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We study spontaneous dimerization and emergent criticality in a spin- 3
2 chain with antiferromagnetic nearest-

neighbor J1, next-nearest-neighbor J2, and three-site J3 interactions. In the absence of three-site interaction J3,
we provide evidence that the model undergoes a remarkable sequence of three phase transitions as a function of
J2/J1, going successively through a critical-commensurate phase, a partially dimerized gapped phase, a critical
floating phase with quasi-long-range incommensurate order, to end up in a fully dimerized phase at very large
J2/J1. In the field-theory language, this implies that the coupling constant of the marginal operator responsible
for dimerization changes sign three times. For large enough J3, the fully dimerized phase is stabilized for all
J2, and the phase transitions between the critical phases and this phase are both Wess-Zumino-Witten (WZW)
SU(2)3 along part of the boundary and turn first order at some point due to the presence of a marginal operator
in the WZW SU(2)3 model. By contrast, the transition between the two-dimerized phase is always first order,
and the phase transitions between the partially dimerized phase and the critical phases are Kosterlitz-Thouless.
Finally, we discuss the intriguing spin- 1

2 edge states that emerge in the partially dimerized phase for even chains.
Unlike their counterparts in the spin-1 chain, they are not confined and disappear upon increasing J2 in favor of
a reorganization of the dimerization pattern.

DOI: 10.1103/PhysRevB.101.174407

I. INTRODUCTION

Antiferromagnetic Heisenberg spin chains have attracted a
lot of attention over the years. Competing interactions induce
frustration and are known to lead to new phases and quan-
tum phase transitions. For example, the J1-J2 spin- 1

2 chain
undergoes spontaneous dimerization [1] when the ratio of
the next-nearest-neighbor interaction to the nearest-neighbor
one J2/J1 > 0.2411 [2]. In the spin-1 chain, spontaneous
dimerization is known to be induced by a negative biquadratic
interaction Jbiq/J1 < −1. Recently, it has been shown that the
three-site interaction J3[(Si−1 · Si )(Si · Si+1) + H.c] induces a
fully dimerized state in spin-S chains and reduces to the J1-J2

model for spin 1
2 [3]. Each of these two terms leads, when

combined with nearest- and next-nearest-neighbor interaction,
to a rich phase diagram for the spin-1 chain. In particular, the
quantum phase transition between the next-nearest-neighbor
(NNN) Haldane phase that appears at large J2 coupling [4–6]
and the dimerized phase has been shown to be in the Ising
universality class with a singlet-triplet gap that remains open
[7–9]. Besides, the Wess-Zumino-Witten (WZW) SU(2)2 crit-
ical line between Haldane and dimerized phases turns into a
first-order transition due to the presence of a marginal operator
in the underlying critical theory.

The Heisenberg spin-1 chain has a bulk gap [10], but spin- 1
2

edge states. In finite systems, the coupling between these two
edge spins decays exponentially fast with the length of the
chain. This causes quasidegenerate low-lying in-gap states,
a singlet and the so-called Kennedy triplet [11]. By con-
trast, half-integer-spin chains with isotropic nearest-neighbor
Heisenberg interaction (J2 = J3 = 0) are known to be gapless

with algebraically decaying spin-spin correlations. Edge spins
do not appear in the critical spin- 1

2 chain, although they
emerge for higher spins. Edge states in critical systems are
fundamentally different from those in the gapped phase: in
the critical spin- 3

2 chain the spin- 1
2 edge states are logarithmi-

cally delocalized over the entire chain, moreover, the energy
splitting between the singlet and triplet low-lying states scales
with the length of the chain L as �edge ∝ 1/[L ln(BL)], where
B is a nonuniversal constant [12].

A previous investigation [13] of the spin- 3
2 J1-J2 chain has

shown that the system undergoes spontaneous dimerization
when J2/J1 > 0.29. The transition between the critical and
the gapped dimerized phases is expected to be in the WZW
SU(2)1 universality class in analogy with the spin- 1

2 J1-J2

model. In this gapped phase, emergent spin- 1
2 edge states are

localized at the open ends of a chain. The appearance of these
edge states in the gapped dimerized phase suggests that it is
rather partially dimerized with alternating single and double
valence bond singlets (VBS) between nearest-neighbor sites.
The edge states disappear around J2/J1 ≈ 0.48 [13]. Since the
correlation length remains finite, it has been proposed that the
system undergoes a first-order phase transition at that ratio by
analogy with the spin-1 J1-J2 model [4].

In the spin- 3
2 J1-J3 model the transition from the critical

WZW SU(2)1 phase [14] to a spontaneously dimerized one
occurs at J3/J1 ≈ 0.063 [15]. This phase transition is con-
tinuous and belongs to the SU(2)k=3 WZW universality class
characterized by the central charge c = 2. This is in agreement
with a recent prediction on symmetry protection of critical
phases [16] that a renormalization-group flow from WZW
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SU(2)k1 to SU(2)k2 theory is possible only if the parity from
k1 to k2 is preserved.

The dimerized phase induced by the three-site interaction
corresponds to a fully dimerized phase with three VBS sin-
glets on every other nearest-neighbor bond. To see this, we
refer to a special point in the J1-J3 model where the ground
state is known exactly. Michaud et al. [3,15] have shown that
at J3/J1 = 1/[4S(S + 1) − 2] the ground state is an exactly
dimerized state for all spin-S chains. Further investigations
have shown that this exact result can be extended to the case
where a next-nearest-neighbor exchange J2 is included [17].
The two fully dimerized states are eigenstates along the line

J3

J1 − 2J2
= 1

4S(S + 1) − 2
, (1)

and they are ground states for J2 not too large. For spin 3
2 ,

Eq. (1) implies J3/(J1 − 2J2) = 1
13 .

In this paper we study the combined effect of next-nearest-
neighbor and three-site interactions in the spin- 3

2 chain. The
model is defined by the J1-J2-J3 Hamiltonian

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si−1 · Si+1

+ J3

∑
i

[(Si−1 · Si )(Si · Si+1) + H.c.]. (2)

In the following, we focus on J1, J2, J3 > 0, and without
loss of generality we fix J1 = 1. The numerical simulations
have been performed with a state-of-the art density matrix
renormalization group (DMRG) algorithm [18–21]. Through-
out the paper, we consider chains of even length with open
boundary conditions.

The paper is organized as follows. In Sec. II we provide an
overview of the phase diagram and discuss its main features.
In Sec. III we focus on small values of J2 and study the nature
of the phase transition between the commensurate-critical
phase and the fully dimerized one. In Sec. IV we provide nu-
merical evidence for a Kosterlitz-Thouless transition between
the commensurate-critical and partially dimerized phases. In
the following Sec. V we provide numerical evidence in favor
of a first-order transition between the two-dimerized phases.
We study the critical-incommensurate phase that emerges
at large values of J2 and discuss the nature of the phase
transitions between this floating phase and the two-dimerized
phases in Sec. VI. In Sec. VII we discuss the behavior of
the edge states in the partially dimerized phase. Section VIII
contains our final discussion and conclusions.

II. PHASE DIAGRAM

Our numerical results are summarized in the phase diagram
of Fig. 1. It contains two dimerized phases, partially and fully
dimerized, and two critical phases with commensurate and
incommensurate correlations. The dimerized phases can be
schematically illustrated using a valence bond singlet (VBS)
representation as shown in sketches of Fig. 1. The fully
dimerized phase corresponds to three valence bonds on every
other J1 bond, while the partially dimerized phase corresponds
to alternating one and two valence bonds.
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Fully dimerized

or
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FIG. 1. Phase diagram of the S = 3
2 chain with next-nearest-

neighbor J2 and three-site interactions J3. Both partially and fully
dimerized phases are gapped and spontaneously break the translation
symmetry. The fully dimerized state is an exact ground state along
the dotted line. Both the c-critical and the floating phases are char-
acterized by a gapless spectrum and algebraically decaying corre-
lations, however, by contrast to the commensurate-critical phase, the
correlations in the floating phase are incommensurate with the lattice.
The fully dimerized phase is separated from both the critical and
the floating phases by a continuous WZW SU(2)3 transition along
the solid line and by a first-order transition along the dashed one.
The partially dimerized phase is separated from both the floating and
critical phases by Kosterlitz-Thouless critical lines. The transition
between the partially and fully dimerized phases is always first order.
The precise location of the boundaries of the floating phase is not
known, thin black lines are just indicative.

The conventional or commensurate- (c-) critical phase is
similar to that of the Heisenberg spin- 1

2 chain. It is stabilized
when both J2 and J3 couplings are small. The dominant wave
vector of the spin-spin correlations is q = π . This critical
phase can be described by the WZW SU(2)1 conformal field
theory [14]. In terms of VBS singlets, this phase can be
visualized as one valence bond per J1 bonds, and on top of
that one valence bond that resonates between two neighboring
bonds (shown schematically with a dashed line).

By contrast, inside the critical phase stabilized at larger
values of J2, the wave vector q is not locked and changes
within the phase. Following the classification by Bak [22] we
will refer to this critical phase as a floating phase. As in the
previous case, the underlying critical theory is WZW SU(2)1

topped with incommensurate oscillations, that, in particular,
affect the boundary conditions. In terms of VBS singlets,
the floating phase can be viewed as a sequence of different
domains. The size of the domains, i.e., the period, changes
with the wave vector q.

The transition between the c-critical and partially dimer-
ized phases is in the Kosterlitz-Thouless [23] (KT) universal-
ity class, in agreement with the previous study of the J1-J2

model [13]. Both the c-critical phase and the KT critical
line are described by WZW SU(2)k=1 theory, however, in
complete analogy with the critical J1-J2 spin- 1

2 chain, they
can be distinguished by logarithmic corrections. Due to the
presence of marginal operators, the logarithmic corrections

174407-2
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appear on top of all finite-size scaling inside the critical phase.
By contrast, at the KT critical line the coupling constant of the
marginal operator vanishes, and the logarithmic corrections
disappear. In Sec. IV we will explain how one can exploit the
logarithmic corrections to determine the location of the KT
critical line.

The transition between the critical and fully dimerized
phases is continuous in the WZW SU(2)k=3 universality below
and up to the end point and first order beyond it. The end point
is located around J2 ≈ 0.1 and J3 ≈ 0.051 28. As has been
shown for the spin-1 chain [7] the switch from continuous
WZW SU(2)k to first-order transition is induced by the change
of sign of a marginal operator. The logarithmic corrections
that are nonzero all along the continuous transition vanish at
the end point, where the marginal coupling vanishes. Interest-
ingly, in the spin- 3

2 chain the end point is located at J2 ≈ 0.1,
which changes very little compared to the corresponding value
for the spin-1 chain J2 = 0.12 [7].

The first-order transition line continues toward small J3

and separates the fully dimerized from the partially dimerized
phase. Then, the line continues as a first-order transition be-
tween the floating and the fully dimerized phases until around
J2 ≈ 0.42 where it eventually turns again into a continuous
WZW SU(2)3 critical line. This is remarkable since, to the
best of our knowledge, neither a first-order transition nor a
higher level k > 1 WZW critical line has been previously
reported at the boundary of a floating phase.

The fact that the SU(2)3 WZW model separates the c-
critical phase from the dimerized phase is quite natural [14].
The same critical theory describes the Bethe ansatz integrable
s = 3

2 chain with biquadratic and bicubic nearest-neighbor
terms adjusted to the integrable point. Again, SU(2)1 and
dimerized phases are expected to appear on the two sides of
that critical point. The fact that only one parameter needs to
be adjusted to reach criticality for SU(2)3 can be understood
from the fact that there is only one relevant primary field with
integer spin in the SU(2)3 model, j = 1. It arises from a (trg)2

term in the effective Hamiltonian where g is the WZW field.
Half-integer spin operators contain odd powers of g and these
are forbidden by the g → −g symmetry corresponding to
translation by one site. It seems natural for this critical theory
to extend to the floating/dimerized transition. The presence of
a marginal current-current operator in the theory explains the
presence of a critical end point beyond which the transition is
first order along both transition lines.

In order to distinguish nondimerized and dimerized phases,
we use the dimerization D( j, N ) = |〈�S j · �S j+1〉 − 〈�S j−1 · �S j〉|
as an order parameter to probe numerically the phase diagram.
Figure 2 shows examples of the middle-chain dimerization
D(N/2, N ) as a function of J3 for three different values of J2.
The dimerization changes continuously for J2 = 0 [Fig. 2(a)],
in agreement with a continuous WZW SU(2)3 transition. A
finite jump in dimerization as in Fig. 2(b) for J2 = 0.2 implies
a first-order phase transition. Both transitions occur from
nondimerized to fully dimerized phases.

For J2 = 0.3, the dimerization is very small up to the
transition from the critical to the partially dimerized phase
beyond which it increases up to a value approximately equal
to 1. The Kosterlitz-Thouless transition between the two
occurs around J3 ≈ 0.008. Under further increase of the J3

0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

0 0.01 0.02 0.03 0.0
0

1

2

3

4

5

0.02 0.03 0.04 0.050

1

2

3

4

0.06

(a) (c)(b)

4

FIG. 2. Middle-chain dimerization for N = 90 (blue) and N =
150 (red) across different transitions. (a) Continuous growth of
dimerization across the WZW SU(2)3 critical line. (b) Finite jump in
dimerization across the first-order phase transition from the c-critical
phase to the fully dimerized phase. (c) Continuous change of the
finite-size dimerization from the nondimerized critical phase to the
partially dimerized phase across a Kosterlitz-Thouless transition (the
critical line goes through J2 = 0.3, J3 ≈ 0.008) and finite jump of
dimerization across the first-order transition from the partially to the
fully dimerized phase around J3 ≈ 0.033. In the critical phase, the
small value of the dimerization is a finite-size effect.

coupling, the dimerization jumps abruptly to approximately
D(N/2, N ) ≈ 4, indicating a first-order phase transition to the
fully dimerized phase.

On top of long-range dimerization one can distinguish
regions of fully and partially dimerized phases by short-range
order as shown in Fig. 3. Besides, in the partially dimerized
phase certain regions can be distinguished by emergent spin- 1

2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FDC2

Floating

PDIC
RPD

PDC

C-critical
FDC1

FDIC

FIG. 3. Extended phase diagram of the spin- 3
2 J1-J2-J3 model.

The dotted lines correspond to three disorder lines, one of which
coincides with the exactly solvable line given by Eq. (1). There
are three regions in the fully dimerized (FD) phase that can be
distinguished by short-range order: commensurate (c) with wave
vector q = π below the exactly dimerized line; incommensurate with
π/2 < q < π (FDIC) above the exact line and not too far from
the phase boundary, and commensurate with q = π/2 deep inside
the fully dimerized phase. The partially dimerized (PD) phase is
commensurate below the disorder line and incommensurate above it.
Nonprotected spin- 1

2 edge states are present in the partially dimerized
phase in PDC and PDIC and disappear beyond the dashed-dotted
line. This causes a reorientation of the dimers (RPD) in finite-
size chains. Short-range correlations remain incommensurate. The
c-critical phase is always commensurate with q = π . The floating
phase is always incommensurate.
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edge states. Below, we provide a short description of each
subphase.

Fully dimerized phase:
(i) FDC1: Real-space correlations are commensurate with

wave vector q = π .
(ii) FDIC: Real-space correlations are incommensurate

with wave vector π/2 < q < π .
(iii) FDC2: Real-space correlations are commensurate

with wave vector q = π/2.
As in the case of spin-1 chain [9], the disorder line that

separates FDC1 from FDIC coincides with the exact line given
by Eq. (1).

Partially dimerized phase:
(i) PDC: Real-space correlations are commensurate with

wave vector q = π . On finite-size chains there are two spin- 1
2

edge states that couple to each other and form a singlet (triplet)
ground state and triplet (singlet) excited state when the entire
chain contains an even (odd) number of sites. The energy
splitting between these in-gap states is exponentially small
with the system size.

(ii) PDIC: Real-space correlations are commensurate with
wave vector q < π . Spin- 1

2 edge states are present, but de-
pending on the wave vector q and the distance between the
edges L they can eventually become completely decoupled
from each other, which leads to exact zero modes: level
crossing between singlet and triplet in-gap states.

(iii) RPD: As in the PDIC, real-space correlations are
commensurate with wave vector q < π . Edge states disap-
pear, which leads to the reorientation of the dimers in finite-
size chains: the pattern with (2,1) VBS singlets changes to
pattern (1,2).

III. TRANSITION BETWEEN THE c-CRITICAL AND
FULLY DIMERIZED PHASES

In order to determine the precise location of the critical
line between the nondimerized c-critical phase and the fully
dimerized one, we looked at the finite-size scaling of the
middle-chain dimerization D(N/2, N ). For each fixed value of
J2 we compute the dimerization as a function of system size
for several values of J3. Then, the critical line is associated
with a straight line (the separatrix) in a log-log plot of the
dimerization D(N/2, N ) as a function of the chain length N
[see Fig. 4(a)].

Based on numerical calculations of the central charge,
Michaud et al. [15] have shown that for J2 = 0 the corre-
sponding transition is in the WZW SU(2)3 universality class.
Conformal field theory (CFT) predicts for WZW SU(2)k=3

the scaling dimension of the dimerization operator to be
d = 3/[2(2 + k)] = 3

10 . The slope of the separatrix gives an
“apparent” critical exponent, which is different from d = 3

10
due to logarithmic corrections. At the end point, however,
the coupling constant of the marginal operator vanishes, and
the logarithmic corrections disappear. So, this is the only
point along the transition where the critical exponents can be
accurately extracted from finite sizes. By keeping track of the
apparent critical exponent along the critical line, we find that
it crosses the line d = 3

10 at J2 ≈ 0.10 and J3 ≈ 0.051 28 as
presented in Fig. 4(b).
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0.1
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0.0515
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(c) (d)

FIG. 4. (a) Log-log plot of the middle-chain dimerization
D(N/2, N ) as a function of the number of sites N for J2 = 0.1 and
different parameters J3 around the critical value. The linear curve
corresponds to the critical point and the slope gives the critical
exponent d ≈ 0.307 in good agreement with the CFT prediction 3

10
for WZW SU(2)k=3 critical theory. (b) Apparent critical exponent
along the SU(2)3 critical line as a function of J2. Red circles: from
the slope of the log-log plot D(N/2, N ) as a function of N for the
value of J3 for which it is linear. Blue circles: from fitting D( j, 200).
The black line is the theoretical value of the exponent 3

10 . Thus, the
end point is located at J2 = 0.1 and J3 = 0.05128. (c) Scaling of
the dimerization parameter D( j, N ) along the chain with N = 200
sites at the SU(2)3 critical end point fitted to Eq. (3). The extracted
exponent is in excellent agreement with d = 3

10 . (d) Entanglement
entropy at the end point for N = 200 after removing the Friedel
oscillations with weight ζ ≈ −1.3. The central charge obtained from
the fit to Calabrese-Cardy formula [24] c ≈ 1.781 agrees within 2%
with the CFT predictions 9

5 .

It turns out that the fully dimerized phase first appears
at the edges of an open chain and therefore free boundary
conditions in the spin- 3

2 chain correspond to fixed boundary
conditions in CFT. A similar effect has been previously re-
ported for the spin-1 J1-J2-J3 chain [7]. Then, according to the
boundary CFT, the dimerization in the finite-size chain at the
critical line scales (up to logarithmic corrections) as

D( j, N ) ∝ 1/[(N/π ) sin(π j/N )]d , (3)

where j is the position index, and the critical exponent is
d = 3

10 for WZW SU(2)k=3. This effect is known as Friedel
oscillations. An example of the scaling of the dimerization
along a finite chain is shown in Fig. 4(c). The critical expo-
nents extracted along the transition line are summarized in
Fig. 4(b) and are in a perfect agreement with those extracted
from the finite-size scaling of the middle-chain dimerization
D(N/2, N ).

We extract the central charge numerically from the finite-
size scaling of the entanglement entropy in an open chain:

S̃N (n) = c

6
ln d (n) + ζ 〈SnSn+1〉 + s1 + ln g, (4)

where d = 2N
π

sin ( πn
N ) is the conformal distance and ζ is a

nonuniversal constant introduced in order to suppress Friedel
oscillations. Figure 4(d) provides an example of a fit of the
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(a)

(c) (d)

(b)

FIG. 5. Ground state and excitation energy at J2 = 0.1 and J3 =
0.051 28, on the critical line between the critical and the fully dimer-
ized phases. (a), (b) Linear scaling of the ground-state energy per site
with 1/N2 after subtracting ε0 and ε1 in open chains with (a) even and
(b) odd numbers of sites N . (c), (d) Energy gap between the ground
state and the lowest energies in different sectors of Stot

z = 1, . . . , 5 for
even and Stot

z = 5
2 , . . . , 11

2 for odd (blue circles) as a function of 1/N
for even and odd numbers of sites. Red lines are CFT predictions for
j = 0 and 3

2 towers with the velocities extracted from the first lowest
excitation level and indicated in each panel.

reduced entanglement entropy S̃N (n) with Eq. (4). The values
of the central charge along the continuous part of the transition
always agree within 3% with the CFT prediction c = 9

5 for the
critical WZW SU(2)3 theory.

For any conformally invariant boundary condition, the
ground state scales with the system size as

E = ε0N + ε1 + πv

N

(
− c

24
+ x

)
, (5)

where ε0 and ε1 are nonuniversal constants, c is the central
charge, and x is the scaling dimension of the corresponding
primary field. For the SU(2)k=3 WZW model there are four
conformal towers labeled by the spin of the lowest-energy
states j = 0, 1

2 , 1, and 3
2 . The scaling dimension of the corre-

sponding operator is given by x = j( j + 1)/(2 + k). Chains
with an even number of sites have a singlet ground state
and are thus described by the conformal tower j = 0 with
scaling dimension x = 0. By contrast, the ground state of a
chain with an odd number of sites belongs to the conformal
tower with the largest j = 3

2 with scaling dimension x = 3
4 .

TABLE I. Lowest excitation energy with spin s for both j = 0
and 3

2 WZW SU(2)3 conformal towers.

j = 0

s 0 1 2 3 4 5
(E − E0)N/πv 0 1 2 3 6 9

j = 3
2

s 1
2

3
2

5
2

7
2

9
2

11
2

(E − E0)N/πv 2 0 2 4 6 10

Thus, the ground-state energies of a chain with open boundary
conditions (OBC) with even or odd numbers of sites scale as

Eeven = ε0N + ε1 − 3πv

40N
, (6)

Eodd = ε0N + ε1 + 27πv

40N
. (7)

Examples of finite-size scaling of the ground-state energy
for even and odd numbers of sites are shown in Figs. 5(a)
and 5(b).

We have extracted several excited states by computing the
lowest states within different symmetry sectors of total mag-
netization 0 � Sz

tot � 5. In order to construct WZW SU(2)k=3

conformal towers, we have closely followed Ref. [25]. Since
we are interested only in the lowest state for different values
of the total spin s, the energy level that corresponds to this
state is defined by an integer n that satisfies

j2 − S2

k
� n <

j2 − S2 + k

k
. (8)

The results for j = 0 and 3
2 WZW SU(2)3 conformal towers

are summarized in Table I. For the j = 3
2 tower, the ground

state is in the sector with Stot = 3
2 , and it appears as the lowest

state in the two sectors of total magnetization Sz
tot = 1

2 and 3
2 .

The conformal towers obtained numerically for both even
and odd numbers of sites are shown in Figs. 5(c) and 5(d) and
summarized in Table II.

Finally, in order to prove that the pair of parameters J2 =
0.1 and J3 = 0.051 28 indeed corresponds to the end point,
we show that the conformal tower is destroyed by moving
along the critical line away from the end point. Following
the procedure established in Ref. [7], we have plotted the
velocities extracted from three different excitation levels n
according to vn = (En − E0)N/(πn) (Fig. 6). At the end point,
all velocities are the same, implying that the conformal tower
is restored. This occurs around J2 = 0.1, in agreement with
the value determined from the critical exponent. Due to log-
arithmic corrections the velocities split but remain relatively
close to each other along the continuous transition. Above the
end point, however, the spitting of (En − E0)N/(πn) is much
faster, in agreement with the first-order transition with a very
different structure of the spectrum.

In order to characterize the phase transition beyond the end
point, we have looked at the dimerization and the ground-state
energy. Both quantities were computed in the middle of fairly
long chains with N = 200 and 400 sites to reduce the impact
from the finite-size effects and provide an estimate of their
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TABLE II. Energy levels at the SU(2)3 critical point. The ground
state for N even Stot

z = 0 and odd Stot
z = 3

2 refers to the 1/N term in
the ground-state energy. For the rest, the gap above the ground state is
given. The results are in units of πv/N with v = 1.095. OBC stands
for open boundary conditions.

DMRG: J2 = 0.1
Energy level CFT SU(2)3 J3 = 0.05128

OBC, Even, GS Stot
z = 0 − 3

40 −3/40

OBC, Even, GS Stot
z = 1 1 1.0065

OBC, Even, GS Stot
z = 2 2 2.0003

OBC, Even, GS Stot
z = 3 3 2.9999

OBC, Even, GS Stot
z = 4 6 6.057

OBC, Even, g GS Stot
z = 5 9 9.12

OBC, Odd, GS Stot
z = 3

2
27
40

=0.675 0.666

OBC, Odd, GS Stot
z = 5

2 2 2.018

OBC, Odd, GS Stot
z = 7

2 4 4.028

OBC, Odd, GS Stot
z = 9

2 6 6.058

OBC, Odd, GS Stot
z = 11

2 10 10.19

values in the thermodynamic limit. The energy per bond εN is
defined by

εN = ε1 + ε2 + ε3,

where

ε1 = J1

2
〈Si−1 · Si + Si · Si+1〉,

ε2 = J2〈Si−1 · Si+1〉,
ε3 = J3〈(Si−1 · Si )(Si · Si+1) + H.c.〉,

where (i, i + 1) is the central bond.
Beyond the end point, for J2 = 0.18, we detect a kink

in the ground-state energy εN as shown in Fig. 7(a). In the
vicinity of the transition the energy increases monotonously
with J3; thus, in order to see the change of the slope we have
to look at the narrow window around the phase transition.
By extrapolating the numerical data with a second-order
polynomial [black lines in Fig. 7(a)] we find the crossing
point of the two fits around J3 = 0.0433. It is essential that
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1.2

1.25

0 0.1 0.2
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1.1

1.15

1.2
(a) (b)

FIG. 6. Velocity along the critical line between the critical and
the fully dimerized phases extracted from the gap between the nth
energy level and the ground state for (a) N = 50 and (b) N = 51.
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FIG. 7. (a) Kink in the energy per site plotted as a function of J3

for J2 = 0.18 above the end point. (b) Finite jump in the dimerization
as a function of J3 for J2 = 0.18 in agreement with the first-order
phase transition.

the ground-state energy does not change significantly upon
increasing the system size from N = 200 to 400, so that the
edge effects are negligibly small in the middle of the chain for
the chosen system sizes.

We also detect a finite jump in the dimerization D(N/2, N )
between J3 = 0.0432 and 0.0435 as shown in Fig. 7(b). Thus,
the transition is expected to occur within this interval in
agreement with the results obtained from the ground-state
energy.

To summarize, we have provided numerical evidence that
the phase transition between the critical and the fully dimer-
ized phases is continuous in the WZW SU(2)3 universality
class below and including at the end point and it is first order
beyond it. This result is rather surprising since the critical
phase is connected to a gapped phase with spontaneously
broken symmetry via a first-order transition. To the best of our
knowledge, such a scenario has not yet been observed in the
context of one-dimensional spin systems. The conformal field
theory explains the appearance of the first-order transition by
the change of the sign of the marginal coupling constant.

IV. c-CRITICAL PHASE AND FIRST
KOSTERLITZ-THOULESS TRANSITION

As pointed out above, the commensurate critical phase
that appears at small values of J2 and J3 and the Kosterlitz-
Thouless transition to the partially dimerized phase are both
characterized by the WZW SU(2)1 critical theory and can be
distinguished only by the logarithmic corrections.

We have extracted the central charge numerically by fitting
the reduced entanglement entropy to Eq. (4). Examples of fits
of finite-size results are provided in Fig. 8. CFT predicts the
central charge c = 1 for WZW SU(2)1 critical theory. Due
to large logarithmic corrections, the central charge extracted
from the entanglement entropy in finite-size clusters differs
significantly from this prediction deep inside the critical
phase, as can be observed in Fig. 8(a). By contrast, close to the
Kosterlitz-Thouless critical line, the logarithmic corrections
are suppressed, and the central charge can be extracted with
sufficient accuracy even from relatively small chains as shown
in Fig. 8(b).

Close to the Kosterlitz-Thouless transition, the dimeriza-
tion decreases almost linearly on a log-log scale on both sides
of the transition, and locating the critical line by identifying
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FIG. 8. Extraction of the central charge for open chains with N =
90 (green) and N = 150 (red) by fitting the reduced entanglement
entropy S̃N (n) with the Calabrese-Cardy formula of Eq. (4) inside
the critical phase (a) far from and (b) close to the Kosterlitz-Thouless
transition

the separatrix becomes extremely challenging [see Fig. 9(a)].
To locate the phase transition, one can extract the central
charge, that differs slightly from c = 1 inside critical phase
close to the transition, but rapidly decreases in the gapped
partially dimerized phase, as shown in Fig. 9.

An alternative way to locate the KT phase transition is
based on the effective velocities that can be extracted from
the excitation spectrum. For the SU(2)k=1 WZW model, there
are only two conformal towers labeled by the total spin:
j = 0 and 1

2 . The levels corresponding to the lowest states
with different magnetization sectors can be extracted from
Eq. (8). They are summarized in Table III. Due to presence
of the low-lying edge states around the Kosterlitz-Thouless
transition, the listed states can be approximately found as
ground states in the symmetry sector Sz

tot = s + 1. The numer-
ical results obtained for J3 = 0.01 are summarized in Fig. 10.
The crossing point where all velocities are almost the same
and therefore the conformal towers are restored is around
J2 ≈ 0.31 and slowly decrease with increasing system size.
Thus, these results are consistent with our previous estimate
of the critical point J2 ≈ 0.3 for J3 = 0.01. In general, one
can improve the results by removing or fixing the edge states,
which themselves contribute logarithmically to the energy.
Here, since we are interested only in the location of the critical
line, shifting the sectors by Sz

tot = +1 seems sufficient.
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FIG. 9. (a) Middle-chain dimerization D(N/2, N ) as a function
of the system size N for J3 = 0.01. For finite-size systems the
apparent finite-size scaling is linear even above the transition that
occur at 0.29 � J2 � 0.30. (b) Central charge as a function of J2

for J3 = 0.01. It is given by c = 1 inside the critical phase close
to the transition and decreases toward zero in the gapped partially
dimerized phase. The results are for an open chain with N = 150
sites.

TABLE III. Lowest excitation energy with spin s for both j = 0
and 1

2 WZW SU(2)1 conformal towers.

j = 0

s 0 1 2 3 4 5
(E − E0)N/πv 0 1 4 9 16 25

j = 1
2

s 1
2

3
2

5
2

7
2

9
2

11
2

(E − E0)N/πv 0 2 6 12 20 30

V. TRANSITION BETWEEN THE TWO DIMERIZED
PHASES

A phase transition between the partially and the fully
dimerized phases occurs for 0.22 � J2 � 0.35, and it is of
first order. This transition can be seen as a pronounced kink in
the energy per site εmid calculated in the middle of the chain.
A small hysteresis behavior appears because the dimerization
is favored at the open edges (see Fig. 11). It decreases with
increasing system size. Apart from that, the finite-size effects
are very small, and the location of the critical point can be
extracted accurately from relatively small clusters.

The simplest domain wall between the fully and partially
dimerized domains carries spin 1

2 . One can detect it as a pair of
solitons [see Fig. 12(a)] in the magnetization profile of a chain
with Sz

tot = 1 at the transition line between the two phases.
From Fig. 12(b) one can also conclude that the domains of
fully dimerized states are located close to the open edges of
the chain, while the domain in the middle is in the partially
dimerized state.

VI. FLOATING PHASE

The numerical investigation of floating phases is always
challenging. Since the floating phase is critical and character-
ized by a divergent correlation length, a proper convergence
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(a) (b)

(c) (d)

FIG. 10. Velocities across the Kosterlitz-Thouless transition be-
tween the critical and partially dimerized phases extracted from the
gap between various energy levels and the ground state as a function
of J2 for fixed value of J3 = 0.01 and different system sizes.

174407-7



CHEPIGA, AFFLECK, AND MILA PHYSICAL REVIEW B 101, 174407 (2020)

0.03 0.032 0.034 0.036 0.038 0.04
-1.92

-1.91

-1.9

-1.89

-1.88

FIG. 11. Kink in the energy across the first-order phase transition
between partially and fully dimerized phases.

in DMRG can be achieved for relatively small system sizes
only. At the same time, the incommensurate wave vector q has
to be compatible with the boundary conditions, either open
(and usually spontaneously fixed) or periodic. Therefore, the
system size should be sufficiently large to resolve the true
wave vector. The closer q is to a commensurate value, the
longer the system should be to resolve the difference. More-
over, an increasing next-nearest-neighbor interaction naturally
increases the amount of entanglement carried by the J2 bonds,
that are superimposed when the system is bipartite in the
DMRG. We keep up to 1500 states and perform up to 7
DMRG sweeps in the two-site routine.

A. Incommensurate correlations

In order to extract the wave vector q we fit the real-
space spin-spin correlations Ci, j = 〈Si · S j〉 − 〈Si〉 · 〈S j〉 to

-0.1
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0 20 40 60 80 100 120

-1

-0.5

0
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FIG. 12. (a) Local magnetization and (b) nearest-neighbor cor-
relation profiles for N = 120 at J2 = 0.28 and J3 = 0.0349, a point
on the the first-order transition line between the partially and fully
dimerized states. One can observe the coexistence of domains in the
partially and fully dimerized states separated by two domain walls,
each of which carries a spin 1

2 .
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FIG. 13. Example of fit of the correlation function in a chain with
N = 150 sites to the Ornstein-Zernicke form. In the first step (a), we
extract the correlation length discarding the oscillations (solid red
line). In the second step (b), we fit the reduced correlation function to
extract the wave vector q. The combination of these two fits is shown
in (a) as a dotted line. It is in perfect agreement with the DMRG data.

the Ornstein-Zernicke form

COZ
i, j ∝ e−|i− j|/ξ

√|i − j| cos(q|i − j| + ϕ0), (9)

where the correlation length ξ , the wave vector q, and the
phase shift ϕ0 are fitting parameters. We equally use the same
form to fit the correlations inside the critical phase because the
finite length of the chain and the finite MPS bond dimension
both induce an effective finite correlation length. We find
that the quality of the fit is improved if it is done in two
steps, as shown in Fig. 13. First, we discard the oscillations
and fit the main slope of the exponential decay. This allows
us to perform a fit in a semilog scale logC(x = |i − j|) ≈
c − x/ξ − log(x)/2. Second, we define a reduced correlation
function

C̃i, j =
√|i − j|

e−|i− j|/ξ+c
Ci, j (10)

and fit it with a cosine C̃i, j ≈ a cos(q|i − j| + ϕ0).
Figure 14(a) summarizes our results and shows three dis-

order lines and a set of equal-q lines. Close to the exact line
in the fully dimerized states the wave vector changes very
fast and the equal-q lines are quite condensed. In the partially
dimerized phase, we observe an abrupt change from q = π

to q ≈ 0.83π at the disorder line. The wave vector q seems
to be locked at this value for a short parameter range not
too far from the disorder line. We believe that this plateau is
purely a finite-size effect, however, a deeper understanding
of its nature is beyond the scope of this work. Apart from
that, the q vector changes with the parameters J2 and J3 in
a continuous and smooth way, in particular inside the floating
phase. Figure 14(b) shows q as a function of J3 for a fixed
value of J2. One can clearly see that inside the floating phase
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FIG. 14. (a) Phase diagram with the lines of constant wave vector
q extracted by fitting real-space correlations to the Ornstein-Zernicke
form. (b) Dependence of the wave vector q as a function of J3 for
J2 = 0.7 across a range that overlaps with the floating and fully
dimerized phases. The wave vector q reaches its commensurate value
π/2 at the disorder point J3 ≈ 0.032.

the wave vector is not locked to a particular value, but indeed
changes very smoothly with coupling constant.

In order to understand the nature of the floating phase, let
us think of the spin- 3

2 chain as a composite system made of
a spin-1 chain and a spin- 1

2 chain. At sufficiently large value
of the next-nearest-neighbor coupling J2, the spin-1 chain is
in the next-nearest-neighbor (NNN) Haldane phase with one
VBS singlet per J2 bond [4]. It has been shown, however, that
this simple picture is only true at infinitely large J2. At finite
values, the ground state corresponds to what was called the
intertwined Haldane chain [6], the periodic twist between the
two chains being responsible for the incommensurate short-
range correlations. The superposition of this spin-1 state with
the remaining critical spin 1

2 sketched in Fig. 15 then naturally
leads to an intuitive picture of the floating phase.

B. Dimerization

Inside the floating phase, the incommensurability affects
also local quantities such as the nearest-neighbor correlations
at the center of the chain because the correlation length di-
verges; therefore, the definition of the dimerization D(N/2, N )
that we used before is no longer applicable. Instead, we
compute the amplitude of the nearest-neighbor correlations

Dampl = max(〈SiSi+1〉) − min(〈SiSi+1〉), (11)

+

+ +...
FIG. 15. VBS sketch of the state in the floating phase that

consists of the intertwined Haldane chains (black solid lines) and
a critical spin- 1

2 chain (red dashed line).
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FIG. 16. Dimerization as a function of J2 for (a) J3 = 0; (b) J3 =

0.01; and (c) J3 = 0.02 and for four different system sizes N =
30, 60, 90, 150. The first peak of dimerization around J2 ≈ 0.3 cor-
responds to the partially dimerized phase, while for large J2 the finite
dimerization corresponds to the fully dimerized phase. Between
these two regimes, the vanishingly small dimerization corresponds
to the floating phase. The inset in (a) shows the finite-size scaling of
the dimerization at J3 = 0 and J2 = 1.5.

and the minimum of the local dimerization

Dmin = min(〈Si−1Si〉 − 〈SiSi+1〉), (12)

where N/2 − 5 < i < N/2 + 5, i.e., in a small window in the
middle of the chain. Inside the dimerized phase (when the
system size sufficiently exceeds the correlation length) both
definitions give the same result as the middle-chain dimeriza-
tion D(N/2, N ) used before. In Fig. 16 we show Dampl and
Dmin as a function of the next-nearest-neighbor interaction J2

for three values of J3. In each of the three cases the curve starts
with a small finite-size dimerization inside the commensurate
critical phase, followed by a pronounced peak with finite
dimerization over an extended region that corresponds to
the partially dimerized phase. Upon further increase of J2,
the dimerization is nonmonotonous: it decreases and remains
extremely small over an extended parameter range; eventually,
it increases again indicating the entrance to the fully dimerized
phase. By analogy with spin 1

2 we expect the dimerization
to decrease at large J2; our results for J3 = 0.02 support this
scenario.

C. Second Kosterlitz-Thouless transition

Finding the location of the Kosterlitz-Thouless phase tran-
sition between the partially dimerized and the floating phase
is extremely challenging because of the incommensurate cor-
relations on both sides of the transition. In particular, for
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FIG. 17. (a) Effective velocities across the transition between
partially dimerized and floating phases extracted from the gap be-
tween various energy levels and the ground state as a function of
J2 for fixed value of J3 = 0 and different system sizes. Only first
crossing is shown. (b) Conformal towers of states extracted at the
crossing points in (a). The DMRG data (circles) agree with the CFT
prediction for WZW SU(2)1 (gray lines) within 2%.

any finite-size chain, open edges with stronger dimerization
correspond to conformally invariant boundary conditions only
at particular values of the wave vector q, and therefore only at
specific points in the phase diagram.

In Fig. 17(a) we plot the effective velocities extracted
from the finite-size spectrum along the line J3 = 0. As in the
previous case, we expect the velocities to cross at the points
where the conformal towers are restored. Luckily enough,
the logarithmic corrections grow slowly with J2, so for every
system size N we observe a very clear crossing of all three
lines.

In order to show that the observed crossings are not
a coincidence, but indeed signal the WZW SU(2)1 critical
theory, we look at the higher excited states. In Fig. 17(b)
we compare the structure of the excitation spectrum at the
crossing point with the CFT prediction for WZW SU(2)1.
Since the position of the crossing changes with the size of
the chain, one cannot expect the effective velocity to remain
the same. Therefore, we extract an effective conformal level
with respect to the singlet-triplet gap for each system size N as
neff = (En − E0)/(E1 − E0). This means that the lowest level
in Fig. 17(b) that corresponds to n = 1 is trivial and shown
only for completeness. The next two levels with n = 4 and 9
show how well we identified the location of the crossing in
Fig. 17(a). Finally, the two highest levels provide the results
for Sz

tot = 4 and 5 and show how close the spectrum is to the
WZW SU(2)1 conformal tower. All neff extracted here agree
with the CFT prediction within 2%. This agreement is sur-
prisingly good and suggests either that logarithmic corrections
grow inside the floating phase very slow, so that none of the
observed crossings are essentially affected, or that there is a
process associated with incommensurability that compensates
logarithmic corrections at the crossing points.

The position of the crossing point scales with the system
size in a nonmonotonous way, but oscillates within a wide
range of parameters. This makes it impossible with the avail-
able numerical method to identify accurately the location of
the Kosterlitz-Thouless transition in the thermodynamic limit.
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FIG. 18. (a) Apparent critical exponent along the transition be-
tween the floating and fully dimerized phases extracted from a finite-
size extrapolation of the middle-chain dimerization (blue circles)
and from the fit of the Friedel oscillation profile for two different
chain lengths. (b) Example of finite-size scaling of the middle-chain
dimerization for J2 = 0.42 and various values of J3 in the vicinity
of the critical point. The slope of the separatrix gives an apparent
critical exponent.

D. Phase transition between the floating and fully
dimerized phases

In order to locate the phase transition between the floating
and the fully dimerized phases, we look at the finite-size
scaling of the dimerization. Despite the presence of algebraic
incommensurate order, this method works reasonably well
when J2 is not too large. An example of such a finite-size
scaling is shown in Fig. 18(b). The slope gives an apparent
critical exponent that changes along the transition due to
the presence of logarithmic corrections. By analogy with the
lower part of the phase diagram, we expect the transition
between the critical and the fully dimerized phase to be
in the WZW SU(2)3 universality class. If this is so, the
expected critical exponent (in the absence of logarithmic
corrections) takes the value d = 0.3. According to our results
shown in Fig. 18, this critical exponent is recovered around
J2 ≈ 0.42 and J3 ≈ 0.028 15. It is worth mentioning that one
might expect significant error bars in Fig. 18(a). Although
all shown finite-size results are well converged, we cannot
reach convergence for chains larger than N = 90 sites; and
it is hard, if actually possible, to estimate finite-size effects
due to the presence of quasi-long-range incommensurability.
We therefore expect that the location of the end point can
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1.6

0.1 0.5 1

FIG. 19. Extraction of the central charge for open chains by
fitting the reduced entanglement entropy S̃N (n) with the Calabrese-
Cardy formula of Eq. (4) at the end point of the WZW line between
the floating and the fully dimerized phases at J2 ≈ 0.42 and J3 ≈
0.028 15.
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be slightly different in the thermodynamic limit, however, the
very existence of the end point at which the transition switches
from first order to continuous is solid.

At the end point, where logarithmic corrections are ex-
pected to vanish, we extract the central charge from the finite-
size scaling of the reduced entanglement entropy as presented
in Fig. 19. The extracted values of the central charge are in
very good agreement with the CFT prediction c = 9

5 for WZW
SU(2)3.

VII. EDGE STATES IN PARTIALLY DIMERIZED PHASE

A. Disappearance of the edge states

One of the most intriguing and potentially misleading
features of the phase diagram is the line where the spin- 1

2
edge states disappear. This happens inside the gapped par-
tially dimerized phase and well away from each of the phase
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FIG. 20. (a) Difference between strong and weak consecutive
nearest-neighbor correlations computed in the middle of a finite-
size chain in the vicinity of the first-order transition between the
partially and fully dimerized phases. Shortly before the transition,
the dimerization switches to a negative value, while its absolute
value remains continuous [see Fig. 2(c)]. (b) Sketch that show the
mechanism of disappearance of the edge states upon increasing the
J2 coupling. (c), (d) Nearest-neighbor correlations along a finite-size
chain with N = 150 sites below (c) and above (d) the line where
the edge states disappear. Blue (red) dots correspond to odd (even)
bonds. One can clearly see an abrupt reorientation of the dimers.
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FIG. 21. Phase diagram with sketches of partially dimerized
states with and without edge states.

boundaries. This is very uncommon; in the original study of
the J1-J2 model, the disappearance of the edge states has been
interpreted as the indication of a phase transition [13]. And
since the correlation length remains finite at the point where
the edge states disappear, it has been suggested [13] that the
transition is first order.

We would like to propose a different explanation of this
phenomenon. Starting from a certain value of the next-
nearest-neighbor coupling, open edges favor domains in a
“ladder” state, in which some VBS singlets are located on

FIG. 22. Deconfinment of the edge states in the partially dimer-
ized states.
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FIG. 23. Two crossings between singlet and triplet low-lying
energy levels for N = 16 as a function of the next-nearest-neighbor
coupling constant. (b) Enlarged parts of (a).

a few J2 bonds not too far from the edges, as shown in the
sketch in Fig. 20(b). It is easy to see that such edge domains
can be connected to a domain in the partially dimerized state
via nonmagnetic domain walls, so that the localized spin 1

2
disappear at both edges. However, this requires a reorientation
of dimers: if in the region where the edge states are present,
strong dimers are located on every odd bond, then, in the
absence of edge states, even bonds become stronger. This is
well illustrated by Figs. 20(c) and 20(d). The corresponding
regions with and without edge state are marked in the phase
diagram of Fig. 21.

Note also that if one keeps track of the sign of the dimer-
ization Ds( j, N ) = 〈�S j · �S j+1〉 − 〈�S j−1 · �S j〉, there is a small
region before the first-order transition where the sign of the
dimerization changes.

We find it instructive to illustrate the deconfinement of the
edge states in the partially dimerized phase using the VBS
sketches shown in Fig. 22. Note that the VBS picture changes
only in the vicinity of the edges when the spin 1

2 is moved
along the chain. In the bulk, it can move at no energy cost as a
domain wall between partially dimerized state with different
dimer orientations.

B. Exact zero modes

Recently, it has been shown that the effective coupling be-
tween the spin- 1

2 edge states of a spin-1 chain of finite length
can be continuously tuned by frustration if it also induces
short-range incommensurability [26]. It implies the existence
of several level crossings between the singlet and triplet in-
gap states, i.e., points where the edge states are completely
decoupled from each other. Later, this conclusion has been
generalized to various spin ladders and to a spin-2 chain [27].
In all these cases, however, the translation invariance has been
preserved.

In the present case, localized spin- 1
2 edge states emerge

in the partially dimerized phase, inside which the translation
symmetry is spontaneously broken. However, it turns out that
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FIG. 24. Four crossings between singlet and triplet low-lying
energy levels for N = 24 as a function of the next-nearest-neighbor
coupling constant. (b) Enlarged parts of (a).

the broken symmetry does not prevent the appearance of exact
zero modes. In the region labeled PDIC and located between
the disorder line and a line along which the edge states vanish,
we observe several level crossings between singlet and triplet
in-gap states as shown in Figs. 23 and 24.

We have used the average energy as a reference to plot
the relative energy of singlet and triplet states: εS,T = ES,T −
(ES + ET )/2. So, the level with negative relative energy cor-
responds to the ground state. Note that below the disorder line
the ground state is singlet if N is even and it is a triplet if N is
odd, while above the line, at which the edge states disappear,
the ground state is always a singlet. It implies that the number
of crossings are even for N even and are odd when N is odd.

These results have been obtained by targeting two states in
the sector of Sz

tot = 0 as explained in Ref. [28]. Several data
points for triplets have been cross checked by computing the
energy of the lowest-energy state in the sector Sz

tot = 1.

VIII. CONCLUSIONS

To summarize, the J1-J2-J3 model leads to a very rich phase
diagram that contains two dimerized phases and two critical
phases, to be compared with three phases in the spin-1 case
and only two phases in the spin- 1

2 case. The combination
of both J2 and J3 terms was instrumental to understand the
differences between these phases and the transition between
them. For instance, the presence of an exactly dimerized line
for J3 large enough is very important to support the presence
of a first-order transition between the fully dimerized phase
and a partially dimerized phase. Still, let us emphasize that
all these phases appear in the simple J1-J2 model, a realistic
model that is naturally realized in zigzag chains.

This phase diagram reveals a number of unexpected fea-
tures. The change in the nature of the phase transition between
the c-critical and fully dimerized phase from continuous to
first order agrees with our previous results on spin 1 and
confirms our prediction that the realized scenario is generic
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for theories with a marginal operator [7]. It is nevertheless
remarkable because the first-order transition appears at the
boundary of a critical gapless phase.

Surprisingly enough, the upper part of the phase diagram
contains a reflected version of this transition: the first-order
line turns into a continuous WZW SU(2)3 critical line upon
increasing the next-nearest-neighbor interaction. We expect
only one marginal operator in the theory, so the double change
of nature of the critical line suggests that the coupling constant
of this marginal operator has a minimum as a function of J2

and therefore crosses zero at the end points. The appearance
of a floating phase over such a wide parameter range is also
quite uncommon. Note that an accurate determination of the
phase boundaries of the floating phase would require further
advances in numerical algorithms.

Finally, we have clarified the origin of the behavior of the
edge states in the partially dimerized phase. In particular, we
have shown that the disappearance of the edge states does

not necessarily imply a phase transition, but can signal local
changes of the edges that do not affect the bulk.

Altogether, the physics of the frustrated spin- 3
2 chain turns

out not to be a simple extension of that of the spin- 1
2 chain,

even if in the absence of frustration they are gapless and
described by the same field theory. We hope that the present
results will stimulate further experimental investigation in this
direction.
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