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We present an approach to identify topological order based on unbiased infinite projected entangled-pair
states simulations, i.e., where we do not impose a virtual symmetry on the tensors during the optimization of the
tensor network ansatz. As an example we consider the ground state of the toric code model in a magnetic field
exhibiting Z2 topological order. The optimization is done by an efficient energy minimization approach based
on a summation of tensor environments to compute the gradient. We show that the optimized tensors, when
brought into the right gauge, are approximately Z2 symmetric, and they can be fully symmetrized a posteriori to
generate a stable topologically ordered state, yielding the correct topological entanglement entropy and modular
S and U matrices. To compute the latter we develop a variant of the corner-transfer matrix method, which is
computationally more efficient than previous approaches based on the tensor renormalization group.

DOI: 10.1103/PhysRevB.101.115143

I. INTRODUCTION

Since the discovery of the fractional quantum Hall effect
[1], the understanding of topologically ordered phases has
been a central subject in many-body physics. These phases
do not fall under the standard paradigm of Landau symmetry-
breaking theory and therefore cannot be characterized in terms
of a local order parameter [2]. They exhibit remarkable prop-
erties, including a ground-state degeneracy depending on the
topology of the system, emergent anyonic excitations [3,4],
and robustness against local perturbations, which makes them
a promising platform for quantum computing [5]. However, in
general it has proven to be challenging to determine, starting
from a microscopic Hamiltonian Ĥ , whether the ground state
is in a topologically ordered phase.

In recent years substantial progress in studying and clas-
sifying these phases has been achieved on the basis of tensor
networks. Many studies based on matrix product states (MPS)
have shown that topologically ordered phases can be identified
[6–9], including the characterization of their emerging any-
onic excitations (see, e.g., Refs. [10–17]). However, due to the
one-dimensional nature of the MPS ansatz, these studies are
limited to cylinders up to a certain width. Projected entangled-
pair states (PEPS) [18–20], which are a generalization of MPS
to two dimensions, provides a more natural framework for the
study of two-dimensional (2D) topologically ordered systems
[21,22]. There exist a wide range of (nonchiral [23]) topo-
logically ordered states which have an exact and simple PEPS
representation, such as, e.g., the ground states of the toric code
model [20], string-net models [24,25], or resonating valence-
bond states [26]. It has been shown that the topological order
is encoded locally in the PEPS tensors by respecting a certain
symmetry on their virtual degrees of freedom [22], depending
on the type of topological order. The characterization of these

virtual symmetries and their associated topologically ordered
phases has been under active development in recent years
[27–33].

However, it has been shown that already a weak violation
of the virtual symmetry destroys the associated topological or-
der [34,35]. Thus, in practical calculations, when performing
an optimization starting from random initial tensors, one may
expect that already small numerical errors in the optimization
of the tensor network ansatz will result in tensors which are
not perfectly symmetric, and thus it seems challenging to
correctly identify a topologically ordered phase. A way to
circumvent this problem is to impose the virtual symmetry
on the tensors during the optimization [36], but this requires
knowledge of the virtual symmetry beforehand. Without a
priori knowledge of the ground state of a given Hamiltonian,
one would need to run many simulations, starting from tensors
with different virtual symmetries, in order to identify the
true ground state (given by the state with lowest variational
energy). Since the optimization of the tensors is the computa-
tionally most expensive part in a tensor network calculation,
it would be desirable to be able to start from unbiased sim-
ulations (i.e., without imposing a virtual symmetry), and to
identify the topological order a posteriori. However, due to the
sensitivity to perturbations, it has so far been unclear whether
this is actually possible in practice (up until very recently [37];
see comment below).

In this paper we demonstrate that the study and identi-
fication of topologically ordered phases with infinite PEPS
(iPEPS) [38] is indeed feasible even without imposing the
virtual symmetry on the tensors during the optimization.
As an example we consider the toric code model with an
external magnetic field, where the tensors are known to exhibit
a Z2 virtual symmetry in the topologically ordered phase.
We show that the resulting tensors (after a suitable gauge
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change) are approximately Z2 symmetric, and that they can
be fully symmetrized after the optimization. The resulting
state exhibits the relevant features of the topologically ordered
state, including the correct topological entanglement entropy
and modular S and U matrices characterizing the mutual and
self-statistics of the emergent anyonic excitations.

Following ideas from Ref. [39], the modular matrices are
obtained from the computation of wave-function overlaps of a
complete set of ground states on a torus with minimum entan-
glement entropy, where each state has a well-defined anyonic
flux through the torus. This approach has already successfully
been applied based on matrix product states on cylinders
[10], and also with iPEPS using the tensor renormalization-
group (TRG) method [36,40–43]. In this paper we introduce
another scheme based on the corner transfer-matrix (CTM)
renormalization-group method [44], which is more efficient
than TRG to compute wave-function overlaps.

We note that during completion of this paper a different
approach to study topological order based on iPEPS without
imposing a virtual symmetry was presented in Ref. [37].
Instead of recovering the virtual symmetry of the local tensors,
the approach in Ref. [37] is based on projectors onto the
ground states with different anyonic fluxes represented by
matrix product operators (MPOs), which are found by an
optimization procedure.

A technical challenge when simulating the square lattice
toric code model with iPEPS is that the Hamiltonian consists
of four-body operators. While previous energy minimization
algorithms [45,46] are in principle not restricted to nearest-
neighbor models [47], their generalization to more compli-
cated Hamiltonians is rather tedious and computationally ex-
pensive. In the present paper we have developed an alternative
energy minimization algorithm which, besides simple nearest-
neighbor terms, can treat more general Hamiltonian operators
in a simpler and more efficient way. (We note that recently
another scheme based on automatic differentiation [48] has
been introduced with a similar computational cost.)

This paper is organized as follows. In Sec. II, the toric
code model is introduced as an example of a system with
Z2 topological order, together with basic notions and con-
cepts including the topological entanglement entropy (TEE),
minimum entropy state (MES), and modular matrices. Then,
an introduction to iPEPS and the standard CTM algorithm is
given in Secs. III A and III B. In Sec. III C we explain the
gradient-based optimization scheme developed in this paper.
In Sec. IV, we present our approach to identify a topologically
ordered phase with iPEPS, with the Z2 topological order as an
example. This includes the scheme to recover the Z2 virtual
symmetry in the tensors explained in Sec. IV C, and the
extension of the CTM method to compute wave-function
overlaps of the MESs to determine the modular matrices in
Sec. IV E. In Sec. V we present results for the toric code model
obtained with our approach, and we end with our conclusions
in Sec. VI.

II. TORIC CODE MODEL

In this paper we consider the square lattice toric code
model [3] as a simple example of a system exhibiting a
Z2 topologically ordered ground state. The model consists of

FIG. 1. The square lattice for the toric code Hamiltonian con-
sidered in this paper. The black dots on the edges represent spin- 1

2
particles. The spins involved in the action of a single Av or Bp

operation is shown in blue and red, respectively.

spin- 1
2 degrees of freedom placed on the edges of the lattice,

as shown in Fig. 1. The Hamiltonian is given by

ĤTC = −
∑

v

Av −
∑

p

Bp (1)

where v denotes the vertices of the lattice and p denotes the
plaquettes. The operator Av = ∏

i∈v σ z
i is given as a product

of Pauli matrices σ z
i acting on spin i adjacent to a vertex v,

and similarly Bp = ∏
i∈p σ x

i is a product of Pauli matrices σ x
i

acting on the spins on a plaquette p, as shown in Fig. 1.
The model is exactly solvable, where the solution can best

be seen in the σz basis where the spin-up configuration is
associated with the presence of a line going through the spin.
All the plaquette and vertex terms commute with each other,
so the ground-state configurations are the states where all
plaquette and vertex terms have eigenvalue +1, i.e., Av|�〉 =
Bp|�〉 = |�〉. On a vertex this requires that the number of up
spins (and down spins) is even, which in the line representa-
tion means that if a line enters a vertex it also has to leave the
vertex. Because lines cannot end at a vertex, the ground state
can only contain configurations of closed loops of lines of up
spins. The plaquette term in this basis flips all the spins around
a plaquette, which allows this term to locally connect states
with different closed-loop configurations. The ground state,
being an eigenstate of both terms simultaneously, therefore
has to consist of an equally weighted superposition of all the
possible closed-loop configurations.

The ground state exhibits a degeneracy which depends on
the topology of the lattice. This is because the plaquette term
can only transform a closed-loop configuration locally, but
it is not able to remove a noncontractible loop which winds
around periodic boundaries. For example, when considering
the model on a cylinder geometry, a single loop going around
the cylinder cannot be removed by the plaquette operator
(see Fig. 2). This results in two different ground-state sec-
tors which can be labeled by the parity of the number of
loops winding around the cylinder. The ground-state manifold
is spanned by {|�e〉, |�o〉} where e and o denote the even
and odd sectors, respectively. On a torus the ground-state
degeneracy is fourfold, and the ground states can be labeled
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FIG. 2. The ground state |�o〉 cannot be turned into |�e〉 under
the action of the Hamiltonian, resulting in two distinct degenerate
ground states. The two ground states can be distinguished by the non-
local operator W (z)(C) = ∏

i∈C σ z
i along the line C which measures

the parity of the number of loops cutting the line C.

as {|�ee〉, |�eo〉, |�oe〉, |�oo〉} according to the parity in the
horizontal and vertical direction.

Besides the ground state, also the elementary anyonic
excitations in the toric code model are well understood. They
correspond to a violation of a vertex term (electric excitation)
or a plaquette term (magnetic excitation) and they always
occur in pairs. Acting with a σ x

i operator on the ground state
violates both vertex terms including site i, i.e., it creates two
electric (e) particles on the adjacent vertices. More generally,
the path operator W (x)(γ ) = ∏

i∈γ σ x
i where γ is an open path

on the lattice creates two electric particles at its end points.
Similarly, a σ z

i operator on the ground state violates both
plaquette terms including site i, corresponding to a creation of
two magnetic particles located on the two adjacent plaquettes,
and the path operator W (z)(γ̄ ) = ∏

i∈γ̄ σ z
i with γ̄ an open path

on the dual lattice creates a pair of particles at the end points
of this path. While both excitations have trivial (bosonic)
self-statistics, they exhibit nontrivial mutual statistics since
a phase factor of −1 is acquired upon braiding an e and an
m particle. One can further identify the composite particle ε

corresponding to a combination of an e and m particle, which
has fermionic self-statistics, and the trivial identity particle 1.

A. Topological entanglement entropy
and minimal entropy states

Topologically ordered states are known to exhibit a
universal correction γ to the area law of entanglement [49,50],
SA(L) ∼ αL − γ , where S(L) is the entanglement entropy
between a disk-shaped region A with a smooth boundary
of length L and the rest of the system [51]. The universal
constant γ is called the topological entanglement entropy and
is equal to logD, where D = ∑

k

√
(d2

k ) is the total quantum
dimension and dk denotes the quantum dimensions of the kth
particle type of the underlying topological theory. For Abelian
anyons, dk = 1 ∀k, and therefore γ = log 2 for the toric code
ground state [50,52]. A finite TEE is a characteristic feature of
a topologically ordered phase and can thus be used to detect
such a phase [53]. Special care must be taken, however, if
the region A has a nontrivial topology. If the boundary of A
is noncontractible, the value obtained for γ depends on the
specific ground state, and only the so-called minimum entropy
states (MESs) yield the maximal, universal value for γ [39].

Consider a torus cut into two cylindric (i.e., noncon-
tractible) regions A and B. The MESs correspond to ground
states with a well-defined anyonic flux through the entangle-
ment cut between A and B [39]. For the toric code the four

different MESs for this bipartition can be identified with the
fluxes of anyons {1, e, m, ε}, corresponding to eigenstates of
the loop operators W (z)(C) and W (x)(C) acting along the cut
C which detect the presence of an electric and magnetic flux,
respectively. One can easily show [39] that with respect to a
cut in the vertical direction the MESs are given by

|�1/m〉 = 1√
2

[|�ee〉 ± |�eo〉],

|�e/ε〉 = 1√
2

[|�oe〉 ± |�oo〉].
(2)

Any of the MESs will yield the universal constant γ = log 2
when computing the TEE of region A. We will show in
Sec. IV E how we can obtain the MESs based on iPEPS.

B. Modular S and U matrices

Because the MESs describes states with different anyonic
fluxes, they can be used to compute the modular S and U
matrices which characterize the nontrivial braiding and self-
statistics of the anyonic excitations, as shown in Ref. [39].
For Abelian anyons, the Si j matrix describes the phase a
particle i obtains when encircling particle j (divided by the
total quantum dimension). The Ui j matrix, which is diagonal,
describes the phase a particle i obtains when exchanged with
another particle of type i.

The S matrix, which on a square geometry acts as a π/2
rotation on the MES basis, can be calculated as [2]

Si j = 1

D
〈� ŷ

i |� x̂
j 〉 (3)

where D is the total quantum dimension, and the states |� ŷ
i 〉

and |� x̂
j 〉 denote the MES with anyonic flux i in the x̂ direction

and anyonic flux j in the perpendicular ŷ direction on the
torus, respectively.

The U matrix describes the action of a Dehn twist on the
torus which can be viewed as cutting the torus along the
ŷ direction to create a cylinder, rotating one of the cuts by
2π , and gluing the cuts back together to get back a torus
geometry. If an anyonic flux is going perpendicularly through
the cut, this one gets wrapped around the ŷ direction of the cut.
Therefore, the U matrix can be viewed as an operation which
adds the flux present in the x̂ direction to the flux along the
ŷ direction (see also Ref. [36]). Thus, on a state with parity
px and py in the x and y direction, respectively, one obtains
Û |�px py〉 = |�px (py px )〉, and thus one finds for the MESs of
the toric code

Û |�1/m〉 = 1√
2

[|�ee〉 ± |�eo〉 = |�1/m〉,

Û |�e/ε〉 = ± 1√
2

[|�oe〉 ± |�oo〉] = ±|�e/ε〉.
(4)

C. Toric code in an external magnetic field

Besides the standard toric code model, in this paper we also
consider the model in a magnetic field:

Ĥ = JĤTC − hz

∑
i

σ z
i − hx

∑
i

σ x
i (5)
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(a)

(b) (c)

FIG. 3. (a) Mapping the two-dimensional lattice to an iPEPS
representation with a checkerboard pattern of A (orange) and B (blue)
tensors. These tensors are related by a 90◦ rotation. (b), (c) Tensors
used for the construction of the exact ground state of the toric code
model.

where hz and hx are the magnetic field strengths in the z
and x direction, respectively, and we will set J = 1/2 in the
following. This model is no longer exactly solvable, but has
been studied in previous works by series expansion [54,55],
Monte Carlo method [56], and iPEPS [55,57]. The topological
phase extends to a finite value of the magnetic field where a
phase transition occurs towards a magnetically ordered phase.
When the magnetic field is only along either the hz or hx

direction, the model can be mapped to a 2D transverse field
Ising model [58], with a second-order transition occurring
at hz(hx ) = 0.164 237(2) [56]. When the field is applied in
the hx = hz direction, the model can be mapped onto the
three-dimensional classical Z2 gauge Higgs model [59] with
a second-order transition at hx = hz = 0.170(1) [56].

III. iPEPS

A. iPEPS ansatz

An infinite projected entangled-pair state [18,19,38] is a
tensor network ansatz which can systematically approximate
ground states of two-dimensional lattice models in the ther-
modynamic limit. The ansatz exploits the area law of entan-
glement of gapped local Hamiltonians [60], which a PEPS
reproduces by construction. On a square lattice, an iPEPS
consists of a periodically repeated unit cell made up of tensors
with five indices (legs), as shown in Fig. 3. Each tensor has a
single physical leg representing the local Hilbert space of one
or more lattice sites, and four auxiliary legs which connect to
the neighboring tensors on a square lattice. The accuracy of
the ansatz is systematically controlled by the dimension of the
auxiliary indices called the bond dimension D.

In this paper, the lattice of the toric code model is mapped
onto a tensor network with a unit cell consisting of two
tensors Ai

jklm and Bi
jklm arranged in a checkerboard pattern

[see Fig. 3(a)]. The A (B) tensors represent the spins on
the horizontal (vertical) bonds. Due to the symmetry of the

lattice we choose the tensors to exhibit mirror symmetries,
Ai

jklm = Ai
k jml and Ai

jklm = Ai
mlk j , where the two tensors are

related as Bi
jklm = Ai

klm j .
The ground state of the toric code (without magnetic field)

can be exactly represented with D = 2 tensors as defined in
Fig. 3(b), where the Q and δ tensors are zero except for the
elements

Q111 = Q221 = Q212 = Q122 = 1, (6)

δ1
11 = δ2

22 = 1. (7)

From the figure one can see that the two tensors A and B are
related by a rotation of 90◦ [61].

In the following we discuss the main ingredients of the
iPEPS algorithm, including the contraction of the tensor net-
work and the optimization of the tensors, i.e., finding the
best variational parameters of the tensors which minimize
the variational energy E = 〈�|Ĥ |�〉/〈�|�〉 where |�〉 is the
iPEPS wave function.

B. Corner transfer-matrix algorithm

To compute an expectation value of an observable with
iPEPS, the corresponding operator is placed between the bra
and ket layer and the resulting two-dimensional network is
contracted. The contraction of the two-dimensional network
cannot be done in an exact way but only approximately. In
this paper we use the Corner Transfer Matrix renormalization-
group (CTM) [44,62,63] algorithm to contract the network.
The CTM algorithm approximates the entire lattice surround-
ing a bulk tensor by an environment, consisting of four corner
tensors C and four edge tensors T , as shown in Figs. 4(a)–4(c).
The accuracy is systematically controlled by the boundary
bond dimension χ of these tensors. In the present paper, due
to the mirror symmetries of the bulk tensors, only a single
T tensor and two different C tensors are needed. The latter
two, which we label as {C×,C	}, differ by the orientation of
the last absorbed bulk tensor, as defined in Fig. 4(e). Tensor
T is not mirror symmetric upon exchanging the boundary
legs. Therefore, in order to keep track of its orientation, an
oval in the shape of the last absorbed bulk tensor is added
inside the depicted tensor in Fig. 4(e). All the boundary
tensors are labeled by a superscript, which indicates the
CTM iteration.

The initial boundary tensors C(0)
×/	, T (0) are constructed

from the bulk A and B tensors by projecting the open boundary
legs in the bra and ket layer onto a single state, e.g., onto the
first element of each index [see Fig. 4(d)]. In each iteration
of the CTM algorithm, two edge tensors and a bulk tensor
are absorbed in the corner and a bulk tensor is absorbed
in the edge tensor as shown in Figs. 4(f) and 4(g), thereby
effectively growing the number of sites each boundary tensor
represents. Both absorptions increase the boundary dimension
from χ to χ × D2, which is truncated back to the original
boundary dimension χ . The truncation is performed by two
isometries U×, U	, which are obtained from a singular value
decomposition (SVD) of the corresponding corner tensors,
shown in Fig. 4(f) [44]. The algorithm is run for multiple
iterations until the singular values s of the corner matrix

115143-4
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(a)

(c)

(e)

(f)

(g)

(d)

(b)

FIG. 4. Tensor network diagrams describing the (symmetric)
CTM algorithm used in this paper. (a) Infinite tensor network con-
sisting of the checkerboard pattern of tensors a and b, constructed by
combining the iPEPS tensors A with A† and B with B†, respectively,
as shown in (c). The infinite tensor network surrounding a bulk tensor
b is effectively represented by an environment consisting of four
corner tensors C×/C	 and four edge tensors T as depicted in (b). The
thin and thick lines have a dimension D2 and χ , respectively. (d) The
initial boundary tensors are constructed from the iPEPS bulk tensors
by projecting the legs in both the bra and ket layer onto the first
element, depicted by the black dots. (e) Definition of the two different
corner tensors and orientation of the T tensor. (f), (g) Growth and
renormalization step in the CTM algorithm (see text).

are converged. The total number of iterations needed we
call N .

Using the converged CTM environment tensors, the energy
of the toric code model can be evaluated as shown in Fig. 5.
We rewrite the Hamiltonian in Eq. (5) as Ĥ = ∑

v Ĥ1 +∑
p Ĥ2, where Ĥ1 and Ĥ2 correspond to the vertex and plaque-

tte terms, respectively, where the on-site magnetic terms have
been split evenly among both terms. Each of the two terms
are then evaluated by making use of the corresponding CTM
environment (see Fig. 5). We note that the two tensors H1 and
H2 defined in Fig. 5 are never explicitly constructed since this
would be computationally inefficient.

FIG. 5. The tensor network diagrams to evaluate the toric code
Hamiltonian using the CTM environment tensors. The plaquette
contribution is labeled as Ĥ1 and the vertex contribution Ĥ2.

C. Optimization

Recently, methods to optimize the iPEPS tensors based on
an energy minimization have been introduced [45,46]. The
goal is to find the optimal parameters in the tensors which
minimize the variational energy,

E = 〈�|Ĥ |�〉
〈�|�〉 , (8)

in order to obtain the best approximation to the exact ground
state of a Hamiltonian Ĥ for a given bond dimension D.
In Refs. [45,46] different approaches have been proposed
to calculate the derivative of Eq. (8) with respect to the
tensors, which is then used either to perform a conjugate-
gradient optimization [46] or to solve a generalized eigenvalue
problem [45] to lower the energy in an iterative way. The
derivative ∂A†〈�|Ĥ |�〉 can be written as a double infinite
sum where one sum goes over all Hamiltonian terms and
the other sum goes over the locations of the “hole” created
by taking the derivative with respect to ∂A† (note that the
derivative of a tensor network with respect to a tensor X is
given by the network with tensor X being removed). Due to
translation invariance only the relative distances between the
Hamiltonian terms and the holes matter, such that in practice
only one of the two sums needs to be performed.

While in Refs. [45,46] the summation was done over all
Hamiltonian terms (with the hole kept fixed in the center),
here we propose an alternative approach where we sum over
all possible locations of the hole, with the Hamiltonian term(s)
kept fixed in the center. This has the advantage that more com-
plicated models, e.g., with longer-ranged interactions and/or
multisite interactions (such as in the toric code model), can
be treated more easily and computationally more efficiently,
since no summation over these Hamiltonian terms is required,
and the systematic summation over the hole position is model
independent.

115143-5
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(a)

(b)

FIG. 6. Tensor network diagrams to represent the gradient of the energy with respect to tensor A† (only the contributions from Ĥ1 are
shown). (a) The derivative of the bulk and boundary tensors with respect to ∂A† are represented by the green tensors, e.g., a⊗ = ∂A† a. The ⊗
symbols in the tensor shapes mark the different locations in the lattice at which the derivative is taken. In (b) the total derivative of 〈Ĥ1〉 is
represented in terms of a summation over the different tensors introduced in (a). The first term can be directly evaluated and its contribution
can be added to the total gradient G . The other contributions are rewritten in terms of the environments �

(N )
C	 , �

(N )
T and C (N )

	,⊗, T (N )
⊗ which are

evaluated recursively as shown in Fig. 7.

Following Ref. [46], we treat A and A† as independent and
write the gradient as

∂A†

[ 〈�|Ĥ |�〉
〈�|�〉

]
= ∂A†〈�|Ĥ |�〉

〈�|�〉 − 〈�|Ĥ |�〉
〈�|�〉2 ∂A†〈�|�〉.

(9)

The expression is simplified by shifting the Hamiltonian Ĥ →
Ĥ − 〈�|Ĥ |�〉, such that only the first term in Eq. (9) remains.

In the following we explain how to compute the gradient
for the toric code model with two different four-site Hamilto-
nian terms Ĥ1 and Ĥ2, but we stress that the approach can
also be easily applied to other types of Hamiltonians. The
contributions to the gradient with respect to the Ĥ1 term are
presented in Fig. 6(b): The location of the Ĥ1 operator is
fixed in the center and the sum is taken over all possible
locations of the hole which is located in either one of the
corner tensors, one of the edge tensors, or one of the four sites

in the center. Each green tensors in Fig. 6(b) denotes a sum
over all possible hole locations on the sites that the tensor is
effectively representing, as defined in Fig. 6(a), and we label
the corresponding tensors with an ⊗ symbol. We note that the
explicit construction of the green tensors is computationally
inefficient. Instead, we use a recursive scheme based on the
CTM method to sum up all contributions as described in the
following.

We start by applying the CTM method (Sec. III B) until
convergence is reached after N iterations. All corner, edge,
and isometry tensors at each CTM iteration are saved, and
labeled by a superscript indicating the CTM iteration. Using
the converged tensors at the final iteration N , the first term
in Fig. 6(b) can directly be evaluated and added to the total
gradient G . The idea is now to construct the remaining terms
of the summation recursively in order to recover all contri-
butions to the gradient in a systematic way. We define the
environment tensors �

(N )
C	 and �

(N )
T corresponding to the tensor
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(a)

(b)

FIG. 7. Recursive procedure to sum up all contributions to the gradient (only the contributions from Ĥ1 are shown). (a) The corner gradient
tensor C (i)

	,⊗ is expanded in its four contributions. The first term can be directly evaluated and its contribution added to the total gradient G . The
second term, which is taken with a prefactor 2 due to the presence of two T tensors which are equivalent by symmetry, becomes a contribution
�

(i−1)′
T to the edge environment for the next iteration, and the last term generates the corner environment tensors for the next iteration, �

(i−1)
C	 .

Similarly, in (b) the edge tensor �
(i)
T is expanded into two terms, where the first term can be directly evaluated and added to the total gradient G ,

and the second term yields a contribution �
(i−1)′′
T to the edge environment for the next iteration. (Note that in the second term the orientation of

the boundary legs flips.) After each iteration the different (i − 1)th edge environment contributions obtained in the corner and the edge update
step (from both Ĥ1 and Ĥ2) are added to obtain the edge environment �

(i−1)
T for the next iteration.

network surrounding the C(N )
	,⊗ and T (N )

⊗ tensors in Fig. 6(b),
respectively. Starting from these environments at step i = N
we propagate backwards in the CTM steps and iteratively
compute the respective environments at the (i − 1)th step, and
at the same time sum up all the contributions to the gradient,
as described in Fig. 7. At each iteration, the ith corner (edge)
gradient tensor contracted with its respective environment is
rewritten in terms of the corner (edge) gradient tensor of the
(i − 1)th step plus a one-site gradient contribution coming
from a bulk tensor which is added to the total gradient G .
A similar recursion is done (simultaneously) for the other
Hamiltonian term Ĥ2, involving the environment tensor �

(i)
C×

and corner gradient tensor C(i)
×,⊗. The procedure is repeated

iteratively until either all the N CTM steps have been recov-
ered or until the total gradient G is converged within a certain
tolerance.

The total gradient can then be used in combination with
a gradient-based minimization algorithm to optimize the ten-
sors. In this paper we used the Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton method [64–67]. The method is con-
verged when either the norm of the gradient becomes smaller
than a certain tolerance or when it is no longer possible to

find a suitable step size which would decrease the energy. In
practice, in order to prevent convergence to a local minimum,
we run the optimization starting from several random initial
tensors and keep the state with the lowest variational energy.

This method has several advantages over the optimiza-
tion schemes based on the summation of Hamiltonian terms
[45,46]. First, the iterative part of the algorithm where the en-
vironments are updated scales in the same way as the normal
CTM method, O(χ3D4) + O(χ2D6). The dominant scaling of
the algorithm lies in the calculation of the initial environments
�

(N )
C×/C	 , �

(N )
T , which, due to the four-body Hamiltonian, scales

as O(χ3D6), but it only needs to be done once per gradi-
ent computation. This is in contrast to previous approaches
[45,46] involving the summation of four-body contributions
at each CTM iteration which is computationally less efficient.
Second, the current scheme can be very easily extended to
other types of Hamiltonians, including longer-ranged and
multisite interactions, by initializing the initial environments
accordingly (i.e., without performing a summation of more
complicated Hamiltonian terms).

We note that recently an alternative optimization method
based on automatic differentiation (AD) has been introduced
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(a)

(b)

FIG. 8. (a) A tensor with a virtual symmetry, i.e., which is
invariant under the simultaneous action of Ug on the virtual level.
This naturally leads to the “pulling-through” condition shown in (b).

[48]. This method performs a similar back-propagation of
environments as in our CTM approach in an automatized
fashion. One difference is that the AD approach also includes
the gradient contribution with respect to the SVD step in
the CTM method in contrast to our approach. It would be
interesting to compare the performance of the two approaches
in detail, which we leave for future work.

IV. DETECTION OF A TOPOLOGICALLY ORDERED
PHASE WITH iPEPS

A. Virtual symmetry

The advantage of using iPEPS to study (nonchiral) topo-
logically ordered phases is that there exists a powerful frame-
work on how these phases can be represented with this ansatz
[22]. The distinguishing properties of a topologically ordered
phase occur at a global level, however it has been shown
that these properties can be translated to necessary symmetry
requirements on the virtual indices of the iPEPS tensors,
namely, that the tensors are invariant under the action of a
certain symmetry group G on the virtual indices of the tensors,
which is called a virtual symmetry. More specifically, the
tensor remains invariant under the simultaneous action of Ug

on all the virtual indices, where Ug is a unitary representation
of an element g of the group G, as shown in Fig. 8(a). This
idea has also been generalized to symmetries represented by
matrix-product operators [28,29] obeying a similar pulling-
through condition as shown in Fig. 8(b), i.e., pulling an MPO
(or in our case a product of operators on a string) through a
tensor leaves the tensor invariant.

Here we will focus on the Z2 topologically ordered phase of
the toric code model where the tensors are invariant under the
simultaneous action of a unitary representation of the Z2 sym-
metry group on the virtual legs. In the D = 2 case, we use the
standard representation Ug ∈ {I, σ z}, with a straightforward
generalization to larger D. To each state in the virtual space
we can assign a parity label of even (e) or odd (o) and the
symmetry condition with Ug = σ z implies that elements with
a total odd parity in a tensor are vanishing, leading to a block
structure of the tensors.

This block structure can be easily seen in the exact repre-
sentation of the TC ground state, by identifying the first and
second element of the virtual indices with the even and odd

sectors, respectively. It naturally arises from the constraint of
having closed loops in the ground state; i.e., whenever a loop
(odd parity) enters a tensor, it has to exit it again, and all tensor
elements corresponding to an odd total parity are zero.

B. Challenges in practical simulations

We have seen in the previous section that the iPEPS ten-
sors representing the exact TC ground state exhibit a virtual
Z2 symmetry, i.e., a block structure where half of the tensor
elements are zero due to this symmetry. However, in practice,
when performing an optimization of the tensors for the toric
code Hamiltonian starting from random initial tensors, the
resulting tensors will in general not be Z2 symmetric for two
reasons. First, the symmetry may not be apparent due to the
gauge freedom in the tensor network; i.e., between each bond
two D × D size matrices q and q−1 can be inserted, acting
as a basis transformation on the virtual level, which does not
change the state. After the optimization the tensors are in an
arbitrary gauge, i.e., not necessarily in the basis in which they
are Z2 symmetric.

The second reason is that the optimization may fail to yield
perfectly symmetric tensors due to round-off and truncation
errors and nonperfect convergence. Even if these errors are
small they may be problematic since it has been shown that
already small errors which violate the Z2 virtual symmetry
lead to a loss of topological order [34,35]. One way to over-
come this problem is to enforce the virtual symmetry during
the optimization [35,36], which, however, requires knowledge
of the correct virtual symmetry beforehand. (If it is not
known, one would need to run separate simulations, testing
different virtual symmetries, which is not efficient since the
optimization is computationally the most expensive part.)

In order to overcome these issues, in the following we
present a scheme to recover the virtual symmetry starting from
an unconstrained optimization. This allows us to perform an
unbiased iPEPS optimization, i.e., without a priori imposing
a virtual symmetry, and we will show that it is possible to
correctly identify the topological order.

C. Restoring the virtual symmetry

In this section we present a scheme to restore the Z2 virtual
symmetry of the tensors obtained from an unconstrained opti-
mization (i.e., where we do not impose the virtual symmetry
during the optimization). We start by fixing the gauge freedom
qq−1 between all the tensors such that in the final basis the
tensor is closest to a Z2 symmetric tensor. Due to the mirror
symmetries on our A and B tensors, q reduces to a D × D
unitary matrix. To fix the gauge we have to pick a basis in
which we define the Z2 symmetry. In practice, for a bond
dimension D, we choose a basis where we associate the first
D/2 entries of a leg with the even sector, and the rest with the
odd sector. When D is odd, we round the dimension up (down)
to an integer for the even (odd) sector. The initial q is taken
as a random unitary matrix. Then, the optimal q is found by
minimizing the norm difference δZ2 as shown in Fig. 9, which
measures the deviation of the tensor from a Z2 symmetric
one. If δZ2 is zero, it implies that the tensor fulfills the con-
dition in Fig. 8(a), i.e., that it is perfectly Z2 symmetric. The
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FIG. 9. The PEPS tensor is brought into an approximate Z2 sym-
metric form by performing a gauge change using a unitary matrix q
which minimizes δZ2 .

optimization of q is done by a quasi-Newton minimization.
Once convergence is reached, we transform the tensor using
the q matrices, yielding a new tensor which is approximately
Z2 symmetric.

After fixing the gauge, the tensor A (and B) exhibits a block
structure, in which the elements lying outside the allowed
Z2 symmetry blocks are small. By setting these small elements
to zero, the tensor becomes fully Z2 symmetric, leading to
a state with a robust topological order (if we consider a
state within the topologically ordered phase). This procedure
should not alter the state in any significant way, e.g., it should
only lead to a very small difference in energy. We will show
in the results section Sec. V that this is indeed the case.

D. Computing the TEE

We obtain the TEE from the second Rényi entropy [68],
S2(ρL ) = − log[Tr(ρ2

L )], between two halves L and R of an
infinite cylinder which can be efficiently computed with
iPEPS based on ideas from Ref. [69]. It has been shown that
there exists an exact mapping between the physical degrees
of freedom of a region and the virtual degrees of freedom
connecting to this region. Specifically, as shown in Ref. [69],
the reduced density matrix ρL can be represented as

ρL = U
√

σ T
L σR

√
σ T

L U † (10)

where σL and σR are the left and right reduced density oper-
ators defined in the virtual space along the cut, respectively.
That is, σL (σR) is obtained by contracting the double-layer
tensor network in the region L (R), keeping the virtual indices
at the boundary open. U is an isometry defining the mapping
between the physical and virtual space. With Eq. (10) the
second Rényi entropy can be written as

S2(ρL ) = − log
[
Tr

(
σ T

L σRσ T
L σR

)/
N2

]
, (11)

where we have introduced a normalization factor N =
Tr[ρL] = Tr[σLσ T

R ] for the case that ρL is not normalized.
Using the CTM algorithm, σL (and σR) of an infinite

cylinder of circumference L can simply be represented by
a periodic chain of edge tensors T as shown in Fig. 10(a),
since each edge tensor represents an infinite row of bulk
tensors contracted with its complex conjugate. The trace in
Eq. (11) can then be obtained by contracting the tensor
network shown in Fig. 10(b), made of a 4 × L periodic
network of T tensors (taking into account the orientation of
the T tensors), and the normalization factor is represented in
Fig. 10(c). A similar approach was also used in Refs. [70,71].
For large cylinders, it is beneficial to diagonalize the ma-
trices represented by the two rows of edge tensors shown
in Fig. 10(d), and then obtain the second Rényi entropy as

(a) (c)

(b)

(d)

FIG. 10. Diagrams for the computation of the second Rényi
entropy between two halves of an infinite cylinder of width L.
(a) Representation of σL and σR of the left/right half of the infinite
cylinder in terms of the edge tensors T obtained from the CTM
method. (b, c) Tensor networks representing the traces in Eq. (11).
Instead of contracting a large network we diagonalize the double row
of T tensors shown in (d) to obtain the eigenvalue matrices  and N ,
so that the traces in (b) can be computed as Tr[L/2] and Tr[N L/2],
respectively.

S2(L) = − log{Tr(L/2)/[Tr(N L/2)]2}, where  and N are
the corresponding diagonal matrices.

The TEE entanglement entropy can then be determined
from the intersection of a linear fit to S2(L) for sufficiently
large L with the y axis at L = 0 (see Fig. 12 in Sec. V for an
example). S2(L) is computed from one of the MESs, which
we obtain as explained in the following section.

E. Calculation of the modular S and U matrices with CTM

In Ref. [36] an approach based on TRG was introduced
for the calculation of wave-function overlaps to determine the
modular S and U matrices. The idea is to preserve the virtual
symmetry in the TRG coarse-graining process in both the bra
and ket layer, such that the resulting coarse-grained tensor T
representing the infinite 2D system on a torus exhibits the
same virtual symmetry. From this tensor all the MESs can
be obtained by acting with operators on the virtual legs, and
overlaps between them can be efficiently computed.
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(a)

(c)

(b)

FIG. 11. Variant of the CTM algorithm where the parity on the
bra and ket level on each boundary can be controlled. The red
lines are of dimension 2, with one state in the even (e) and odd
(o) sector, respectively, and the green triangles denote a projection
onto this space. A black dot corresponds to a projection onto the
even-parity sector. (a) Initialization of the boundary tensors, where
the boundaries of the corner tensor are projected onto the even-
even sector, and the red parity legs of the T tensor are kept open.
(b) Coarse-graining step, in which the corner tensors are kept in
the even-even boundary sector, and the red parity legs of the T
remain open. (c) Contraction of the network on the left yields the
double-layer tensor T representing an infinite plane (or infinite torus
when connecting the legs in a periodic way), where the parity in each
layer on each boundary can be controlled via the red legs.

Here we introduce an alternative scheme based on the
CTM, which is computationally more efficient than TRG. For
simplicity we discuss it here for the case of a Z2 topolog-
ical order, and we consider bulk tensors with a Z2 virtual
symmetry (e.g., after applying the symmetrization procedure
described in Sec. IV C). The main idea is to keep track of
the parity sectors on the open boundaries during the CTM
iterations, such that the different ground states can be indi-
vidually selected on the bra and ket level, similarly as in the
TRG approach [36].

The following adaptations are made to the standard CTM
algorithm (Sec. III B): First, instead of initializing the open
boundary of the edge tensor T by a projection onto a single
state we keep two states, one with even and one with odd
parity, on both the bra and ket level, as shown in Fig. 11(b).
These extra legs are kept open in each CTM renormalization
step (Fig. 11). Second, we initialize the corner tensor to have
an even-even parity on the two open boundaries, and we keep
it in this sector in each renormalization step by projecting all
of the open parity legs of the absorbed T tensors onto the
even-even sector [Fig. 11(b)]. The isometries to perform the
renormalization are found in a similar way as in the standard
approach.

Once the CTM has converged we construct the network
in Fig. 11(d) representing the infinite 2D system. Since the
parity on the boundary of the corner tensors is fixed to the

(a)

(b)

FIG. 12. (a) Second Rényi entropy of the toric code model as
a function of width L of an infinite cylinder, obtained from the
optimized tensors (O), combined with a gauge transformation to
bring the tensors into an approximate Z2 symmetric form (O + GT ),
and symmetrized to recover the Z2 virtual symmetry (O + GT + S).
The TEE γ is obtained from the intersection of a linear fit (dashed
lines) with the y axis. At short distances the correct value of TEE
is obtained after performing the gauge transformation even without
symmetrizing the tensors. (b) The TEE γ obtained from linear fits
to the data between L and L + 100 on large cylinders. At large
distances, only the symmetrized tensors yield the correct value for γ .

even-even sector, the total parity on the boundaries of the bra
and ket level can be fully controlled by the extra legs of the
edge tensors. Contracting the network yields a double-layer
tensor Ti jkl

i′ j′k′l ′ with a Z2 × Z2 symmetry similar to the one
obtained with TRG in Ref. [36]. Further, a torus geometry can
be mimicked by connecting the horizontal and vertical legs in
a periodic way. Specific ground states can be obtained by pro-
jecting the boundary onto the desired sectors in the horizontal
and vertical direction. We normalize the tensor T in each
sector such that taking the trace yields an equal superposition
of the four ground states, (|�ee〉 + |�eo〉 + |�oe〉 + |�oo〉), in
the bra and ket layer.

From this all MESs can be constructed, by using Eq. (2), or
(equivalently) by finding the eigenstates of the loop operators
W (z)(C) and W (x)(C) which on the level of the T tensor are
simply given by a single σ z and σ x acting on a virtual leg of
the T tensor. From the MESs, the S and U matrices can then
be computed, similarly as done in Ref. [36].
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V. RESULTS

A. Toric code model without a magnetic field

We start by testing our approach for the toric code model
without magnetic field (hx = hz = 0, with J = 1/2). The opti-
mization is done for D = 2 and χ = 40. Since there exists an
exact D = 2 representation, we expect to be able to reproduce
the ground state accurately. The CTM contraction is termi-
nated when the difference in the spectrum of the subsequent
corner tensors ||s(i+1) − s(i)|| < 10−12. The minimization is
done using the gradient-based energy minimization approach
described in Sec. III C. At each iteration, the calculation of
the gradient is completed either when all the CTM steps are
recovered or when the total gradient has converged, ||G (i) −
G (i−1)|| < 10−12. The optimization is terminated when either
the difference in energy between two iterations has become
smaller than 10−14 or when it is no longer possible to find
a new direction which lowers the energy. We run several
independent optimizations with different random initial states
and take the state with lowest variational energy. The opti-
mization scheme yields an iPEPS with only a very small dif-
ference in energy compared to the exact result, |E − Eexact| =
2.4 × 10−9.

Next, we apply the schemes presented in Sec. IV to see
whether we can detect the Z2 topological order. We first deter-
mine the gauge in which the tensors are closest to a Z2 sym-
metric form using the method described in Sec. IV C. We find
that, after performing the gauge transformation, the tensor
elements which lie outside the Z2 virtual symmetry blocks are
small. We quantify the deviation from a Z2 symmetric tensor
by δZ2 (see Fig. 9) divided by the norm of the tensor. Here we
obtain δZ2/||A||2 = 1.6 × 10−5, demonstrating that the tensors
are very close to a Z2 symmetric form, but they are not
perfectly symmetric. After performing the symmetrization,
i.e., setting the small elements which violate the Z2 symmetry
to zero (see Sec. IV C), we obtain a state which has essentially
the same energy, |E − EZ2 | = 4.1 × 10−10, showing that the
symmetrization step has only a minor effect on the ground-
state energy.

In Fig. 12(a) we present results for the second Rényi
entropy as a function of the width L of an infinite cylinder.
To compute the TEE γ we determine the intersection of a
linear fit to the data with the y axis. Using the tensors directly
obtained from the optimization (labeled O), the TEE is not
correctly reproduced, which is expected since the iPEPS is in
an arbitrary gauge, i.e., it does not represent an MES. After
performing the gauge transformation (labeled O + GT ) we
obtain the correct TEE with a deviation of only 1.7 × 10−7 if
we take the linear fit up to L = 40. However, when increasing
L the result for the TEE starts to deviate from the exact result
[see Fig. 12(b)], because they are not perfectly Z2 symmetric.
This is consistent with previous observations [34] where a
breakdown of the topological order was found by manually
adding small perturbations to the tensors which violate the
Z2 virtual symmetry. In contrast, after symmetrization (la-
beled O + GT + S) the TEE is correctly reproduced even on
very large cylinders [72].

Another difference between the O + GT and the O +
GT + S simulations can be identified by comparing the eigen-
value spectrum of the transfer matrix, i.e., the eigenvalues N

TABLE I. Summary of the results obtained for the toric code
model (without magnetic field) for D = 2 (see main text for
discussion).

hx = hz = 0

E −0.9999999976
|E − EZ2 | 4.1 × 10−10

γ − log 2 1.1 × 10−13

δZ2/||A||2 1.6 × 10−05

S 1
2

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦

U

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦

shown in Fig. 10. For a Z2 topologically ordered state we
expect a twofold degeneracy [27]. While in the symmetrized
case the degeneracy is accurate up to machine precision, with-
out symmetrization the difference between the two leading
eigenvalues is 2.8 × 10−5, i.e., very close but not a perfect
degeneracy, which causes the loss of topological order at long
distances.

Last, we calculate the modular S and U matrices based on
the procedure explained in Sec. IV E using the symmetrized
tensors. We find values, presented in Table I, which are in
perfect agreement with the exact results (see e.g., Ref [39]),
i.e., the anyonic particles 1, e, and m have bosonic self-
statistics, whereas the ε particle has fermionic self-statistics,
and braiding an e particle with an m particle (or with an
ε = em particle) yields a phase of π (i.e., they are mutually
semions).

B. Toric code model in a magnetic field

Having established that the correct features of the topolog-
ically ordered phase can be extracted in the unperturbed toric
code model, we now test our approach for more challenging
cases which are no longer exactly solvable. We first consider
two examples with a magnetic field applied in the z direction
for values hz = {0.1, 0.18} which lie inside and outside the
topologically ordered phase, respectively. [The location of the
critical point is hz = 0.164 237(2) [56].] The simulations and
analysis are done in a similar way as in the previous case,
with the results summarized in Tables II and III, for D = 2
and D = 3, respectively.

In the topological phase (hz = 0.1) we can make similar
observations as at the exactly solvable point. We again obtain
tensors which, after a suitable gauge change, are approxi-
mately Z2 symmetric, and after symmetrizing them we are
able to successfully extract the correct TEE and modular
matrices with a very high accuracy. Interestingly, after the
gauge change the deviation from a Z2 symmetric tensor is
larger for D = 3 than for D = 2, probably because there is
more freedom in these tensors to add off-diagonal elements
which do not affect the energy in a significant way. We note
also that the change in energy from D = 2 to D = 3 is very
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TABLE II. D = 2, χ = 40 results for the toric code model with a
magnetic field in the z direction. The data in the left and right column
correspond to a state in and outside of the topologically ordered
phase, respectively. In the topologically ordered phase the same S
and U matrices are obtained as in Table I, with an accuracy which is
close to machine precision (see Fig. 13).

hz = 0.10 hz = 0.18

E −1.01041 −1.04216
|E − EZ2 | 5.7 × 10−11 6.8 × 10−06

γ − log 2 7.0 × 10−14 0.6931
δZ2/||A||2 7.5 × 10−11 4.6 × 10−3

small here. In Fig. 13 we show the error in the modular
matrices with respect to the exact results as a function of CTM
iteration, showing that after sufficiently many steps (i.e., for
sufficiently large system sizes depending on the correlation
length in the system) the U and S matrices are accurately
reproduced.

Outside the topological phase (hz = 0.18) we consistently
find a vanishing TEE and a nondegenerate transfer matrix
spectrum, which allows us to correctly identify the trivial
phase. Since the ground state is no longer degenerate, the
CTM approach only yields a state with a finite norm in the
even-even sector, whereas the other sectors exhibit a vanish-
ingly small norm, such that the (trivial) modular matrices
cannot be computed in a meaningful way here. We further
note that we do find a gauge in which the tensors are close to
being Z2 symmetric; however, the Z2 virtual symmetry alone
does not automatically imply a topologically ordered phase.

In Table IV we present data of two additional examples for
D = 3 (χ = 80) in and outside the topological phase along
the self-dual line, (hx, hz ) = (h, h) with h = {0.1, 0.18}, for
which we find similar results as in the above case. [The critical
point is located at hc = 0.170(1) [56].]

C. Phase transition as a function of hz

Finally we test the approach for magnetic fields close to
the phase transition as a function of hz (with hx = 0) to locate
the critical point. In Fig. 14(a) we present the D = 2 results
for the TEE γ [obtained from linear fits to S2(L) with L
between 200 and 400], which exhibits a clear jump from
log(2) down to zero at hz = 0.1675(5), which is close but not
equal to the Monte Carlo result hc = 0.164 237(2) [56] due
to finite D effects. In Fig. 14(a) we also show the largest few
values of the transfer-matrix spectrum N where we clearly
find a degeneracy within the topologically ordered phase up
to the D = 2 critical point as expected. At the phase transi-
tion we consistently find a peak in the correlation length ξ

TABLE III. Same as in Table II, here for D = 3, χ = 60.

hz = 0.10 hz = 0.18

E −1.01042 −1.04220
|E − EZ2 | 1.7 × 10−06 1.5 × 10−5

γ − log 2 7.3 × 10−15 0.6931
δZ2/||A||2 6.3 × 10−2 4.8 × 10−2

FIG. 13. Error in the modular matrices with respect to the exact
results, �S = ||S − Sexact|| and �U = ||U − Uexact||, as a function of
CTM iteration N , corresponding to a linear system size L = 2N + 2,
here for D = 2.

[Fig. 14(b)], computed from the two leading (nondegenerate)
eigenvalues of the transfer matrix of the gauge-transformed
state. With increasing bond dimension the location of the
phase transition approaches the Monte Carlo result, as shown
in Figs. 14(c) and 14(d) with a transition value hz = 0.1665(5)
for D = 3.

These results demonstrate that our approach is applicable
also close to a phase transition (with an accuracy on the lo-
cation of the critical point depending on D as in conventional
phase transitions [73,74]).

VI. SUMMARY AND DISCUSSION

In this paper we have demonstrated that it is possible to cor-
rectly identify a topologically ordered phase using unbiased
iPEPS simulations, i.e., where we start the optimization from
random initial tensors without imposing the corresponding
virtual symmetry on the tensors. As an example we considered
the toric code model in a magnetic field where, within the
topologically ordered phase, the tensors should exhibit a
virtual Z2 symmetry. We found that, after a suitable gauge
change, the resulting tensors are approximately Z2 symmetric,
and they can be fully symmetrized a posteriori to generate a
stable topologically ordered state, exhibiting the correct topo-
logical entanglement entropy and modular S and U matrices.

What are the implications of our findings? So far, a
common belief was that the virtual symmetry needs to be

TABLE IV. Same as in Table II, here for D = 3, χ = 80 for fields
along h = hz = hx . Also here the same S and U matrices are obtained
in the topologically ordered phase as in Table I, with an accuracy
which is close to machine precision.

hz = hz = 0.15 hz = hx = 0.20

E −1.04952 −1.10492
|E − EZ2 | 2.1 × 10−5 5.1 × 10−3

γ − log 2 2.2 × 10−13 0.6931
δZ2/||A||2 6.9 × 10−4 0.155
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(a)

(c) (d)

(b)

FIG. 14. (a) The TEE γ and the dominant eigenvalues of the
transfer matrix N across the phase transition as a function of the
magnetic field hz, obtained for D = 2 (χ = 30). The dashed line
shows the Monte Carlo result for the location of the phase transition
[56]. (b) Correlation length ξ as a function of hz across the phase
transition for different values of the boundary dimension χ , exhibit-
ing a peak at the D = 2 critical point. (c), (d) Same as in (a) and
(b) for bond dimension D = 3 [χ = 60 in (a)].

imposed on the tensors in order to obtain and identify the
correct phase, which is not a problem if the type of topo-
logically order is known beforehand. However, if it is not
known one would need to run a separate simulation for each
possible virtual symmetry (each corresponding to another
topologically ordered phase), which is not efficient since the
optimization of the tensors is the computationally most expen-
sive part. In our approach, in contrast, the idea is to perform
a single unbiased simulation using unconstrained tensors, and
determine the (approximate) virtual symmetry a posteriori,
as a part of the analysis of the state. This is computationally
cheaper and more in the spirit of unbiased tensor network
calculations. We note that during completion of this paper
a different approach to study topological phases based on
unbiased iPEPS simulations was presented in Ref. [37].

In this paper we have also developed a variant of the CTM
method where the parity on the boundary can be controlled,
which is computationally more efficient than schemes based
on TRG [36] to compute the modular S and U matrices
in the topological phase. Furthermore, we have introduced
a gradient-based energy minimization algorithm based on a
summation of tensor environments, which is simpler and more
efficient than approaches based on a summation of Hamil-
tonian terms [45,46], especially for models with interactions
beyond nearest-neighbor sites and multisite interactions.
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