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Quantum dynamics of an atomic double-well system interacting with a trapped ion

J. Joger,1 A. Negretti,2 and R. Gerritsma1,*

1Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
2Zentrum für Optische Quantentechnologien and The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149,

D-22761 Hamburg, Germany
(Received 4 April 2014; published 25 June 2014)

We analyze theoretically the dynamics of an atomic double-well system with a single ion trapped in its center.
We find that the atomic tunneling rate between the wells depends both on the spin of the ion via the short-range
spin-dependent atom-ion scattering length and on its motional state with tunneling rates reaching hundreds of
hertz. A protocol is presented that could transport an atom from one well to the other, depending on the motional
(Fock) state of the ion within a few milliseconds. This phonon-atom coupling is of interest for creating atom-ion
entangled states and may form a building block in constructing a hybrid atom-ion quantum simulator. We also
analyze the effect of imperfect ground-state cooling of the ion and the role of micromotion when the ion is trapped
in a Paul trap. Due to the strong nonlinearities in the atom-ion interaction, the micromotion can cause couplings
to high-energy atom-ion scattering states, preventing accurate state preparation and complicating the double-well
dynamics. We conclude that the effects of micromotion can be reduced by choosing ion-atom combinations with
a large mass ratio and by choosing large interwell distances. The proposed double-well system may be realized in
an experiment by combining either optical traps or magnetic microtraps for atoms with ion trapping technology.

DOI: 10.1103/PhysRevA.89.063621 PACS number(s): 03.75.Gg, 03.75.Lm, 37.10.Ty, 34.50.Cx

I. INTRODUCTION

Recent experiments involving a combination of ultracold
quantum gases and trapped ions have sparked significant
interest in studying their properties in the quantum regime
[1–5]. These experiments explore sympathetic cooling of
ions by means of clouds of cold atoms [6] and study cold
chemistry [7]. Trapped single ions may be used to perform in
situ measurements of cold atomic gases in lattice potentials [8]
or to study the physics of impurities in one-dimensional Bose
gases [9]. The excellent controllability of trapped ions together
with the near-perfect state preparation and readout may also
allow experiments in which ions control the dynamics of
ultracold atoms. For instance, it has been proposed that an
entangling quantum gate operation could be performed on
a single trapped atom and ion by means of a controlled
collision [10]. Here the spin dependence of the scattering cross
section can be used to obtain a state-dependent collisional
phase shift, leading to the desired quantum logic [11,12].
In a recent paper we showed that a similar controllability
should arise when a single trapped ion is placed in between a
double-well atomic Josephson junction. Here the spin of the
ion would control the tunneling rate of atoms between the wells
via the state-dependent short-range interactions of the atoms
and ion [13]. Since the ion could in this way control
many-body dynamics, mesoscopic entanglement between the
atomic matter wave and the spin of the ion may be created.
The interplay between the spin-dependent tunneling and the
interatomic interactions could also result in superpositions of
quantum self-trapping [14] and Josephson tunneling. Since
trapped ions allow for superb experimental control, they may
be better suited to investigate Josephson physics than using
single atomic impurities [15,16].

*rene.gerritsma@uni-mainz.de;
http://www.hyqs.uni-mainz.de.

Including a single trapped ion expands on the rich dynamics
of the Josephson junction as described in numerous experimen-
tal and theoretical works [14,17–25]. Furthermore, the system
may be seen as a unit cell for a larger-scale hybrid atom-
ion quantum simulator [26]. Constructing such a device by
concatenating ion-controlled double wells could be a natural
way to combine quantum simulators in which atoms can
tunnel between sites in an optical lattice [27] with simulators
employing the pseudospin and collective motional states of
ion crystals [28]. In such a system, atomic Bloch waves would
interact with phononic excitations in the ion crystal, leading
to solid-state phenomena such as Peierls instabilities [26,29]
and phonon-mediated interactions. In particular, such a hybrid
system may enable the investigation of superconductivity in
a more natural way, where fermionic atoms would play the
role of electrons in a solid-state system, than atoms trapped
in optical lattices, where the backaction of the atoms on the
lattice is more difficult to reproduce.

In Ref. [13] we solved the atomic dynamics in the ion-
controlled double-well system by assuming that the ion is
pinned to the center of its trap. In this work we investigate
how the dynamics of the ion changes the picture obtained
in Ref. [13]. To this end, we consider a setup in which an
atom is trapped in a double-well potential with a single ion
trapped in its center as shown in Fig. 1. We will numerically
solve the combined atom-ion dynamics in one dimension in
terms of quantum-defect theory (QDT) [30,31]. This enables
us to investigate the possibility of using nonclassical states
of the ion motion to control the tunneling and the effect
of imperfect ground-state cooling on the dynamics. We also
address the role of micromotion—the fast oscillating motion of
ions caused by a time-dependent Paul trap—on the tunneling
dynamics. This effect has been shown to significantly change
the dynamics of the proposed atom-ion quantum gate [10],
as described in Ref. [32], leading to slower gates or requiring
additional control pulses. Micromotion has also been shown to
limit attainable temperatures for ions that are sympathetically
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FIG. 1. (Color online) We consider a setup in which an atom is
trapped in a double-well potential with a single ion trapped in its
center. The quantized motional states of the ion and its internal spin
state influence the atomic tunneling rate between the wells. These
degrees of freedom can in turn be manipulated with laser light or
radio-frequency fields.

cooled by atoms [33,34]. Here we show that the micromotion
causes difficulties in state preparation and complicates the
atomic tunneling for large tunneling rates, i.e., small interwell
separations. Additionally, we find that using an atom-ion
combination with a large mass ratio, with the ion being the
heavier particle, allows one to overcome such difficulties. This
conclusion is in line with a recent classical analysis studying
attainable temperatures in atom-ion sympathetic cooling [33].

The paper is structured as follows. In Sec. II we discuss
the solutions to the atomic double well in the presence of a
static ion. In Sec. III we calculate how the situation changes
when the ion dynamics are taken into account. We show that
the motional state of the ion is coupled to the atomic tunneling
rate such that the tunneling can be controlled by engineering
(nonclassical) ionic states of motion. We also analyze the effect
of imperfect ion cooling. In Sec. IV we analyze the problem
in the presence of a time-dependent trapping potential for
the ion and the effect of micromotion. We discuss possible
experimental implementations in Sec. V and summarize in
Sec. VI. In Appendix A we solve the double-well problem in
three dimensions and demonstrate that the one-dimensional
calculation results in the same physical picture. Finally, in
Appendix B we provide some details on the derivation of the
micromotion Hamiltonian.

II. A STATIC ION IN ONE DIMENSION

The interaction between an atom and an ion is caused by
an induced atomic dipole due to the electric field of the ion.
At large distances it is given by

lim
r→∞ Via(r) = −C4

r4
, (1)

with C4 = e2αp/2. Here e is the charge of the ion and αp is
the static polarizability of the atom. It is useful to introduce
the length scale R∗ =

√
2μC4/�2 and the energy scale E∗ =

�
2/2μ(R∗)2 that characterize the atom-ion potential, with μ

the reduced mass. For the atom-ion combinations studied in
this work we have that R∗ = 306 nm and E∗/h = 935 Hz
for the atom-ion pair 87Rb/171Yb+ [35] and R∗ = 75 nm and
E∗/h = 133 kHz for the atom-ion pair 7Li/171Yb+ [36].

For r → 0, Eq. (1) does not describe the potential anymore
as it becomes strongly repulsive. The exact form of the

potential in this regime is generally not known well enough
to solve the scattering dynamics, but as it has been shown in
Ref. [30], QDT can be employed to parametrize the potential
at short range (see Ref. [31] for more details).

Although the potential (1) is clearly spherically symmetric,
we will for now limit ourselves to the one-dimensional (1D)
case and we will denote the position of the ion (atom) as
zi (za). We note that in one dimension it turns out that the
atom-ion interaction has the same mathematical expression as
in three dimensions, that is, Via(zi,za) = −C4/(zi − za)4 [30].
We discuss the 3D scenario in Appendix A and compare it to
the 1D results.

As an illustration of the atomic dynamics in a double-well
system in the presence of an ion, we first solve the system
assuming that the ion is pinned to the center of its trap at
zi = 0. Hence, the Hamiltonian of the atom is

Ha = p2
a

2ma

+ VDW(za) − C4

z4
a

, (2)

with pa the momentum of the atom, ma the atomic mass, and
VDW(za) the double-well potential. A convenient choice for
VDW(za) is given by

VDW(za) = b

d4

(
z2
a − d2

)2
. (3)

This potential has minima at za = ±d with local trapping
frequencies ωa =

√
8b/mad2 and interwell barrier b. For the

sake of simplicity and without loss of generality, we fix the
local trapping frequency ωa for each interwell distance 2d by
setting b = ω2

amad
2/8.

Our goal is to find a set of basis functions to expand the
solution of Ha onto, as this procedure is more efficient than
solving the Schrödinger equation for each d separately. To this
end, we write the Hamiltonian as Ha = H (0)

a + H (1)
a with

H (0)
a = − �

2

2ma

∂2

∂z2
a

+ 1

2
maω

2
az

2
a − C4

z4
a

, (4)

H (1)
a = 1

8
maω

2
a

(
d2 − 2z2

a + z4
a

d2

)
− 1

2
maω

2
az

2
a. (5)

Note that the term maω
2
az

2
a/2 has been added to (4) and

subtracted again in Eq. (5). This allows for finding a set
of discrete basis states instead of the continuum that arises
without this term for E > 0. This is convenient as the final
solutions of Ha will form a discrete set as well [13].

To solve the Schrödinger equation for H (0)
a by means of

QDT, we note that as za → 0 the energy is dominated by the
term −C4/z

4
a . Therefore, we can neglect the other energies and

solve the Schrödinger equation analytically. We obtain even
and odd solutions given by [30]

ψ̃e(za) ∝ |za| sin

(√
ma

μ

R∗

|za| + φe

)
, (6)

ψ̃o(za) ∝ za sin

(√
ma

μ

R∗

|za| + φo

)
, (7)

where φe and φo are the even and odd short-range phases,
respectively. Since the short-range phases are not generally
known experimentally and cannot be reliably obtained from
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FIG. 2. (Color online) The top panel shows the eigenenergy
spectrum as a function of the interwell separation d for 87Rb and
171Yb+ assuming φe = −π/4, φo = π/4 (black solid lines) and
φe = −π/3, φo = π/3 (blue dashed lines). For large well separations,
the spectrum resembles that of two independent harmonic oscillators
of the same trap frequency ωa = 2π×1.8 kHz. As the wells approach,
each level splits in two owing to the energy difference of even and
odd wave functions. In the right corner a molecular state can also be
seen. The occurring tunneling rate is given by the energy difference
and is plotted in the bottom panel.

ab initio calculations, we choose a number of realistic values
here, corresponding to scattering lengths in the range −R∗ to
R∗. We also note that in a quasi-1D setup the values of the
phases can be tuned by changing the confinement in the two
remaining dimensions [30].

In order to solve the Schrödinger equation for the Hamilto-
nian (4), we use Eqs. (6) and (7) as a boundary condition
at some small value zmin such that C4/z

4
min � Emax, with

Emax being the largest energy considered in the problem.
A renormalized Numerov method [37] gives the solutions
�

(0)
k (za) with energies E (0)

k and quantum number k. To solve
the dynamics in the double well we now diagonalize the
Hamiltonian with matrix elements

Hkk′ =
(
E

(0)
k + maω

2
ad

2

8

)
δkk′ + maω

2
a

4

(M(4)
kk′

2d2
− 3M(2)

kk′

)
,

M(j )
kk′ =

∫
�

(0)
k (za)zj

a�
(0)
k (za)dza,

with j = 2,4 for a range of values d.
Now, as in our previous study [13], we consider 87Rb

and 171Yb+ as an example system and we assume that
no spin-changing collisions can occur such that our single-
channel description is accurate. Setting ωa = 2π× 1.8 kHz,
we obtain the spectrum shown in Fig. 2. For large interwell
separations d the eigenenergies resemble the equidistant level
structure of the harmonic oscillator as the wells are uncoupled.
While decreasing the interwell distance, the energy levels

split in two as there is an energy difference between states
of even and odd symmetry. For a single atom and small
energy splitting, this energy difference corresponds to the
interwell tunneling rate in a two-mode picture [38]. Since the
barrier height b decreases with distance, the higher excited
atomic states exhibit level splitting at larger separation d

than low-energy states. The eigenenergies that asymptotically
connect to the harmonic-oscillator ground states correspond
to superpositions of approximately localized wave packets:
�e,g(za) = [�L(za) ± �R(za)]/

√
2 in the left L and right R

well. These states are labeled with the subscripts g and e

and have energies Ee,g with Ee � Eg . At d = 900 nm we
find that the ground-state degeneracy is lifted corresponding
to a tunneling rate of J/h = (Ee − Eg)/h = 56 Hz when
φe = −π/4, φo = π/4 (black lines) and J/h = 202 Hz when
φe = −π/3, φo = π/3 (dashed blue lines). Since the short-
range phases depend on the relative spin orientations of the
atom and ion, the above calculation demonstrates an ion spin
dependence similar to that in Ref. [13]. Finally, we note that the
spectrum was obtained by taking 106 basis states into account.

In Appendix A we perform a 3D analysis of the double
well for a static ion that we compare to the 1D model of
the present section. We show that the double-well problem in
one dimension has a strict analogy to the 3D scenario and
therefore it provides a satisfactory physical picture of the
system. Given this, we extend our analysis to the case of a
moving ion. A 3D study of such a system would indeed be
rather difficult to treat numerically and nonetheless it would
not provide further insight into the problem.

III. A MOVING ION

Now we will see how the picture is altered when we
allow the ion to move. As outlined above, we will restrict
our attention to the 1D scenario. In this case the Hamiltonian
is given by

H = p2
i

2mi

+ p2
a

2ma

+ 1

2
miω

2
i z

2
i + VDW(za) − C4

(zi − za)4
.

(8)
Here ωi denotes the ion trap frequency, mi the mass of the ion,
and pi its momentum. To find the eigenstates and energies of
this Hamiltonian, we write the Hamiltonian in terms of relative
and center-of-mass coordinates r = zi − za and R = (mizi +
maza)/M with M = mi + ma the total mass, as H (d) = H

(0)
R +

H (0)
r + H (1):

H
(0)
R = − �

2

2M

∂2

∂R2
+ 1

2
Mω2

RR2, (9)

H (0)
r = − �

2

2μ

∂2

∂r2
+ 1

2
μω2

r r
2 − C4

r4
, (10)

H (1) = μ
(
ω2

i − ω2
a

)
Rr + VDW(R,r)

− μω2
a

2

(
ma

μ
R2 + μ

ma

r2 − 2Rr

)
. (11)

Equation (9) denotes the Hamiltonian of a harmonic os-
cillator with trap frequency ω2

R = (miω
2
i + maω

2
a)/M . It

has eigenstates fn(R) and energies E(0)
n = �ωR(n + 1/2).
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FIG. 3. (Color online) The top panel shows the spectrum of a
double-well system where the ion is allowed to move for 87Rb and
171Yb+ with ωa = 2π × 1.8 kHz, ωi = 2π × 9.9 kHz, φe = −π/4,
and φo = π/4. On the right we give some of the asymptotic quantum
numbers |ni,na〉 for large well separation. The red dots correspond
to the wave functions plotted in Fig. 5. In the bottom panel the level
splitting is plotted for the case where the ion is in the ground state
(thick black solid line) and for the case where it is in the first excited
state (dashed lines). When avoided crossings occur, the energy-level
separation becomes dependent on whether the crossing is traversed
diabatically or adiabatically. The smallest J is plotted using a thicker
dashed blue line. Close to the avoided crossings, the two-mode
description is no longer accurate and J loses its interpretation as
the tunneling rate.

Equation (10) is similar to Eq. (4) except for some prefactors,
in particular ω2

r = (miω
2
a + maω

2
i )/M . As explained in the

previous section, we have determined the eigenfunctions
�

(0)
k (r) and eigenenergies E (0)

k of such a Hamiltonian by means
of QDT. To find the eigenstates and eigenenergies to the full
Hamiltonian we expand onto the basis |fn,�

(0)
k 〉. We denote

the solutions for each interwell separation d as ψ
(d)
l (R,r) =∑

nk c
(d)
lnkfn(R)�(0)

k (r) with energies E
(d)
l and coefficients c(d)

lnk ,
where an overall quantum number l labels each solution.

A. Examples

As an example of the resulting spectrum we show the
situation for 87Rb and 171Yb+ assuming φe = −π/4, φo =
π/4, ωa = 2π × 1.8 kHz, and ωi = 2π × 9.9 kHz in Fig. 3.
This spectrum was obtained by expanding the solutions onto
6417 basis states (93 states in the relative coordinate and
69 states in the center-of-mass coordinate). In comparison to
Fig. 2 we see that more energy levels appear, in the form of
both molecular states and trap states. When the wells are far
apart, the states reduce to the harmonic-oscillator states for the
atom and ion. We can identify the asymptotic atom-ion Fock
states |ni,na〉 in Fig. 3 for large d. For intermediate d, the
states are perturbed by the atom-ion interaction.

Focusing on the states that connect to the harmonic-
oscillator ground states |00〉, we see the same behavior as
for the case where the ion was static: The initial degeneracy
for large interwell separations is lifted as the wells come closer
and a tunneling rate can be identified. Molecular states cross
the ground states at a few points, but the avoided crossings
are very small. Therefore, the static ion approximation was
justified when considering the ground states.

The state connecting to |10〉 shows a similar behavior,
but more and larger avoided crossings appear. Close to these
crossings, a simple two-mode picture breaks down and the
tunneling rate J loses its meaning. In an experiment, the
interwell separation d would typically be reduced dynamically
to initiate tunneling. The resulting tunneling rate then depends
on whether the crossing is traversed diabatically or not. For
most values of d, the energy splitting is different than for the
case when the ion is in the ground state. For d = 775 nm, for
instance, we get a tunneling rate of J/h = 101 Hz when the
ion is in the ground state, but only J/h = 37 Hz when the ion
is in the first Fock state. Therefore, the atomic tunneling rate
depends on the motional state of the ion.

As a second example, we also plot the case for 7Li
and 171Yb+ assuming φe = −π/4, φo = π/4, ωa = 2π ×
1.8 kHz, and ωi = 2π × 9.9 kHz (see Fig. 4). We see that
the tunneling occurs for larger interwell separations for these
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FIG. 4. (Color online) The top panel shows the spectrum of a
double-well system where the ion is allowed to move for 7Li and
171Yb+ with ωa = 2π × 1.8 kHz, ωi = 2π × 9.9 kHz, φe = −π/4,
and φo = π/4, i.e., the same parameters as in Fig. 3. Note that
tunneling occurs for larger distances than for 87Rb as the 7Li wave
packet is larger for the same trapping frequency. On the right we give
the asymptotic quantum numbers |ni,na〉 for large well separation.
The bottom panel shows the energy-level separation J for the ion
in the ground state (black solid line) and the first excited state (blue
dashed line). The avoided crossings are also indicated by the thin gray
lines. Clearly, in this case the tunneling rate is very similar for the
first excited and ground states when no avoided crossings are near.
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species as the atomic wave packet is larger because of its lower
mass. Furthermore, the tunneling rate shows less dependence
on the motional state of the ion as long as there are no avoided
crossings nearby. This is a consequence of the large mass
ratio between the atom and ion that separates atomic and ionic
dynamics in a similar fashion as in the Born-Oppenheimer
approximation. We note that in this case 2700 states were
taken into account.

In Fig. 5 we plot a few probability distributions for the
eigenstates corresponding to the red dots in Fig. 3. We see that
for za ∼ zi , the atom-ion interaction dominates, but for larger
atom-ion distances the probability distributions resemble those
of the harmonic oscillator in each well and the presence of the
ion only slightly perturbs the double-well system.

B. Controlling tunneling with nonclassical states of ion motion

An interesting application using the dependence of the
tunneling rate on the motional state of the ion is the generation
of entanglement between the atom and the ion. In Ref. [13]
the state-dependent tunneling was proposed via the state
dependence of the short-range phase. Alternatively, we can
create nonclassical states of ion motion, such as Fock states, to
engineer motional state-dependent tunneling. The Fock state
can in turn be entangled with the spin of the ion. Such quantum
states are commonly engineered and analyzed in ion trap
experiments [39,40]. We note that such atom-ion entangle-
ment production has various and interesting applications, for
instance, in quantum metrology or in the investigation of the
quantum-to-classical transition. Furthermore, by monitoring
the entanglement dynamics one could measure the tunneling
rate J and therefore infer scattering properties of the hybrid
atom-ion system such as the corresponding s-wave scattering
length.

From the spectrum displayed in Fig. 3, we see that a good
strategy to engineer atom-ion entanglement consists of the
following steps.

(i) We first prepare the ion in an equal superposition of the
ground and first excited state of its trap, while its internal state
is prepared in a specific hyperfine level.

(ii) Subsequently, we prepare the atom, for instance, in the
ground state of the left well and far away from the ion such
that the tunneling is negligible.

(iii) Then we reduce the interwell separation d dynamically
until tunneling occurs.

(iv) Afterward, we wait until the atom has tunneled to one
side depending on the ion Fock state, that is, to the right well
if the ion Fock state is |0〉 and back to the left well if the ion
Fock state is |1〉 (see Fig. 3, the first and third red dots from
the bottom).

For the ion in the ground state ni = 0, we see that the
sequence is very similar to the one presented in Ref. [13]
(see Fig. 3). For higher Fock states, however, we see an in-
creasing amount of avoided crossings. To pass these crossings
diabatically during our sequence, an accurate control of the
interwell distance d(t) is required. We see that for ni = 1 the
number of crossings is still quite limited and we take this as
an example. We have performed numerical simulations of the
dynamics and we have optimized the process, by means of the
chopped random-basis algorithm [41], in order to maximize

FIG. 5. (Color online) Wave functions |ψ (d)
l (zi,za)| of the ion-

atom states for an interwell separation of d = 2.5R∗=765 nm for
87Rb and 171Yb+ with φe = −π/4, φo = π/4, ωa = 2π × 1.8 kHz,
and ωi = 2π × 9.9 kHz, corresponding to the red dots in Fig. 3. We
used units of R∗ on the axes as these are the natural units for the
atom-ion system. The states asymptotically correspond to the Fock
states |ni,na〉 = |00〉, |02〉, |10〉, and |11〉 for large well separation
(with the atom occupying both wells). The top wave function is the
double-well ground state |�g〉. The corresponding quantum numbers
can still be recognized by counting the nodes in the direction of the
ionic and atomic coordinates. In the vicinity of the line za = zi the
atom-ion interaction potential dominates and the wave functions take
forms similar to Eqs. (6) and (7). The fast oscillations around this
region are not completely resolved in the density plot.

the entanglement. To this aim, we have defined the following
overlaps:

O0(t) = ∣
∣
〈
ψ

(0)
R,0

∣∣ψL,0(t)
〉∣
∣2,

(12)
O1(t) = ∣

∣
〈
ψ

(0)
L,1

∣∣ψL,1(t)
〉∣
∣2.
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FIG. 6. (Color online) Optimization of the entanglement gener-
ation protocol as discussed in the main text. The top panel shows
the overlaps O0,1(t) for the optimized dynamics. The bottom panel
shows the optimal interwell separation. The optimization has been
performed for the atom-ion pair 87Rb/171Yb+ with φe = −π/4 and
φo = π/4.

Here |ψ (0)
R,0〉 is the wave function of the atom in the ground

state of the right well and the ion in the ground state of its
harmonic trap, whereas |ψ (0)

L,1〉 is the wave function of the
atom in the ground state of the left well and the ion in the first
excited state of its harmonic trap. The time-evolved states
are obtained from |ψL,0(t)〉 = U (t)|ψ (0)

L,0〉 and |ψL,1(t)〉 =
U (t)|ψ (0)

L,1〉, where U (t) is the time-evolution operator gen-
erated by the Hamiltonian (8). In the optimization procedure
we minimized the overlap infidelity 2 − O0(T ) − O1(T ) at
the final time T , that is, the time needed to perform the
sequence (iii) to (iv) outlined above, by optimally controlling
the interwell separation d(t). In Fig. 6 we show the overlaps
O0,1(t) for the optimal interwell separation d(t). We obtained
O0(T ) � 0.96 and O1(T ) � 0.92 with T � 2.38 ms for the
atom-ion pair 87Rb/171Yb+. This result shows that we can
produce atom-ion entanglement in a very short time by means
of the ionic motional state. We note, however, that the overlaps
are not perfect. This might be achieved by controlling, for
instance, the atom-ion interaction via Feshbach resonances or
by controlling additionally the height of the barrier. Our goal
here, however, is to show that such entanglement generation
is in principle possible. A more detailed analysis by means
of optimal control theory would require perfect knowledge of
the trapping potentials and not just the analytically convenient
form given by Eq. (3).

C. Imperfect ground-state cooling

Up until now, we have assumed that both the atom and the
ion are prepared in a pure state by ground-state cooling (for
instance, via resolved sideband cooling) followed by coherent-
state manipulation. To see what the effect of imperfect ground-
state cooling of the ion would be, we have plotted in Fig. 7 the
spectra for the first five states that asymptotically correspond to
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FIG. 7. Enlarged view of the five first Fock states of the ion in
the spectrum of a double well with moving ion for 87Rb and 171Yb+

with φe = −π/4, φo = π/4, ωa = 2π × 1.8 kHz, and ωi = 2π ×
9.9 kHz.

the first five Fock states of the ion. When the ion is in a thermal
state, each of these Fock states contributes to the tunneling
rate in a incoherent manner. We see that for ni = 0, . . . ,3 the
energy levels display degeneracy in |�e,g〉ni

for large d, in
analogy to the situation for the ground states discussed above.
As the interwell separation is decreased these degeneracies are
lifted and tunneling occurs. Because of the coupling between
the atomic tunneling and the motion of the ion, each ionic state
corresponds to a different tunneling rate. Unless only few Fock
states are occupied in the thermal state or the tunneling rates
are very similar for all Fock states, the coherence in the atomic
state will be destroyed after a while.

For the states of higher energy ni � 3 we see that many
avoided crossings start appearing that cannot be ignored
anymore for small d. In this situation, the simple two-mode
picture cannot be employed anymore.

As an example, we have focused our attention on the
tunneling only, in particular when the ion is (ideally) prepared
in the ground state. To this end, we performed first an
optimization of this dynamics. The corresponding result is
shown in Fig. 8. In this case we were able to achieve an overlap
fidelity of about O0(T ) � 0.99 in T � 2.38 ms. Given this
result, we have investigated the impact of finite temperature
on the tunneling dynamics. To begin with, we have defined the
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FIG. 8. (Color online) Optimization of the tunneling dynamics
when the ion is prepared in the ground state. The top panel shows
the overlap O0(t) for the optimized dynamics. The bottom panel
shows the optimal interwell separation. The optimization has been
performed for the atom-ion pair 87Rb/171Yb+ with φe = −π/4 and
φo = π/4. The final overlap fidelity is O0(T ) � 0.99.

initial density matrix of the ion as

ρi(T ) =
∑
ni

pni
(T )|ni〉〈ni |, (13)

where |ni〉 are the harmonic-oscillator eigenstates of the ionic
harmonic trap and pni

(T ) are the occupation probabilities
that are calculated by assuming a thermal distribution corre-
sponding to temperature T in the canonical ensemble. The
overlap fidelity at time t = T for a given temperature is
given by

F (T ) =
∑
ni

pni
(T )

∣
∣
〈
ψR,ni

∣∣ψL,ni
(t)

〉∣
∣2. (14)

Here |ψL,ni
(t)〉 is the time-evolved state assuming that the

initial state is the ground state of the left well for the atom and
the nth state of the harmonic trap for the ion.

It is interesting to see values of the fidelity for temperatures
up to kBT ≈ �ωi (kB is the Boltzmann constant). Let us define
γ = exp(−�ωi/kBT ) and neglect terms of o(γ 5) in Eq. (14),
since for higher energies the motional states of the atom and the
ion are no longer separable. Such temperature dependence of
the fidelity is displayed in Fig. 9, for which we used the optimal
interwell separation shown in the bottom panel of Fig. 8. As
shown, the fidelity drops rather quickly since the overlaps
at time T for the ionic states ni = 1,2,3,4 are significantly
reduced. This shows that the tunneling rates are different for
those Fock states and therefore the coherence in the atomic
state is destroyed rapidly.

A strategy to reduce the impact of finite temperature could
be to perform an optimization in which the optimal interwell
separation d(t) is engineered in such a way that F (T ) is
maximized within a given temperature range.
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FIG. 9. (Color online) Fidelity F (T ) of the tunneling dynamics
for the atom-ion pair 87Rb/171Yb+, whose overlap fidelity when the
ion is prepared in the ground state of the trap and the corresponding
optimal interwell separation are displayed in Fig. 8.

IV. MICROMOTION

So far, we have assumed that the ion is trapped in a time-
independent harmonic trap. In most atom-ion experiments,
however, the ions are trapped in a Paul trap that is based on an
oscillating electric field. This causes a rapid oscillating motion
of the ion called micromotion.

The Hamiltonian describing this situation in one dimension
is given by

Hion(t) = p2
i

2mi

+ 1

8
mi�

2z2
i [a + 2q cos(�t)]. (15)

Here the parameters a and q depend on the trapping potential,
the ion mass, and its charge. With properly chosen a and q, an
effective time-independent trapping potential can be derived
via the so-called secular approximation. In this approximation
the ion motion reduces to a combination of the slow (secular)
motion, that is, of a particle in a time-independent trap and a
rapid micromotion of small amplitude. In most experiments
the following inequalities hold: a � q < 0.91, where q lies
typically in the range 0.1–0.4.

In order to evaluate the impact of the time-dependent ion
trap on the double-well system, we replace the ion trap term
(i.e., the kinetic and trapping potential energies) in Eq. (8) by
the time-dependent version of Eq. (15). Nguyen et al. [32]
have analyzed a situation in which the atom was trapped in
a harmonic trap. Here we use the same approach, but for a
double-well potential. We perform the transformation of Cook
et al. [32,42] to obtain a Hamiltonian that is comprised of a
time-independent and a time-dependent term that we label with
mm (micromotion): Htot = H (d) + Hmm(t). Note that H (d) is
the Hamiltonian of the double well without micromotion,
which is defined in Eqs. (9)–(11). More details on this
procedure can be found in Appendix B. The micromotion
Hamiltonian in the center-of-mass and relative coordinates is
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given by

Hmm(t) = −mig
2ω2

i

(
R2 + μ2

m2
i

r2 + 2μ

mi

rR

)
cos 2�t

− gωi

(
{R,p} + μ

mi

{r,p} + mi

M
{R,P }

+ μ

M
{r,P }

)
sin �t. (16)

Here g = [2(1 + 2a/q2)]−1/2 and {·,·} denotes the anticommu-
tator. The relative and center-of-mass momenta are denoted by
p and P , respectively.

Following again Ref. [32], we use Floquet theory to obtain
the energies and eigenstates in terms of the unperturbed
eigenstates of the Hamiltonian H (d). It turns out that we have
to diagonalize the Hamiltonian

HF = H (d) + Hmm(t) − i�
∂

∂t
. (17)

We use the unperturbed Floquet eigenstates |ujl〉 =
eij�t |ψ (d)

l (R,r)〉 of HF − Hmm(t) as our basis with Floquet
energies εjl = El + j��. Here the integer j denotes the class
of the Floquet state, whereas the quantum number l denotes
the solution to the double-well problem without micromotion.
Then we introduce the generalized matrix elements

〈〈u∗
j ′l′ |Hmm(t)|ujl〉〉 = 1

T

∫ T

0
dt〈u∗

j ′l′ |Hmm(t)|ujl〉, (18)

where now T indicates the period of the micromotion. To gain
further insight into the micromotion effect we write the matrix
elements as follows [32] (see Appendix B):

〈u∗
j ′l′ |Hmm(t)|ujl〉 = 〈

ψ
(d)
l′

∣∣[V1 cos(2�t)

+V2 sin(�t)]ei(j−j ′)�t
∣∣ψ (d)

l

〉
,

V1 = −mig
2ω2

i

(
R2 + m2

a

M2
r2 + 2ma

M
Rr

)
,

(19)

V2 = − igωimi

�
(El′ − El)

(
R2 + m2

a

M2
r2 + 2ma

M
Rr

)
. (20)

The larger these matrix elements are, the less we expect
the secular approximation to hold. Additionally, the coupling
between two states may become resonant for states belonging
to different Floquet classes when εj ′l′ = εjl . We note that
the selection rules for the coupling between different Floquet
classes are given by |j − j ′| = 1 for V2 and |j − j ′| = 2 for V1

[see also Eq. (18)]. When the micromotion Hamiltonian cannot
be considered a perturbation, the problem has to be solved
by taking a large number of Floquet classes into account.
However, for large interwell separation, we do not expect
the micromotion to play a significant role as the atom is
trapped too far away from the ion to sense the small-amplitude
micromotion of the ion. As d is decreased, we expect the
micromotion term to become increasingly important.

To quantify this, we study how strongly the micromotion
couples the states of interest |�(d)

e,g〉 to states with a different

energy as d is decreased. We limit the discussion to |�(d)
g 〉 as

it can be shown that the effects are very similar for |�(d)
e 〉.

The energy difference prefactor (El′ − El) causes V2 to be the
main perturbing term [32] and we focus on it from now on.
Let us introduce the following notation for (the absolute value
of) these matrix elements:

Vrr = gmiωi(Eg − El)

�

m2
a

M2

∣
∣
〈
�(d)

g

∣∣r2
∣∣ψ (d)

l

〉∣
∣,

VrR = gmiωi(Eg − El)

�

ma

M

∣
∣
〈
�(d)

g

∣∣rR∣∣ψ (d)
l

〉∣
∣,

VRR = gmiωi(Eg − El)

�

∣
∣
〈
�(d)

g

∣∣R2
∣∣ψ (d)

l

〉∣
∣.

In Figs. 10(a)–10(c) the resulting matrix elements for the
case discussed in Fig. 3 are shown (i.e., for the atom-ion
pair 87Rb/171Yb+). Here the matrix elements are plotted for
d = 1080 and 820 nm and the detuning of the coupling state
Eg − El . Clearly, the couplings are largest to states that are
nearby in energy. For VRR , the couplings quickly fall to zero
as the coupling state is further separated in energy. The terms
involving r and r2, however, have significant couplings with
states that are far separated in energy.

This behavior is a direct consequence of the nonlinear
interaction between the atom and the ion. In the center-of-
mass coordinate the basis functions are Fock states and the
matrix elements involving only R have well-defined selection
rules: 〈fn′ |R|fn〉 �= 0 for |n − n′| = 1 and 〈fn|R2|fn′ 〉 �= 0 for
|n − n′| = {0,2}. Since the atomic and ionic ground states are
only slightly perturbed by the atom-ion interaction, as is clear
from Sec. III, few Fock states are involved and due to the
selection rules only coupling to nearby states occur. Because
there are also selection rules on j , the coupling states need
to be of a different Floquet class. These states are unlikely to
become resonant since � � ωR . This situation is comparable
to the effect that micromotion has on a single trapped ion.
For the atom-ion scattering states in the relative coordinate,
however, there are no selection rules owing to the nonlinear
atom-ion interaction. For instance, 〈�k|r2|�k′ 〉 �= 0 in general
for any k and k′ that have the same symmetry. Thus, the states
of interest couple to highly excited states belonging to different
Floquet classes.

For the case studied here, � = 2π× 70.5 kHz, which
corresponds to q = 0.4. For interwell distances of about
820 nm, the couplings to states that are ∼70 kHz separated in
energy—and can therefore become resonant—reach up to 10%
of the atomic trapping frequency. Such large couplings cause
significant deviations from the secular solution if resonances
occur. This situation is indeed quite similar to the case studied
in Ref. [32]. Hence, we expect a large number of energy
levels crossing the ground states with increasing strength
as d is reduced. This will render the state preparation more
difficult when considering schemes where d is slowly reduced
to initiate atomic tunneling. Only superb experimental control
over d(t) will allow the diabatic transfer over avoided crossings
such that atomic excitations within the wells are prevented.

It is interesting to note that the prefactors to the terms
containing r and r2 in Eqs. (19) and (20), which will cause the
largest effects, are ma/M = μ/mi and m2

a/M
2, respectively.

This suggests that adverse micromotion effects may be reduced
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FIG. 10. (Color online) (a)–(c) Matrix elements Vrr , VrR , and VRR , respectively, in units of �ωa for 87Rb and 171Yb+ with φe = −π/4,
φo = π/4, ωa = 2π × 1.8 kHz, and ωi = 2π × 9.9 kHz for d = 1080 and 820 nm. The energy separation of the coupling state is plotted on
the horizontal axis. Since stable ion trapping requires � � 2π × 30 kHz (for a = 0), only states with detunings larger than this can cause
resonances. It can be seen that the elements Vrr and VrR couple states that are separated in energy by more than 30 kHz, whereas VRR remains
localized in energy such that it cannot cause resonant couplings. For interwell distances of �820 nm, the tunneling rate reaches J/h = 58 Hz,
but the matrix elements of Vrr and VrR already reach 10% of the atomic trapping frequency for energy differences around 85 kHz. Resonances
with this strength would significantly affect the energy spectrum. This would render state preparation significantly more difficult and cause
the two-mode approximation for the double-well to break down. (d)–(f) Matrix elements for 7Li and 171Yb+ for d = 2400 and 1050 nm and
the same trap frequencies. At d = 1050 nm we find a tunneling rate of J/h = 150 Hz, whereas the micromotion-induced couplings are at the
percent level.

by choosing mi � ma , This observation is in line with the clas-
sical study of Cetina et al. [33] concerning the limits of atom-
ion sympathetic cooling. As a comparison for the case of the
double well, we plot also the matrix elements for the case of 7Li
and 171Yb+ [see Figs. 10(d)–10(f)]. We see that the matrix ele-
ments are indeed smaller for this case and we reach a tunneling
rate of J/h = 150 Hz with micromotion-induced couplings on
the percent level of the atomic trap frequency or ∼20 Hz.

Finally, we have numerically solved the full double-well
problem including micromotion. The required total Hilbert
space dimensions scale as Ncom × Nrel × Nechos, that is, the
number of center-of-mass states to be taken into account times
the number of relative states times the number of Floquet
classes. Clearly, the calculation becomes very hard already at
small d. For instance, calculating the eigenenergies for the case
presented in Fig. 3 taking only the classes j = −2, . . . ,2 into
account would require a Hilbert space of dimension 32 000 ×
32 000. For the case of 7Li and 171Yb+ of Fig. 4 the situation is
better and we diagonalize the Hamiltonian for 500 values of d

taking j = −2, . . . ,2 such that 13 500 states are used to form
the basis. The result is shown in Fig. 11(a). We can see that
although many more energy levels are present in the spectrum,
the coupling to the states |�(d)

e,g〉 is indeed very small, so the
micromotion should not pose a problem for the parameters
considered here.

As a second example we calculate the spectrum around
the ground states for a higher trap drive frequency. To reduce
the numerical complexity we use 7Li and 171Yb+ and set all
energy scales to similar values, i.e., ωa = 2π × 98 kHz and
� = 2π × 967 kHz for q = 0.4 and a = 0 such that ωi ≈

2π × 137 kHz; we obtain the eigenenergy spectrum shown in
Fig. 11(b). For this calculation we took j = −2, . . . ,2, φe =
π/3, and φo = −π/3. Thus, the Hilbert space is comprised
of 8640 basis states. As illustrated in Fig. 11, also for this
case, we see that the avoided crossings remain relatively small
and therefore enable us to apply the secular approximation for
the double-well system at large enough separations d. Since
the avoided crossings remain small, we do not expect that
taking more Floquet classes into account will significantly
alter the results for the values of d plotted. On the other
hand, for smaller d, the ground state presents many avoided
crossings and therefore more Floquet classes are required to
reach convergence.

V. EXPERIMENTAL IMPLEMENTATION

Experiments combining ultracold atoms and ions have
become available in recent years [1–5] studying cold collisions
and chemistry as well as sympathetic cooling of ions by atoms.
These have shown that inelastic collision rates can be low [2]
such that coherent interactions between the two systems
are within reach. The proposed double-well system requires
combining trapped ions with atomic multiwell potentials that
can be derived from either lasers or magnetic fields.

A. Optical potentials

Atomic double-well potentials have been created by using
optical tweezers or standing-wave laser fields [14,17,18]. Such
fields are sufficiently strong to also trap an ion, as it was shown
in a recent proof-of-principle experiment [43]. An all optical
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FIG. 11. (a) Spectrum around the states |�(d)
e,g〉 for 7Li and 171Yb+

with ωa = 2π × 1.8 kHz and � = 2π × 70.5 kHz for q = 0.4 and
a = 0 such that ωi ≈ 2π × 10 kHz. For the calculation we took
j = −2, . . . ,2, φe = −π/4, and φo = π/4. To construct the basis
13 500 states were used. The Hamiltonian was diagonalized for 500
different values of d . It can be seen that many energy crossings
appear, but the avoided crossings remain very small. (b) Spectrum for
7Li and 171Yb+ with ωa = 2π × 98 kHz and � = 2π × 967 kHz for
q = 0.4 and a = 0 such that ωi ≈ 2π × 137 kHz. For the calculation
we took j = −2, . . . ,2, φe = π/3, and φo = −π/3. To construct the
basis 8640 states were used. The Hamiltonian was diagonalized for
600 different values of d . It can be seen that many energy crossings
appear and that the avoided crossings become bigger as d decreases.

or hybrid optical-Paul trap would solve the issues related
to micromotion. In Ref. [44], for instance, a single ion was
trapped in a standing-wave laser field. It is feasible to alter
this setup to allow both a harmonic potential for the ions and
a multiwell potential for the atoms by overlapping trapping
beams of suitable frequencies. Hence, the system studied in
this paper may be realized by using optical trapping fields or by
means of a hybrid approach in which a Paul trap is combined
with an optical one.

B. Microtraps

Atomic double-well systems have been created in atomic
microtraps, or atom chips [45], where atoms are magnetically
trapped by means of integrated current carrying wires
[46–48]. Planar ion traps have also become available in recent
years [49], whose development was mainly driven by the
prospect of developing a scalable quantum computer [50,51]. It
seems feasible to combine the technologies of atom chips and
planar ion traps to implement the proposed setup. Recently, for
instance, magnetic-field gradients were used in planar ion traps
for spin detection or to design spin-spin interactions [52–56].
Those traps combine electrodes on the surface of a chip that
form the ionic trap with current carrying wires to produce
magnetic gradient fields. Gradients ranging from 1 to 20 T/m

at ∼100 μm above the surface can be reached. Slight
modifications to such a setup would lead to magnetic-field
patterns that can trap atoms. For instance, we have calculated
that by using a layered design, in which a planar ion
trap is mounted on top of a current carrying structure,
results in magnetic gradients of about 7 T/m. For atoms
trapped 100 μm above the surface, this would correspond to
trapping frequencies in the kilohertz range with appropriately
aligned bias fields. Such a setup could be combined with
radio-frequency fields as well, leading to adiabatic dressed
double-well potentials, in analogy to the works of Refs. [19,21]
and as described in more detail in Ref. [57]. In this setup, the
interwell separation could be dynamically tuned by changing
the frequency of the dressing field.

VI. CONCLUSION

We have studied theoretically the dynamics of an atomic
double-well system in the presence of a single trapped ion. We
have found, under the assumption that the ion is not moving,
that a one-dimensional calculation provides the same physical
picture as a three-dimensional one. The spin of the ion can
control the tunneling rate via the state-dependent short-range
phase, as also discussed in Ref. [13]. When the ion is allowed to
move, we find that the atomic tunneling rate between the wells
also couples to the ion motion. In this way, the tunneling can
be controlled by the motion of the ion. As the motional state of
trapped ions is routinely engineered and read out in state-of-
the-art experiments [39,58] by coupling it to its internal (spin)
state, this may allow engineering atom-ion states in which
the atomic position is entangled with the ion motion or spin.
We have analyzed a scheme in which the interwell distance
is dynamically reduced to allow the atom to tunnel depending
on the motional state of the ion. Imperfect ion ground-state
cooling will result in reduced tunneling contrast. Since ion
heating may occur on the time scale of the tunneling dynamics
in experiments where the ion is trapped close to the electrodes,
we plan to analyze the effect of ion heating and cooling on
the tunneling dynamics in the future. The coupling between
atomic tunneling and ion motion can also be seen as a unit cell
for a larger atom-ion quantum simulator, in which the atomic
dynamics is coupled to phonons in an ion crystal [26].

We have also analyzed the effect of micromotion on the
energy spectrum of the double-well system. The micromotion
causes many extra avoided crossings in the spectrum as
coupling to states belonging to different Floquet classes
becomes possible for small interwell separation d. The exact
strength of these crossings depends on the trap parameters,
but we conclude that it is a good idea to choose an ion-atom
combination with a large mass ratio. The avoided crossings
will cause trouble in state preparation as the wells have to be
brought together diabatically with respect to the crossings, but
without exciting the atoms to higher trap states. Additionally,
the two-mode approximation may break down in a many-body
scenario when including the micromotion, complicating its
theoretical description.

In linear Paul traps, the dynamical electric field is only
used to confine the ions in two of the three directions and
it may be advisable to have the double-well separation in
the third direction where the ion is confined by static fields.
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Nonetheless, due to the spherical symmetry of the atom-ion
interaction potential, there will be some minimum distance
where the secular approximation will fail [32].

We have given two possible routes towards experimental
implementation of the double-well system. The double-well
potential is created either by using magnetic fields or with
optical fields. Both technologies are compatible with ion
trapping, putting an experimental realization of the considered
system within reach.
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APPENDIX A: THE 3D CALCULATION

The procedure for obtaining the 3D eigenenergies and states
has been described in Ref. [13] and for completeness we give
more details here. The 3D Hamiltonian is given by H3D =
H

(0)
3D + H

(1)
3D , where

H
(0)
3D = −�

2∇2
a

2ma

+ 1

2
maω

2
⊥r2

a − C4

r4
a

, (A1)

H
(1)
3D = VDW(za) − 1

2
maω

2
⊥z2

a. (A2)

Here ω⊥ is the trapping frequency in the transverse direction.
We introduce spherical coordinates (ra,θa,φa), where we
keep the subscript a to denote the coordinates that belong
to the atom. The solutions to the radially symmetric equa-
tion (A1) are of the form ψ0

nlm(ra) = Ym
l (θa,φa)ψ0

nl(ra)/ra ,
where Ym

l (θa,φa) are spherical harmonics and ψ0
nl(ra) are

the solutions to the radial Schrödinger equation. Since the
potential does not depend on the azimuthal direction, the
quantum number m is conserved and for simplicity we set
m = 0.

The radial Schrödinger equation is given by

E
(0)
nl ψ0

nl =
(

− �
2

2ma

∂2

∂r2
a

+ �
2l(l + 1)

2mar2
a

+ maω
2
⊥r2

a

2
− C4

r4
a

)
ψ0

nl .

To numerically solve this equation, we make use of the
renormalized Numerov method [37] with

ψ̃0
nl(ra) ∝ √

r[Jl+1/2(ξ ) + tan(δ)Yl+1/2(ξ )] (A3)

as a boundary condition, where ξ = √
ma/μR∗/ra . The

mixing angle δ is related to the 3D short-range phase as
δ = −φ − lπ/2. We then expand the solution of the full
Hamiltonian H3D onto the solutions of Eq. (A1), namely,
ψ (d)(ra) = ∑

k ckψ
0
k(ra), where k denotes the pair of quan-

tum numbers (n,l). Thus, both the wave functions and the
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FIG. 12. Three-dimensional eigenenergy spectrum as a function
of interwell separation d for a 87Rb atom and a pinned 171Yb+ ion
assuming a 3D short-range phase of φ = π/4, ωa = 2π × 1.8 kHz,
and ω⊥ = 2π × 4.5 kHz.

corresponding energies are obtained by diagonalizing the
Hamiltonian H3D, whose matrix elements are given by

Hkk′ =
(
E

(0)
k + maω

2
ad

2

8

)
δkk′ + maω

2
a

4

(M(4)
kk′

2d2
− 3M(2)

kk′

)
,

M(j )
kk′ =

∫
dr3

aψ
0∗
k′ (ra) cosj (θa)rj

a ψ0
k(ra),

with j = 2,4. These matrix elements can be explicitly written
as

M(j )
nl,n′l′ =

∫ ∞

0
ψ0∗

n′l′(ra)rj
a ψ0

nl(ra)dra

×2π

∫ π

0
sin θa cosj θaY

∗
l′ (θa)Yl(θa)dθa,

whose determination relies on the computation of the follow-
ing Clebsch-Gordon coefficients:

C
(j )
ll′ = 2π

∫ π

0
sin θa cosj θaY

∗
l′ (θa)Yl(θa)dθa,

C
(2)
l,l = 2l(l + 1) − 1

4l(l + 1) − 3
,

C
(2)
l,l+2 = (l + 1)(l + 2)

√
5 + 4l(l + 3)

(2l + 1)(2l + 3)(2l + 5)
,

C
(4)
l,l = 3[3 + 2l(l + 1)(l2 + l − 4)]

(2l − 3)(2l − 1)(2l + 3)(2l + 5)
,

C
(4)
l,l+2 = 2(l + 1)(l + 2)[−3 + 2l(l + 3)]

√
5 + 4l(l + 3)

(2l − 1)(2l + 1)(2l + 3)(2l + 5)(2l + 7)
,

C
(4)
l,l+4 = (l + 1)(l + 2)(l + 3)(l + 4)

√
9 + 4l(l + 5)

(2l + 1)(2l + 3)(2l + 5)(2l + 7)(2l + 9)
.

All other coefficients vanish due to selection rules on the
quantum number l. Besides this, we note that the coefficient
matrices are symmetric C

(j )
ll′ = C

(j )
l′l .

In Fig. 12 we show the spectrum for the parameters φ =
π/4, ω⊥ = 2π × 4.5 kHz, and ωa = 2π × 1.8 kHz, which
is the same axial trapping frequency as used in Fig. 2. We
note that for such calculation we have obtained a set of 1838
eigenfunctions and energies including bound states as well as
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trap states [10,13]. Apart from the extra angular integration,
the whole procedure is very similar to the one used in the 1D
calculation and the resulting energy spectrum indeed looks
very similar. There are, however, several differences. First,
since there are more degrees of freedom, more levels appear.
Note also that not all levels are plotted since we limited our
discussion to m = 0. Second, the exact way in which the
energy levels split close to the ion is different. This behavior,
however, is related to the choice of the short-range phase. To
determine the exact form experimental input would be needed
in the form of a scattering length.

APPENDIX B: MICROMOTION HAMILTONIAN

Following Refs. [32,42], we start by writing the ion wave
function as

�(zi,t) = exp

(
− i

4�
miq�z2

i sin(�t)

)
w(zi,t). (B1)

By substituting this function in Eq. (15) the following effective
Hamiltonian for the wave function w(zi,t) is obtained:

Heff(t) = p2
i

2mi

+ 1

2
miω

2
i z

2
i + Hmm(t), (B2)

with the micromotion term given by

Hmm(t) = −mig
2ω2

i z
2
i cos(2�t) − gωi{zi,pi} sin(�t).

(B3)
The secular trapping frequency is given by

ωi = �

2

√
a + q2

2
. (B4)

In order to evaluate the matrix elements of Hmm(t),
that is, Eqs. (19) and (20), it is very useful to note
that 〈ψ (d)

l′ |{p,r}|ψ (d)
l 〉 = iμ〈ψ (d)

l′ |[H (d),r2]|ψ (d)
l 〉/�. Simi-

larly, 〈ψ (d)
l′ |p|ψ (d)

l 〉 = iμ〈ψ (d)
l′ |[H (d),r]|ψ (d)

l 〉/� [32]. Equiv-
alent equations hold for the center-of-mass coordinate too.
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