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ABSTRACT: We study the transverse momentum of the leading jet in the limit where the
jet radius is small, R < 1. We introduce the leading-jet function to calculate this cross
section for an inclusive jet sample, and the subleading-jet function when a loose veto on
additional jets is imposed, i.e. prj 2 p¥*. These jet functions are calculated at next-
to-leading order in QCD and the resummation of jet radius logarithms is explored. We
present phenomenological results for Higgs + 1 jet production, for both the jet and Higgs
transverse momentum distribution. We find that, while the R <« 1 limit of the cross
section provides a good description of the full NLO result, even for values as large as
R = 0.8, simply retaining the leading logarithm at this order does not. Indeed, the NLO
contribution to the hard function and, to a lesser extent, non-logarithmic corrections to
the jet function are sizable and must be included to obtain the correct cross section. In
the inclusive cross section we find that the o2 In? R corrections are several precent, while
in exclusive cross sections at large pr ; and small R they can reach 20%. However, it is not
clear how important the resummation of these logarithms is, given the presence of other
large corrections at NNLO.
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1 Introduction

Jets play a central role in most LHC measurements. The focus is generally on the jet
with the largest transverse momentum, referred to as the leading jet. Higher-order QCD
corrections to the corresponding cross sections will contain logarithmically enhanced con-
tributions of the form o In" R, where m < n, R is the jet radius parameter and «y is the
strong coupling. Although jet radius logarithms are typically not very large, their study will
become increasingly important as experiments use more sophisticated techniques in their
analysis, especially when it comes to those involving jet substructure. In fact, experimental
studies in this area already use jet radii of R ~ 0.2, see e.g. refs. [1, 2].

We will show how these jet radius logarithms can be resummed to all orders in pertur-
bation theory, through the introduction of a leading-jet function .J; ;(2;). The leading-jet
function describes the radiation of a parton ¢ produced in the hard interaction, and how
this radiation gets clustered into jets, where z; is the momentum fraction of the initial
parton carried by the leading jet. The properties and number of jets will of course depend
on the choice of jet algorithm and jet radius. Clearly however, as one decreases the value of
R the probability that emissions from the initiating parton get clustered into separate jets
increases, and one might expect a single final state parton to yield two or more jets. We
will calculate the jet function at next-to-leading order (NLO) in . Its nonlinear evolution



equation resums the logarithms of R, and we assess the importance of these corrections in
Higgs + 1 jet production.

The origin of using the small jet radius approximation can be traced back to Sterman
and Weinberg [3], and a first calculation of an inclusive jet cross section in this approxima-
tion was carried out in ref. [4]. In exclusive jet cross sections, jet radius logarithms have
been resummed for jet rates [5] and Sterman-Weinberg jets [6, 7], including a measurement
of the jet thrust [8]. Jet radius logarithms for exclusive O-jet cross sections were considered
in e.g. refs. [9-11], and extended to jet mass in exclusive jet production [12]. For inclusive
jet cross sections, jet radius logarithms have been obtained using the generating functional
approach [10, 13], and through the RG evolution of a jet function [14, 15] in Soft-Collinear
Effective Theory (SCET) [16-20]. Our approach will be to follow the latter method to
describe the production of the hardest (and second-hardest) jet, and extend the results of
ref. [10], by including the hard scattering and also extending it to exclusive one-jet cross
sections.

We will also consider the case where the two jets with the largest transverse momentum
are measured, which we refer to as the leading and subleading jet. We describe this in a
similar fashion through a subleading-jet function Jg ;(2;, z5), with z; and zs the momentum
fractions of the these jets with respect to the initiating parton. Note that integrating over
zs this simply reduces to the leading-jet function. The subleading-jet function may also be
used to describe the production of a single jet with a veto on additional jets, by integrating
over zs up to some cutoff. We will restrict ourselves to the case where the transverse
momenta of the jets are of the same order of magnitude, i.e. z; ~ zg ~ O(1). For z5 < z
there are additional jet veto logarithms that require resummation, see refs. [21, 22].

The rest of this paper is organized as follows: in section 2 we define the (sub)leading-
jet functions, describe how they enter in factorization theorems, and compute their NLO
QCD corrections. In section 3 we derive and solve the nonlinear evolution equation of the
(sub)leading-jet function. Finally, in section 4 we explore the impact of the jet functions
in Higgs + 1 jet production and comment on the relative importance of In R terms, before
concluding in section 5.

2 Leading and subleading-jet functions

In section 2.1, the (sub)leading-jet functions are introduced, by showing how they enter in
factorization theorems. Their field-theoretic definition is given in section 2.2. The QCD
corrections to the (sub)leading-jet functions are calculated at NLO in section 2.3.

2.1 Factorization of the (sub)leading jet cross section

We will describe how the (sub)leading-jet function enters in factorization formulae, using
Higgs plus inclusive jet production (H.J) as a concrete example, which will be studied more
closely in section 4. We assume that the jet radius is small, i.e. R < 1, since our goal is to
obtain the (large) jet radius logarithms. This justifies using the collinear approximation in
describing the jets produced by the energetic parton(s) exiting the hard scattering process.



Starting at leading order (LO) accuracy, the cross section differential in the transverse
momentum pr, ; of the hardest jet can be written as

PP%HJ pp%Hz 9
dpri — —— [daJii(z,priR, 1) 0 - O+ OR?). (21
dpr. Z/ PTi 4, b1 / 21 iz pri R ) 6(pr,g — zipr) + O(R7) . (2.1)

The differential cross section d&;gL 7; describes the production of a Higgs boson and parton
i at leading order in QCD with transverse momentum pr;. As such, it contains the
convolution with initial-state parton distribution functions, along with the usual sum over
contributing partonic channels. The sum over ¢ is over possible final-state partons ¢ =
{¢,q,9}. At higher orders, d5( is not simply given by the higher order cross section for
Higgs+parton production, as will be discussed shortly, and for this reason we include the
tilde. The jet function J;;(z;, pr;R, 1) encodes the leading jet produced by this parton
with transverse momentum pr ; = 2 pr,;. In particular, the jet function only depends on
the parton initiating the jet and is independent of the process in which it was produced. At
LO, the jet function is simply J; ;(2;, priR, ) = (1 — 2;), so the above equation is trivially
correct. However, the factorization in eq. (2.1) also holds for the leading logarithms (LL) in
R. These can be resummed to all orders in a;s by deriving and solving the renormalization
group equations (RGEs) for the leading-jet functions, as discussed in section 3. Thus,
eq. (2.1) is LO4LL accurate, when including this evolution of the jet function. Note that
we assume that there are no other hierarchies in this process, i.e. pr,; ~ pr,g ~ mpy, since
these would otherwise introduce additional logarithms requiring resummation. The region
Pyt ~ pp g < mpy has been studied in [23].

At NLO, there can be an additional hard parton j (real radiation) in the final state
which is not collinear to %, so it is necessary to include additional jet functions to describe
their radiation’

pp—>HJ /d dUpp—)Hzg / )
E pr,i dpr,; dzy; Jii(21, Ty R, 2.2
dpr, s ' ! dpridpr; i Sz prifs v) (22)

- / dz g (2 prg R, 1)0 (pry — max{ziipr, 21507,5}) + O(R?).

Collinear final-state radiation is already encoded by the jet functions and is not part of
dopp— Hij, since it would otherwise be double counted.? Furthermore, dopp—mij also in-
cludes the one-loop virtual corrections to pp — Hi, for which pr; = 0 and the integral
over J ; gives unity from the conservation of probability (see eq. (2.8)). The cross section
dopp—mij only depends on the the hard scales iy ~ pr,; ~ mpy and not R. As the NLO
calculation in section 2.3 reveals, the jet function on the other hand depends on the scale
g ~ pr,gR. The renormalization group evolution between these scales produces the large
logarithms of puy/pug ~ R, as discussed in section 3. To extend eq. (2.2) to higher orders

!Factorization formulae where a different number of jet functions appear at different orders in pertur-
bation theory have also been obtained in refs. [24, 25].

2Indeed, we extract dépp— Hij by expanding eq. (2.2) to NLO, and subtracting the contribution involving
the NLO jet function. This is discussed in detail in section 4.1.



in oy, one needs to include a jet function for each additional well-separated hard parton in
the final state.

We conclude this section with the extension to the case where we are no longer inclusive
over the second hardest jet, but instead integrate it up only to some cut-off pVeto For this,
we introduce the subleading-jet function Js ;(2, zs, priR, 1),

NLO yeto NLO
It (o) / R (23)
dpr,1 dpr,s1dpr, 72
do,p— Hi
Z/dez prj 2L /dzl,i dzs,i Js,i(21,0 25,6, T, R 1)
dezde,j

X /dzz,j dzsj Jsj (215, 2,5, P R, 1) 0 (P01 —max{zipri, 21,07, })
x O (pF*° —max{min{zyipri, 21,07}, 25,iPT.0> 25,5015 }) + O(R?).

In the subleading-jet function, z; has the same role as in J;; while z; denotes the energy
fraction carried by the second hardest jet. The theta function describing the second jet is
more complicated: if parton ¢ produces the leading jet, the second jet can either be the
leading jet produced by parton j or subleading jet from parton ¢. By taking the derivative
with p¥%, the spectrum of the second-most energetic jet can also be obtained. This can
straightforwardly be extended to also describe the third hardest jet, etc.

2.2 Definition of the (sub)leading-jet function

The (sub)leading-jet functions can be defined as collinear matrix elements in SCET, which
will be our starting point for their calculation in section 2.3. We first introduce light-cone
coordinates
nu rfl/u‘
Pr=np ot o+ (2.4)
where n# = (1,0,0,1) is along the parton initiating the jet, n* = (1,0,0,—1) and p//
denotes the transverse components. The quark leading-jet function is given by

Jua(ztspr B ) = 167° Z o T [ﬂ<0|5<2pT A P)(PL) X (0] X) (X% (0)]0)

N 5<Zl _ meexpTJ> , (2.5)
bT

where x;, is the collinear quark field, P the (label) momentum operator, and N, = 3 is the
number of colors. Since jet algorithms at hadron colliders are invariant under boosts along
the beam axis, it is convenient to work in the frame where the jet has rapidity zero. The
Xn(0) creates a quark with energy pr, x,(0) annihilates it, and the delta function on the
second line picks out the momentum fraction z; = pr,;/pr of the leading jet in the state
|X'). Note that we do not include the top quark and treat the other quarks as massless, so
the jet function is independent of flavor. Due to charge conjugation invariance, the quark



and anti-quark jet function are the same. The corresponding definition for gluon jets is

given by
i2 a
Jl,g(zl,pTR,,Uz) = ]_671'3 Z (d — 2)(]’1?2 — 1) Tr |:Zi<0|5(2pT - ﬁp)62(PJ_)BZl (0)|X>
X C
< XIBLL L 0)]0)5 (o - P, (2.0

where B, | is the collinear gluon field and d = 4 — 2¢ in dimensional regularization. For
the subleading-jet function an extra delta function must be included for the momentum
fraction zs of the second hardest jet.

We write the perturbative expansion of the leading-jet function as

Qg Qg 2
Jl,i(zlvaRa M) = Jl(fl)) (ZlapTRa /L) + < ) ‘]l(;) (Zl7pTRa M) + <?) Jl(f) (ZlapTRa M) +o

k3
(2.7)
and similarly for the subleading-jet function. The interpretation of these jet functions as
a probability implies that they should be normalized to unity

1 1
/ dz dzs Js i(21, zs, pr R, 1) = / dzy Jii(z,pr R ) = 1. (2.8)
0 0

This can be derived from the definitions in egs. (2.5) and (2.6), and implies, since Jl((i)) =
d(1 — z;), that the integral of the higher order corrections in the perturbative expansion
must vanish,

1 1
/ dzy dzs I\ (21, 2, pr R, 1) = / A S (s, prRyp) =0 forn>0.  (29)
0 0 ’

2.3 Calculation at next-to-leading order

In this section we compute the (sub)leading-jet function up to next-to-leading order (NLO).
At LO there are no emissions from the initiating parton. As such there is only one jet, the
initial parton. Indeed, evaluating the definitions in egs. (2.5) and (2.6) at this order yields

T CprRop) =81 —2), I (2, 20 pr R, i) = 0(1 — 2)0(z4). (2.10)

We now calculate the one-loop subleading-jet functions in the MS scheme, which can
be written as

2

+@(; —x)é(zl —(l—m))}é(zs— (1—2’1))}. (2.11)

c 1
JS(}Z-)(ZI, 25, DT R, 1) :/d<1>2 027(;){@(9<R)5(1 —21)0(zs) + O(0>R) [@ <x - )5(21 — )

Here 6 is the angle between the two partons, which have momentum fractions x and 1 — .
The first term inside the curly brackets corresponds to the case where @ is less than R, so
there is a single jet and z; = 1, z; = 0. For the second term, the initiating parton produces
two jets, and z; (zs) is equal to the largest (smallest) momentum fraction. Eq. (2.11)



involves the collinear phase space d®5 and the one-loop collinear matrix element squared
c(1)
02 [26]

(1) as (€2 /2” / b / dgL
d® = W ) [ [ dx B
/ 2% = o (- J, 90, W) [ e
1) _ s (€7E ) /2” /1 5 1, / dg.
® _ s (@7 P _p S (212
/d 2059 = 53 Ti—0) J, do ; dz |ng qg(l‘)+2 99(2) g (2.12)

The two partons have transverse momentum ¢, with respect to the initial parton, which
is related to the angle between the two partons by

q1

0= ——"—. 2.13
z(1—x)pr (2:13)
The sz'j in eq. (2.12) are given by
B 1+ 22
Pq() :OF[ 1— = _6(1_$)]>
Py(x) = Tp(l —2x(1 —2) — 2ex(l — z)],
R T l1—2z
Pyg(x) _2CA[1—33 + . +x(1—x)]. (2.14)
Performing the integrals in eq. (2.11), we obtain
JO= 02— Dotz — -2 (2 102 ) [Prale) + Pral2)] (2.15)
5,4 2 % pTR qq 99

L Cp {_2 Fnl(l__:)} ++ (f - 7;2> 5(1—2)— 21hizzll +< —2)110[21(1—21)]—;} } :
5= 0 (a1~ 5 )aten — =) (410 L2 ) [Pae) 2, Prya)]
In 2

1— 2 18 1— 2

In(1 — 1
— 20y [n(zl)} — =5(1 — 2)[Ca(67% — 67) + 23n,Tr] — 2C.s
+
2

B [Ca(1=2z+27 —27) + nfTr(21—227 +227)| In[z(1—2)] — anTle(l—zl)} .
1

In eq. (2.15) the regular splitting functions (denoted without a hat) appear, which are

22
Pyy(z) = Cr ([ilj_ﬁ]—k + 2‘5(1 - x)> )

Pyq(z) =Cp (H(lx—l‘)z> |

Pyg(z) = TF(JU2 + (1 - 513)2) ;

Pyy(z) = 20A<[1 —x:vh 41 - T (- x)) + %5(1 — 1),

with
110y — 4Tpny

Bo 3
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Figure 1. The full (solid) leading-jet function at O(«s), its a, In R contribution (dotted), and the
z; — 1 approximation (dashed), for R = 0.8,0.4,0.1 (red, green, blue). Note that the last bin which
is negative (and ensures the sum rule in eq. (2.9)) does not appear on the log plot. In the panel
below each figure the ratio with the full NLO result is shown.

We briefly comment on the form of the subleading-jet functions eq. (2.15). Since there
1

are at most two partons, the range of z; is limited to 5 < z; < 1 (which extends at order
oy to n%q <z <1). The %Pij UV divergence leads to an evolution equation involving
splitting functions. The structure of this evolution equation is perhaps not immediate and,
as we will see in section 3, is a non-linear DGLAP [27-29] equation, similar to that for the
jet charge [30] or fractal observables [25]. We can also read off that the natural scale of
these jet functions is pu ~ prR, and the evolution to the hard scale y ~ pr will resum the
logarithms of R.

We end this section by showing numerical results for the one-loop jet functions. In
particular, we will check under what conditions the asIn R term (the LL term) is a good
approximation to the full NLO calculation. At this order in perturbation theory the z
dependence is completely fixed by z;, so we simply consider the dependence of J; on z;. In
figure 1 we show how the quark and gluon leading-jet functions depend on z; in the left and
right panels respectively. To clarify the discussion, we set © = pr so that the jet function
involves only In R terms and not logarithms involving any other scales. We display each jet
function integrated over bins of width 0.02. The last bin in each plot includes an integration
over plus distributions and delta functions and gives a large negative contribution which
therefore cannot be seen on the log plot. Each plot shows the a,In R contribution (dashed
lines) compared to the full NLO result (solid lines) for R = {0.8,0.4,0.1}. Below each
plot we also show their ratio (plotted as a smooth curve between the bins to highlight
the trend), indicating that for both the quark and gluon jet functions, the a,ln R term
accounts for, at best 60% of the full NLO contribution,? and only for very small R values

and at moderate values of z; ~ 0.5.

3Note that eq. (2.8) states that the z; integral should be zero. This is not apparent in the plot due to
the presence of delta function and plus distributions which give large negative contributions at z; = 1.



We also examine z; — 1 limit of the leading-jet functions, where almost all of the
jet momentum is carried by a single parton. This limit is interesting because of the soft
singularity of QCD, and the NLO results for the jet functions reduce to

J(l)‘ — 920, 1 In H In(1 — z)
L ! [ 1— Zl

z—1 1— 2z, pTR_

L) vdis(l—z),  (2.16)

where Uy = Cp, Cy = C4, and

3 I IR
dyg=Cp( 2t 22 T
‘ CF(zinR+4 3)’
_Bo 1%

dg =5 1in—R - 11—8 [CA(67 — 67%) — 23n,TF] . (2.17)
These contributions are also shown in figure 1 (dotted lines). Here we see that indeed,
for z; > 0.7, these contributions account for > 80% of the value of the jet functions. Of
course, this is only a comparison of the O(as) corrections, and furthermore these functions
appear in cross sections through convolutions with appropriate hard functions. We will
investigate the validity of these approximations of the jet functions at the cross section
level in section 4.

3 Leading-logarithmic renormalization group equation and solution

In section 3.1, we derive the RGEs for the (sub)leading-jet functions, using a parton shower
picture that is accurate to LL order. Our analytical solution to this RGE at order o2 is
presented in section 3.2, and we also discuss how this can be extended numerically to
all-orders in ay.

3.1 Deriving the renormalization group equation

At LL accuracy, we can think of the radiation produced by a parton as a tree of subsequent
1 — 2 splittings that are strongly ordered in angle, i.e. the angle of subsequent splittings
are parametrically smaller. The RGE can now be derived by considering a single 1 — 2
splitting, pictured in figure 2, and noting that the momentum fraction of the leading jet can
be calculated recursively (see also ref. [25]). Specifically, the leading-jet function for the
initial parton can be obtained from the leading-jet functions of the two daughter partons,
by accounting for the distribution in the momentum fractions z and 1 — 2z and angle § > R
of the daughters. Denoting the momentum fraction of the leading jet produced by the
daughter partons as x; and x9, the momentum fraction of the leading jet produced by our
initial parton is simply given by

7 = max|zz1, (1 — 2)x2] . (3.1)

The additional factors of z and 1 — z enter because the momentum fractions x; are of the
leading jet produced by a daughter with respect to the momentum of a daughter.



Jq(zly emax)
‘]!}(x27 0)

Figure 2. The leading-jet function of the initial quark can be calculated recursively in terms of
the leading-jet functions of the quark and gluon that result from the splitting shown above. Here z
and 1 — z are the momentum fractions of the daughter partons, and 6 is the angle between them.

This allows us to immediately write down a recursive expression for the leading-jet
function at LL accuracy. For an initial quark this reads

Qmax

do 1 1
i / dz Pyy(2) / dzq dao (3.2)
R 0 0

X Jiq(x1,pr R, pr0) Jig(22, TR, pTY) 6 (2 — max([zx1, (1 — 2)x2]) .

Qs
Jia(zt, pr R, pro™™) = 5(1 - z) + W/

The expression for an initiating gluon is very similar, with the appropriate replacements for
the splitting and jet functions, except that both ¢ — gg and g — ¢g splittings contribute.
To account for the angular ordering, the jet functions carry the additional argument 6,
which gives the largest angle at which the next splitting can occur. For the initial splitting
™% is assumed to be an order one number. For subsequent splittings the upper limit on
the 6 integral is set by the angular ordering condition, while the lower limit is always set by
the jet radius parameter R. To derive the RGE, it is useful to make a change of variables
from 6 to the transverse momentum g of the daughter parton with respect to the initial

parton

/9 dg:/md‘“:/“d’ﬂ. (3.3)
r 0 prR 4L uo 4L

Note that this transverse momentum is the scale at which a; in eq. (3.2) is evaluated
(treating x; as order one numbers). Taking the derivative with respect to u, we obtain the
RGE. From the lower limit of the integral in eq. (3.3) we also read off the natural scale of

the jet functions to be prR.
For a parton of type ¢, we find for the leading-jet function

d g 1
Han,z‘(Zlau) = 7@/ dzday dwg Kpi(z1, 32, 23 1) 6 (2 — max [zx1, (1 — 2)x2]) , (3.4)
0

where

Kig(z1, 29, 25 ) = Pyq(2)J1q(21, 1) Jig (22, 1)

1
Kig(z1, 29,2 1) = §ng(Z)Jz,g(3317M)Jz,g(m, ©) +npPyg(2)Jyg(x1, 1) J1g(x2, 1) . (3.5)



Here and in the following we suppress the dependence on the scale prR in the arguments
of each of the jet functions, to keep the notation compact.

We can similarly derive the LL accurate RGE for the subleading-jet function. We find

s (1)

™

X {@(2’51311 —(1- z):ch)d(zl — lel)d(zs — max [zx1s, (1 — z)xgl])

d 1
M@Js,i(zb 2, J1) = / dzdzy doey dos dwos K (217, 221, T1s, T2s, 25 14) (3.6)
0

+ O((1—2)wg—2211) 6 (21— (1— 2)m9) 6 (25 —max [zz1y, (1— 2)w24)) } )
where

Ks,q(xllax2l7x187w257 Z3 :u) = qu(z)Js,q(wlhxlsaN)Js,g(w2l7$257N) ’
1
Ks,g(SUllvalyxlsaxQSaZ;,Uf) = §ng(2)<]s,g(351l7$18’N)Js,g($2l’x257,u)
+ anqg(z)JS,q(mlla L1s, M)JS,Q(:E?% T2s, :u) . (37)

Note that the constrains z;; > xj; and xj +2;, < 1 for j = 1,2 are automatically satisfied
by the jet functions and follow from their definition.
3.2 Solving the renormalization group equation

We now use eq. (3.4) to generate higher order terms in «y for the LL solution of the leading-
jet functions from lower order ones. It is straightforward to check that inserting the LO
solutions Jl(?)(zl,,u) = 6(1 — z) into eq. (3.4) yields the LL part of Jﬁ) in eq. (2.15),

1)LL 7! 1
Jl(’q) (21, ) = hl(pTR) @(zl — 2> [qu(zl) + qu(zl)] ,

Jl(,gly)LL(Zl’ /'L) =1In (]OTMR> @(zl — ;) [ng(zl) + 2anqg(Zl)] . (3.8)

Inserting Jl(?) + %J(ULL

li
the LL terms at order 042. For the quark leading-jet function these are

into eq. (3.4) and expanding everything to order a2 we obtain

2)LL 7 1\ Bo
Jz(,q) (21, 1) = In® <pTR> {@ (Zl - 2) T [Pag(21) + Pyq(1)]
1
+ 06 <Zl — 2> (C%Aq,l + CFCAAQ,Q + CpnprA%g)

1 1
+ 6 (2 — Zl> o <Zl — 3> (C%qu +CrCyBy2 + CanTFBq73)} , (3.9
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Figure 3. Comparison between the NLO without (solid lines) and with the NNLO LL correction
(dashed lines) to the quark (left) and gluon (right) leading-jet functions for R = 0.4 (green lines)
and R = 0.1 (blue lines). The LL terms at NNLO are added to the NLO with the appropriate
prefactor (as/m), see eq. (2.7).

where
In(1 — 3 9 2 1-222-3
L—z |, [T—aly 8 3 21 — z)
2 3 Z]
(o= ) ma—a -2 (142,
222+ 2 +1 2 823 4 1727 + 262 — 40
Aq :—Mlnzl%— 21+ ——=2|In(1—2z)+ i ,
’ 2l Zl 122’1
245z —422 — 427
Ags = 3 : L+2(1+ 2)In(z),
2 (327 — 3z, +2) (1527 — 152 + 8) 3. (1—z
B — In(1—2 ] |
@l 21— 2) n(l—2z) + 22(1— 2) nz’+2n< 2 )
N 3(1—32)(2 - 2)?
42[(1—2’1)
3zl—3,zl2—2 —zlg’+zl+2 1—2z
Byo= """ _"1In(1-2 L T lngzy— 4)1
R ) ol = 2a) + al—z) Gt in{

—4528 + 9627 + 30z} — 35223 + 45922 — 2362 + 40
+ 12(1 — 21)42’[ '
1—z\ 1820 — 8720 + 1862} — 1522} + 3627 + 112, — 4
2z ) + 62;(1 — z)* )

Bq73 = 2(1 + Zl) 111( (310)
The analogous result for the gluon jet function can be found in appendix A. At this order
there can be as many as three jets in the final state, so the emergence of the new region
1/3 < z < 1/2 is expected.

In figure 3 we show the effect of the NNLO corrections Jﬁ)LL as calculated in egs. (3.9)
and (A.1) on the NLO quark (left) and gluon (right) leadiné—jet functions as a function of
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z1 with u = pp. The solid curves in each plot show the full NLO jet functions, while the
dashed curves show the effect of adding the NNLO LL terms, weighted appropriately by
a/m for comparison and where we have set a; = 0.1. We show results for R = 0.4 (green)
and R = 0.1 (blue) and the lower panel in each plot displays the ratio compared to the pure
NLO prediction for z; > 1/2. The LL contributions at NNLO have an integrable divergence
as z; approaches 0.5 from below. This arises from a soft divergence: the momentum fraction
of the softest of the three jets is bound from below by 1 — 2z, leading to a In(1 — 2z;) in
the CIQ; and CpCy color structures in eq. (3.10). It is clear from the ratio plots, that the
NNLO LL corrections for R = 0.4 have a smaller impact on the quark jet function, where
they are below 4%, than for the gluon where they approach 10% for larger z;. It is only for
more extreme values of R = 0.1 that the corrections become significant, again particularly
for the gluon leading-jet function at large z;. However, given that the LL terms at NLO
are not a good approximation for the full NLO jet functions, we might expect the same to
occur at NNLO.

Moving on to the subleading-jet function, we find that the O(a?) contribution to the
LL evolution is given by

‘]s(,Qi)LL(zb Zss /’L) - IBO <M> Js(,li)LL(zh Zsy ,LL)

1 14
+ iln <pTR>@(zl — zs)@(zl + 224 — 1)@(1 —z — zs)

X | Fi(z1, 25) + Fi(zs, 21) + Fi(1 — 2 — zs,Zl)}, (3.11)
where
Fyla.b) = +— {P W[ < a>+2"qu9<1b(z>]
+ Pyy(1 —a) [qu< > qu<1fa>}}’
F,(a,b) = { (a){ < > + 20 Pyg (1ba)]
omp, ( >+qu<1fa>]}, (3.12)
and

T Gy 2) = T ()02 = (1= 1) (3.13)

Eq. (3.11) can be interpreted as a perturbative splitting into partons with momentum
fractions @ and 1 —a, where the parton with 1 —a subsequently splits into two partons with
momentum fractions b(1 — a) and (1 — b)(1 — a). The splitting probabilities are encoded
in eq. (3.12), and the three terms on the last line of eq. (3.11) correspond to the different
assignments of leading and subleading jets over these three partons. We have checked that
the integral of eq. (3.11) over z, reproduces Jl(j)LL in egs. (3.9) and (A.1).

Up to this point we have only discussed perturbative solutions to the RG equations

2

in egs. (3.4) and (3.6), obtaining analytic results up to order . The non-linear nature
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of these equations makes them difficult to solve, and, as has already been suggested, the
inclusion of the LL terms alone will not yield a reliable approximation (which will be
demonstrated at the level of the cross section in section 4). Nonetheless, it is instructive
to investigate all-orders solutions to the RGEs derived here. To this end we introduce the
cumulant jlz of the leading-jet functions as

_ 1
Jii(a, i) —/ dz Jii(z1, 1) (3.14)

from which the original distribution can be easily obtained using

d ~
Jl,i('zlnu) = —71]177;(&,#) (315)

da

a=z;

The advantage of working with cumulants is the regularization of the distribution-valued
contributions to the jet function. We can rewrite eq. (3.4) in terms of cumulants, yielding

d T g ! ~ a ~ a
gy alas ) = W{/a dz {qu(Z)Jz,q<Z,u> + qu(z)Jl,g(Zal'L)]
1 1—-a _ a _ a
_@(2 —a) /a dzpqq(Z)Jl,q<Z7M)Jl,g<1_z7,u>};
d ~ Qg ! 1 ~ a ~ a
M@Jz,g(a,u) - w{/a dz I:PQQ<Z)Jl,g<Z7M> +npPeg(2)Jig (Za,u>:|
1 l1—a 1 — a » a
B ®<2 B a> /a dz [Qng(z)Jl,g (ZHLL) Jig (1_2, M)
+anqg(Z)Jl,q<Z,u> Jz,q<1_z,u)] } (3.16)

In obtaining this expression, we have made use of the sum rule eq. (2.8). It is possible to
solve eq. (3.16) using a Runge-Kutta algorithm or similar. We note that for a > 1/2, the

[\

above RGEs linearize and become simple convolutions, which can be solved to all orders
by making use of a Mellin transform.

4 Application to Higgs + 1 jet production at the LHC

In this section we present some applications of the (sub)leading-jet function to Higgs + 1
jet production. In section 4.1 we describe how we obtain the singular NLO cross section
(in particular the one-loop hard function) for the jet and Higgs transverse momentum
spectrum. In section 4.2 we assess the size of the power corrections to the factorization
formula in eq. (2.3) at NLO, and the effect of the In R terms at order as and beyond.

4.1 Construction of NLO predictions

As discussed in section 1, the subleading-jet function can be used to describe exclusive jet
production with a loose veto on the momenta of additional jets. The relevant factorization
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is given in eq. (2.3), which we write here as

do NLOHJ sing,gI}O
ppH veto pp— veto 2
— el — PP +O(R
dpr.s (rr™°) dpr.y (1) (R)
dopp— Hi AO0pp—Hij 2
= R Js;i ®Js i+ O(R?). 4.1
Z de deTJ ’ 7.] ( ) ( )

We denote the factorized (singular) expression for the cross section by do®™¢ and on the
last line introduce a shorthand notation that will be convenient for our discussion below.
Expanding the right-hand side of eq. (4.1) to NLO, we obtain

do sing, NLO
Opp—HJ Veto Z pp—>H i (0)
dpr,s —~  dpry Tai
0‘5 pp—>H% (1) pp—>HzJ J(O) (0)
SR J. 4.2
[ de % Z de zde,j ot 5 ( )

As noted below eq. (2.1), 450

pp—Hi
of a Higgs boson and a parton ¢. Since the LO subleading-jet functions are simply delta

is simply the LO partonic cross section for the production

functions, convolutions involving them are trivial and the first term on the right-hand

pp_>HJ While daz()pLHU can be

computed directly from the hard scattering, here we instead extract it from the known full
NLO cross section. It can be extracted from eq. (4.2) by replacing dosneNLO with doNLO at
small values of R (we took R = 0.05) to minimize the O(R?) corrections. Since d(}](?;)_> Hij
independent of R, it can be used for other values of R once it has been extracted. Explicitly

side is just the LO cross section for H+jet production dol

is

5(1) NLO
%M@J(O) J(O) — d(fpp7_>HJ( VetO)
m dprdpr,; Pt % dpr,g

)

R=0.05

0y 45
. Z|: p—>Hz ®J (0) pp—Hi ®J(l)

4.3
de % ™ de,'L s ( )

R=0.05:|

In eq. (4.3) the left hand side is essentially d&(!) since the leading order jet functions with
which it is convolved are delta functions.

We can also use the (sub)leading-jet functions to investigate the transverse momentum
spectra of the colorless object (in our case the Higgs boson) recoiling against the jets. To
derive the corresponding expression, we first make all cross sections in eq. (4.2) also differ-
ential in the Higgs transverse momentum pr z and then integrate over pr ;. Specifically,

do Smg’]l\{HjJO oy HI o Hi (0) 0 )
Tpp— Tpp— O pps Hij
— d ®RJ;® J
dpr,H dpr,H [Z / PLd dpr zde,] dpr,H 8¢
n d p”*m ® J(l-)] . 4.4
Z / PLT dpridprn dpridprmg " (4.4)
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At LO, pr.g = pr,7, so the first term on the right-hand side is the same as for the singular
cross section with the pr ; measurement. In the last term of eq. (4.4), pr g = pr,; allowing
us to rewrite this term as

pp%HZ 1) veto
d zd szJ 1y %8, o - 7 i ) S, A
E / prg ——— dez pr— / 21 dz (216, 25,1)0 (1,0 — 21307,8)OPT ° — 25,iPT.i)

=¥ d“l [ @220 18 G 20O — e (4.5)
DT, H

The final ingredient required for the Higgs pr spectrum is the second term on the right-
hand side of eq. (4.4). Since this term is independent of R, it can again be extracted from
the full NLO result at small jet radius R.

4.2 Comparison with full NLO predictions

We will now perform a phenomenological study using the cross sections derived in sec-
tion 4.1. In our numerical results, we take the Higgs mass my = 125 GeV and vacuum
expectation value v = 246 GeV. We set the factorization and renormalization scales equal
to the transverse mass of the Higgs boson, pur = up = mry = \/m%{ —l—p%H, and re-
strict the jets to the pseudo-rapidity range |ns| < 4.5. Predictions for NLO distributions
are obtained from MCFM-8.3 [31-33], which makes use of virtual matrix elements calcu-
lated in refs. [34, 35], with the anti-kr jet clustering algorithm [36]. We employ the NNLO
PDF4LHCI15 parton distributions [37], within the LHAPDF-6.2.3 framework [38]. We have
chosen to use NNLO PDFs to match the order of our results at the end of this section which
include a2 In? R corrections. This avoids effects from using PDFs at different orders, which
would otherwise obscure the size of the corrections coming from the In R terms, which we
are ultimately interested in.

As a first step, it is insightful to check how good of an approximation the factorized
differential cross sections do*"&NLO in eqs. (4.2) and (4.4) are to the full NLO predictions.
To this end we show in figure 4 the differential cross section for the jet (left) and Higgs
(right) transverse momentum distribution in exclusive Higgs + 1 jet production. In the
upper panels the full NLO predictions for R = 0.8 and R = 0.4 (solid red and blue lines)
and the singular cross section (dashed lines) are shown. For comparison the leading order

cross section (solid black line) is shown. Taking p¥**® = 40 GeV ensures that there is not

veto veto

too large a hierarchy between p7~*° and other hard scales, i.e. myg ~ pr,; ~ pr,H ~ P}

since the calculation would otherwise require additional resummation. While pr ; > p"eto,

the Higgs distribution extends down to pr g = 0 GeV. However, the veto at 40 GeV gives

veto

rise to a “Sudakov shoulder” [39] in the pr z spectrum around p¥*® and so we therefore use

one large bin accounting for all of the cross section at pr g < 45 GeV.* It is clear from the
figure that the expansion in small R works well, as evidenced by the ratio plots in the lower

panels of the figure. In the lower panels the lighter lines show the ratio dg*"&NLO /qgNLO |

4Any detailed predictions in this low-energy part of the spectrum would anyway be outside the range of
validity of our factorization. A double differential resummation in this region is performed in [23].
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Figure 4. The full NLO prediction (solid lines) for exclusive Higgs + 1 jet production for the
jet (left) and Higgs (right) transverse momentum distributions with p¥**® = 40 GeV compared to
the NLO singular prediction in eq. (4.2) (dotted lines). The anti-kr jet algorithm with R = 0.8
(red) and R = 0.4 (blue) is used. The LO cross section (solid gray) is shown for comparison. The
lower panels show the ratio of the singular and NLO predictions (more transparent line) as well as
a linear fit of this ratio to clarify the trend (more opaque).

with fluctuations due to the limited statistics of the Monte Carlo integration, while the
thicker lines display a linear fit in order to highlight the trend. For the Higgs distribution
we perform this fit only for pr g > 80 GeV to avoid the influence of the Sudakov shoulder.
While both values of the jet radius considered are in excellent agreement with the full
NLO prediction, delivering predictions typically within a few percent of the exact NLO,
factorized predictions for smaller radii give a more accurate prediction of the full NLO, as
expected. The validity of the small R approximation for relatively large values of R has
been noted before in e.g. refs. [13, 40].

Given that the collinear approximation works so well, we next investigate how much
of this is is captured by the ayIn R terms in the singular cross section. In figure 5 we
show the pr ; (left) and pr g (right) distributions for R = 0.4, keeping various components
of the singular cross section. Shown are predictions obtained by simply adding the LL
terms at O(as) to the LO cross section (green dashed) as well as the NLO singular cross
section, eq. (4.2), using the LL (blue dotted) and soft (red dot-dashed) approximation of
the full NLO jet function. The LO (dot-dashed black line) and full NLO (solid black line)
contribution are shown for comparison. The bottom panel of each plot displays the ratio
of each prediction to the full NLO result. For both the pr ; and pr g distributions, we see
that simply augmenting the LO cross section with the agln R terms (green dashed line)
gives results which severely underestimate the exact NLO cross section. Indeed, from the
ratio plots we can see that it only captures between 40-70% of the cross section for the
pr,s distribution depending on the p7 ; bin and does only slightly better (away from the
Sudakov shoulder) for pr . The use of the LL approximation of the NLO jet function in
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Figure 5. The pp s (left) and ppr g (right) distributions in exclusive Higgs + 1 jet production
at LO (dot-dashed black) and NLO (solid black) with R = 0.4 and p = myp . Also shown are
predictions from the singular cross section using the LL (blue dashed) and soft (red dot-dashed)
approximations of the jet functions, as well as the LO cross section augmented only with the a,In R
terms (green dashed).

singular cross section prediction (blue dashed lines) leads to a much better approximation
of the full NLO prediction, though the results are typically overestimated and only get
worse for larger transverse momentum. This is line with what we observed in figure 1,
where the agln R term accounts for only 30-40% of the full NLO jet function at R = 0.4
across the full range of z;. In figure 1 we also noted that the soft limit z; — 1 of the jet
function in eq. (2.16) gives a much more faithful approximation of the full result. Using
this soft approximation of the jet function in the NLO singular cross sections eqs. (4.2)
and (4.4) (red dot-dashed lines) yields results which are almost identical to the complete
NLO results for pr ; and, outside the influence of the Sudakov shoulder, for pr #.

The overriding conclusion of these studies is that while the R < 1 limit works extremely
well, even for “large” R values (e.g. R = 0.8), the dominant effects here are not given by
the asIn R corrections to the LO result. This is perhaps unsurprising given that the NLO
(and higher) QCD corrections to Higgs + jet production are sizable, so that we might
expect large corrections from the NLO hard function d&("). However, it is also clear that
the jet function gives an important contribution, of which the asIln R term provides a
poor approximation. Interestingly though, since the contribution from the aIn R terms is
negative (the cross section is smaller than the LO result), using smaller values of R only
makes this a worse approximation to the full NLO result.

Finally, even though we have established that simply augmenting the LO results with
asIn R corrections does not provide a good approximation of the full NLO, we can still
assess how big an impact the a2 In? R terms have. In figure 6 we show a comparison between
the exact NLO prediction (solid lines) and the NLO prediction plus the leading o2 In? R
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Figure 6. The Higgs + 1 jet cross section differential in the jet transverse momentum at NLO
(solid lines) and NLO + a2 In? R corrections (dashed lines) for R = 0.8,0.4,0.1 (red, green, blue).
The left plot shows the exclusive cross section with a loose p¥*® = 40 GeV, while the right plot
shows the inclusive cross section. The lower panels show the ratio of the NLO + a2 In? R predictions
with the corresponding NLO ones.

terms (dashed lines) for the jet transverse momentum spectrum at varying values of R. In
the left plot, we show the exclusive cross section with a loose jet veto p¥**® = 40 GeV where
we see that for moderate values of R ~ 0.8,0.4 the effect of the In? R terms is minimal.
As can be seen in the lower panel, the effect is around 2-3% for R = 0.4 and at most 1%
for R = 0.8. Tt is only for the more extreme value of R = 0.1 that the In? R terms start to
have a large impact, especially at large transverse momentum. The more pronounced pr, s
dependence at R = 0.1 has a simple explanation: the transverse momentum dependence
of the In? R term is similar to that of the LO cross section, which falls off slower than the
exclusive NLO cross section, an effect which is enhanced for smaller R values (cf. R = 0.8
and R = 0.4 predictions in figure 4). As such, the contribution from the a2In® R terms,
as a fraction of the NLO predictions, grows at larger pr ; for these smaller values of R.
While this is potentially an interesting indication of where In? R terms could become large
enough to warrant resummation, it is also well known that the NNLO QCD corrections to
Higgs plus jet production cross sections lead to large K-factors [41, 42]. We would therefore
also expect large corrections from the d&(® term in the factorization formula, as well as
potentially large contributions from dé(® @ J®). The plot on the right of figure 6 instead
displays the inclusive cross section, where we also assess the impact of the a?L? terms. In
this instance the effect of the a?L? terms is relatively unchanged for R = 0.4, while the
enhancement seen for R = 0.1 in figure 6 is reduced to < 6% enhancement for most of the
spectrum. Thus, the simple inclusion of these terms cannot lead to the kind of K-factors
needed to approximate the full NNLO inclusive cross section.
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5 Conclusion

In this paper we have explored the validity of the small R approximation and the impact
of In R terms, developing the general framework and showing results for Higgs plus jet
production. To describe the transverse momentum spectrum of the hardest jet in the final
state (possibly with a loose veto on additional jets), we introduced (sub)leading-jet func-
tions that describe the momentum fractions of the (second) hardest jet produced by a hard
parton. We have calculated these jet functions for quarks and gluons to next-to-leading
order in QCD. This calculation revealed that these jet functions are poorly approximated
when only the a;ln R terms are retained, even for R = 0.1, but are well described by their
soft limit. Using a recursive parton shower picture, we derived the renormalization group
equations for the jet functions at leading logarithmic accuracy. These RGEs have an inter-
esting non-linear structure, and so their all-orders solution lends itself to more numerical
methods. Nonetheless we used it to produce analytical results for the LL terms at NNLO.

We assessed the impact of these jet functions at the cross section level in the concrete
example of exclusive Higgs + 1 jet production with a loose transverse momentum veto on
additional jets. We confirmed the validity of the collinear factorization as an approximation
to the full cross section at NLO, even for the large value of R = 0.8. Furthermore, we
showed that the NLO cross section is not well approximated by simply augmenting the
LO result with the asln R terms at NLO. The NLO corrections to the hard scattering
are substantial, as is well-known for Higgs production, but also the other contributions to
the jet function cannot be neglected. Finally, using our analytic results for the a2 In? R
contribution to the NNLO jet functions, we investigate their effect on the cross section.
We find that the impact of these logarithms lies at the few percent level, except for rather
small values of R in exclusive cross sections.

In conclusion, we have found that for describing the leading jet, the collinear approx-
imation also works rather well, even for rather large values of R. On the other hand, the
corresponding In R terms in the cross section are not particularly large, suggesting that
their resummation is of limited importance. This can of course change as jet substruc-
ture techniques utilize subjets with smaller radii, requiring the role of higher order subjet
radius logarithms to be reassessed. This may be particularly interesting for track-based
observables, where small angular scales are experimentally accessible.
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A Higher order solution for gluon leading-jet function
In this appendix we present the LL solution for the gluon leading-jet function at order a2
I o) =12 (N B0 (= 5 ) [P + 20 P
' prR 4 2
+ 6 <zl — ;) (CAAg1 + CangTrAgs + CpngTpAgs +nfTEAg )

1 1
+ 0 <2 — Zl> <Zl — 3) (01243971 + CATLfTFBg,Q + CanTFngg)} , (A.l)

where
In(1 — z) 111 121 72 112} —72f — 4z — 11
Aj1=4|— 22 S )50 -
o1 [ 1— 7 ++ 31—zt ™ )0 mAt 32
4(23 — 22424 —1 2(z —4234+3224+1
_ (2’ — % 2 —1) (1 — z) — (2 “l “l ) In(z),
Zl (1 —zl)zl
4 1 11 1
Ajg=——— — Z25(1 — = (=322%2 + 182, + 33
912 3 [1 _ Zl]+ 9 ( Zl) + 6 ( Zl + Zl + )

+2 (2,zl2 — 271+ 1) In(1—z)+2(4z+1)Inz,
827 — 627 — 32z, — 8

Ag73 = 2 (2Zl2 —_ 2Zl —+ 1) ln(l — Zl) — (42[2 - 42[ - 1) ].H(Zl) - 6 ’
2y

2 2
Agy= §5(1 —z) — 3 (227 =22+ 1),

2 (32} —82) +927 —42+3) 6 (2 —2+1)°

Bg,l = Inz——~—
Zl(l — Zl) Zl(l — Zl)

N —2702] 4 120620 — 2379z + 28502} — 248227 + 157227 — 593z + 88

122’[(1 — 21)4 ’

In(1-22) — 4(1+2) 1n<1_221>

1—
Bgo = —42(3 — z)In(2) — 2 (227 — 22 + 1) In(1 — 22;) + 2(42 + 1) ln( 5 Zl)

N 90z] — 408zP + 741z) — 6522 + 32027 — 12027 + 452 — 8
62(1 — z)* ’

1—
Bgs= (827 — 8z +1)Inz —4 (22 — 2z + 1) In(1 — 22) + 3111( . zz)

180z} — 258z + 13527 — 472, + 8

621(1 — 2) (4.2)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

—90 —


https://creativecommons.org/licenses/by/4.0/

References

1]

ALICE collaboration, Exploration of jet substructure using iterative declustering in pp and
Pb-Pb collisions at LHC' energies, Phys. Lett. B 802 (2020) 135227 [arXiv:1905.02512]
[INSPIRE].

ATLAS collaboration, Measurement of jet-substructure observables in top quark, W boson
and light jet production in proton-proton collisions at \/s = 13 TeV with the ATLAS detector,
JHEP 08 (2019) 033 [arXiv:1903.02942] [iNSPIRE].

G.F. Sterman and S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett. 39
(1977) 1436 [NSPIRE].

F. Aversa, M. Greco, P. Chiappetta and J.P. Guillet, Jet Production in Hadronic Collisions
to O(a?), Z. Phys. C 46 (1990) 253 [INSPIRE).

E. Gerwick, S. Schumann, B. Gripaios and B. Webber, QCD Jet Rates with the Inclusive
Generalized kt Algorithms, JHEP 04 (2013) 089 [arXiv:1212.5235] [INSPIRE].

T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes,
Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].

T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet
Processes, JHEP 11 (2016) 019 [Erratum ibid. 1705 (2017) 154] [arXiv:1605.02737]
[INSPIRE].

Y .-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear
effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].

S. Alioli and J.R. Walsh, Jet Veto Clustering Logarithms Beyond Leading Order, JHEP 03
(2014) 119 [arXiv:1311.5234] [INSPIRE].

M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD,
JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].

A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N*LO+NNLL with small-R
resummation, JAEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].

D.W. Kolodrubetz, P. Pietrulewicz, . W. Stewart, F.J. Tackmann and W.J. Waalewijn,
Factorization for Jet Radius Logarithms in Jet Mass Spectra at the LHC, JHEP 12 (2016)
054 [arXiv:1605.08038] [INSPIRE].

M. Dasgupta, F.A. Dreyer, G.P. Salam and G. Soyez, Inclusive jet spectrum for small-radius
jets, JHEP 06 (2016) 057 [arXiv:1602.01110] INSPIRE].

Z.-B. Kang, F. Ringer and 1. Vitev, The semi-inclusive jet function in SCET and small
radius resummation for inclusive jet production, JHEP 10 (2016) 125 [arXiv:1606.06732]
[INSPIRE].

L. Dai, C. Kim and A.K. Leibovich, Fragmentation of a Jet with Small Radius, Phys. Rev. D
94 (2016) 114023 [arXiv:1606.07411] INSPIRE].

C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B — X (sy) in
effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear
and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336]
[INSPIRE].

- 21 —


https://doi.org/10.1016/j.physletb.2020.135227
https://arxiv.org/abs/1905.02512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.02512
https://doi.org/10.1007/JHEP08(2019)033
https://arxiv.org/abs/1903.02942
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.02942
https://doi.org/10.1103/PhysRevLett.39.1436
https://doi.org/10.1103/PhysRevLett.39.1436
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,39,1436%22
https://doi.org/10.1007/BF01556000
https://inspirehep.net/search?p=find+J+%22Z.Physik,C46,253%22
https://doi.org/10.1007/JHEP04(2013)089
https://arxiv.org/abs/1212.5235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5235
https://doi.org/10.1103/PhysRevLett.116.192001
https://arxiv.org/abs/1508.06645
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06645
https://doi.org/10.1007/JHEP11(2016)019
https://arxiv.org/abs/1605.02737
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02737
https://doi.org/10.1103/PhysRevD.93.014033
https://arxiv.org/abs/1509.04287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04287
https://doi.org/10.1007/JHEP03(2014)119
https://doi.org/10.1007/JHEP03(2014)119
https://arxiv.org/abs/1311.5234
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5234
https://doi.org/10.1007/JHEP04(2015)039
https://arxiv.org/abs/1411.5182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5182
https://doi.org/10.1007/JHEP04(2016)049
https://arxiv.org/abs/1511.02886
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.02886
https://doi.org/10.1007/JHEP12(2016)054
https://doi.org/10.1007/JHEP12(2016)054
https://arxiv.org/abs/1605.08038
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.08038
https://doi.org/10.1007/JHEP06(2016)057
https://arxiv.org/abs/1602.01110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.01110
https://doi.org/10.1007/JHEP10(2016)125
https://arxiv.org/abs/1606.06732
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06732
https://doi.org/10.1103/PhysRevD.94.114023
https://doi.org/10.1103/PhysRevD.94.114023
https://arxiv.org/abs/1606.07411
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.07411
https://doi.org/10.1103/PhysRevD.63.014006
https://arxiv.org/abs/hep-ph/0005275
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0005275
https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0011336

[18]

[19]

[20]

[21]

[22]

23]

[27]

[28]

[29]

[32]

[33]

[34]

C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B
516 (2001) 134 [hep-ph/0107001] [INSPIRE].

C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory,
Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and
heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431
[hep-ph/0206152] [INSPIRE].

X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing
jets, Phys. Rev. D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].

X. Liu and F. Petriello, Reducing theoretical uncertainties for exclusive Higgs-boson plus
one-jet production at the LHC, Phys. Rev. D 87 (2013) 094027 [arXiv:1303.4405] [INSPIRE].

P.F. Monni, L. Rottoli and P. Torrielli, Higgs transverse momentum with a jet veto: a
double-differential resummation, arXiv:1909.04704 INSPIRE].

H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track-Based
Observables for the LHC, Phys. Rev. Lett. 111 (2013) 102002 [arXiv:1303.6637] [INSPIRE].

B.T. Elder, M. Procura, J. Thaler, W.J. Waalewijn and K. Zhou, Generalized Fragmentation
Functions for Fractal Jet Observables, JHEP 06 (2017) 085 [arXiv:1704.05456] INSPIRE].

W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in ete™

annihilation, Phys. Rev. D 46 (1992) 1980 [InSPIRE].

V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J.
Nucl. Phys. 15 (1972) 438 [INSPIRE].

G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126
(1977) 298 [INSPIRE].

Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and
ete™ Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP
46 (1977) 641 [INSPIRE].

W.J. Waalewijn, Calculating the Charge of a Jet, Phys. Rev. D 86 (2012) 094030
[arXiv:1209.3019] [INSPIRE].

J.M. Campbell and R.K. Ellis, An Update on vector boson pair production at hadron
colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP
07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

J.M. Campbell, R.K. Ellis and W.T. Giele, A Multi-Threaded Version of MCFM, Eur. Phys.
J. C 75 (2015) 246 [arXiv:1503.06182] [INSPIRE].

C.R. Schmidt, H — ¢gg(gqq) at two loops in the large M (t) limit, Phys. Lett. B 413 (1997)
391 [hep-ph/9707448] [INSPIRE].

V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to
differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys.
B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].

M. Cacciari, G.P. Salam and G. Soyez, The anti-k; jet clustering algorithm, JHEP 04 (2008)
063 [arXiv:0802.1189] [INSPIRE].

- 29 —


https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1016/S0370-2693(01)00902-9
https://arxiv.org/abs/hep-ph/0107001
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0107001
https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0109045
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0206152
https://doi.org/10.1103/PhysRevD.87.014018
https://arxiv.org/abs/1210.1906
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.1906
https://doi.org/10.1103/PhysRevD.87.094027
https://arxiv.org/abs/1303.4405
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4405
https://arxiv.org/abs/1909.04704
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.04704
https://doi.org/10.1103/PhysRevLett.111.102002
https://arxiv.org/abs/1303.6637
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6637
https://doi.org/10.1007/JHEP06(2017)085
https://arxiv.org/abs/1704.05456
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05456
https://doi.org/10.1103/PhysRevD.46.1980
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D46,1980%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,15,438%22
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/0550-3213(77)90384-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B126,298%22
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,46,641%22
https://doi.org/10.1103/PhysRevD.86.094030
https://arxiv.org/abs/1209.3019
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3019
https://doi.org/10.1103/PhysRevD.60.113006
https://arxiv.org/abs/hep-ph/9905386
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905386
https://doi.org/10.1007/JHEP07(2011)018
https://doi.org/10.1007/JHEP07(2011)018
https://arxiv.org/abs/1105.0020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0020
https://doi.org/10.1140/epjc/s10052-015-3461-2
https://doi.org/10.1140/epjc/s10052-015-3461-2
https://arxiv.org/abs/1503.06182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06182
https://doi.org/10.1016/S0370-2693(97)01102-7
https://doi.org/10.1016/S0370-2693(97)01102-7
https://arxiv.org/abs/hep-ph/9707448
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9707448
https://doi.org/10.1016/S0550-3213(02)00333-4
https://doi.org/10.1016/S0550-3213(02)00333-4
https://arxiv.org/abs/hep-ph/0201114
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0201114
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189

[37]

[38]

[39]

[40]

[41]

[42]

J. Butterworth et al., PDF/LHC recommendations for LHC Run II, J. Phys. G 43 (2016)
023001 [arXiv:1510.03865] [INSPIRE].

A. Buckley et al., LHAPDFG6: parton density access in the LHC precision era, Eur. Phys. J.
C 75 (2015) 132 [arXiv:1412.7420] [NSPIRE].

S. Catani and B.R. Webber, Infrared safe but infinite: Soft gluon divergences inside the
physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].

A. Mukherjee and W. Vogelsang, Jet production in (un)polarized pp collisions: dependence
on jet algorithm, Phys. Rev. D 86 (2012) 094009 [arXiv:1209.1785] [INSPIRE].

X. Chen, T. Gehrmann, E.-W.N. Glover and M. Jaquier, Precise QCD predictions for the
production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325]
[INSPIRE].

R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in
association with a jet at NNLO wusing jettiness subtraction, Phys. Lett. B 748 (2015) 5
[arXiv:1505.03893] [INSPIRE].

~ 93 -


https://doi.org/10.1088/0954-3899/43/2/023001
https://doi.org/10.1088/0954-3899/43/2/023001
https://arxiv.org/abs/1510.03865
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03865
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7420
https://doi.org/10.1088/1126-6708/1997/10/005
https://arxiv.org/abs/hep-ph/9710333
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9710333
https://doi.org/10.1103/PhysRevD.86.094009
https://arxiv.org/abs/1209.1785
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1785
https://doi.org/10.1016/j.physletb.2014.11.021
https://arxiv.org/abs/1408.5325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5325
https://doi.org/10.1016/j.physletb.2015.06.055
https://arxiv.org/abs/1505.03893
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03893

	Introduction
	Leading and subleading-jet functions
	Factorization of the (sub)leading jet cross section
	Definition of the (sub)leading-jet function
	Calculation at next-to-leading order

	Leading-logarithmic renormalization group equation and solution
	Deriving the renormalization group equation
	Solving the renormalization group equation

	Application to Higgs + 1 jet production at the LHC
	Construction of NLO predictions
	Comparison with full NLO predictions

	Conclusion
	Higher order solution for gluon leading-jet function

