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Axion dark matter can resonantly convert into photons in the magnetospheres of neutron stars (NSs). It
has recently been shown that radio observations of nearby NSs can therefore provide a highly sensitive
probe of the axion parameter space. Here we extend existing calculations by performing the first three-
dimensional computation of the photon flux, taking into account the isotropic phase-space distribution of
axions and the structure of the NS magnetosphere. In particular, we study the overall magnitude of the flux
and its possible time variation. We find that overall signal strength is robust to our more realistic analysis. In
addition, we find that the variance of the signal with respect to the NS rotation is washed out by the
additional trajectories in our treatment. Nevertheless, we show that SKA observations toward J0806.4-4123
are sensitive to gaγγ ∼ 3 × 10−13 GeV−1 at ma ∼ 7 × 10−6 eV, even when accounting for Doppler
broadening. Finally, we provide the necessary code to calculate the photon flux for any given NS system
https://github.com/mikaelLEROY/AxionNS_RayTracing.
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I. INTRODUCTION

The QCD (quantum chromodynamics) axion was first
introduced in 1977 by Peccei and Quinn as a solution to the
strong CP problem of the QCD sector [1–4]. Depending on
the production mechanisms at play in the early Universe,
the QCD axion can behave like cold collisionless matter,
therefore allowing it to account for a fraction, or all, of the
dark matter (DM) in the Universe [5–7]. The QCD axion is
therefore considered one of the most well-motivated DM
candidates to date. The assumption that the Pecci-Quinn
(PQ) symmetry is broken after inflation leads to the axion
mass of ma ¼ 26.2� 3.4 μeV [8], though larger uncer-
tainties may arise from the contribution of topological
defects [9–11]. If, on the other hand, the PQ symmetry is
broken before inflation this mass constraint can be relaxed

to give the classical window of 10−7 eV≲ma ≲ 10−4 eV
[12–17].
A large range of observational strategies to directly detect

axion particles now exist [18–34] (see Ref. [35] for a recent
review). Many of these experiments exploit the axion’s
coupling to electromagnetism L ¼ −ð1=4ÞgaγγFμνF̃μνa ¼
gaγγE ·Ba to induce axion-photon conversion in the pres-
ence of magnetic fields. For the QCD axion, the axion mass
and axion-photon coupling strength are proportional, ma ∝
gaγγ [36–39]. On the other hand, axionlike particles (ALPs)
do not have the same coupling/mass relation and can
therefore take on awider variety of parameter combinations.
Although not connected to the strongCP problem,ALPs are
a generic prediction from the spontaneous breaking of
approximate global symmetries in beyond the standard
model physics as well as compactifications of higher
dimensions in string theory [40,41]. ALPs therefore re-
present a prime target for searches of new physics.
The most sensitive axion DM detector for masses around

2 μeV≲ma ≲ 4 μeV is the ADMX experiment which uses
a cold microwave resonator in a strong magnetic field,
Oð1–10Þ T, to induce axion-photon conversion [18,26]. In
the future, HAYSTAC [25] and MADMAX [20–22]
will probe a similar mass range. ABRACADABRA [27]
and DM-radio [19] will probe ALPs at lower masses
10−10 eV≲ma ≲ 10−8 eV.
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As well as terrestrial direct searches, a variety of
astrophysical observations can be used to constrain the
ALP parameter space. For example, Refs. [42–44] exam-
ined the possibility of stimulated axion decay for various
astrophysical targets, showing that dedicated observations
of dwarf spheroidal galaxies can potentially improve upon
current constraints by an Oð1–10Þ factor. Observations of
stellar lifetimes also serve as a sensitive probe of ALPs. The
hot plasma in the interior of a star readily produces low
mass particles which allow for energy transport out of the
stellar environment and have the potential to change a stars
normal evolution [45–47].
Reference [48] recently suggested that the magneto-

spheres of neutron stars (NSs) can induce enough axion-
photon conversion to be subsequently observed by radio
telescopes, potentially probing QCD axions.1 Importantly,
the finite electron density of the plasma induces an effective
photon mass [50] which, when equal to the axion mass,
allows for the conversion to become resonant. Since, in
the simplest scenarios, the photon mass monotonically
decreases with the distance to the NS surface, there exists a
continuum of resonant conversion surfaces corresponding
to different axion masses. The conversion process also
conserves energy (up to Doppler broadening [51]), which
allows for an inference of the axion mass directly from the
radio signal. This is particularly valuable since most
terrestrial experiments must fine tune their experimental
setups to gain sensitivity to particular axion masses. The
two approaches of direct and indirect detection are there-
fore highly complementary.
Radio signals from a collection of NSs, such as the bulge

population in the center of our galaxy [52], were inves-
tigated in Ref. [53]. Multimessenger signals (radio and
gravitational waves) from black hole–neutron star inspirals
were studied in Ref. [54]. A detailed study of the mixing
equations used to describe axion-photon conversion is
provided in Ref. [51,55].
In this work we present a more complete treatment of the

radio signal calculation for individual NSs. To this end, we
extend the recent analytic treatment presented in Ref. [48]
by performing a numerical ray-tracing computation of the
conversion process. This allows us to fully account for the
isotropic phase-space distribution of axions in the vicinity
of the NS. We find significant qualitative and quantitative
differences with respect Ref. [48], and provide the neces-
sary code to calculate the flux for various parameter
combinations. Our results impact the overall reach of future
radio searches for QCD axions and ALPs, as well as the
optimization of realistic search strategies.
The paper is organized as follows. In Sec. II we describe

the signal calculation, paying particular attention to the ray-
tracing algorithm. In Sec. III, we report our results for the

NS J0806.4-412 and calculate the sensitivity of next-
generation radio telescopes to the radio signal and its
potential time variability. Finally, we conclude in Sec. IV.

II. SIGNAL CALCULATION

Here we present the formalism and assumptions behind
the ray-tracing method. In particular, we discuss the axion-
photon conversion probability, the dark matter distribution,
the neutron star’s magnetosphere, and the photon flux seen
on Earth. Where appropriate, we follow the calculations
from Ref. [48].

A. Conversion probability

Photons in a plasma acquire an effective mass (“plasma
mass”) through interactions with free charges, which is
given by [49]

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παnc
mc

s
; ð1Þ

where nc is the charge carrier number density, mc the
charge carrier particle mass, and α is the fine-structure
constant. Resonant conversion can occur when the photon
plasma mass approximately matches the axion mass
ma ≃ ωp. This condition singles out a resonant conversion
shell which is dependent on the axion mass. Using the
WKB and stationary phase approximations, one can show
that the probability of an axion converting into a photon
while traversing a resonant conversion region is given by

Pa→γ ¼
π

2
ðgaγγB⊥Þ2

1

vcjω0
pj
: ð2Þ

Here, gaγγ denotes the axion-photon-photon coupling
mentioned above and B⊥ is the strength of the NS magnetic
field perpendicular to the axion trajectory. The plasma mass
derivative ω0

p denotes the derivative along the axion
trajectory at the point of resonant conversion. For the
special case of radial trajectories, it is given by jω0

pj ¼
jdωp=drj ¼ 3

2
ma=r (as in [48]). Further details about the

calculation of the conversion probability can be found in
Appendix, including a critical comparison with earlier
literature.

B. Phase space distribution of dark matter at the
neutron star’s surface

The phase-space distribution (PSD), fðr; vÞ, describes
the statistical properties (spatial positions, r, and velocities,
v) of a group of particles. Assuming that the PSD is
stationary gives Liouville’s theorem [56] from which we
can see that the PSD is conserved along the trajectories of
the system. We can therefore equate the PSD at infinity to
the PSD at the NS surface,

1This conversion process was originally proposed and studied
in Ref. [49].
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fðr; vÞ ¼ f∞ðr∞; v∞Þ; ð3Þ

where the subscript infinity refers to quantities far from the
NS. The distribution of DM is assumed to be isotropic in
the rest frame of the galaxy. The standard halo model
predicts an isotropic Maxwellian distribution far from the
NS [57,58], given by

f∞ðr∞; v∞Þ ¼
ϱDM∞

ðπv20Þ3=2
exp

�
−
v2∞
v20

�
; ð4Þ

where ϱDM∞ is the DM density and v0 is the spread of the
distribution (discussed below). Equations (3) and (4) show
that the PSD close to the NS surface will be isotropic as
long as v2∞ does not depend on the direction of v. We can
see this independence directly from energy conservation
which allows us to relate the velocity at infinity to the
physical velocity seen by a local observer at radius r (the
radial coordinate of the Schwarzschild metric) from the NS
center (in the limit v2∞ ≪ 1)2

v2∞ ≃ vðrÞ2 − 2GMNS

r
; ð5Þ

where G is Newton’s constant and MNS is the mass of the
NS. The isotropy of the PSD at the NS surface holds as long
as the NS velocity is small with respect to the galactic rest
frame.3 Equations (10) and (11) of Ref. [59] directly yield
the local DM PSD:

fðr; vÞ ¼ ϱDM∞
ðπv20Þ3=2

exp

�
2GMNS

rv20

�
exp

�
−
v2

v20

�
: ð6Þ

Note that due to energy conservation, the minimum
velocity at a given radius is vminðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMNS=r

p
.

Integrating Eq. (6) with respect to v such that
jvj ≥ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GMNS=r
p

, we obtain:

ϱðrÞ ¼ 2ϱDM∞ffiffiffi
π

p
�
xþ ex

2

Z
∞

x
e−u

2

du

�
; ð7Þ

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMNS=rv20

p
and u ¼ v=v0. The DM velocity

dispersion v0 is small enough that, in practice, we can take
the limit x ≫ 1 which allows us to neglect the right-hand
side (rhs) of Eq. (7) and work with the simpler expression:

ϱðrÞ ¼ 2ϱDM∞ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMNS

r

r
1

v0
: ð8Þ

Furthermore, conservation of energy for infalling axions
further yields the DM velocity

vðrÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMNS

r

r
: ð9Þ

In addition to the overall normalisation of the signal, we
must worry about the width of the line. We consider two
contributions to this width: firstly from the intrinsic
velocity distribution of DM far from the neutron star
and secondly from the overall Doppler broadening
due to the collective motion of the magnetosphere asso-
ciated with the NS spin. The former is given by the
Maxwell-Boltzmann distribution which leads to B ∼
ðv0=cÞ2ma=ð2πÞ where B is the bandwidth (discussed
below). The latter is described in Ref. [51], where we take
a conservative approach by setting the conversion surface
to be the maximum conversion radius for any given axion
mass.4 It is not clear that our approach is a good description
of the true line width since each pixel contributes some
fraction of the total observed flux. In addition, a full
calculation of the width would need to consider reflection
and transmission components of the signal separately and
further investigate the turbulence in the plasma at the scale
of the photon wavelength. We leave this to future work and
instead show optimistic and conservative sensitivity curves
from the two broadening effects.

C. Neutron star magnetosphere

As a concrete example, we use the Goldreich and Julian
(GJ) model [60] as a description of the magnetosphere
around the NS (for a review on pulsar magnetosphere see
Ref. [61]). The GJ model assumes that the magnetosphere
is corotating with the NS and provides the following
analytic expression for the charge number density:

nGJðrÞ ¼
2ω ·B

e
1

1 − ω2r2sin2θ
; ð10Þ

whereω ¼ ð2π=PÞẑ is the constant NS rotation vector with
P being the NS spin period, θ is the polar angle, and B is
the local magnetic field. The latter is assumed to be in a
dipole configuration with axis along the direction m̂. In
spherical coordinates ðr; θ;ϕÞ, we have:

Br ¼ B0

�
rNS
r

�
3

ðcos θm cos θ þ sin θm sin θ cosψÞ

Bθ ¼
B0

2

�
rNS
r

�
3

ðcos θm cos θ − sin θm cos θ cosψÞ

Bϕ ¼ B0

2

�
rNS
r

�
3

sin θm sinψ ; ð11Þ
2This follows from gravitational redshift E2

∞ ¼ ð1−
2GMNS=rÞE2

r , where E∞ and Er are the axion energy at infinity
and radius r, respectively.

3Note that this is not necessarily a good assumption since the
NS and the DM are moving nonrelativistically. We will extend
this formalism to account for boosts into the NS’s reference frame
in future work.

4We also set ϵ ¼ 1 in Eq. (75) of Ref. [51], its largest possible
value. This therefore again represents a conservative assumption.
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where θm is the misalignment angle between ẑ and m̂,
ψðtÞ ¼ ϕ − ωt, B0 is the magnetic field strength at the NS
poles, and rNS denotes the NS’s radial size. See Fig. 1 for a
visualization of the system with the relevant angles labeled.
The plasma mass (1) is computed by taking nc ¼ jnGJj

and assuming the presence of electrons and positrons only
(mc ¼ me). By neglecting relativistic corrections [second
factor in Eq. (10)], we get

ωpðr; θ;ϕ; tÞ ≃ 69.2 μeV × j3 cos θm̂ · r̂ − cos θmj1=2

×

�
B0

1014 G
1 s
P

�
rNS
r

�
3
�
1=2

; ð12Þ

where the time dependence resides in the term

m̂ · r̂ ¼ cos θm cos θ þ sin θm sin θ cosψðtÞ: ð13Þ

The resonant axion-photon conversion region is identified
by the matching relation ωpðr; θ;ϕ; tÞ ¼ ma. For a given
angle θ, we would expect the radio signal to display some
time variation as the NS rotates, due to varying resonant
conversion surface observed from Earth. This variation is
discussed in Ref. [48] where they assumes radial trajecto-
ries for the infalling axions. This assumption implies that
the radio signal arises from the specific direction θ
connecting the NS to the Earth. For an isotropic PSD,
we expect that the absence of any preferred axion trajectory
will suppress the time-dependence of the radio signal as it is
instead given by the cumulative flux from all possible axion
trajectories (as discussed below).
Before concluding, we note that the NS magnetosphere

model plays an important role in defining the local proper-
ties of the NS plasma. In the present paper, we consider the
GJ model with electrons and positrons to make a
direct comparison with the analytic results discussed in
Ref. [48]. Importantly, the GJ model does not describe

inhomogeneities in the plasma structure which, in real NSs,
may exist. These inhomogeneities may significantly affect
the signal and must be accounted for in future work [62]. In
addition, the GJ charge density may significantly differ
from the true charge density—this difference is typically
described through the multiplicity which can vary signifi-
cantly [63]. However, our ray-tracing algorithm is imple-
mented in such a way that the magnetosphere model can be
straightforwardly modified to account for more compli-
cated and realistic scenarios capturing local perturbations
[61]. The impact of different models (such as the electro-
sphere model [64] or numerical simulations of the NS
magnetosphere [65–67]) on the signal prediction is left to
future work.

D. Calculating the photon flux

We assume that axions can convert into photons only at
points, denoted rc, where the plasma mass equals the axion
mass. The conversion probability Pa→γðr;uÞ depends on
the local magnetic field strength (and therefore the position)
as well as the direction of the axion at that point, given by u
with respect to the radial trajectory at rc. Photons entering
regions with a larger plasma mass will be reflected,
providing a factor of two greater flux when accounting
for trajectories parallel and antiparallel to the line of sight
(as mentioned in the next subsection).5 Reflected waves
will be will be also Doppler broadened [51], which we will
further discuss below. Note that we neglect multiply
scattered photons.
The total flux expected from a neutron star can be written

in terms of the intensity as

F ¼
Z
ΔΩ

dΩIðΩÞ; ð14Þ

where the angular integral is over a region ΔΩ which
covers the neutron star. We first consider the emission
through a planar conversion region (for a → γ) that is taken
to be perpendicular to the line-of-sight toward the NS, and
at a distance D from the observer. Its physical size is taken
to be infinitesimally small, dA ¼ D2dΩ. We assume that
the conversion region is immersed in an isotropic distri-
bution of axions with number density na and velocity va.
The current of axions that traverses the conversion region in
direction dΩ0 is given by

FIG. 1. Diagram of the system. Here we show a diagram of the
NS being observed from Earth with all the relevant quantities
labeled for clarity.

5In general, resonant conversion (associated with k2a ¼ ω2 −
ω2
pðrÞ) and reflection (associated with ma ¼ ωpðrÞ) do not

happen at the same place. For radial trajectories, one can show
that the difference between both points is given byΔr ¼ rc

3
k2c=m2

a

(which follows from ωp ∝ r−3=2). The size of the resonant
conversion region is given by L2 ¼ 2π=3 · rckc=m2

a, from which
follows that L ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔr=kc

p
. We have separation when λc ≪ Δr,

where λc is the de Broglie wavelength at resonance.
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d2JðΩ0Þ ¼ cosðαÞdA dΩ0

4π
nava; ð15Þ

where α is the angle between the line-of-sight from the
neutron star to the observer and the direction of the axions.
The first two factors give the size of the conversion region
projected onto the axion direction. The third and fourth
factors together denote the number density of axions
moving in direction dΩ0, and the last factor is their velocity.
The signal intensity is given by

IðΩÞ≡ dJ2

dΩdA0 ¼
dJ2

dΩ0dA
¼ nava

4π
: ð16Þ

As usual dΩ is the angular size of the observed region, and
dA0 is the detector area. The second equality holds since we
can exchange the role of solid angle and observed area
(using dΩ ¼ dA=D2 and dΩ0 ¼ dA0=D2). In the last step,
we set cosðαÞ ≃ 1. The photon flux from a NS (still
assuming a perpendicular conversion region) can therefore
be written as

F ¼
Z
ΔΩ

dΩ
nava
4π

Pa→γ ≃
ðΔbÞ2
D2

X
i

�
nava
4π

Pa→γ

�
ðΩiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡IγðΩiÞ

ð17Þ

where we took Pa→γ to be the probability of axion-photon
conversion upon traversal of the conversion region, and we
split up the integral into sums over different line-of-sights i,
which each contribute ΔΩi ¼ Δb2=D2 to the integral (andP

i ΔΩi ¼ ΔΩ). Note that these line-of-sights are very
close to parallel at the scale of the neutron star.
In order to generalize to nonperpendicular emission

planes, the integral over dΩ would have to be, in principle,
replaced by an integral over the 2-dim sub-manifold C.
However, we can simply parametrize this submanifold by
the angular direction seen from the observer, Ω. This is
possible since we only observe (from Earth) the first
crossing of the conversion region (everything else is
absorbed). In that case, the area of this submanifold can
be calculated as AC ¼

R
dAC ¼ D2

R
ΔΩ dΩ cosðαÞ−1, where

α is the angle between the normal of the submanifold C at
each point and the line of sight. The last factor accounts for
the deprojection of the submanifold when integrating over
dΩ. Interestingly, this factor cancels the cosα that we
obtained in Eq. (15). As a result, the equation for the flux F
in terms of sums over line-of-sights, Eq. (17), remains the
same for nonplanar emission regions, provided that the
quantities in the parentheses are evaluated at the point of
the conversion.

E. Computational approach

The total radio flux is computed through a ray-tracing
algorithm defined by the following steps:
(1) We define the region of interest (ROI) as a planar

surface ΔA perpendicular to the line-of-sight
toward the NS at a distance D from the Earth and
a distance d from the NS center. The latter is chosen
to be the maximum distance at which the resonant
axion-photon conversion occurs. Typically, we have
d ¼ Oð100 kmÞ for the minimum axion mass con-
sidered. The ROI is divided into square pixels of
size Δb, whose centers identify a specific photon
trajectory i.

(2) For each pixel, we back-propagate the photon by
numerically computing its geodesics starting from
the center of the corresponding pixel and taking the
initial velocity to be perpendicular to the ROI.

(3) We divide the NS rotation period into intervals of
length δt. For each interval we then compute the
plasma mass along each trajectory i. The resonant
conversion region is determined by numerically
solving the equation ωpðrc;i; δtÞ ¼ ma. The position
rc;i is identified as the first crossing between the
photon trajectory and the resonant conversion sur-
face. Other possible crossings correspond to photons
with an energy ω that would have to travel through a
plasma with mass ωp > ω to reach the observer, and
therefore they are scattered during their travel.

(4) The radiated power (which is a useful, distance
independent quantity) from each pixel i is then
computed at the conversion region as

dPi

dΩ
¼
8<
:
2×Δb2Pa→γmanava

4π

����
rc;i

if rc;i≥ rNS

0 if rc;i <rNS

; ð18Þ

where we require that the resonant conversion occurs
outside the NS surface. The factor of two takes into
account the reflection of photons on the way toward
the neutron star. We do not consider the contribution
of nonresonant conversion since it is generally
subdominant.

(5) The total radiated power is obtained by summing the
contributions from all the pixels

dP
dΩ

¼
X
i

dPi

dΩ
; ð19Þ

and the total radio flux is simply given by

F ¼ 1

D2

dP
dΩ

: ð20Þ
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This expression matches the one reported in Eq. (17)
multiplied by the axion mass.

Throughout our analysis we consider a flat metric (classical
approximation)—all photons propagate in parallel straight
lines. This is a good approximation for the case at hand.
The Schwarzschild metric differs from the Minkowski one
by terms proportional to εðrÞ ¼ rs=r with rs being the
Schwarzschild radius. Such a ratio reaches its maximum
value at the NS surface where ε ¼ Oð0.1Þ. We checked that
the total radiated power changes by no more than a few
percent when considering the Schwarzschild metric.6 There
are also additional effects associated with the NS’s spin and
described by the Kerr metric. This Kerr metric reduces to
the Schwarzschild one in the limit of ε0ðrÞ ¼ 2πI=Pr ≪ 1
where I and P are the moment of inertia and the spin period
of the neutron star, respectively. For the isolated NS
J0806.4-4123 analyzed in the next section, the maximum
value of ε0ðrÞ at the NS surface is of the order of 10−5 for
reasonable NS moments of inertia [68].
Throughout, we also neglect any general relativistic

corrections to our results. Since the Lorentz factors that
we encounter for axion velocities can be as large as γ ∼ 1.2,
this means that our results are in general only accurate
to within �20% (although the details depend on where
most of the observable conversion happens, and we expect
much higher accuracy in most cases that are of interest
here).
We further checked that the numerical calculation of the

radiated power is converged with respect to: (i) the spatial
resolution along each trajectory that is used to identify
the resonant conversion region; (ii) the pixel resolution of
the ROI that sets the number of trajectories. We find that the
contribution of each trajectory typically varies within 0.1%
for a spacial resolution of 1 m. The pixel resolution is
instead fixed by the requirement that the total radio flux
does not vary by more than 1%when increasing the number
of trajectories.

III. RESULTS

Up to now we have not fixed our calculations to a
specific system apart from assuming that the magneto-
sphere is described by the GJ model. The signal is highly
dependent on the system being observed. We therefore fix
the reference model to be the isolated neutron star J0806.
4-4123, which has a period P ¼ 11.37 s, a magnetic field
B0 ¼ 2.5 × 1013 G (1 G ¼ 10−4 T), and is located at a
distance D ≈ 250 pc from the Earth [69]. Moreover, we
take MNS ¼ 1 M⊙ and rNS ¼ 10 km for the mass and the
size of the neutron star as well as ϱ∞DM ¼ 0.3 GeV=cm3 and
v0 ¼ 200 km=s for the local density and velocity

dispersion of DM particles, respectively. In the following,
we report the predictions for the radio flux for different
angular configurations of the system, and discuss the
sensitivity of next-generation radio telescopes to the signal
and its time variability. Note that we expect the results of
J0806.4-4123 to be qualitatively similar to other NSs. The
code we provide is flexible and can be used for any isolated
NS system.

A. Flux predictions

In Fig. 2 we show the radiated power of the reference
NS from each pixel of the ROI, which corresponds to a
planar surface of 100 km × 100 km with 62772 pixels
(Δb ¼ 30 m). We checked that this choice of resolution
indeed meets our convergence criterion. Moreover, we
consider the misalignment angle θm ¼ 15°, the direction
θ ¼ 58.31° and ϕ ¼ 0. We take the axion-photon coup-
ling gaγγ ¼ 1.0 × 10−12 GeV−1 and the axion mass ma ¼
0.5 μeV. As can be seen from the plot, there exist very
bright pixels corresponding to trajectories for which the
conversion region is very close to the NS surface or the
crossing with the resonant conversion surface is almost
tangential. The former implies that the resonant conversion
takes place in regions with very high magnetic fields. The
latter, instead, implies that the derivative of the plasma mass
along the trajectory is almost zero, therefore strongly
enhancing the axion-photon conversion probability. The
position of these bright pixels changes during the NS
rotation as shown in the video (link is provided in the
caption of the figure).

FIG. 2. Radiated power from individual trajectories. Snapshot
of the radiated power from individual trajectories identified by the
pixel position ðx; yÞ of the ROI. We consider the benchmark
scenario with θm ¼ 15°, θ ¼ 58.31°, gaγγ ¼ 1.0 × 10−12 GeV−1,
and ma ¼ 0.5 μeV. The video of the evolution of the radiated
power during a NS rotation period can be found at: https://youtu
.be/VyA1-qbIqB4.

6Calculating trajectories in the Schwarzchild metric is signifi-
cantly more computationally expensive than for the flat metric.
Since the corrections to the overall signal are small we use the flat
metric for efficiency.
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In Fig. 3 we report the total radiated power (summing
the contribution of all the pixels) as a function of the
instantaneous phase during a whole NS period for a few
benchmark cases. In particular, the plots from left to right
correspond to an increasing axion mass. The solid,
dashed, and dotted lines represent the results for a polar
angle θ of 36°, 54°, and 72°, while the azimuthal angle is
fixed to ϕ ¼ 0. Most importantly, our numerical flux
predictions (shown in light blue) are compared with the
analytic calculations (shown in black) in which the axion
PSD is completely radial [48]. It is clear that taking into
account the contribution of all the trajectories (isotropic
PSD) has significant implications. First, we find that an
isotropic PSD provides an averaged normalization of the
radiated power which is typically up to an order of
magnitude smaller than the estimated power from a radial
PSD. Second, the ray-tracing calculation does not provide

a sharp cut-off for the radio signal at large axion masses.
The analytic prediction requires the axion-photon con-
version to occur outside the NS surface and therefore
implies an upper value for the axion mass that can
produce a radio signal, as obtained by setting rc ¼ rNS in
Eq. (12). This can be seen by the fact that the black lines
are nonzero only in a specific time window during the
NS period and, remarkably, are absent in the last plot
with ma ¼ 12.5 μeV. Our numerical calculation therefore
allows one to extend the radio sensitivity curves to larger
axion masses. Thirdly, the isotropic PSD erases the
majority of the time variability of the radio signal.
The light blue lines are indeed almost flat, while the
black curves have large peaks for specific instantaneous
phases, especially for low axion masses (see first plot).
Figures 4 and 5 display the average and the relative

variance of the radiated power over a NS period as a

FIG. 3. Total radiated power during a NS rotation period. Total radiated power as a function of the instantaneous phase (ωt ¼ 2πt=P)
from the isolated NS J0806.4-4123, B0 ¼ 2.5 × 1013 G and P ¼ 11.37 s. The light blue lines show the ray-tracing results of the present
work with an isotropic phase-space distribution of axion particles. The black lines refer to the analytic computation based on radial
trajectories [48]. The dashed, solid and dotted lines correspond to polar angles θ ¼ 36°, 54° and 72°, respectively. The misalignment
angle is fixed to θm ¼ 18° for all lines. The plots from left to right display the radiated power for an axion masses of 0.5 μeV, 7.0 μeV,
and 12.5 μeV, respectively.

FIG. 4. Averaged radiated power. Total radiated power averaged over a NS period as a function of the polar viewing angle θ. The three
plots from left to right correspond to misalignment angles of 18°, 54°, and 90°, respectively. The colors of the lines refer to different
values of the axion mass.
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function of the polar angle θ. The three plots correspond to
three different misalignment angles θm, while the values of
the axion mass are represented by different colors. We note
that the averaged radiated power increases as one considers
larger axion masses up to a certain value where it starts to
decrease, as can been seen for ma ¼ 12.5 μeV (yellow
line). For axion masses larger than a certain threshold,
fewer trajectories have a crossing point outside the NS
surface and, consequently, cannot contribute to the total
radio signal. However, we highlight once again that this is
not a sharp change as occurs in the analytic derivation
where the radio signal suddenly becomes zero [48].
Figure 5 shows that the relative variance of the radio signal
significantly depends on the misalignment angle, reaching
30% for the extreme value θm ¼ 90° (last plot). For
reasonably small values of θm, the relative variance is
instead practically equal to one, implying an almost
negligible time variability of the signal.

B. Radio sensitivity

Figure 5 shows that the variability of the signal as a
function of time is small for realistic values of the
misalignment and viewing angles. As discussed above,
the time variation of the signal has been reduced (in the
majority of cases) to Oð0–5Þ%. We therefore forecast the
sensitivity of radio telescopes to a line detection, although
we discuss how well these searches can find the remaining
time variability.
Assuming the thermal noise of the radio telescope is

Gaussian, the signal-to-noise ratio (SNR) is given by

SNRL ¼ Sa→γ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bτobs

p
SEFD

; ð21Þ

where Sa→γ is the flux density of the source, SEFD is the
system equivalent flux density, B bandwidth of the signal,
τobs the observation time, and the factor of two simply

accounts for the number of polarizations. The flux density
is given by Sa→γ ¼ F=B. The bandwidth is described in
Sec. II where we consider two contributions to the broad-
ening of the line. The sensitivity to both scenarios is shown
in Fig. 6 where the solid red line corresponds to broadening
from the DM velocity distribution only and the red dashed
line accounts for Doppler broadening from the rotation of
the magnetosphere as well.
Realistically, the radio sensitivity will be limited by a

telescopes ability to remove false positives. For example,
interference from radio sources on Earth or satellites in
the field of view can produce radio line emission.

FIG. 5. Relative variance of the radiated power. Relative variance of the total radiated power with respect to a whole NS period as a
function of the polar viewing angle θ. The three plots from left to right correspond to misalignment angles of 18°, 54°, and 90°,
respectively. The colors of the lines refer to different values of the axion mass.

FIG. 6. Projected sensitivity to the axion-photon coupling from
radio observations. We consider the isolated NS J0806.4-412 and
assume τobs ¼ 100 hrs. The two red lines correspond to the
sensitivity limit for two line broadening scenarios as described in
the text. The red solid line only accounts for the DM velocity
distribution far from the NS where as the red dashed line also
accounts for Doppler broadening from the rotation of the NS
magnetosphere. The red band shows the minimum coupling
required to detect the time variation of the signal (here we neglect
Doppler broadening).
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A confirmation of the signal therefore requires an inter-
ferometer capable of taking ON/OFF spectra of the
source in radio quiet regions. We therefore consider the
future telescope SKA which is projected to have SEFD ∼
0.098 Jy [70] and assume an observation time of
τobs ¼ 100 hrs. Figure 6 shows the 2σ sensitivity7 to
the radio line for various masses. In addition, we show
the region of parameter space that could correspond to the
QCD axion (blue), the current and future ADMX sensi-
tivity in dark and light grey respectively [18,26], and the
CAST sensitivity in orange [24].
Although reduced, the time variability of the radio line

would provide a striking confirmation of its astrophysical
origin. We therefore estimate the scaling from a 2σ
measurement of the line to a 5σ detection of the variability.
We therefore make the substitution

Sa→γ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS2a→γi − hSa→γi2

q
∼

ffiffiffiffiffi
σT

p
Sa→γ; ð22Þ

where σT denotes the variance of the signal over a NS
rotation. From Fig. 5 we see that, for θm ¼ 18°, we have
0.0102≲ σT ≲ 0.0172 depending on the axion mass. We
can then scale line detection sensitivity to the smallest
coupling with a detectable time variability as

gTaγγ ¼
�

SNRT

SNRL
ffiffiffiffiffi
σT

p
�

1=2
gLaγγ; ð23Þ

where SNRT is the signal-to-noise ratio for a detection of
the time variation which we set to 5. The red band in Fig. 6
shows this scaling for the range of values for σT. In
particular, we can see that a significantly larger coupling
(and subsequently larger flux) is required to detect the small
variation in the signal. For larger values of θm we see
greater variation in the signal, making it easier to detect,
although this effect is still greatly suppressed with respect
to Ref. [48].

IV. DISCUSSION AND CONCLUSIONS

In this work we have calculated the expected flux from
axion-photon conversion in a NS magnetosphere. To
correctly account for the isotropic phase space distribution
of the DM at the NS surface we performed a ray-tracing
procedure, back propagating photons to the conversion
surface to find the total flux at Earth. Our work builds upon
Ref. [48] with two primary results:

(i) The predicted flux is large enough to potentially
detects ALPs down to gaγγ ∼ 10−12 GeV−1;

(ii) The time variation of the signal is small for realistic
values of the misalignment angle, 0°≲ θm ≲ 30°,

where we see, at maximum, an Oð5%Þ modulation
of the signal.

Both of these effects can be seen in Fig. 3 in which the blue
lines indicate this work and the black lines show the radial
approximation of Ref. [48] where the time variation is
greatly enhanced. We note however that our analysis
currently neglects two important physical effects: reflection
and refraction of photons escaping after the conversion
process. Both of these effects could change the magnitude
and time variability of the final signal. Nevertheless, we
have performed the most detailed calculation of the signal
to date and show that the flux is still observable for a variety
of angular configurations, as shown in Fig. 4. Figure 5
shows the variance of the signal for different viewing and
misalignment angles from which it is clear that only for
unrealistically large misalignment angles, θm ≳ 30°, do we
see an appreciable modulation of the signal.
In Fig. 6 we show that observations of NS targets, such

as J0806.4-4123, with future telescopes such as SKA will
probe unexplored regions of the ALP parameter space.
Although the time variability of the signal is small
compared to previous estimates, a measurement of this
variability would provide a striking signature of the signal’s
astrophysical origin. We therefore estimate the coupling
required to make a 5σ detection of the time variation for
θm ¼ 18° and θ ¼ 54°, showing that observations J0806.
4-4123 could still detect this variation for couplings below
the CAST limit.
By accounting for the isotropic phase space distribution

of DM we are able to extend the sensitivity of SKA to
higher axion masses than Ref. [48]. The high mass cut off
of the sensitivity is set by the requirement that the
conversion process occurs outside the NS interior which,
in our setup, occurs at a different mass for each pixel. At
high axion masses we therefore retain a fraction of the
overall flux induced by nonradial trajectories. This effect is
also reflected by the reduction of sensitivity at high masses
ma ≳ 10−5 eV, as seen in Fig. 6.
Although we have made a crucial step toward calculating

the true signal, there are a number of caveats that should be
addressed in future work. First, we neglect the boost of the
NS with respect to the galactic rest frame. In practice this
boost would mean that the NS sees a prevailing DM wind,
similar to the wind studied in direct detection experiments
[71]. Accounting for this effect is relatively simple if the
boost is known but we leave this to future work. Second, we
assume that the GJ model is a good approximation of the
NS magnetosphere which, for realistic NSs, may not be the
case. Future work should systematically understand how
realistic NS magnetosphere models can effect both the
magnitude and width of the radio line. Although this may
only be possible with full 3D simulations, a systematic
study of different analytic models would provide valua-
ble information for the space of possible signatures. As
mentioned in Sec. II C, inhomogeneities in the plasma can

7Note that Ref. [48] uses 1σ sensitivity which is too low for
discovery.
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significantly affect the signal calculation and should also be
accounted for in future work. In addition, the multiplicity of
the charge density can vary significantly from the GJ value,
potentially changing the conversion region’s size and its
distance from the NS. Reference [51] recently studied the
Doppler broadening of the line due to the motion of the
magnetosphere, showing that there is potentially a signifi-
cant contribution to the overall width. Moving forward, it is
important that the precise width and its evolution in time is
computed more accurately, accounting for turbulence in the
plasma as well as the transmission and reflection compo-
nents of the signal. In particular, multiply scattered photons
have to be taken into account consistently. This is espe-
cially important for conversion in the throat of the NS
magnetosphere as the photon production can be greatly
enhanced in this region but may not escape to infinity
without scattering. We leave this to future work. Overall,
we have taken a step toward understanding the true signal
of axion-photon conversion from a NS—future work will
build upon our framework by incorporating many of the
physical effects mentioned above and reducing the number
of assumptions we made in this work.
Finally, we emphasise the complementarity between

indirect and direct searches for axion DM. Given a detection
of a radio line from a NS it would be easy to confirm its DM
nature through measurements with cavity searches such as
ADMX. Importantly, the frequency of the radio signature
would allow for an inference of the axion mass and
subsequently reduce the frequency range through which
direct experiments would need to search (a primary issue in
direct searches for axions in resonant cavities). Both direct
and indirect approaches therefore represent fundamental
tools in the search for axion dark matter. Code used for the
calculations throughout this work can be found at https://
github.com/mikaelLEROY/AxionNS_RayTracing.
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APPENDIX: DERIVATION OF THE
AXION-PHOTON CONVERSION PROBABILITY

Here we briefly sketch our derivation of the conversion
probability. Related discussions can be found in [48,51]
(see also Ref. [55]). Since the conversion probability
derived in these references differs by a factor of 1=vc
(with vc being the axion velocity at the conversion point),
here we reproduce our reasoning for adopting the results
from [51] for our signal calculations.

The Lagrangian for a system of axions a and photons Aμ

reads

LðAν;ϕÞ ¼ −
1

4
FμνFμν − AνJν −

1

2
m2

aa2 þ
1

2
∂μa∂μa

−
1

4
gaγγFμνF̃μνa; ðA1Þ

where ma is the axion mass, and gaγγ the axion-photon-
photon coupling.
Photons propagating in a plasma acquire an effective

mass ωpðrÞ due to their interactions with free charges.
Considering axion-photon fields propagating only along
the z direction in an intense transverse magnetic field the
relevant equations of motion that can be derived from
Eq. (A1) via the Euler-Lagrange equations are

ð∂2
t − ∂2

z þ ω2
pÞAxðz; tÞ ¼ −βðzÞ∂taðz; tÞ; ðA2Þ

ð∂2
t − ∂2

z þm2
aÞaðz; tÞ ¼ −βðzÞ∂tAxðz; tÞ; ðA3Þ

where we defined βðzÞ≡ gaγγBxðzÞ.
For a plane wave scalar field a, the energy flux (derived

from the time/space component of the stress-energy tensor,
and conserved in the absence of conversion) is given by
fa ∝ kajaj2, where ka is the momentum of the field, and an
equivalent expression holds for the photon field. The
probability of an axion to convert into a photon after a
distance z can therefore be written as

Pa→γ ≔
kγðzÞ2
kað0Þ2

����Axðz; tÞ
að0; tÞ

����2; ðA4Þ

where kγ is the photon momentum. Note that we only
consider the transmitted wave and ignore reflections for
now. Using a WKB approximation, one can show that the
photon field amplitude takes the form (up to factors of
e−iωt)

AxðzÞ ¼ −
ω

2
að0Þei

R
z

0
kγðz0Þdz0

×
Z

z

0

βðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kγðzÞkγðz0Þ

p ei
R

z0
0
ðka−kγðz00ÞÞdz00dz0: ðA5Þ

We are interested in the resonant conversion of axions
(when ωp ≃ma) since the conversion probability is maxi-
mised here. We therefore use the stationary phase approxi-
mation to evaluate the integrals. Expanding the photon
mass ωp around the axion mass ma to first order, the
argument of the exponential on the right-hand side becomes
ka − kγðzÞ ≃ −k0γðz0Þη ≃ −maηωpðz0Þ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

a

p
, where

η≡ z − z0 (resonant conversion occurs at z0). Assuming a
constant magnetic field throughout the conversion region,
the resonant forward conversion probability for axions into
photons can then be approximated as
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Pa→γ ≃
�
gω
2kγ

�
2
����
Z

η

−η
dη0Bðη0Þe−i

R
η0
−η

dη00k0γðz0Þη00
����2: ðA6Þ

If we assume that the magnetic field varies only slowly
around the conversion region, the integrals can be evaluated
analytically and one obtains (in the limit η → ∞)

Pa→γ ¼
π

2jk0γj
�
gBω
ka

�
2

≃
πðgBÞ2
2jω0

pjva
; ðA7Þ

where all quantities are evaluated at the conversion point.
Equation (A7) is equivalent to the expressions obtained in
[51], and differs from Ref. [48] by an additional factor 1=va
(which enhances to overall emission). Note that throughout
we neglect corrections of the order of the Lorentz factor and
always approximate γ ≃ 1 (which is accurate to within
≲20% in our scenarios).
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