ
µ, and show results for µ = 0 and 10 GeV.

figure 11, we show the minimum value of the portal coupling that satisfies this equilibrium

condition for the cases of the hypercharge, baryon, and Higgs portal models. For the

hypercharge portal, this corresponds to a constraint on the degree of kinetic mixing, ε,

between the sectors, while in the case of the baryon portal, we derive a constraint on the

degree of kinetic mixing multiplied by the U(1)B gauge coupling, ε × gB. In the case of

the Higgs portal, this condition is satisfied for sin θ & 2× 10−7 × (vφ/100 GeV), where vφ
is the value of the hidden sector vev (we plot the result for vφ = 100 GeV). In each case,
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Figure 11. The thick solid lines denote the minimum values of portal coupling that are required

to maintain equilibrium between the hidden and SM sectors leading up to the time of dark matter

freeze-out. In the case of the Higgs portal, we plot this condition for the case of vφ = 100 GeV,

where vφ is the hidden sector vev. The thin lines represent the constraints from XENON1T, for the

case of spin-independent scattering between dark matter and nuclei. Note that future experiments

with sensitivity near the “neutrino floor” will improve on these constraints by a factor of ∼10-20

(in terms of the quantities shown on the y-axes of this figure).
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we consider equilibrium to be established if the scattering rate between the two sectors

exceeds the rate of Hubble expansion for any temperature between 1 GeV and 1 TeV.

If it were not for the requirement of equilibrium, the portal interaction connecting

the dark matter to the SM could be extremely feeble, leaving little reason for one to

be optimistic about future direct detection (or collider4) efforts. But the condition of

equilibrium allows us to place a lower bound on this coupling, and on the elastic scattering

cross section of the dark matter with nuclei. Thus we believe it is of value to address the

extent to which current and future direct detection experiments can probe these portal

couplings (it is perhaps important to note, however, that direct detection and collider

experiments are unlikely to ever fully exclude such models).

In figure 11, we plot the constraints on this parameter space as derived from the latest

results of the XENON1T Experiment [2] (see also refs. [3, 4]). Whereas the curves denoting

the equilibrium condition depend only on the ratio of the hidden sector particles’ masses,

the dark matter’s elastic scattering cross section with nuclei depends on a number of other

features of the model, including the spin of the dark matter candidate and its dominant

annihilation diagram. The XENON1T constraints shown in this figure correspond to the

most optimistic of these cases, in which this scattering occurs through a spin-independent

process, without any velocity or momentum suppression. In particular, we show results

for dark matter in the form of a Dirac fermion in the cases of the hypercharge and baryon

portals, and for a vector dark matter candidate in the case of the Higgs portal. In the

hypercharge and baryon portal examples, we show results for three different ratios of the

vector and axial couplings. In the baryon portal case, we consider the limit of mZB
� mZ′ .

Expressions for the elastic scattering cross sections in each of these models can be found in

refs. [32, 40]. For each of the direct-detection curves (XENON1T), the parameters are fixed

to produce the right relic abundance — note that relic abundance does not depend on the

mixing, and thus this can be independently constrained by direct detection experiments.

From figure 11, it is clear that direct detection experiments already meaningfully con-

strain some of the hidden sector dark matter models we have considered in this study. If

the direct-detection (XENON1T) curves shown in figure 11 dip below the curves labeled

‘Equilibrium Condition’, the process through which the dark matter abundance is pro-

duced can be markedly different; in this case one would not expect the annihilation cross

section to be similar to either the value produced via conventional dark matter freeze-out

or the value required in order to explain the existence of the gamma-ray and anti-proton

excesses. Consequently, such models should be interpreted as interesting with regard to

the astrophysical anomalies.

Furthermore, as experiments become more sensitive and approach the so-called “neu-

trino floor” [162], we expect these constraints to improve by a factor of ∼10-20 (in terms

of the quantities shown on the y-axes of this figure). This will cover a significant fraction

of the parameter space that lies between the current constraints and the condition of equi-

librium. One should keep in mind, however, that the cases shown are among the most

4We note that collider bounds can be at best roughly comparable than the optimistic direct detection

bounds — we leave a detailed collider study of these models to future work.
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optimistic, and scenarios that do not lead to unsuppressed spin-independent scattering will

be much more difficult to test with current or future direct detection experiments.

9 Summary and conclusions

As constraints from direct detection and accelerator experiments have become more strin-

gent, the motivation to consider dark matter candidates that do not directly couple to the

particle content of the Standard Model has increased. In scenarios in which the dark mat-

ter is part of a hidden sector that does not carry any Standard Model gauge charges, direct

detection and accelerator signals can be highly suppressed. In many such models, however,

dark matter particles can annihilate efficiently, leading to potentially detectable gamma-

ray or cosmic-ray signals. In particular, we show in this study that a wide range of hidden

sector dark matter models can account for the observed features of the Galactic Center

gamma-ray excess, as well as the more recently identified cosmic-ray antiproton excess.

In section 2 of this paper, we described our comprehensive study of annihilating dark

matter, identifying the combinations of dark matter spins, mediator spins, interaction

types, and annihilation final states that allow for the efficient (s-wave) annihilation of dark

matter particles at low-velocity (as is relevant for the case of annihilations in the Galactic

Halo). These results are summarized in tables 1 and 2 and can be applied to a wide range

of dark matter scenarios, both within the context of hidden sector models and otherwise.

In hidden sector dark matter models, the annihilation products decay into Standard

Model particles through one or more portal interactions. In this paper, we have considered

decays through a variety of such portals, including the hypercharge portal and the Higgs

portal, as well as through portals that connect the hidden sector to extensions of the

Standard Model in which baryon number or baryon-minus-lepton number is gauged, or

within the context of models with an extended Higgs sector. In each case, we calculated the

branching fractions of the hidden sector annihilation products and the resulting spectrum

of gamma rays and antiprotons.

We find that the observed features of the gamma-ray and antiproton excesses can

simultaneously be accommodated within a wide range of hidden sector dark matter models.

More specifically, models in which the dark matter’s annihilation products decay through

the Higgs portal, the hypercharge portal, the baryon portal or the baryon-minus-lepton

portal can each produce acceptable spectra of both gamma ray and antiprotons. Although

we consider constraints derived from gamma-ray observations of dwarf galaxies, we find

that these observations do not significantly restrict the range of viable parameter space

within this class of models.

Lastly, we have considered the prospects for direct detection in this class of hidden

sector dark matter scenarios. Although the portal couplings in such models could, in

principle, be extremely small, the intensity of the gamma-ray and antiproton excesses

suggests that the hidden sector was in equilibrium with the Standard Model at the time

of dark matter freeze-out, providing us with a way of placing a lower limit on the portal

coupling. In light of this information, and within the subset of models that feature spin-

independent scattering between dark matter and nuclei, the prospects for direct detection
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appear promising, despite the small couplings that connect the hidden Standard Model to

the particle content of the Standard Model.
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