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We investigate the nonequilibrium dynamics of a class of isolated one-dimensional systems possessing two
degenerate ground states, initialized in a low-energy symmetric phase. We report the emergence of a timescale
separation between fast (radiation) and slow (kink or domain wall) degrees of freedom. We find a universal
long-time dynamics, largely independent of the microscopic details of the system, in which the kinks control the
relaxation of relevant observables and correlations. The resulting late-time dynamics can be described by a set
of phenomenological equations, which yield results in excellent agreement with the numerical tests.
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I. INTRODUCTION

Understanding the nonequilibrium dynamics of quantum
and classical many-body systems represents a formidable
challenge. In contrast to thermal equilibrium, for which ther-
modynamics and statistical mechanics provide efficient com-
putational tools, no systematic description exists for nonequi-
librium systems. As a consequence, while simplifications may
exist in specific cases, one is in principle forced to solve the
equations of motion of a macroscopic number of degrees of
freedom.

In this respect, instances in which simplified and uni-
versal nonequilibrium scale-invariant behaviors emerge are
particularly valuable, as in the case of systems undergoing
critical relaxation or coarsening in contact with a bath [1–3],
which were thoroughly investigated in the past years. More
recently, there has been a rising interest in exploring analo-
gous phenomena in the dynamics of isolated quantum systems
[4–21]. In part, this was motivated by the impressive progress
in experiments with ultracold atoms that made possible the
realization of almost perfectly isolated quantum many-body
systems, and the monitoring of observables in real time.

The dynamics of isolated statistical systems, either classi-
cal or quantum, is less well understood and, in a sense, more
challenging than that of systems in contact with reservoirs.
On the quantum side, the dynamics eventually leading to the
thermalization of isolated systems is a very active area of
research. Our current understanding of whether they thermal-
ize or not is primarily based on the eigenstate thermalization
hypothesis (ETH) [22–28] which roughly states that almost
all the eigenstates behave as if they were thermal. Important
exceptions to ETH exist, such as integrable models [29] and

the recently observed quantum scars [30–35], or strongly dis-
ordered systems which display many-body localization [36].

Aside from the steady state itself, understanding the late-
time dynamics and the eventual approach to a thermal ensem-
ble, in those cases in which this happens, is an even more
compelling challenge. Within the realm of interacting (and
not integrable [29]) systems, the intimately nonperturbative
nature of the process makes extremely hard to achieve an
analytic description. Some progresses in this direction can be
made in weakly interacting models through Boltzmann-type
equations [37–42]. Beyond these, recent exact results have
been obtained in specific strongly interacting models, known
as quantum circuits [43–52].

Scaling phenomena and universality have been instrumen-
tal in the description of dissipative macroscopic systems in
and out of equilibrium, especially in connection with collec-
tive or coarsening phenomena [1–3]. One could then naturally
expect that they might play a crucial role also in the dynamics
of isolated quantum systems. Indeed, the possible emergence
of a scaling behavior should dramatically simplify their de-
scription, as the relevant aspects of the long-time, large-
distance features of a system would then become insensitive to
its microscopic details. In addition, nonequilibrium collective
dynamics typically results in a divergence of relaxational
timescales, thus delaying or even hindering thermalization
[3,53,54].

In isolated systems, a variety of novel universal dynamics
have been theoretically predicted [55] and experimentally ob-
served [56–58]. In particular, a simple protocol which results
into a dynamical universal behavior consists in quenching
a system across a critical point starting from a disordered
phase. The subsequent coarsening dynamics, characterized by
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the formation of spatial domains of different ordered phases
and diverging relaxation times [53,59], has been shown to
occur also for isolated Hamiltonian dynamics [60–64] and in
certain cases it is accompanied by a novel behavior, with no
counterpart in the presence of thermal baths [65–68]. Glassy
features with similarities and differences from the ones found
under dissipative dynamics [69] have also been exhibited in
solvable models [70–72].

This scenario is strongly affected by the spatial dimen-
sionality d of the system, as it can be understood on the
basis of simple thermodynamic arguments. In fact, in the
presence of short-range interactions (assumed henceforth),
the growth of a domain of one phase within another one
costs an energy which is proportional to the area of the
interface. While in d > 1 the increase of the domain size
also requires a growth of the extension of interface, this is
not the case in one spatial dimension d = 1: regions within a
different phase can grow up to thermodynamic scales, paying
only a finite-energy price. Indeed, one-dimensional systems
with short-range interactions cannot sustain finite-temperature
phase transitions [73]. However, recent experiments [57,58]
showed the emergence of nonequilibrium universal dynamics
in isolated quasi-one-dimensional Bose gases, demonstrating
that these kinds of systems may still display rich and largely
unexplored phenomena.

In this work, we investigate the nonequilibrium dynamics
of isolated one-dimensional systems, reporting the natural
emergence of a timescale separation between fast and slow
degrees of freedom, the latter being related to topological
excitations (i.e., kinks or domain walls), which, in turn, results
into a universal long-time, large-distance dynamics, largely
independent of the microscopic details of the system. In
particular, we consider a system with an order parameter φ

and a potential with Z2 symmetry. With ±φ̄ we denote the
two minima of that potential, i.e., the two zero-temperature
phases, which we refer to as vacua. We assume that the system
is initially prepared at time t = 0 in a low-energy state with
Z2 unbroken symmetry (i.e., 〈φ〉 = 0) and short correlation
length.

Then, the system is let to evolve in isolation for t > 0,
with a Hamiltonian which admits two phases at zero tem-
perature, connected by the Z2 symmetry. Such a nonequi-
librium protocol is usually referred to as quench, which has
recently attracted a lot of attention in the context of quantum
statistical systems [74]. At low energy, topological excitations
interpolating between these two phases, known as kinks, play
a central role. In equilibrium, kinks are known to lead to
universal features [75], for example, the correlation function
of the order parameter is entirely determined by the mean
kink density, independently of the microscopic structure of the
model [76]. Out of equilibrium, this feature partly carries over
to integrable models [77–80]. A small, symmetry-breaking
term in the Hamiltonian which controls the dynamics of the
system may cause the confinement of the topological excita-
tions, which has been understood to have strict connections
with the quantum scars [81–84].

Here, on the contrary, we focus on the case without ex-
plicit symmetry breaking or confinement. After its initial
nonequilibrium evolution, the system is eventually expected to
thermalize at a low, but nonzero, temperature, determined by

the energy initially injected into the system. The main results
of our analysis can be summarized as follows:

(i) The large-distance behavior of the correlation functions
of the order parameter is still governed by the mean kink
density also when the system is out of equilibrium. The as-
sociated correlation length is proportional to the inverse kink
density which, at low energies, is much larger than any other
length scale in the system and thus controls the large-distance
behavior.

(ii) After an initial transient, we observe that the
timescales of relaxation of the kinks become significantly
larger than those of other excitations. The total density of
kinks, in fact, relaxes on a timescale which becomes expo-
nentially large upon increasing the final inverse temperature,
thus determining the entire long-time dynamics.

(iii) The emergence at long times of slow and collective
degrees of freedom is revealed by the dynamics of observ-
ables which are even under the Z2 symmetry, which in
practice are unable to distinguish between the two phases
and are therefore insensitive to topological excitations. Nev-
ertheless, we observe that, at late time, the difference be-
tween the time-dependent value of the observable and its
final one in thermal equilibrium is proportional to the dif-
ference between the instantaneous kink density and its final
equilibrium value. This relationship does not depend on the
details of the initial state and the involved proportionality
constant is completely determined by the thermal equilibrium
ensemble.

(iv) The dynamics of the kink density is found to be de-
termined by a simple phenomenological equation, involving
two parameters: the equilibrium kink density corresponding to
the final temperature and a cross section which describes the
probability that two kinks are annihilated in a scattering event.
This cross section turns out to be solely fixed by equilibrium
properties.

Kinks are intrinsically nonperturbative excitations: since
the corresponding field interpolates between the two vacua,
the kink configurations are not perturbatively close to any
of them, making analytical calculations extremely hard. This
is the reason why state-of-the-art quantum field-theoretical
approximations [such as the two-particle irreducible (2PI)
formalism [85]] have been shown to fail in capturing the
effects of topological defects [86,87].

In order to circumvent these difficulties, we focus here on
the classical world as a convenient arena for our investigation:
large-scale ab initio simulations of the microscopic model
are easily performed, backing up our phenomenological
reasoning.

Accordingly, we mostly present and discuss our results
referring to classical systems and only briefly comment on the
quantum case, but we provide arguments supporting the fact
that the general mechanism causing the mentioned universal
behavior.

Furthermore, while the proposed nonequilibrium protocol
can be implemented and investigated in purely classical mod-
els, under the proper conditions which will be discussed later
on, classical systems can be viewed as a good approximation
of the quantum theory. This observation further supports the
generality of the proposed picture with respect to the actual
classical or quantum nature of the statistical system.
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The paper is organized as follows. Section II introduces
the model of interest, providing details on the spectrum of
excitations (Sec. II A) and on its low-temperature equilib-
rium thermodynamics (Sec. II B). Section III addresses the
nonequilibrium behavior of the system: based on the insight in
the low-temperature physics built in the previous section, we
discuss the nonequilibrium behavior and the emergence of the
timescale separation, which are then thoroughly checked via
numerical calculations. In Sec. IV we present our conclusions,
while the numerical methods used in our investigation are
reported in two short appendices.

II. THE MODEL: LOW-ENERGY EXCITATIONS AND
THERMODYNAMICS

Among the wide class of classical or quantum models
supporting topological excitations, we consider a chain of
anharmonic oscillators governed by the Hamiltonian

H = a
∑

x

[
�2(x)

2
+ [φ(x + a) − φ(x)]2

2a2
+ V (φ(x))

]
, (1)

where φ(x) indicates the displacement of the oscillator at
position x along the chain, �(x) is the momentum conjugated
to φ(x), while a stands for the lattice spacing and the sum runs
over the sites of the chain. The potential V (φ) is assumed to
be Z2 symmetric, i.e., V (φ) = V (−φ) and shaped as a double
well with two minima at the two vacua ±φ̄. A prototypical
form of V is given by V (φ) = λ(φ2 − φ̄2)2, but the results
discussed further below apply to any shape of V with the same
features. Without loss of generality, we assume V (φ̄) = 0,
possibly by adding a constant offset to the potential.

The Hamiltonian (1) can be regarded either as a classical
function or a quantum operator, by imposing either canoni-
cal Poisson brackets on the conjugate fields {φ(x′),�(x)} =
a−1δx,x′ or canonical commutation relations [φ̂(x′), �̂(x)] =
ia−1δx,x′ (with the convention h̄ = 1 and the fields upgraded
to operators), respectively. In Eq. (1) it might be convenient
to take the limit a → 0 of vanishing lattice spacing: by
approximating the hopping term with a derivative, one reaches
the continuum limit with Hamiltonian

H =
∫

dx

[
1

2
�2(x) + 1

2
(∂xφ)2 + V (φ(x))

]
. (2)

For the sake of simplicity, in the following we discuss the
thermodynamics of the model mostly in the the continuum and
classical case, as in Eq. (2), discussing the effects of a possible
quantization or of the underlying lattice in Secs. II C and II D,
respectively. The numerical analysis will be performed on the
classical lattice model in Eq. (1).

A. Low-energy excitations

Under the assumptions discussed in the previous section,
the classical Hamiltonian H in Eq. (1) admits two degenerate
minima (or vacua) and correspond to H = 0. A field config-
uration initialized in one of the two vacua φ(x) = ±φ̄ does
not evolve in time. At low energies, instead, H admits two
different species of excitations: (a) topological excitations,
i.e., kinks, which interpolate between the two vacua [75], and
(b) field fluctuations occurring around the same phase, which

we refer to as radiation [75]. Below, we shortly describe these
two kinds of excitations before considering their effects on the
low-temperature thermodynamics of the model.

Topological excitations naturally emerge as finite-energy
solutions of the equation of motion

∂2
t φ − ∂2

x φ + V ′(φ) = 0, (3)

associated with the continuum Hamiltonian in Eq. (2). Those
with the lowest (kinetic) energy do not evolve in time, have
∂tφ = 0, and therefore they are described by the first-order
differential equation

(∂xφ)2 − 2V (φ) = 0, (4)

which is derived after simple manipulations. In addition to
the trivial solutions φ(x) = ±φ̄, which pin the field value
to one of the two minima of V , there is always a non-
trivial solution φK (x) interpolating between the −φ̄ at x →
−∞ and φ̄ at x → +∞ (kink) or the other way (an-
tikink). Note that the kink is nonlocal with respect to Z2-
odd observables Oodd(φ) such that Oodd(−φ) = −Oodd(φ)
because limx→−∞ Oodd(φK (x)) �= limx→+∞ Oodd(φK (x)). On
the other hand, it is local when Z2-even observables are con-
sidered. For example, the energy density is localized around
the center of the kink x0, defined as φK (x0) = 0. Without loss
of generality, one can choose x0 = 0. In this case, the antikink
profile φAK (x) is related to that of the kink φK (x) by a spatial
reflection with respect to the origin (or, more generally, to x0):
φAK (x) = φK (−x).

Due to the translational invariance of the Hamiltonian H ,
any kink solution φK (x) can be arbitrarily translated along
the real line, without affecting the corresponding value of
the energy. In addition, a Lorentz boost of the space-time
coordinates (t, x) allows one to write the solution of Eq. (3)
corresponding to a moving kink, starting from a static one. In
this respect, one can interpret the resulting kink

φK
v,y(t, x) = φK (γ (x − y − vt )) (5)

as a particlelike excitation of the chain with a well-defined
position x0 and moving with a certain velocity v, where
γ = γ (v) = 1/

√
1 − v2. This picture is further confirmed by

evaluating the energy H[φK
v,y] associated with φK

v,y, which
turns out to be that of a relativistic particle of mass M, i.e.,
H[φK

v,y] = γ M, where M is the v-independent quantity

M ≡
∫ φ̄

−φ̄

dφ
√

2V (φ). (6)

In order to calculate M according to this definition, one does
not actually need to know of the kink profile, but only the
shape of V (φ). For the choice V (φ) = λ(φ2 − φ̄2)2, the kink
profile has a simple analytical expression [75]

φK (x) = φ̄ tanh(xφ̄
√

2λ), (7)

and the mass obtained from Eq. (6) is M = 4
√

2λφ̄3/3. Note
that, generically, it is natural to define a kink width w as
the typical length scale over which the transition between the
asymptotic values ±φ̄ occurs: from the explicit expression in
Eq. (7), for example, one can identify w as w = 2/(φ̄

√
2λ).

A single-kink solution is the lighter excitation interpolating
between the two different vacua, therefore, it is stable under
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time evolution [75], i.e., it cannot decay in lighter (less en-
ergetic) excitations: this fact will be essential in the late-time
nonequilibrium dynamics, as we will see later on. In general,
field configurations containing more than one kink or antikink
can also be realized, but they are no longer stable under
time evolution. For example, initial multikink configurations
can be constructed by alternatively placing kink and antikink
profiles along the real line. For periodic boundary conditions,
the number of kinks and antikinks must be equal and we
assume they are initially well separated from each other and
with velocities and positions (vi, yi ), i = 1, . . . , 2N . Such a
multikink configuration is therefore given by

�{vi,yi}2N
i=1

(t, x) = φ̄

N∏
i=1

[
φK

v2i−1,y2i−1
(t, x)

φ̄

φAK
v2i,y2i

(t, x)

φ̄

]
. (8)

Since a kink must be followed by an antikink, at t = 0 we
require yi+1 − yi 
 w, with w the kink’s width. Under this
assumption of “dilution” of kinks, each of them contributes
additively to the total energy H[�{vi,yi}2N

i=1
] = ∑2N

i=1 γ (vi )M
plus small corrections due to a short-range force between the
kinks, which turns out to be attractive [75].

In addition to kinks and antikinks, one can also construct
excitations which consist of local fluctuations of the value of
the field φ around one of the two minima of the potential.
These excitations are usually referred as radiation [75]. By
assuming such fluctuations to be small, the equation of motion
(3) can be linearized by expanding it around φ̄:

∂2
t φ − ∂2

x φ + V ′′(φ̄)(φ − φ̄) + O((φ − φ̄)2) = 0. (9)

This equation admits a mode decomposition in terms of plane
waves characterized by a wave vector k (momentum) and a
corresponding “relativistic” energy ε(k) = √

k2 + m2, where
the “mass” m of these excitations is set by the curvature of
the potential according to m2 = V ′′(φ̄). While we introduced
kinks and radiation separately, these excitations are nontriv-
ially coupled by the dynamics. For example, if one lets the
configuration (8) evolve, the kinks and antikinks will move
ballistically as free particles with the corresponding velocities.
Generically, at some instant of time a kink profile will overlap
with a neighboring antikink one, undergoing scattering. Given
that a kink/antikink pair is no longer a stable solution of
the equation of motion, it is expected to couple with the
sector of radiative excitations: part of the energy stored in
the kink/antikink pair when they are initially well separated
is transferred to the radiation upon scattering, as depicted in
Fig. 1.

In general, there are no symmetries which prevent the
coupling between the sector of the spectrum with two kinks
and that one with radiation: accordingly, transitions between
the two may happen. In particular, a scattering event in which
a kink-antikink pair annihilates and its energy is completely
converted into radiation is possible. Because of the invariance
of the equation of motion of the system under time reversal,
the reversed process is also possible. An important exception
to this generic scenario is provided by integrable models
[88–90] in which infinitely many conservation laws can guar-
antee the stability of multikink configurations. It can be shown
that the only integrable model having the form of Eq. (2) and
possessing topological excitations is the sine-Gordon model

FIG. 1. Cartoon of a kink-antikink approach (top) and collision
(bottom), which results in the production of radiation after scattering
has occurred.

[91] with V (φ) = (m2/g2)[1 − cos(gφ)]. In this work, we
will not consider such a special case. In fact, the coupling
existing between multikink configurations and radiation, and
the associated possibility of converting the first into the latter
and vice versa, are crucial in determining the nonequilibrium
features of the model discussed below.

B. Low-energy thermodynamics: Decoupling
kinks and radiation

In this section we analyze the low-temperature statistical
properties of the model in Eq. (2), encoded in the classical par-
tition function Z[β] = ∫

[dφ]e−βH [φ] (with the corresponding
expression in the quantum case) for β → ∞. An extensive
literature has been dedicated to this problem [76,92,93] in
the effort of obtaining a rigorous description. While we refer
the reader to these contributions for technical details, here
we only recall the basic ideas behind those studies. A given
field configuration φ(t, x) is split into a multikink solution
similarly to Eq. (8), plus fluctuations χ (t, x) assumed to be
small compared to the kink amplitude 2φ̄, i.e.,

φ(t, x) = �{vi,yi}2N
i=1

(t, x) + χ (t, x). (10)

If one imposes periodic boundary conditions at the boundaries
of the large but finite chain, the system must contain an equal
number of kinks and antikinks. However, this constraint is
negligible in the thermodynamic limit. Using the decompo-
sition of φ as in Eq. (10), the corresponding energy H [see
Eq. (2)] naturally splits into three terms H = HK + Hχ + U ,
where HK is the energy of the independent kinks HK =∑2N

i=1 γ (vi )M, Hχ is the Hamiltonian associated with small
fluctuations around the vacua ±φ̄, i.e., Hχ = ∫

dx [(∂tχ )2 +
(∂xχ )2 + m2χ2]/2, and U contains all the remaining inter-
actions. In particular, U accounts mostly for three kinds
of interactions: those involving solely kinks, those of kinks
with radiative modes, and finally the self-interactions of the
radiation, which are determined by anharmonic corrections to
Eq. (9). At very low temperatures, the interaction U can be
neglected in a first, crude approximation [76] and therefore
the partition function Z[β] approximately factorizes as

Z[β] � ZK [β]Zχ [β], (11)
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where Zχ [β] is the partition function for the quadratic Hamil-
tonian Hχ and ZK [β] is the partition function of the free
kinks with Hamiltonian HK , considered as a collection of
free relativistic impenetrable particles with mass M, size w,
momenta pi = M sinh θi, and energy E = M cosh θi, where
θi is the relativistic rapidity associated with the velocity vi via
vi = tanh θi. In particular, the average thermal kink density
nβ is readily computed in the thermodynamic limit and for
β 
 M−1,

nβ � w−1
∫ ∞

−∞
dθ e−βM cosh θ � w−1

√
2π

βM
e−βM . (12)

Accordingly, the kink density is exponentially small at small
temperatures. In contrast, the fluctuations 〈χ2〉 of the radiation
are suppressed only algebraically upon decreasing β−1 toward
zero. A crude estimate of the two-point spatial correlation
function of the radiation field χ can be obtained by comput-
ing it on the thermal state based on the corresponding free
Hamiltonian Hχ , i.e.,

〈χ (x)χ (y)〉 �
∫ +∞

−∞

dk

2π

eik(x−y)

βε2(k)
= e−m|x−y|

2mβ
, (13)

where ε(k) was given after Eq. (9). The attempts to verify nu-
merically Eq. (12) via Monte Carlo methods has a long history
(see, e.g., Refs. [94–98] for the earliest works), revealing a
series of difficulties. First, large system sizes are needed in
order to have enough statistics on the kinks since, as already
mentioned, their density is exponentially suppressed upon
decreasing the temperature. Second, at finite temperature, the
interaction cannot be neglected and the validity of Eq. (11) be-
comes questionable. For instance, the radiation renormalizes
the (bare) mass M of the single kink [92] at the lowest order
in the interaction strength. In turn, this renormalization affects
significantly Eq. (12), in view of the exponential dependence
of nβ on such a mass. Third, the number of kinks present
in a field configuration at finite temperature is difficult to
be determined in practice because, for example, large field
fluctuations due to radiation might be misinterpreted as tight
kink-antikink pairs.

In view of the difficulties in finding a nonambiguous defini-
tion of the kink density, it is important to identify observables
which are sensitive to the presence of topological excita-
tions. Ideal candidates are correlation functions of observables
which are odd under the Z2 symmetry, for example, the order
parameter φ(x) itself. In this case, consider 〈φ(x)φ(y)〉: at
low temperatures its large-distance behavior turns out to be
completely determined by the kink density nβ [76]. In fact,
one finds

〈φ(x)φ(y)〉 = Aβe−2nβ |x−y|, (14)

where Aβ > 0 is a temperature-dependent constant. Although
the derivation of this expression in thermal equilibrium is
a textbook exercise [76], its generalization to nonequilib-
rium conditions plays a central role in our investigation and
therefore we pause here to derive Eq. (14), discussing the
hypothesis under which this can be done. As a starting point,
we neglect the radiation and consider two points x and y
(with, say, x > y) at a distance x − y larger than the width
of the kinks. Let us then consider the observable φ(x)φ(y)

evaluated on a certain multikink configuration. Since each
kink is responsible for a “jump” of the field from −φ̄ to
φ̄ (vice versa for an antikink), then φ(x)φ(y) approximately
takes either the value φ̄2 or −φ̄2 depending on whether
an even or an odd number of kinks is present in-between
the two points. At low temperatures, kinks are uniformly
and independently distributed in space with a given density
nβ . In this limit, we ignore the correlation existing among
kinks and therefor all the terms of order ∼n2

β . Under these
assumptions, the probability p[x,y](�) of having � kinks within
the interval [x, y] (assuming x > y) is a simple Poisson
distribution

p[x,y](�) = (nβ |x − y|)�
�!

e−nβ |x−y| . (15)

Then, the two-point correlator of the order parameter can be
easily computed as

〈φ(x)φ(y)〉 � φ̄2
∞∑

�=0

(−1)� p[x,y](�) = φ̄2e−2nβ |x−y|. (16)

In order to estimate the effects of the radiation on the previous
expression, it is useful to consider the correlation function of
the radiation in Eq. (13) at low temperatures. From its func-
tional form, it follows that the radiation develops and induces
correlations up to a typical length scale ∼m−1. Accordingly,
for nβ  m the kinks dominate the long-distance behavior of
the correlation function of the order parameter. In addition,
the presence of the radiation affects the assumptions behind
Eq. (16), i.e., that (i) the kinks are uniformly distributed and
uncorrelated and (ii) the topological excitations make the field
jump between ±φ̄. If nβ  m, the average distance between
consecutive kinks is typically much larger than the correlation
length of the radiation which, accordingly, cannot correlate
them and they remain independently distributed. However,
the radiation generically modifies the single kink in such a
way that the effective plateau value reached for x → ±∞,
approximately equal to ±φ̄ changes. This renormalization
affects the proportionality constant in Eq. (16), but not the
exponential decay.

Equation (14) also provides a useful indirect way to
test the validity of Eq. (12) and to study the finite-
temperature corrections. In fact, expectation values of observ-
ables on classical thermal states can be efficiently computed
via the transfer-matrix approach [99] (briefly reviewed in
Appendix A), which allows one to extract the kink density
nβ from Eq. (14) [76,92,95] and thus confirm the accuracy of
Eq. (12).

Note that Eq. (14) enjoys a certain degree of universality. In
fact, independently of the actual details of the model encoded
in the specific form of the double-well potential V (φ), the
two-point correlation function of the field φ at two points x
and y assumes the simple form of an exponential, provided
that |x − y| 
 m−1, where the associated correlation length
ξ = (2nβ )−1 is uniquely determined by the density of kinks
nβ . In view of this emerging degree of universality at thermal
equilibrium, in Sec. III we investigate the natural question
whether the presence of topological excitations induces some
sort of universal behavior also out of equilibrium.
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C. A glimpse into the quantum world

In this short section, we briefly consider the quantization of
the Hamiltonian (2) and comment on how it affects the low-
temperature thermodynamics discussed above for the classical
model. According to canonical quantization, the classical
fields φ(x) and �(x) are promoted to operators φ̂(x) and
�̂(x), respectively, which satisfy the commutation relation
[φ̂(x), �̂(y)] = iδ(x − y). As we did in the classical case, we
can start by considering a single static kink centered at the
origin: its quantization can be achieved by adding quantum
fluctuations χ̂ (x) around the classical solution φK (x), i.e., by
considering [75] φ̂(x) = φK (x) + χ̂ (x). This is essentially the
same decomposition as that used in Eq. (10) to describe radia-
tive modes, with the important difference that now the radia-
tion field χ̂ is a quantum operator satisfying [χ̂ (x), �̂(y)] =
iδ(x − y). The ground-state quantum fluctuations of the radi-
ation renormalize [75] the kink mass to a value MR compared
to its classical value M and, also in this case, a Lorentz boost
can set the kink into motion with velocity v and associated
energy E = γ (v)MR. As in Sec. II B, radiative modes can still
be understood as fluctuations around the minima ±φ̄ of the
potential V . Once the various renormalizations are accounted
for, kinks are essentially still classical objects and therefore
one can derive again Eq. (14) for the two-point correlator of
the order parameter, under the assumptions already discussed
after Eq. (14). In equilibrium at low temperatures, the classical
radiative correlator in Eq. (13) is modified because now χ̂

is a bosonic quantum field obeying Bose-Einstein statistics.
Indicating by : . . . : the normal ordering, one finds

〈 : χ̂ (x)χ̂ (y) : 〉 �
∫ +∞

−∞

dk

2π

1

ε(k)

eik(x−y)

eβε(k) − 1
, (17)

where the energy in terms of the momentum k is still given
by ε(k) =

√
k2 + m2

R , as in the classical case, but the clas-
sical mass m = V ′′(±φ̄) of the fluctuation gets renormalized
[75] to the value mR, similarly to what happens to the kink
mass M → MR. The correlation length ξ which controls the
exponential decay of 〈 : χ̂ (x)χ̂ (y) : 〉 upon increasing |x − y|
can be extracted from the integral above and it is still given
by the mass scale ∼m−1

R . However, an important difference
emerges between the classical and the quantum case: While in
the classical case Eq. (13) predicts that the amount of radiation
quantified by 〈 : χ̂2 : 〉 is algebraically suppressed as ∼β−1

at low temperatures β → ∞, in the quantum case Eq. (17)
implies an exponential suppression ∼e−βmR in the same limit.
Accordingly, while in the classical case the radiation always
dominates over the kink density at sufficiently low tempera-
ture, in the quantum one this depends on the ratio between the
two mass scales MR and mR, which are determined by the de-
tails of the potentials V (φ). As we will see in Sec. III B, having
more radiation than kinks (in the sense specified therein) has
important consequences on the nonequilibrium dynamics of
the system: in practice, this requires MR > mR. Particularly
interesting is the limit MR 
 mR since, depending on the
temperature, the quantum system may be well described by
the classical model [100–104]. Out of equilibrium, the range
of validity of this semiclassical approximation is set by the
energy scale or, equivalently, the temperature attained by the
system in the long-time limit after thermalization takes place.

At relatively high temperatures βmR  1 (but still βMR 
 1
in order to stay within the regime of low density of kinks)
the semiclassical approximation holds: indeed, in this case
Eq. (17) can be approximated with the classical expression in
Eq. (13). On the other hand, if βmR � 1, the system is far from
being classical and quantum effects become important: how-
ever, the general mechanism leading to a timescale separation
between the kinks and the radiation dynamics is expected to
be still effective, as we extensively comment.

D. Effects of the lattice

In general, the introduction of a finite lattice spacing a > 0
in Eq. (1) complicates the analytical treatment compared to
the continuum limit in Eq. (2). On the one hand, the quanti-
zation of the classical lattice model can be done as explained
in Sec. II C above, namely, by quantizing the radiative modes,
with no additional difficulties. On the other hand, the break-
ing of translational invariance due to the underlying lattice
makes the dynamics of the topological excitations extremely
complicated and analytically untractable. However, a detailed
analysis can be done in the limit of small (but finite) lattice
spacing by using the continuum model in Eq. (2) as the zeroth-
order approximation. This approach is justified, however, only
if the kink width w is large compared to the lattice spacing a:
fulfilling this condition depends on both the specific form of
the potential V (φ) and the kink velocity v, which causes a
Lorentz contraction w → w/γ of the width w of a moving
kink. However, within the range of low temperatures which
we are eventually interested in, kinks are slowly moving and
therefore we do not expect the latter effect to be relevant.

The presence of a lattice breaks translational invariance.
As a result, a kink does no longer move at constant veloc-
ity, but it feels the effect of the so-called Peierls-Nabarro
potential [105,106] which has the same periodicity as the
underlying lattice. Due to this potential and the corresponding
force, the kink couples with the radiative modes [75] and it
emits radiation while moving, progressively losing energy and
experiencing an effective friction [107–110]. This potential
affects significantly the behavior of a single kink compared
to the continuum limit, but the emerging differences with the
latter decrease at finite temperature [111–113]. As discussed
in Sec. II B, the thermodynamic behavior of the system on the
lattice can still be understood in terms of a dilute gas of kinks
moving in a background radiation, but lattice corrections have
to be included. Similarly, apart from quantitative lattice cor-
rections, the qualitative behavior at low temperature of both
the radiation and the kink density as a function of temperature
are not affected compared to the model on the continuum.

III. OUT OF EQUILIBRIUM: EMERGENCE OF
UNIVERSAL LATE-TIME DYNAMICS

After having described the equilibrium properties of the
field theory in Eq. (2) induced by the topological excitations
at low temperatures, we now consider the nonequilibrium
behavior of the same theory, looking for a possible emergent
universal behavior due the existence of kinks. We start with a
detailed description of the class of protocols used to drive the
system out of equilibrium and subsequently we build upon
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our understanding of the thermodynamics in order to describe
the long-time dynamics, which turns out to be accurately
described by a simple model focused on kinks. The physical
arguments supporting our results are actually valid for both
the classical and the quantum versions of the system and we
conveniently benchmark them in the former via numerical
simulations.

A. Quench protocol

The nonequilibrium dynamics of the system is realized by
means of the following quench protocol: for times t < 0 the
evolution is governed by the Hamiltonian

H0 = a
∑

x

[
�2(x)

2
+ [φ(x + a) − φ(x)]2

2a2
+V0(φ(x))

]
, (18)

where V0(φ) is a potential with a single minimum, assumed
to be located at φ = 0. We initialize the system in a steady
state of the Hamiltonian H0 with Z2 unbroken symmetry: for
example, we consider an initial thermal ensemble with inverse
temperature β0. Within the quantum case, by letting β0 →
∞, one can also select the ground state of H0 as the initial
pure state. At time t = 0 the potential is suddenly switched
from V0(φ) to V (φ) and the system is let to evolve with
the Hamiltonian (1) where, as in the previous sections, the
potential V is invariant under Z2 symmetry V (φ) = V (−φ)
and has two degenerate minima ±φ̄. In the classical case,
initial field configurations are randomly sampled from the
thermal ensemble of H0 (18) and then they are independently
evolved via the dynamics generated by the deterministic
Hamiltonian (1). Observables are then computed along the
time evolution and averaged over the initial conditions. This
averaging is useful in order to reduce the impact of fine-tuned
initial field configurations which might lead to a nongeneric
behavior. Note that the same preparation of initial conditions
was made in Refs. [70–72] and that this protocol corresponds
to a quantum quench [74] when referred to a quantum system.

In the absence of conservation laws beyond that of the
energy, the system is expected to eventually thermalize after
the quench. In this respect, it is important to consider systems
with a finite lattice spacing a > 0, assumed to be anyhow
smaller than the kink width w (see Sec. II D). In fact, in the
continuum limit a → 0, most of the energy of the system is
stored as kinetic energy of the modes with large momenta,
for which interactions are largely irrelevant: accordingly, the
redistribution of energy among the various modes, driven by
the interactions and necessary for thermalization, is severely
hindered [114]. For this reason, we focus below on lattices
with finite lattice spacing, for which the general picture
discussed in Sec. II is valid: the kinks determine the large-
distance behavior of the two-point correlator in Eq. (14) and
their density decreases exponentially fast upon decreasing
the temperature, while the amount of radiation does so only
algebraically (in the classical case).

As discussed in Sec. II B, universal features emerge in
equilibrium at low temperatures: in order to investigate their
consequences out of equilibrium, the quench protocol has
to be chosen such that the eventual stationary state of the
system is characterized by a sufficiently low temperature. This
can be done by properly selecting the ensemble of initial

conditions and the parameters of the quench, i.e., those of V0

and V . Indeed, we emphasize that the initial and final inverse
temperatures of the system, i.e., β0 and β, respectively, are
generically different: the final temperature β at which the sys-
tem eventually thermalizes is determined by the total energy
injected in the system by the quench, which depends, inter
alia, on β0 and which is conserved by the dynamics separately
for each specified initial configuration of the field. In practice,
the final inverse temperature β is implicitly determined by the
equality 〈H〉β = 〈H〉β0 where 〈. . . 〉β,β0 are the final and initial
thermal ensembles, respectively, i.e.,∫

[dφ]H[φ]e−βH [φ]∫
[dφ]e−βH [φ]

=
∫

[dφ]H[φ]e−β0H0[φ]∫
[dφ]e−β0H0[φ]

. (19)

This equation can be solved by using the fact that H0 on the
right-hand side is Gaussian and by evaluating efficiently the
left-hand side with the transfer-matrix algorithm discussed in
Appendix A. In practice, we consider the prequench Hamilto-
nian in Eq. (18) for a finite system of length L, lattice spacing
a = 1, and with the harmonic potential V0(φ) = m2

0φ
2/2. The

length L is chosen to be sufficiently large for the system
to approximate its thermodynamic limit, i.e., L has to be
larger than any other macroscopic and mesoscopic scale in
the system, e.g., one should require Lnβ 
 1. The values of
the initial mass m0 and of the inverse temperature β0 are the
free parameters which we use to change the initial condi-
tions, being always careful to remain in the low-temperature
regime for final thermal states. In view of the emerging
universal behavior discussed in the sections which follow,
we do not expect that different choices of the parameters
of the initial conditions or of the post quench potential will
affect our conclusions as long as the requirements mentioned
above are fulfilled. The real-time simulations presented be-
low are performed by using the method briefly discussed in
Appendix B, while thermal expectation values are computed
with the transfer-matrix approach described in Appendix A.

B. Phenomenological description

Since the initial states of the evolution of the system
are described by a Z2-symmetric statistical ensemble at low
temperature, the corresponding field configurations consist
of small fluctuations around the configuration with φ = 0.
When the initial quadratic potential V0(φ) is changed at time
t = 0 into V (φ), the configuration φ = 0 corresponds to a
local maximum of V (φ) which is no longer stable under
the temporal evolution: accordingly, the field locally tends to
approach the values ±φ̄ corresponding to the two possible
degenerate vacua of V (φ).

The initial fluctuations will determine toward which of
these two values the field φ locally evolves, generically re-
sulting into configurations in which, for a fixed time t , φ(t, x)
alternates between ±φ̄ as a function of x: a kink is present at
the position at which the field switches sign.

Let us denote by n(t ) the density of kinks at a given time
t , averaged over the initial conditions. The value of n(0) can
be estimated in terms of the correlation length ξ0 of the initial
state: in a first approximation, portions of the system with a
size smaller than ξ0 behave as a unique entity and choose one
of the two vacua ±φ̄, while points further away are indepen-
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dent and therefore free to choose different values, creating a
kink in the middle. As discussed in Sec. II B [with the replace-
ment m → m0 and β → β0 in Eq. (13)], ξ0 is proportional
to m−1

0 , the inverse of the bare mass m0 which characterizes
the potential V0. If m−1

0 is larger than the typical width w of
the kink, we can estimate n(0) � m−1

0 and therefore the initial
kink density is expected to be approximately independent of
the initial average energy and of the final temperature. Since
at infinite time the system approaches a thermal state (with
the final inverse temperature β determined by the energy
conservation), the kink density n(t ) is expected to approach
its thermal value, i.e., limt→∞ n(t ) = nβ . At sufficiently low
temperatures, generally one has nβ  n(0) and therefore n(t )
must diminish along the time evolution.

In Fig. 2 (upper panel) we show different snapshots of the
field profile φ(t, x) as a function of x at various times t , for
a single random initial condition φ(t = 0, x). We can observe
the kinks clearly emerging from the radiative background at
t = 0 and their spatial density progressively reducing, as the
time evolution proceeds further. After their creation, kinks
start traveling across the system, interacting with each other
and with the background radiation. In Fig. 2 (lower panel) we
highlight the trajectories of the (anti)kinks associated with the
field configuration presented also in the upper panel of the
same figure and corresponding to the boundaries of the gray
regions in the (x, t ) diagram. Most of the time, the (anti)kinks
behave as free particles with a well-defined velocity, traveling
along straight lines in that diagram. However, in addition to
this free motion, various scattering processes take place, as
highlighted with the numbered red circles in Fig. 2 (lower
panel):

(1) a kink and an antikink scatter elastically;
(2) a kink annihilates with an antikink;
(3) a kink-antikink pair is created from the fluctuations’

background radiation;
(4) a single kink scatters against the background radiation

and suddenly changes the direction of its motion.
Universal behavior is generically not expected to emerge

at short times because the dynamics of the system is still
significantly affected by the disordered initial condition. In
contrast, a universal approach to the thermal value is expected
(at least at low temperatures), in view of the arguments
presented further below.

1. Near the thermal state

In order to develop our intuition, we start by focusing on
the features of the eventual equilibrium thermal state of the
evolution. As shown by Eq. (13) in the classical case, the
amount of radiation 〈χ2〉 vanishes ∝β−1 as a function of
the temperature β−1 upon decreasing it, while the density nβ

of kinks vanishes exponentially fast in the same limit, as in
Eq. (12). As we discussed in Sec. II C, in the quantum case
both the amount of radiation and the density of kinks vanish
exponentially fast as functions of β−1 at small temperature:
however, if the mass M of the kink is larger than that of the
radiation, at low temperatures we will eventually be in a situa-
tion in which there is more radiation than kinks. Accordingly,
as a rule of thumb, the process which occurs more frequently
is the self-interaction of the radiation.

FIG. 2. Upper panel: φ(t, x) as a function of x at various times
t , evolving from the initial field configuration represented on the
top-left plot. The initial small fluctuations grow in amplitude, the
field φ(t, x) locally approaches ±φ̄, and a sequence of alternating
kink and antikinks, located where φ(t, x) vanishes, emerges at a
coarse-grained scale, i.e., neglecting the fluctuations due to radia-
tion. Lower panel: trajectories of the kinks in the space-time (x, t )
diagram, starting from the same initial condition as above. Regions
with φ(x) < 0 [respectively φ(x) > 0] are colored in gray (respec-
tively white) with the (anti)kinks located at the interfaces between
the white and gray regions. The (approximately) ballistic nature
of the motion of the (anti)kinks clearly emerges from the patterns in
the plot. Red circles highlight the various scattering processes occur-
ring during the evolution and described in the main text. The initial
configuration is sampled from a thermal state of the Hamiltonian in
Eq. (18) with V0(φ) = m2

0φ
2/2, a = 1, and inverse temperature β0 =

102, while the field evolves with interaction V (φ) = 0.1(φ2 − 1)2.
The relatively small value of the chain length L = 500 is used here
only for the purpose of illustration, while the large-scale simulations
discussed further below are performed on much larger systems
(typically L � 211).

Now, let us slightly perturb the system, driving it out of
equilibrium in such a way that it is still close to the thermal
ensemble. The actual details of this perturbation do not really
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matter because, as long as the system remains in the low-
temperature regime, we argue that the timescale separation
between the (slow) dynamics of the kinks and the (fast) one of
the radiation persists and it is responsible for the emergence
of a largely universal behavior.

The radiation is expected to thermalize due to the an-
harmonic corrections in Eq. (9). In the classical case, the
timescale τ rad

th for this thermalization has been found to depend
on the initial energy density ε, assumed to be small, as
τ rad

th ∝ ε−γ with γ > 0, in the case of a single-well potential
[114]. In the presence of a potential with a double well,
for most of the time the radiation fluctuates around one of
the two vacua, as it does in the presence of a single well.
Accordingly, we can estimate the relaxation timescale of the
radiation in terms of its typical energy scale which, in view of
the quadratic approximation in Eq. (13) for which equiparti-
tion holds, is expected to be proportional to the temperature
∝β−1. Now, let us consider the kink annihilation processes.
Since a single kink in the radiative background is stable,
annihilation can occur only when two kinks meet at the same
point. The probability for a single kink to be annihilated is
thus proportional to the number of kinks it meets along its
trajectory, i.e., ∝nβ . Accordingly, we get a rough estimate of
the timescale τ k

th associated with the relaxation of kinks, i.e.,
τ k

th ∼ n−1
β . Note that, while τ rad

th algebraically grows for large
β upon increasing it, the timescale τ k

th correspondingly grows
exponentially: for sufficiently low temperatures this implies a
clear separation between these two timescales.

The qualitative picture of the dynamics emerging from the
facts mentioned above is that of a collection of kinks moving
(almost ballistically) in a radiative background, which ther-
malizes on a timescale much shorter than that of the kinks. In
addition, we argue that there is a further timescale separation
between the total density n(t ) of topological excitations and
the other degrees of freedom related to kinks, such as the kink
velocities. This hypothesis is based on two observations: First,
above we estimated τ k

th considering scattering events between
kinks which result in a variation of their number but, for most
of the time, kinks travel across the radiative background as
isolated particles. In this case, the radiation cannot destroy a
single kink, but it affects its velocity which is then expected
to relax faster. Second, scattering among kinks hardly results
into annihilation: in fact, this would require converting the
large amount of energy stored in the kinks (at least twice the
kink mass M) into radiation, which typically has an energy
β−1. Looking at the bottom panel of Fig. 2 we see that,
indeed, kinks survive to most of the scattering they undergo
along their trajectories. However, while kink annihilation
rarely occurs, inelastic collisions in which the momenta of
the incoming kinks are slightly changed after the scattering
are much more frequent: these processes require only a small
energy exchange with the background radiation and contribute
to the scrambling of the kink momenta. Accordingly, we
expect the velocity of a kink to thermalize much faster than
the timescale on which the total density is affected.

2. Dynamics far from equilibrium: Long-time behavior

We now provide numerical support the hypothesis dis-
cussed in the previous section on the emergence of the

timescale separation, working out its consequences for the dy-
namics of observables. The numerical calculations presented
further below refer to the Hamiltonian in Eq. (1) with a sym-
metric prequench potential as in Eq. (18) and a double-well
postquench V (φ) = λ(φ2 − φ̄2)2. In both the prequench and
postquench Hamiltonians, we consider the model on a lattice
with a = 1. The values of λ and φ̄ used in the numerical anal-
ysis are chosen considering the following competing trends.
First note that, for a fixed φ̄, λ controls the height of the barrier
separating the two vacua and therefore the mass of the kink
M. Using expressions valid on the continuum as estimates
of the corresponding ones on the lattice, Eq. (6) implies that
a small value of λ results into a small kink mass M. In
turn, according to Eq. (12), a small kink mass M requires
larger temperatures in order to achieve the limit of small
kink density, at which a universal nonequilibrium behavior is
expected to emerge. In the opposite case of large λ, the kink
width w obtained from Eq. (7) decreases and lattice effects
become predominant, as discussed in Sec. II D. Based on our
numerical experience, the choice φ̄ = 1 and λ = 0.1 allows us
to study the phenomena under investigation within space-time
scales which are numerically accessible to our calculations.
Accordingly, the numerical data discussed further below are
provided for this specific choice of couplings and for various
initial conditions.

Let us start by considering the evolution of the kink density
n(t ). At short times, n(t ) is large and the system is far from the
equilibrium state. However, n(t ) decreases upon increasing t :
the conditions under which Eq. (16) was derived are eventu-
ally satisfied and therefore we expect the equal-time correlator
of the order parameter to obey an analogous expression, i.e.,

〈φ(t, x)φ(t, y)〉 = A(t ) e−2n(t )|x−y|, (20)

for |x − y| much larger than the typical correlation length of
the radiation. The prefactor A(t ) in Eq. (20) is not universal
and it is due to the renormalization induced by the evolving
background radiation.

Equation (20) is expected to apply as soon as the system
enters the regime of low-densities regime, still far from equi-
librium because n(t ) 
 nβ . Accordingly, Eq. (20) is expected
to apply at times smaller than timescale over which global
thermalization occurs. In Fig. 3 we show the large-distance
behavior of the correlation function 〈φ(t, 0)φ(t, x)〉 at various
times t and for different initial conditions, which result in
different final temperatures of the eventual thermal state. The
exponential decay predicted by Eq. (20) is reproduced with
good agreement, as highlighted by the insets and the agree-
ment increases as time increases, since n(t ) decreases. As we
have already anticipated in Sec. II B, a direct counting of the
kinks is difficult, especially at relatively high temperatures,
since large radiative fluctuations can be wrongly identified
with an overlapping kink-antikink pair. Accordingly, we use
the slope of the exponential decay in Eq. (20) in order to
determine numerically the value of n(t ).

At later times, as the kink density n(t ) decreases, the
system eventually enters a regime within which the kink
annihilation processes take place on a much longer timescale
compared to that controlling the relaxation of the radiation.
Accordingly, the radiation can be thought of as to be instanta-
neously in a thermal ensemble with an effective temperature
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(a)

(b)

FIG. 3. Order-parameter correlation function 〈φ(t, 0)φ(t, x)〉 af-
ter a quench from the symmetric to the symmetry-broken potential
as a function of distance x, for various times t . (a) Corresponds
to an initial temperature β0 = 18.2 and a final one β = 8, while
(b) to an initial temperature β0 = 107.2 and a final one β = 10.
Insets: the same correlation functions are shown on a linear-log scale
emphasizing the exponential decay which extends to larger distances
as time increases, i.e., as n(t ) further diminishes. In both panels,
a = 1, V (φ) = 0.1(φ2 − 1)2, m0 = 1, while the actual value of L was
chosen depending on each final temperature as the most convenient
one in order to satisfy the condition discussed at the end of Sec. III A
(see also Appendix B).

which depends on time. Indeed, as kinks annihilate, their
energy is converted into radiative modes, the temperature of
which slightly changes as a consequence of the extra energy
that they receive. Note, however, that in the limit of low kink
density the energy which is transferred to radiative modes
is also negligible and, therefore, in first approximation, one
can assume the radiative modes to be effectively thermalized
to the final temperature that the system will attain after the
occurrence of the eventual relaxation. We now demonstrate
that Z2-even observables are also sensitive to topological
excitations and therefore they provide another useful tool to
investigate their dynamics. Let us consider a Z2-even local
observable O(t, x), for example, the even powers of the field
φ2n(t, x). Under the hypothesis that all degrees of freedom
relax quickly after the quench with the sole exception of
the kink density n(t ), the expectation value of O must be a
function of the latter, i.e.,

〈O(t, x)〉 = O[n(t )]. (21)

FIG. 4. Cartoon representation of Eq. (22) in the specific case
O(t, x) = φ2(t, x). The space dependence of φ2(x) is shown when
evaluated on a configuration without (dashed line) or with (solid line)
a kink. The difference of the corresponding values of the integral∫

dx φ2(x) is represented by the shaded area, which quantifies α
φ2

β

for a single kink. When kinks are sufficiently diluted, each of them
independently contributes to this difference, resulting into Eq. (22).

We know that at infinite time 〈O(t, x)〉 and the kink density
n(t ) must reach their thermal values, i.e., Oβ and nβ , respec-
tively. Accordingly, at sufficiently low kink densities n(t ) one
can expand Eq. (21) in powers of n(t ) as

〈O(t, x)〉 = Oβ + αO
β [n(t ) − nβ ] + O(n2(t )), (22)

where αO
β is an observable-dependent nonuniversal constant

determined by the equilibrium properties at the final temper-
ature. The term of the expansion of the zeroth order in n(t )
is fixed by the requirement that in the long-time limit [where
n(t ) → nβ] the observable attains its thermal value. Note that,
in order for Eq. (22) to be valid, two independent conditions
have to be satisfied. First, Eq. (21) is assumed to be valid,
i.e., all the degrees of freedom have relaxed except for the
average kink density. Second, the kink density is assumed to
be sufficiently small to allow a linearization of Eq. (21): this
requires n(t ) to be small, but does not necessarily imply that
n(t ) must be of the same order as nβ . This condition is the
same under which Eq. (20) is valid, but Eq. (22) relies on
the stronger assumption that any degree of freedom except the
total density of kinks has relaxed.

The physical origin of αO
β can be understood as follows.

For concreteness, we focus on the simplest case O(t, x) =
φ2(t, x), but the line of argument readily extends to generic
Z2-even local observables O. Consider a field configuration
with a single kink and plot the profile of the observable
O, as done in Fig. 4. This profile will mostly fluctuate
around φ̄2 except in the spatial region close to the location
of the kink, where the value of φ2(t, x) is depleted. Thus,
the spatial average of φ2(t, x) is given approximately by φ̄2

minus the contribution of the kink, which vanishes if the kink
is removed. This phenomenological argument focuses on a
single kink: considering now the infinite system with a certain
density of kinks, the same argument can be independently
applied to each kink on the line. Hence, the difference between
the average of O and its thermal value is just proportional
to the difference between the instantaneous kink density
and the thermal one, which is essentially the statement of
Eq. (22). In this simple argument, we neglected the effect
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(a)

(b)

FIG. 5. Parametric plot of the time evolution of 〈φ2〉 (upper
panel) and 〈φ4〉 (lower panel) versus the instantaneous kink density
n(t ), as obtained from numerical calculations (data points); the red
line is a guide to the eye and indicated a linear dependence as the
one predicted by Eq. (22). Insets: data for the time evolution of the
local observable 〈φ2〉 and 〈φ4〉, used in the main plots. The numerical
calculations have been done for a chain with lattice spacing a =
1, postquench potential V (φ) = 0.1(φ2 − 1)2, prequench thermal
ensemble with potential V0(φ) = m2

0φ
2/2, mass m0 = 1, and initial

temperature β0 = 18.2, leading to a final temperature β = 8 and
kink’s density nβ = 1.6 × 10−2. The chain length L is chosen here
as indicated in Fig. 3.

of the radiation, but converting a kink into radiative modes
affects the temperature of the latter which then changes the
renormalization of the plateau: the argument can be suitably
modified to take this fact into account. In Fig. 5 we present
numerical evidence for the validity of Eq. (22) by plotting the
left-hand side of that equation for the specific cases O(t, x) =
φ2(t, x), φ4(t, x) versus n(t ) − nβ , upon varying the time t
elapsed from the quench. As shown in the insets of the plots,
〈O(t, x)〉 tends to Oβ as t increases and the corresponding data
points reported in the main plots approach with great accuracy
the linear dependence indicated by the red lines and predicted
by Eq. (22).

3. Kinetic equation for the kink density

In the previous sections we have argued and provided
evidence of the fact that the total density of kinks n(t ) is the
only degree of freedom which evolves slowly at long times.
However, we have still to analyze the specific form of this
evolution. In this section we show that n(t ) obeys a kinetic
equation which is consistent with the picture of the dynamics
presented so far. Since the relaxation of n(t ) is expected to
occur on a long-time scale, it is reasonable to suppose that it

can be described by a first-order differential equation

∂t n(t ) = F (n(t )), (23)

where F is a function to be determined. Higher-order time
derivatives of n(t ), being suppressed by increasing powers
of the typical relaxation timescale compared to ∂t n(t ), are
expected to give only small corrections and, therefore, we
neglect them. The function F must depend on the instanta-
neous kink density and on the final thermal state. Within the
regime of low densities, we can approximate F (n) by a power
series F (n) = ∑∞

j=0 c jn j , which, in practice, can be truncated
at some low order. The constants c j depend on the final
thermal state and correspond to specific physical processes.
For example, annihilation processes in which a kink and an
antikink scatter and decay into radiation are described by a
term ∝n2 in the expansion of F , i.e., F (n) = −σβn2 + · · · ,
where σβ > 0 is a decay rate which can be affected by the
temperature of the final state. In addition to the term ∝n2

identified above, one needs to include also (lower-order) terms
in the expansion of F (n) in order for the solution of Eq. (23)
to converge to the expected result, i.e., limt→∞ n(t ) = nβ .
This requires accounting for a term ∝n0 which actually cor-
responds to the fact that, together with the kink annihilation
processes already taken into account, an outburst of radiation
can create a kink-antikink pair, increasing n(t ). This process
depends only on the radiation and not on the actual kink
density and therefore it contributes with a constant to F .
In fact, in equilibrium, the annihilation of kinks must be
balanced by these “nucleation” processes from radiation, such
that F (n = nβ ) = 0. Within the low-density regime, we can
reasonably neglect terms involving powers of n larger than
two in the expansion of F (n), but one could wonder whether
a term ∝n should be accounted for. In general, such a term
is not expected: in fact, as anticipated in Sec. II, a single
(anti)kink moving into the radiation background is stable
and cannot decay. Conversely, from the background radiation
only kink-antikink pairs can emerge. Accordingly, the only
way in which a ∝n(t ) contribution could appear is because a
nontrivial correlation among kinks exists.

Since we are neglecting these correlations in Eq. (20) we
will do the same here, checking the validity of our assump-
tions via numerical calculations. According to the discussion
above, one can expand F (n) around n = 0 up to the second
order and, by using the fact that F (n = nβ ) = 0, Eq. (23) can
be written as

∂t n(t ) = −σβ

[
n2(t ) − n2

β

]
. (24)

This equation can be easily solved, yielding

n(t ) = nβ + 2nβ

R e2nβσβ t − 1
, (25)

where R = (n0 + nβ )/(n0 − nβ ) and n0 is a parameter which
depends on the initial conditions [cf. Fig. 8(d)]. One could
be tempted to evaluate Eq. (24) at the initial time t = 0,
erroneously concluding that n(0) = n0: however, this is not
correct because this equation is not expected to be valid at
short times, but only after the radiative modes have relaxed
[i.e., when Eq. (21) starts to be valid].

The solution in Eq. (25) displays two different regimes:
at short times t  (2nβσβ )−1 (with t anyhow larger than the
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relaxation timescale of the radiation) it becomes

n(t ) � nβ + 2nβ

R 2nβσβt + R − 1
. (26)

At low temperatures, nβ is very small and therefore we typi-
cally expect n0 
 nβ . Neglecting nβ , Eq. (26) can be further
simplified as

n(t ) � n0

n0σβt + 1
, (27)

which displays an algebraic decay upon increasing time, at
long times (n0σβ )−1  t  (2nβσβ )−1. This algebraic decay
causes a corresponding linear increase as a function of time
of the correlation length ∝n−1(t ) ∝ t of the two-point corre-
lation function of the order parameter in Eq. (20). This growth
of the correlation length can be interpreted as an instance of
coarsening dynamics [1–3], as discussed further below, which
is however interrupted at longer times. In fact, at long times
t 
 (2nβσβ )−1, Eq. (25) predicts an exponential relaxation of
n(t ) to the (finite but small) thermal value nβ upon increasing
time, i.e.,

n(t ) = nβ + 2nβR−1 e−2nβσβ t + O((e−2nβσβ t )2); (28)

correspondingly, after the linear growth discussed above, the
correlation length saturates to a finite (but large) value ∝n−1

β ,
interrupting coarsening.

In order to test the validity of Eq (24), in Fig. 6 we compare
n(t ) obtained from its solution in Eq. (25) with the value ob-
tained from the numerical analysis of the real-time dynamics
of the chain. In particular, the values of the parameters σβ and
n0 appearing in Eq. (25) are determined from a best fit to the
numerical data, while the value of nβ is determined via the
transfer-matrix approach discussed in Appendix A.

The agreement between the predictions of Eq. (24) (solid
red lines) and the numerical data reported in Fig. 6 turns out
to be excellent at long times, as expected.

Let us now comment on the expected behavior of the
various quantities introduced so far in the phenomenological
Eqs. (20), (22), (24), and (25):

(1) A(t ) introduced in Eq. (20): this quantity is the dynam-
ical counterpart of the parameter Aβ appearing in Eq. (14) and
it is such that it approaches Aβ upon increasing t . As we have
already discussed in Sec. II B (see also Appendix A), Aβ � φ̄2

at low temperatures, while corrections to this equality emerge
at finite temperature, due to the presence of radiation [see
also Fig. 9(c)]. Similarly, at short times, the evolution of
A(t ) is affected by the equilibration of the radiation and it is
therefore expected to display a nontrivial and nonuniversal be-
havior, However, after the radiation has relaxed [and therefore
Eq. (21) starts to apply], A(t ) is completely determined by
the time-dependent kink density n(t ), as in Eq. (22), namely,
A(t ) = Aβ + α

Aβ

β [n(t ) − nβ]. This relationship is physically
motivated by the fact that, as kinks disappear, their energy
is converted into radiation, the temperature of which changes
in order to “accommodate” the new energy. As we saw in
Sec. II B, at equilibrium and the in absence of radiation
A = φ̄2, while the presence of radiation renormalizes A to a
generically different value close to φ̄2. In the nonequilibrium
case and at long times, one has the same interpretation, but
with the amount of radiation changing as kink disappears. As

(a)

(b)

FIG. 6. Kink density n(t ) as a function of the time t elapsed
from the quench. Data points indicate the kink density extracted
from the numerical data for the two-point correlation function of the
order parameter. The red solid line corresponds to the solution of the
kinetic equation (25) in which the (unknown) parameters σβ and n0

are fixed from a best fit to the data, while nβ is exactly computed
with the transfer-matrix approach. The green dashed line indicates
the short-time expansion in Eq. (27), while the blue dashed line refers
to the long-time behavior in Eq. (28). The kinetic equation (25) is
not expected to be valid at times shorter than the radiation relaxation
timescale, which is indicated by the gray shaded area in the figure.
This timescale can be estimated from Fig. 5 as the time after which
data points agree with the linear dependence indicated by the solid
line. The numerical data reported in both figures were obtained
with a = 1, postquench potential V (φ) = 0.1(φ2 − 1)2, and an initial
thermal ensemble with mass m0 = 1 and inverse temperature β0, with
(a) β0 = 18.2, corresponding to the final inverse temperature β = 8
and (b) β0 = 107.2, corresponding β = 10. The chain length L is
chosen here as indicated in Fig. 3.

such, A(t ) becomes a time-dependent quantity with a linear
dependence on the kink’s density. As a numerical check, in
Fig. 7 we provide a parametric plot of A(t ) as a function of
the kink density n(t ) for various initial conditions, as we did
in Fig. 5 for φ2 and φ4. A linear dependence of A(t ) on n(t )
clearly emerges at sufficiently long times, as noted before for
other one-time quantities. Note that this conclusion applies
also to other choices of the initial parameters.
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FIG. 7. Parametric plot of the time evolution of A(t ) versus the
instantaneous kink density n(t ), as obtained from numerical calcu-
lations (data points); the red line is a guide to the eye and indicates
the expected linear dependence. Insets: data for the time evolution of
A(t ) used in the main plot. The numerical calculations have been
done for a chain with lattice spacing a = 1, postquench potential
V (φ) = 0.1(φ2 − 1)2, prequench thermal ensemble with potential
V0(φ) = m2

0φ
2/2, mass m0 = 1, and initial temperature β0 = 18.2,

leading to a final temperature β = 8. The chain length L is chosen
here as indicated in Fig. 3.

(2) αO
β introduced in Eq. (22). This quantity can be un-

derstood as the variation of the expectation value of the
local observable O caused by the transformation of a single
(anti)kink into radiation (see Fig. 4), independently of the
presence of other kinks in the state. Accordingly, αO

β is mostly
determined by the radiation with a resulting algebraic depen-
dence on the temperature, reaching a finite nonzero value for
β → ∞. In the quantum case, the radiation has an exponential
dependence on the temperature as it decreases and this is
expected to carry over to αO

β . However, we emphasize that the
conclusions we draw here for classical systems carry over to
quantum systems only if the mass of the kink is much larger
than that of the radiation. Accordingly, αO

β still varies much
slower than nβ in the quantum case as well.

In Figs. 8(a) and 8(b) we show αO
β , for O = φ2 and O = φ4,

respectively, as functions of the final inverse temperature β,
for various initial conditions. The numerical values of αO

β are
extracted from the late-time behavior of the parametric plot of
O(t ) as a function of n(t ), corresponding to the linear behavior
for small n(t ) − nβ (see Fig. 5). The curves corresponding to
the different values of m0 are essentially independent of the
details of the initial conditions (primarily determined by the
initial mass m0, which determines together with β also the
initial value β0 of the inverse temperature) while they depend
markedly on the final steady state, as we anticipated above.

(3) σβ introduced in Eq. (24). This cross section can be
understood as the rate with which a pair of kinks (the velocity
of which is distributed according to a thermal distribution)
annihilate into radiation: its dependence as a function of β is
essentially determined by the corresponding change in the ra-
diative background in which these kinks move, while σβ does
not significantly depend on their density n(t ). Accordingly, in
the classical case, σβ is expected to depend algebraically on

(a)

(c) (d)

(b)

FIG. 8. Numerical values of the constants (a) α
φ2

β , (b) α
φ4

β , (c) σβ ,
and (d) n0 appearing in the phenomenological equations (22) and
(24), as functions of the final inverse temperature β and for various
initial conditions. The different colors and symbols correspond to
the various values of the prequench mass m0, while the initial
inverse temperature β0 is changed accordingly, in order to result
into the inverse temperature β indicated in the plot for the final
state. The data shown in the panels have been obtained with a = 1
and the postquench potential V (φ) = 0.1(φ2 − 1)2. The fits used to

determine numerically (a) α
φ2

β , (b) α
φ4

β , and (c) σβ are done with the
least-square method, and the corresponding confidence intervals are
determined by requiring that the relative fluctuations of the χ2 are
less than 50% within the intervals.

β−1 as β−1 → 0. σβ depends also on the typical kink velocity
which, in turn, introduces an additional dependence on β.
In the quantum case, instead, the dependence of σβ on β−1

is modified analogously to what happens for the parameter
αO

β discussed in the previous point. In Fig. 8(c) we show σβ

as a function of the inverse temperature β for various initial
conditions. The corresponding curves exhibit essentially no
dependence on the details of the initial conditions, but they
depend only on the inverse temperature of the final state.

(4) n0 introduced in Eq. (25). In Fig. 8(d) we show the
behavior of n0 as a function of β for various initial conditions:
differently from the quantities αO

β and σβ discussed above, n0

is not only determined by the final equilibrium state but, as
anticipated, it turns out to depend significantly on the initial
conditions, each corresponding to a different curve in the plot.
Actually, n0 is the only information on the initial state which
continues to be relevant for the long-time dynamics.

As a final remark, we emphasize that, since the coefficients
αO

β and σβ turn out to be essentially fixed by the final thermal
state, they can be determined in the equilibrium theory and
then used to describe the nonequilibrium evolution as dis-
cussed here.

In practice, we recall that nβ can be efficiently computed
on thermal states by means of the transfer-matrix approach,
while the computation of σβ is a highly nontrivial task, related
to the problem of nucleation, i.e., on the formation within
the system of spatially extended “bubbles” corresponding to
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one of the two vacua. In fact, based on Eq. (24) and its
physical interpretation, one easily realizes that the rate �β at
which kinks are produced in equilibrium by the background
fluctuating radiation, i.e., the nucleation rate, is given by �β ≡
σβn2

β . This problem has been addressed in detail [97,115–120]
primarily for dissipative systems, in which the field is coupled
with some external thermal bath: to the best of our knowledge,
there are no analytical results for the nucleation rate in the case
of a closed system.

4. Comparison with the case of dissipative dynamics

Several studies have been dedicated to models support-
ing kinklike excitations but in the presence of a dissipative
bath [97,115–120]. In particular, Ref. [115] focused on the
dynamics of kinks and their annihilation processes, deriving
a kinetic equation for the density of kinks which is close
in spirit to our Eq. (24) but differs from it in two respects.
First, in the presence of dissipation, kink and antikink always
annihilate when they meet, in clear contrast with the case of
isolated system considered here, in which most of the kinks
survive the scattering processes (see Fig. 2). Second, spatial
diffusion induces correlations in the annihilation processes.
In fact, at low temperatures, the kinks in a kink-antikink pair
created by a nucleation process, which diffuse in space, are
more prone to interact among themselves rather than with a
kink belonging to another pair, as the latter would require a
significantly longer time compared to the case in which these
kinks separate ballistically. As a consequence, in the presence
of dissipation, the annihilation processes do not actually occur
among uncorrelated kinks, as the ∝n2(t ) term in Eq. (24)
suggests.

However, one generically expects dissipation and diffusion
to emerge locally also in an isolated system and therefore
one may wonder if and how this affects the dynamics of the
kinks we considered. As a matter of fact, kinks are subject
to a random force caused by the fluctuating radiation and
diffusion processes effectively take place (see, for instance,
the kink trajectory close to the region 4 in Fig. 2, lower panel).
However, from our numerical study it turned out that the
dissipation is not strong enough to cause diffusive behavior
on a length scale comparable with the average kink distance,
thus ensuring the validity of the kinetic equation (24) in the
regime that we focused on.

The reason for this can be better understood as follows. The
diffusive behavior of a kink in-between two scattering events
is determined by the amount of radiation, which becomes
algebraically small upon decreasing the temperature in a
classical system [cf. Eq. (17) and discussion thereunder], the
diffusion length scale �D is also expected to decrease alge-
braically upon decreasing the temperature. On the other hand,
the kink density is exponentially suppressed upon decreasing
the temperature, i.e., upon increasing β−1 and consequently
the average distance n−1

β between consecutive (anti)kinks
grows exponentially with it. Accordingly, for temperatures
small enough, �D becomes shorter than the kink average
distance, much smaller than n−1

β and the kink motion becomes
diffusive. However, this condition requires an extremely low
kink density which (i) is negligible for the dynamics of
one-point observables and (ii) is not accessible within the

system sizes L which we can simulate, violating the condition
Ln(t ) 
 1 which has to be satisfied in order to attain the
thermodynamic limit (see the discussion in Sec. III A and in
Appendix B). As a result, diffusive corrections are negligible
within the range of values of parameters and timescales we
investigated in this study. Indeed, the predictions of the kinetic
equation (24) fit remarkably well our numerical data (see
Fig. 6).

5. Interrupted aging

As anticipated in Sec. III B 3, the behavior of the order-
parameter correlation 〈φ(t, x)φ(t, y)〉 at times t  (2nβσβ )−1

exhibits the scaling form [cf. Eqs. (20) and (27)]

〈φ(t, x)φ(y, t )〉 ∼ f

( |x − y|
σβt

)
, (29)

with f (x) ∝ exp(−2x). This is the same scaling form as
the one predicted for the coarsening dynamics of systems
quenched across the critical temperature [53,59,121]. In these
systems, although the global symmetry cannot be dynamically
broken by the quench, this occurs locally via the creation of
domains within which the order parameter φ takes the value
corresponding to one of the possible vacua. The average linear
size n−1(t ) of the ordered domains increases algebraically
upon increasing t as n−1(t ) ∝ t1/zd , where zd > 0 is an expo-
nent which depends on the universal properties of the model:
equilibrium is eventually reached in a timescale increasing
upon increasing the linear system size L. This lack of a length
scale of microscopic origin, i.e., intrinsic to the system, affects
the equal-time two-point correlation function of the order
parameter, giving rise to the scaling form (29).

However, the scaling behavior in Eq. (29) emerges only
if the eventual steady state can host a stable ordered phase,
which is not the case of the system considered in this work
because of its reduced spatial dimensionality. In fact, the
model considered here is expected to relax to an equilibrium
state at finite temperature, which cannot sustain order in one
spatial dimension. At times t � (2nβσβ )−1, in fact, the scaling
in Eq. (29) is no longer valid, as the domain size n(t )−1

saturates to a finite value. This is analogous to dynamics after
a quench right above the critical temperature, in a system
sustaining a phase transition: in that case, domain’s size is
expected to grow until it reaches the equilibrium correlation
length ξeq. In this sense, our model undergoes an interrupted
aging dynamics.

IV. CONCLUSIONS AND OUTLOOK

In this work we investigated the late-time dynamics of
one-dimensional closed systems featuring topological exci-
tations. Our findings show that the nonequilibrium large-
distance properties of these systems display universality, in
that they can be described solely in terms of a simple effective
dynamics of the kinks. So far, this was only known for the
low-temperature thermodynamics of these models, while we
demonstrated that these features persist also in nonequilib-
rium protocols.

Initializing the system in a nonequilibrium Z2-even en-
semble, resulting in an initial large number of kinks,
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universal features emerge at late times when the kink density
decreases. We found that the time-evolving density of kinks
determines (i) the correlation length of the two-point (equal-
time) correlator of the order parameter and (ii) the approach to
equilibrium of one-point Z2-even observables, which display
a linear dependence on the instantaneous kink density.

The roots of such a behavior can be tracked down in a
separation of timescales between kinks and radiative modes:
the kink density relaxes much slower to its thermal value
compared with the radiation, which then acts as a thermal bath
on these excitations. As such, the total kink density emerges as
the only degree of freedom controlling the late-time behavior.
A simple kinetic equation describes the late-time evolution of
the kinks’ density, accounting for the possibility of annihi-
lating pairs of kinks and, conversely, their creation from the
background fluctuating radiation.

Several interesting directions are left for future investiga-
tions. First, while analytical predictions exist for the thermal
kink density, we are not aware of results concerning the
thermal nucleation rate, which is ultimately related to the
cross section appearing in the kinetic equation, and which we
treated as a fitting parameter. Being able to determine such
a cross section would further boost the predictive power of
our phenomenological model. Another interesting direction
concerns the possibility of refining our approach by devising
a whole phenomenological model able to capture the entire
time evolution of the kinks. Indeed, within this work, we
focused on the total kinks’ density resulting in a mean field
description. On the other hand, controlling the details of the
dynamics of the kinks (e.g., their trajectories) is necessary, for
example, in determining two-time correlation functions of the
order parameter (see Refs. [77–80] for the integrable case).
Finally, the study of weak confinement of the topological
excitations is a compelling quest, with possible connections
with the physics of quantum scars [30–35].
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APPENDIX A: TRANSFER-MATRIX APPROACH TO
THERMAL EXPECTATION VALUES

The transfer-matrix approach allows a straightforward
computation of observables on classical thermal states, taking
advantage of the correspondence between a one-dimensional
classical problem and a quantum one. Within this Appendix,
we summarize the ideas presented in Refs. [76,92,95,99].
Let us consider expectation values on a thermal ensemble
based on the Hamiltonian (1): a finite chain of N sites with
periodic boundary conditions. We will consider the thermo-
dynamic limit N → ∞. On thermal ensembles, the momen-
tum �(x) is completely uncorrelated with the field φ(x).

For the sake of simplicity, let us focus on observables that
depend only on the field φ. Their correlation functions can be
written as〈

s∏
j=1

Oj (φ(x j ))

〉
= 1

Z[β]

∫
dNφ

s∏
j=1

Oj (φ(x j ))

× e−βa
∑N

x=1[ 1
2a2 [φ(x+a)−φ(x)]2+V (φ(x))]

.

(A1)

We account for possibly different observables introducing a
label. We now read the above equation as a trace over a prod-
uct of suitable operators on an Hilbert space. We define ket
(and bra) states |φ〉 with the normalization condition 〈φ′|φ〉 =
δ(φ − φ′). We promote the observables from classical objects
to operators Oj → Ô j with diagonal entries

〈φ′|Ô j |φ〉 = δ(φ − φ′)Oj (φ) . (A2)

Furthermore, we define a transfer matrix τ̂ with the following
elements:

〈φ′|τ̂ |φ〉 = e− βa
2 [a−2(φ−φ′ )2+V (φ)+V (φ′ )] . (A3)

In this language, the partition function simply becomes
Z[β] = Trτ̂N , the expectation value of a single local observ-
able reads as

〈O(φ(x))〉 = Tr[τ̂N Ô]

Tr[τ̂N ]
, (A4)

two-point correlation functions are

〈O1(φ(x))O2(φ(x + y))〉 = Tr[τ̂N−yÔ1τ̂
yÔ2]

Tr[τ̂N ]
, (A5)

and so on and so forth. τ̂ is clearly a Hermitian operator,
which can be diagonalized and has real spectrum. Let |�〉 be its
orthonormal eigenvectors with corresponding eigenvalue μ�,
i.e., τ̂ |�〉 = μ�|�〉. The operator τ̂ is bounded both from below
and above [we assume V (φ) � 0] 0 � 〈φ′|τ̂ |φ〉 � 1, thus,
0 < μ� � 1. We order μ� > μ�+1 and call the eigenstate � =
0 the ground state, which we assume to be unique (and later in
the continuum limit justify this claim). In the thermodynamic
limit N → ∞, the ground state is the state contributing the
most to the partition function Z[β] = μN

0 [1 + O((μ1/μ0)N )].
Accordingly, in this limit we can compute correlation func-
tions by simply projecting on the ground state

〈O1(φ(x))O2(φ(x + y))〉 = 〈0|Ô1τ̂
yÔ2|0〉

μ
y
0

. (A6)

Inserting now a representation of τ̂ in the diagonal basis, we
have

〈O1(φ(x))O2(φ(x + y))〉 =
∞∑

�=0

〈0|Ô1|�〉〈�|Ô2|0〉
(

μ�

μ0

)y

.

(A7)

In particular, the connected correlation function is readily
recovered by subtracting the y → ∞ limit:

〈O1(φ(x))O2(φ(x + y))〉c =
∞∑

�=1

〈0|Ô1|�〉〈�|Ô2|0〉e−y log( μ0
μ�

)
.

(A8)
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(a) (b) (c)

FIG. 9. Transfer-matrix results for correlation functions at finite temperature for the continuum model defined in Eq. (2). (a) [respectively
(b)] Correlation lengths {λi} in the Laplace transform Eq. (A9) for the most relevant Laplace coefficients |LO(λi )| > 10−5 for the correlation
〈φ(x)φ(y)〉c [respectively 〈φ2(x)φ2(y)〉c] as a function of the inverse temperature β. In the low-temperature limit, in (a) one curve clearly
approaches zero, resulting in a divergent correlation length for 〈φ(x)φ(y)〉c according to Eq. (A9). This feature is absent in 〈φ2(x)φ2(y)〉c [see
(b)]. (c) Value of the Laplace coefficient associated with the largest correlation length in 〈φ(x)φ(y)〉c, which is interpreted as the prefactor
Aβ in Eq. (14), as a function of the inverse temperature β. All the results are obtained with V (φ) = 0.1(φ2 − 1)2 in the continuum limit (2).
Indeed, in the low-temperature limit Aβ approaches φ̄2 (red line), which for this potential is φ̄ = 1.

Accordingly, the diagonalization of the transfer matrix τ̂ gives
immediate access to one-point expectation values and to the
Laplace transform

〈O(x)O(y)〉c =
∞∑

i=1

e−λi|x−y|LO(λi ) (A9)

of the correlation functions.
From Eq. (A8) we can connect the divergence of a corre-

lation length with the closure of the gap between the ground
state and the first excited state μ1 → μ0. This can be most
easily understood in the continuum limit. Taking a → 0, we
approximately get

〈φ′|τ̂ |φ〉 � 〈φ′|(1 − aĤq)|φ〉 � 〈φ′|e−aĤq |φ〉, (A10)

with Ĥq the zero-dimensional Hamiltonian

Ĥq = β
p̂2

2
+ βV (φ̂), (A11)

where we introduced the canonically conjugate operators
[φ̂, p̂] = i. The spectrum of Ĥq gives the correlation lengths.
In particular, we are interested in the energy gap between the
ground state and the first excited state. In the Hamiltonian
(A11) it is convenient to perform a canonical transforma-
tion p̂ → β−1/2 p̂ and φ̂ → β1/2φ̂, which leads to the new
Hamiltonian

Ĥq → Ĥq = p̂2

2
+ βV (β−1/2φ̂). (A12)

Let us now consider, for example, the double-well potential
V (φ) = λ(φ2 − φ̄2)2. The potential appearing in the quantum
mechanical effective problem has the same qualitative form,
with a potential barrier increasing as β → ∞.

First, since the potential is unbounded from above we get
that the energy levels are discrete [i.e., the Laplace transform
(A7) is indeed a discrete summation] and nondegenerate.
Then, the eigenvectors are alternatively even and odd with
respect to the Z2 symmetry: in particular, the ground state is
even and the first excited state is odd. The parity of the ground
state guarantees that the one-point function of odd powers of
the field vanishes, as it should be.

Let us now increase β: the potential barrier progressively
grows and the first excited state becomes degenerate with the
ground state. Instead, a finite gap remains between the ground
state and the second excited state. The closure of the first gap,
but not of the second, implies that there is one and only one
divergent correlation length in Eq. (A8). Such a correlation
length can be associated with the inverse of the kink density.
Indeed, this has been used to analytically study the low-
temperature limit of the density of kinks [76,92,95,99].

In Fig. 9 the most relevant Laplace coefficients |LO(λi )| �
10−5 are reported for the correlation functions of φ(x)
[Fig. 9(a)] and its square φ2(x) [Fig. 9(b)] in the continuum
limit a → 0. For φ(x), one curve clearly approaches zero upon
increasing β, resulting in a divergent correlation length which
can be associated with the density of kinks as dictated by
Eq. (14). For φ2, instead, the curves do not approach zero: the
correlation function is not sensible to the presence of kinks.

FIG. 10. Thermal kink density as a function of the inverse
temperature β, extracted from the numerical evaluation of the
correlator order parameter using Eq. (14). The largest correlation
length is numerically computed through transfer-matrix methods
(Appendix A). Inset: comparison between the numerical result (black
line) and the asymptotic expansion Eq. (12) (red line), vertical axis
in logarithmic scale.
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In a first approximation, in this case the correlation is due to
the radiative modes and thus the correlation length remains
finite as the temperature is decreased. In Fig. 9(c) we show
the extrapolated value of Aβ as defined in Eq. (14). As β

is increased, Aβ slowly approaches the value determined by
the bare vacuum (the red line corresponding to 1). Departures
from this value are interpreted as renormalization effects due
to the radiative modes.

In Fig. 10 we show the kink density extracted from the
spatial correlation of the order parameter as a function of
the inverse temperature β. We observe a good exponential
decay qualitatively in agreement with Eq. (12), with a finite-
temperature renormalization of the kink mass, changing the
characteristic scale of the exponential decay. We conclude
this Appendix by noticing that, for parity reasons, the only
nonvanishing matrix element in the form 〈0|φ̂n|1〉 occurs
for odd power n. Indeed, only correlators of odd powers of
the field are sensitive to the kink density, which causes the
correlation length to diverge.

APPENDIX B: REAL-TIME NUMERICAL SIMULATION

Here, we describe the numerical method used for a first-
principles exploration of the dynamics. The algorithm consists
of two steps: First we randomly generate a field configuration
from the desired ensemble, then the initial condition is deter-
ministically evolved in time and the desired observables are
computed along the time evolution. The operation is repeated
and observables are averaged over the initial conditions (we
took advantage of translational invariance and averages also
on lattice sites).

We consider a system of L sites with periodic boundary
conditions, L must be taken large in order to ensure the ther-
modynamic limit. We note that we can approximately realize
the thermodynamic limit only if a large number of kinks is
present in the system: as a rule of thumb we ask Ln(t ) � 10,
with n(t ) the instantaneous average kink density. In order
to be able to study the whole relaxation process until the
thermal ensemble is reached, we therefore need L � 10n−1

β .

Since n−1
β is exponentially divergent upon decreasing the

temperature, this limit can be hard to achieve. Thus, for very
low temperatures we did not follow the whole thermalization

process. Instead, fixing a large L (we consider up to L = 211

points), we stopped the time evolution when n(t ) became too
small.

The average number of kinks present in the system also
affects the required number of initial configurations to be
sampled: we found that, by choosing the system length L
in such a way that Ln(t ) � 10, the average on about 4000
independent realizations is a good compromise between speed
and accuracy of the numerical data. Any given initial field
configuration φ(t, x) is evolved according to the second-order
(in the time-step discretization) symplectic algorithm used in
Ref. [90]:

φ(t + dt, x) = dt2

a2
[φ(t, x + a) + φ(t, x − a)]

−φ(t − dt, x) + 2φ(t, x)[1 − (dt/a)2]

− dt2V ′(φ(t, x)) . (B1)
Higher-order algorithms exist, but we experienced that this
second-order one is a good compromise between accuracy
and speed. Initial field configurations are sampled from a free
thermal ensemble with mass m0: this simple choice allows
us to quickly generate random initial conditions. Indeed, on
a free ensemble the Fourier modes are independent Gaussian
variables. Accordingly, we assign to the field and its derivative
the following initial expressions:

φ(x) = 1√
La

L−1∑
k=0

1√
2E (2πk/L)

(ei2πkx/LA(k) + c.c.) , (B2)

∂tφ(x) = 1√
La

L−1∑
k=0

√
E (2πk/L)

2
(−iei2πkx/LA(k) + c.c.) .

(B3)

Above, c.c. stands for the complex conjugate and E (q) is
the free dispersion law E (q) =

√
2a−2(1 − cos q) + m2

0 . The
modes A(k) are random Gaussian variables with zero mean
and variance

〈A(k)A∗(q)〉 = δk,q
1

β0E (2πk/L)
. (B4)
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