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Abstract: The low energy effective field theories of (2 + 1) dimensional topological

phases of matter provide powerful avenues for investigating entanglement in their ground

states. In [1] the entanglement between distinct Abelian topological phases was investi-

gated through Abelian Chern-Simons theories equipped with a set of topological boundary

conditions (TBCs). In the present paper we extend the notion of a TBC to non-Abelian

Chern-Simons theories, providing an effective description for a class of gapped interfaces

across non-Abelian topological phases. These boundary conditions furnish a defining re-

lation for the extended Hilbert space of the quantum theory and allow the calculation of

entanglement directly in the gauge theory. Because we allow for trivial interfaces, this

includes a generic construction of the extended Hilbert space in any (compact) Chern-

Simons theory quantized on a Riemann surface. Additionally, this provides a constructive

and principled definition for the Hilbert space of effective ground states of gapped phases of

matter glued along gapped interfaces. Lastly, we describe a generalized notion of surgery,

adding a powerful tool from topological field theory to the gapped interface toolbox.
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1 Introduction

The entanglement of spatial subregions of ground-state wavefunctions of (2+1) dimensional

gapped phases of matter provides a clear signature of non-trivial topological order. One

aspect of this signature is reflected in the entanglement entropy, which leads to a universal

correction to the area law: the so-called topological entanglement entropy (TEE) [2, 3].

Another aspect is the role of the entanglement spectrum in the bulk-edge correspondence.

Indeed, the boundaries of topological phases of matter generically host gapless degrees of

freedom often referred to as “edge modes”. The dynamics of these edge modes is intimately

tied to bulk entanglement through a variety of mechanisms (e.g., spectrum matching [4]

and entanglement inflow [5]). The edge modes paint an appealing heuristic, and by now,

well-understood, picture of how bulk entanglement can arise even if all (bulk) dynamics

is gapped: arising from an imaginary boundary, the modes on the edge of the spatial

– 1 –
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tensor factors (the entangling surface) must be invisible to the bulk state. The short-range

correlations that erase or “gap out” these imaginary edge modes is counted by the area

law of the bulk entanglement entropy; however it is the global constraints on the state that

lead to the subleading correction and provides the signal of topological order.

Reversing this logic, the above picture also allows for a construction of a bulk Hilbert

space assembled from “gluing” spatial subregions through gapping out their respective edge

degrees of freedom. Interestingly, this construction works for gluing together systems in

possibly different topological phases. This has led to an increasing interest in a classification

of which systems can allow such mutual gapped boundaries, (which are often called gapped

interfaces) and in the presence of which interactions the edge modes of these systems are

unstable to mass generation [6, 7]. Because the edge dynamics are related to bulk entangle-

ment, it is perhaps unsurprising that this classification is reflected in the bulk entanglement

entropy. This idea was first posited in [8] through an explicit microscopic construction of

(2 + 1) Abelian topological phases using “coupled wires”. In that paper, the authors found

that the choice of gapping interactions for wires straddling the entangling cut modified the

universal subleading correction leading to a new, effective, TEE. This effect was explored

further in [1] from the point of view of the low-energy effective field theory which is gov-

erned by Abelian K-matrix Chern-Simons theory. The gapped interactions were mirrored

by a set of topological boundary conditions (TBCs) [9] that label Lagrangian subspaces of

K = KL ⊕ (−KR) (where KL and KR are the K-matrices of the theories to the left and

the right of the interface). This story ties in well with the known connections of gapped

interfaces, and the description of anyon condensation by Lagrangian subsets [6, 9–12]. In

that paper, it was also explained, directly from consideration of the bulk Hilbert space, the

special role Ishibashi states [13] play in reproducing bulk entanglement. We will return to

this point shortly.

This story has been extended, notably in [14, 15], to non-Abelian topological phases

described by the quantum doubles of finite groups. There it was argued that the ground

state entanglement displays a modified TEE. In this paper, we aim to supplement this story

with the point of view of the low-energy topological field theory, this time a non-Abelian

Chern-Simons theory. As a primary goal, we will understand the results of [14] directly in

terms of the bulk gapped Hilbert space, in a similar vein as [1]. As we shall see below, the

role of the K-matrix is replaced by the level, k, and the Killing form of a Lie algebra g.

Correspondingly, we will classify TBCs through an analogous (though relaxed) notion of

Lagrangian subspace. Although a generic gapped interface does not have to arise through

such a construction1 we will explain how an interface constructed this way displays all

the hallmarks of a gapped interface. Although it is our belief that any gapped interface

between theories with non-Abelian Chern-Simons descriptions can be obtained through our

construction, we do not prove this claim.2 To be careful about this distinction, we refer to

our construction as an isotropic interface.

1In particular, the methods of this paper are most naturally stated in terms of symmetry breaking. There

are also classes of interfaces based upon symmetry extension, [16], whose interpretation in Chern-Simons

theory is not clear. We thank Juven Wang for pointing this out.
2Additionally we do not claim to provide a generic description of anyon condensation.

– 2 –
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The ability to explore isotropic interfaces in the low-energy field theory comes along

with many of the powerful tools of topological field theory. One such tool is surgery, which

allows for the evaluation of the Chern-Simons path integral on an arbitrarily complicated

compact three manifold in terms of a few simple “ingredient path integrals”, (for example

the path integrals on the three sphere S3 or on S2×S1). Using these tools, the Rényi path

integrals (and henceforth the entanglement entropy) of homogenous Chern-Simons theory

corresponding to various entanglement cuts on various spatial manifolds were evaluated

in [17], extending the results of [2, 3]. One result of this paper is to show that the entropy

across subregions separated by isotropic interfaces can be evaluated in a similar manner.

In doing so, we must evaluate a new novel set of “ingredient” path integrals.

In addition to surgery methods, the field theory approach to these interfaces allows for

bulk manifestation of the Ishibashi states of [14], in what we regard as the first main result of

this paper. All gauge theories face a fundamental obstruction to writing the Hilbert space as

a local tensor factor [18–23]. Before we can discuss entanglement entropy, we must address

this issue and define what it is that we are computing. In [1] we showed that this could be

done explicitly using the extended Hilbert space prescription [24, 25] and that the bulk state

is realized in the extended tensor product precisely as an Ishibashi state. In this paper, we

show that this construction carries over naturally for bulk theories populated by isotropic

interfaces. Because this includes trivial interfaces, this gives a systematic extension of

the extended Hilbert space construction to all (compact) Chern-Simons theories on closed

manifolds. This is a significant addition to the small (but growing) handful of existing

extended Hilbert space constructions in continuum field theory [1, 26–31].

Lastly, we remark that although there is much literature about the classification, the

anyon excitations, and the ground state degeneracies of the theories populated by inter-

faces [6, 7, 32–35], we are not aware of any systematic constructions of the Hilbert spaces

for these theories. We show that the extended Hilbert space provides a natural construc-

tion of the Hilbert spaces of these theories (and the ground states that furnish them) that,

without another independent construction, can be taken as their definition. We regard this

as the second main result of the paper. This is elaborated on in section 3.1 with further

details in appendix A.

The structure of the paper is as follows. In section 2 we begin with a discussion of clas-

sical boundary conditions in non-Abelian Chern-Simons theory and introduce the notion

of an isotropic subalgebra which we use to construct interfaces between separate Chern-

Simons theories. We elaborate on the physical intuition of why these correspond to gapped

interfaces from the point of view of the WZW description of the wavefunctions. This story

includes a description of what anyon excitations do as they approach the interface which

we phrase in terms of the branching of representations upon restriction to a subalgebra.

In section 3 we review the aforementioned obstruction to Hilbert space factorization and

the extended Hilbert space resolution. In doing so, we promote the classical boundary

conditions of section 2 to quantum operators whose kernel defines the embedding of the

bulk Hilbert space into the tensor product. We use this construction to compute the en-

tanglement entropy across isotropic interfaces for several examples in section 4. Although

these results are both regulated and exact, we present a geometric surgery perspective on

– 3 –



J
H
E
P
0
7
(
2
0
2
0
)
0
0
9

the same examples in section 5. We finish the main body of the paper with a discussion of

these results and their implications for condensed matter theory and for AdS/CFT duality.

Lastly, in in appendix A, we present details on the construction of bulk Hilbert spaces for

Riemann surfaces supporting isotropic interfaces.

2 Classical boundary conditions and gapped interfaces

We begin with the action of Chern-Simons theory with a simple gauge group3 G on a

compact manifold M :

SCS =
k

4π

∫

M
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(2.1)

where Tr is taken over a fixed representation of G. The discussions of this paper will be

phrased in terms of the equivalent Killing form on g, the Lie algebra of G:

Kab ≡ Tr
(
tatb
)

g = spanR{ta}. (2.2)

Of course, when g is simple we can always find a basis in which Kab = δab, but this is not

necessary (for instance, we might be interested in expressing g in a Cartan-Weyl basis).

We will also, for convenience, introduce what we will call the level-Killing form :

κab ≡ kKab, (2.3)

which in many ways in the following discussion plays an analogous role to the “K-matrix”

familiar in Abelian Chern-Simons theories. Equation (2.3) extends naturally to semi -simple

Lie algebras g = g1 ⊕ g2 ⊕ . . . by regarding it as tensor sum κ = k1K1 ⊕ k2K2 ⊕ . . .; this is

the generic framework that we will keep in mind.

When M possesses a boundary, variations of SCS produce a boundary term on-shell4

δSCS =
κab

4π

∫

∂M
aa ∧ δab. (2.4)

where aa is the pullback of Aa to ∂M . As usual, we interpret this variation as a one-form

on the space of field configurations and the resulting boundary term then gives rise to the

pre-symplectic one-form, θ. Equation (2.4) can be modified by the addition of boundary

terms that contribute exact variations. Independent of these additions, the second variation

defines the pre-symplectic two-form5 on the space of field configurations

Ω = δθ =
κab
4π

∫

∂M
δaa ∧ δab. (2.5)

3For the purposes of this paper, we will always take the gauge group to be compact, but we will offer

comments on non-compact groups in the discussion.
4Note that δaa is both a form on ∂M and on the phase space. The wedge product denotes antisym-

metrization of both; for example an expression like δaa ∧ δab is symmetric in a, b.
5In gauge theories, this form possesses null directions (along variations corresponding to gauge trans-

formations). Only after modding out by these null directions does the pre-symplectic two-form yield a

symplectic form on the phase space. We will not be concerned with this distinction now because we will be

interested in identifying a subgroup of these null directions to preserve on the boundary.

– 4 –
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Figure 1. On the left two Chern-Simons theories joined on an interface. Alternatively, once folded,

this is a theory valued in the tensor sum with a hard boundary.

whose inverse determines the Poisson brackets on phase space. Boundary conditions for

the fields aa can be classified by Lagrangian subspaces of Ω. A subspace of variational

vectors, LΩ, is Lagrangian iff it is isotropic and co-isotropic with respect to Ω:

Ω(v, w) = 0 ∀ w ∈ LΩ ⇔ v ∈ LΩ. (2.6)

The vanishing of θ when restricted to LΩ identifies the “canonical coordinates” of this

subspace.

Generic boundary conditions require additional structure to be introduced. This is

typically a complex structure (or alternatively a metric structure) on ∂M . Indeed, the

common procedure when ∂M is a Riemann surface is to introduce complex coordinates

{z, z̄} and fix either az or az̄ to zero, implemented at the level of the symplectic one-form

by the addition6 of Sbndy = ± 1
4πκ

ab
∫
∂M aa ∧ ?ab. Here ? is the Hodge star with respect to

the boundary volume form, i dz∧dz̄. After gauge fixing, this yields the boundary variables

corresponding to a chiral Wess-Zumino-Witten (WZW) theory. This is a standard proce-

dure for defining holomorphic wave-functionals of Chern-Simons theory when we interpret

∂M as a Cauchy slice. For the present case, however, this is not what we are interested

in: we are looking for interfaces upon which such degrees of freedom pair up and become

massive as a result of interactions between them. Such a situation is sketched in figure 1;

associated with the Chern-Simons on the left is the Lie algebra gL and level-Killing form

κL and that on the right with gR and κR. At least locally, we can alternatively view this

as folded over to a Chern-Simons theory with algebra g = gL ⊕ gR and level-Killing form

κ = κL⊕ (−κR), with a hard boundary, as shown in figure 1 (we will thus interchangeably

refer to interface and boundary in what follows). Let us now describe a class of topological

boundary conditions that can arise in such a case and do not require the introduction of

an auxiliary metric structure on the interface.

Returning to the symplectic two-form, let us look for a subalgebra g ⊂ g that is

Lagrangian with respect to the level-Killing form, κ. A necessary condition for the existence

6We write ± here, but for a given signature of κ, only one sign choice leads to a unitary boundary

theory. [36]

– 5 –
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of such a subalgebra is that the number of positive eigenvalues of κ is equal to the number of

negative eigenvalues. Thus, for a simple Lie algebra this is a futile effort: the Killing form is

positive definite and so cannot admit any Lagrangian subspaces. However, in our context,

g = gL⊕gR being a direct sum of two Lie algebras with κ = (κL)⊕(−κR), it is possible that

such a subalgebra g exists. A simple example would occur if gL and gR were isomorphic,

in which case g could be the diagonal subalgebra g = gL,diag = span {ta ⊕ ta} ⊂ gL ⊕ gR.

At first glance, if κL and κR are both positive, then the isotropic and co-isotropic

conditions impose dimg = dim gL = dim gR. Lagrangian subspaces of this type are known

as Lagrangian Lie subalgebras (with respect to κ) [37–41]. As restrictive as this condition

is, there can still exist non-trivial interfaces even when gL ' gR (as we find in example

1 of section 2.1). However, in the interest of constructing a more general class of gapped

interfaces, we will relax the co-isotropic condition and allow for subspaces that are not

half-dimensional. To this end we will search for a subalgebra, g ⊆ gL and g ⊆ gR such that

κL|g = κR|g. If such a subalgebra exists then the diagonal g := gdiag ⊂ g⊕ g ⊂ gL ⊕ gR is

an isotropic subalgebra with respect to κ.

If there exists an isotropic subalgebra of gL ⊕ gR with respect to κ then we define

a corresponding isotropic interface, I, via the following boundary conditions. The fields

from the left and the right of I, once pulled back to the interface (denoted aL and aR,

respectively) will be fixed to lie in g and will be continuous within this subalgebra. To be

more specific, let us denote the embedding of g into gL,R as ιL,R (respectively):

ιL,R : g ↪→ gL,R. (2.7)

Then aL,R must be expressed in terms of a continuous field a ∈ g as aL,R = ιL,R ◦ a. In a

particular basis {t̄ā} of g, and {taL,R} of gL,R, we can describe this embedding as

ιL,R ◦ t̄ā = (vL,R)a
ā taL,R. (2.8)

such that the components of aL,R in these bases satisfy

aLa = (vL)a
b̄ab̄ aRa = (vR)a

b̄ab̄ a ∈ g (2.9)

These conditions hold locally on the interface.7 In the previously mentioned simple case

where gL is isomorphic to gR and g = gL,diag, we can take (vL,R)a
b̄ = δa

b̄, which we call a

trivial interface.

The continuity of the symplectic form across I is then
∫

I
δa · (vL)t · κL · vL · δa =

∫

I
δa · (vR)t · κR · vR · δa ≡

∫

I
δa · κeff · δa (2.10)

These conditions are the same whether the gauge groups are Abelian or non-Abelian. How-

ever, in the non-Abelian case we have more structure and thus potentially extra conditions.

That is, not only do we have matching at the level of vector spaces, but also at the level

of the algebras:

[ιL,R ◦ t̄ā, ιL,R ◦ t̄b̄] = ιL,R ◦ [t̄ā, t̄b̄] (2.11)

7However, for Abelian theories vL,R must, in fact, be constant. See footnote 11.

– 6 –
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Given structure constants fL,R
ab
c and f

āb̄
c̄ for gL,R and g, respectively, then

(vL,R)a
ā(vL,R)b

b̄fL,R
ab
c = f

āb̄
c̄(vL)c

c̄ (2.12)

If these conditions can be satisfied, then the effective algebra at the interface is g with

structure constants f and level-Killing form κeff .

Let us pause to address the following concern. From the viewpoint of the classical

symplectic form, relaxing co-isotropy seems to be a perverse direction to take: the choice

of a half-dimensional subspace is the guide for choosing a polarization for wavefunctions in

the quantum theory. For non-Abelian Chern-Simons theory however, the dimension of its

Lie algebra is a poor measure of its quantum degrees of freedom; the proper measure is the

Sugawara central charge associated to its affine algebra. Indeed one would imagine that in

order for all of the light degrees of freedom at the interface to be gapped then the matching

of the chiral central charges is a necessary condition. This is guiding principle we will take

in this paper. To this end we will require that our subalgebra, g ⊆ gL,R admits an affine

subalgebra extension8 ĝ ⊆ ĝL,R such that cg = cL = cR. We note if ĝ is a proper subalgebra

then it must be conformally embedded into both ĝL and ĝR. Conformal embeddings have

been well studied and are extremely constrained (see [42] for a nice overview). Here we see

that they appear as a natural class of topological boundary conditions.

So far the discussion of these boundary conditions has been on the level of consistency

of embedded subalgebras. It is perhaps instructive to illustrate why these correspond

to “gapped interfaces” in the usual sense. In that vein, consider the path integral on

a manifold with boundary Σ that intersects transversely with I, as in figure 2. As is

standard, the theory can be rewritten (with holomorphic boundary conditions) as a theory

of chiral WZW fields living on Σ and in principle we have two separate WZW theories

that meet at Σ ∩ I. In the folded theory, the interface is treated as a hard boundary and

the WZWL and WZWR theories would give rise to chiral and anti-chiral massless modes

at Σ ∩ I. The topological boundary conditions, however, ensure that these modes are

gapped out in the following way. The currents for the two theories, as they approach the

interface, are restricted to span the subalgebra ĝ; the conditions (2.10) and (2.12) ensure

that this can be done consistently. In particular, since the chiral central charges of the two

theories are equal, cL = cR, the two WZW’s can be joined into a single non-chiral WZW

via the standard Polyakov-Wiegmann trick [43, 44] which is unstable to gap formation.

For the Abelian theory this is explicit: the identification of the currents from WZWL (once

appropriately mapped to ĝ) with those from WZWR can be implemented at the level of

the elementary compact bosons via a massive deformation whose IR limit becomes a hard

delta-functional [1].

Now let us discuss the inclusion of anyon punctures. We recall that the states on sur-

faces pierced by anyon excitations are related to integrable highest weight representations

of the affine Lie algebra ĝk. We will label generic anyons by their corresponding highest

weights α, β, . . ., and their corresponding integrable representations by Rα; for Abelian

8Note that this extension is typically easy to find: the matching of central terms in the corresponding

affine algebras are automatically satisfied via (2.10).

– 7 –
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⌃
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Figure 2. On a Cauchy slice Σ the bulk theory can be rewritten as a chiral WZW theory on either

side of the interface. In the folded theory, we have a chiral and anti-chiral WZW whose restriction

to ĝ close to the interface coalesces into a single non-chiral WZW consistent with the interface (now

treated as a boundary) being gapped.

anyons specifically we will denote both the anyon and its representation by a lowercase

Latin letter (e.g., q). In both the Abelian and non-Abelian theories we will always denote

the identity anyon by “0”. When we have interfaces between distinct phases, we can have

anyon punctures in each phase, and thus we can associate an integrable representation to

each side of an interface. After imposing topological boundary conditions, we must re-

strict fields at the interface to lie in the isotropic subalgebra g, with its own irreducible

highest weight representations (irreps). The restriction of a representation, Rα, of ĝk to a

subalgebra then will be a linear combination of the irreps of ĝ, schematically:

R(ĝ)
α

∣∣∣
ĝ

=
⊕

ᾱ

mᾱ
αR(ĝ)

ᾱ (2.13)

If the identity representation of ĝ appears on the right-hand side of this decomposition,

then we say that the anyon, α, condenses at the boundary. The multiplicity with which

the identity representation appears in (2.13) tells us the number of channels in which the

anyon can condense:

Wα ≡ m0
α. (2.14)

There is an intuitive picture for this in the folded setup of an isotropic interface between

two topological phases. Since ĝ is a subalgebra of both ĝL and ĝR, each have their own

decomposition upon restriction to ĝ. Such decompositions are called conformal branchings9

in the literature [10, 11, 14, 42]. The identity irrep of ĝ =
(
ĝ⊕ ĝ

)
diag

can then appear at

the interface only if ĝL and ĝR branch into a representation and its conjugate (respectively):

WαL
αR =

∑

β̄

mβ̄
αL
mβ̄∗

α∗R
(2.15)

9We note that because representations of affine algebras are infinite dimensional, for a restriction to a

generic subalgebra there is no guarantee that the branching coefficients are finite. However, happily for

conformal embeddings (and only conformal embeddings) this happens to be the case. This is known as the

finite reducibility theorem [45–47].
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These tunneling matrices intertwine the modular data of the L and the R topological

phases and so provide a realization of the tunneling matrices established in [33]:

∑

βL

S(L)
αL

βLWβL
αR =

∑

βR

WαL
βRS(R)

βR

αR

∑

βL

T (L)
αL

βLWβL
αR =

∑

βR

WαL
βRT (R)

βR

αR
(2.16)

where S(L,R) and T (L,R) are the modular S and T matrices of the left and right theories.

This is easy to show from (2.15) and we do so briefly. For a generic embedding ĝ ↪→ ĝL,

the restriction of the affine character of an integrable highest weight representation of ĝL
admits the following decomposition [42]:

χ(ĝL)
αL

(τ) =
∑

γ

χ{αL;γ}(τ)χ(ĝ)
γ (τ) (2.17)

where the sum is over integrable highest weights γ of ĝ. The functions χ{αL;γ}(τ) behave

nicely under modular transformations

χ{αL,γ} (−1/τ) =
∑

βL

∑

δ

S(ĝL)
αL

βL
χ{βL,δ}(τ)S(ĝ)†

δ

γ

χ{αL,γ}(τ + 1) =
∑

βL

∑

δ

T (ĝL)
αL

βL
χ{βL;δ}(τ)T (ĝ)†

δ

γ

(2.18)

For a conformal embedding however, these functions are constant10 and equal to our branch-

ing coefficients [45]:

χ{αL;γ}(τ) = mγ
αL
. (2.19)

This implies

mγ
αL

=
(
S(ĝL) ·m · S(ĝ)†

)
αL

γ
mγ
αL

=
(
T (ĝL) ·m · T (ĝ)†

)
αL

γ
(2.20)

Similar statements apply for the R phase branching coefficients. Equation (2.16) then

follows directly from the definition, (2.15), and the unitarity of S(ĝ) and T (ĝ).

The coefficients WαL
αR provide a map from the fusion spaces across the interface;

ref. [33] introduced them as the dimension of the Hilbert space on the two-sphere with

anyon punctures αL and αR on either side of an equatorial interface, as pictured in figure 3.

While this is a priori a different definition than equation (2.15), it is easy to convince oneself

that physically these two concepts are the same. We will see that this is true in section 4.1

by explicitly constructing the Hilbert space HS2
αL,αR

.

10In fact, for a generic embedding, χ{αL,γ} are characters of the coset theory ĝL/ĝ. The fact that these

are constant for conformal embeddings indicates that this would-be coset is trivial: this is consistent with

the statement that the TBCs are gapping out the degrees of freedom at the interface.
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Figure 3. The dimension of the Hilbert space for the above configuration gives the tunneling

matrix coefficients: WαL
αR = dimHS2

αL,αR
.

2.1 Examples

Although it is not our intention to classify all possible isotropic interfaces, in this section

we give a number of examples to orient the reader. For the first set of examples, let us see

what interfaces we can construct between the simplest non-Abelian Chern-Simons theories.

Example 1: ĝL = su(2)kL, ĝR = su(2)kR. The matching of the chiral central charges

tells us immediately that the two levels must match, kL = kR ≡ k. Looking at conformally

embedded subalgebras of su(2)k we find two possibilities: u(1)2 (when k = 1) and su(2)k
itself.

The former is the (trivial) identification of the Cartan algebras of each phase. This

admits a nice physical picture: the vertex operator algebra of the u(1)2 theory is in fact

extended to su(2)1 and so this gapped interface is really the extension of a gapped interface

formed from identifying the currents of the Abelian theory (along the lines of [1]) at its

critical radius. We will revisit this more generically in example 3.

For the latter, we can construct (at least) two independent interfaces. Firstly, there is

the trivial interface. The anyons that can permeate the interface are of the form αL = αR
(in the folded picture the set of condensed anyons are of the form {α, α∗} = {α, α}).

Secondly, at the level of the algebra su(2), we might consider the subalgebra spanned by

span
{
JL3 ⊕ (−JR3 ), JL± ⊕ JR∓

}
. (2.21)

One immediate extension of this subalgebra to the affine su(2)k is the direct matching of

the modes:

ĝ = span
{
JL3,m ⊕

(
−JR3,m

)
, JL±,m ⊕ JR∓,m

}
(2.22)

Note, however, that the L and R highest weight representations are related by Weyl re-

flection and so correspond to the same integrable representation. Thus we see that the

set of permeable anyons are again of the form {α, α} and so from the point of view of

anyon condensation, this interface is indistinguishable from the trivial interface. In fact

this subalgebra is related to the trivial subalgebra by a global SU(2) conjugation.

A non-trivial affine extension of (2.21) can be constructed as

ĝ = span

{
JL3,m ⊕

(
k

2
δm,0 − JR3,m

)
, JL±,m ⊕ JR∓,m∓1

}
(2.23)
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Here ĝR weights are related to ĝL weights via an outer automorphism [42]. When folded,

this interface is equivalent to the anyon condensation characterized by the Z2 (or permu-

tation) modular invariant of su(2)k [48]. This is a peculiar example in which the mode

expansions of the currents are mixed. This can only happen in the non-Abelian Chern-

Simons theory : the topological boundary conditions relating the Cartan subalgebras are

generically described by the Abelian story in [1].11

Although we will not go into detail here, the use of outer automorphisms can be

extended to larger algebras with gL ' gR. Instead, in the following examples we focus

on interfaces formed from the conformal embedding g ' gL ⊂ gR. Generically, it is a

necessary condition that the level of gR is one [42].

Example 2: ĝL = su(2)kL, ĝR = su(N)1. In this example we see that the possible

gapped domain walls are sparse: matching of the central charge12 with k ∈ Z+ only allows

N = 3 and thus kL = 4. su(3) has an su(2) subalgebra associated to each simple root. It

is a simple exercise to see that we cannot match the central terms of the corresponding

affine algebras when kL = 4. However there is another embedding of su(2) given by (up to

a global SU(3) conjugation) by

ĝ = span
{
J3
m ⊕H(α1+α2)

m , J+
m ⊕ 2(Eα1

m + Eα2
m ), J−m ⊕ (E−α1

m + E−α2
m )

}
. (2.24)

where for a given root α, Hα =
∑r

i=1 αiH
i. This is a proper conformal embedding13 and

thus we can define a corresponding isotropic interface after imposing boundary conditions.

The branchings of the integral representations of su(3)1 upon restriction to su(2)4 are

given by the following:

(λ1, λ2) = (0, 0)→ (2j = 0)⊕ (2j = 4) (0, 1)→ 2 (1, 0)→ 2 (2.25)

where (λ1, λ2) are the Dynkin labels for the simple roots α1,2 of su(3). Thus we have the

following permeable anyons:

{(0, 0); 0} {(0, 0); 4} {(1, 0); 2} {(0, 1); 2} (2.26)

This is equivalently stated via the tunneling matrix

WαL
αR =




1 0 0

0 0 0

0 1 1

0 0 0

1 0 0




(2.27)

11There is a supposition of locality built into this. If an Abelian gauge transformation of the L phase

having support on a circular interface is related to that of the R phase via λL,a(θ) ∼ fa
b(θ)λR,b(2π − θ)

then the only solution consistent with unitarity and the commutation relations of the Cartan sublagebras

is fa
b = constant and from there the story follows [1].

12Recall that c = k(N2 − 1)/(k+N) for su(N)k. Thus here we have cL = 3kL/(kL + 2) and cR = N − 1.
13This conformally embedded su(2) differs from those associated to simple roots by its embedding in-

dex [42]. For the purposes of our paper, we will always implicitly set the norm of all highest roots to 2; this

index is then equivalently encoded in vL,R.
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where the ordering of the columns is (0, 0), (1, 0), (0, 1). It is easy to verify that

W · Ssu(3)1 = Ssu(2)4 · W W · T su(3)1 = T su(2)4 · W (2.28)

where

Ssu(3)1 =
1√
3




1 1 1

1 q q2

1 q2 q


 q = e2πi/3; Ssu(2)4

j1

j2
=

1√
3

sin

(
π(2j1 + 1)(2j2 + 1)

6

)
(2.29)

and

T su(3)1 = e
−2πicR

24 diag
(

1, e
2πi
3 , e

2πi
3

)

T su(2)4 = e−
2πicL

24 diag
(

1, e
πi
4 , e

2πi
3 , e

5πi
4 , 1

)
cL = cR = 2. (2.30)

Example 3: ĝL = u(1)NKL
, ĝR = su(N + 1)1. In this last example we consider an

interface between the Abelian theory with K-matrix

KL =




2 −1 0 . . .

−1 2 −1 . . .

0 −1 2 . . .
...

. . .
. . .

. . .




(2.31)

and the non-Abelian su(N + 1)1. That these two theories admit a gapped interface is

perhaps not surprising: for N = 2, the L phase describes14 the Halperin (221) state

which has a hidden extended SU(3)1 symmetry [49]; analogous u(1)N states with extended

SU(N + 1)1 symmetry have since been constructed using coupled wires [50]. Since the

K-matrix of the u(1)N is precisely the Cartan matrix of the su(N + 1) algebra, we find an

isotropic algebra with respect to KL ⊕ (−κR) by simply identifying the u(1)N generators,

{φi}, with the Cartan subalgebra of su(N + 1) in the Chevalley basis:

ĝ = span
{
φim ⊕Hαi

m

}
i=1,...,N

(2.32)

The N + 1 anyons of the u(1)NKL theory map straightforwardly into the N + 1 anyons of

the su(N + 1)1 by identifying the Abelian charge vector with the corresponding Dynkin

label of an su(N + 1)1 integrable representation; that is, the tunneling matrix, W, is the

identity.

Given the general setup for Abelian theories [1] we can look for interesting interfaces

between these two theories by searching for integer matrices {vL} and {vR} obeying

(vL)t ·KL · vL = (vR)t · κR · vR. (2.33)

One such example in the N = 2 case is given by

vL =

(
1 3

3 2

)
vR =

(
2 3

3 1

)
(2.34)

14Up to GL(2,Z) conjugation.
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and the effective theory at the interface is an Abelian theory with

κeff = 7

(
2 1

1 2

)
(2.35)

As we will see in the following section, this topological boundary condition is distinguished

from the above by the topological entanglement entropy across the interface.

3 Quantum gluing operators

The above discussion has been focused on classical boundary conditions. As we move to

discussions of entanglement, we will implement these boundary conditions with the action

of quantum operators. Before doing so, let us briefly remark about the state of affairs for

entanglement in gauge theories.

At a formal level, a basic ingredient in discussing the entanglement of a subsystem A

is the factorization of the Hilbert space:

H = HA ⊗HAc . (3.1)

We are interested in the case in which A is a spatial subregion on the Cauchy surface on

which we are defining the state, ρ. The subregion A is then separated from Ac by an

auxiliary co-dimension 2 surface that we refer to as the entangling surface. In a typical

local quantum field theory this factorization is ill-defined in the following sense. Due to

short range correlations at the entangling surface, the division of H into HA and HAc is

extremely sensitive to the UV cutoff of the theory. However, we regard this obstruction

to be minimal and there are suitable prescriptions for overcoming it. For instance, we can

put the theory on a lattice, with spacing ε or thicken the entangling surface to width ε

and impose boundary conditions. With such a regularization in hand, we can take (3.1)

literally and compute the reduced density matrix and its subsequent entanglement entropy:

Sent = −TrHA (ρA log ρA) ρA = TrHAcρ. (3.2)

The above mentioned sensitivity to the UV cutoff is signaled by divergences in Sent. For

instance, in the vacuum state

Sent ∼
Ld−2

εd−2
+ . . . (3.3)

In quantum gauge theories however, the situation is even more complicated. Even after

regulating the local pile-up of modes at the entangling surface, the Hilbert space of gauge

invariant states refuses a local factorization15 of the form (3.1). One manifestation of this is

that the constraints of gauge invariance are non-locally realized and prevent a gauge invari-

ant state existing on a sole tensor factor [18, 19]. A separate but equivalent manifestation

of this fact is that any association of an algebra of gauge invariant operators to a subregion

15While this is the generic story for local spatial subsystems, there are other possible non-local partitions

of the Hilbert space that appear to be perfectly well-defined even in gauge theories (for example the multi-

boundary setups in [51, 52].)
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A (call it AA) possesses a common center with its complement algebra AAc [23, 53]; a

simple result for von Neumann algebras then necessarily precludes a factorization (3.1).

This complication is present in Chern-Simons theory in a very stark way. Let us first

ignore the introduction of interfaces and consider the Hilbert space of gauge invariant states

on a Riemann surface, Σg, of genus g. For compact groups, Chern-Simons theory is special

in that the dimension of this space is finite dimensional [54]:

dimHΣg =
∑

α

1

|S0
α|2g−2 (3.4)

Now we bisect Σg into two subregions with the entangling surface consisting of several

disconnected circles: Σg = A#{S1
i }
Ac and ask if

HΣg
?
= HA ⊗HAc . (3.5)

The answer is defiantly no. In fact both HA and HAc have to be infinite dimensional.

Indeed, considering the generator of a gauge transformation A → A + dλ + [A, λ] on a

Cauchy surface with some set of circular boundaries we have (after imposing Gauss’ law)

Q̂[λ] =
∑

i

κab

2π

∫

S1
i

λ(i)
a ab (3.6)

where λ(i) is the pullback of λ to the ith circle. The presence of these boundary terms

(which are responsible for the central extension of the current algebra) changes Q̂[λ] from

a first class to a second class constraint. Simply put, Q̂ now acts as a global symmetry at

the circular boundaries. As such, states carry a representation of this symmetry, which is

a collection of integrable representations of extended Kǎc-Moody algebras. Thus we have,

schematically,16

HA = V (A)
α1,α2,...

⊗

i

HS1
i
[αi] HS1

i
[αi] = span

{
|αi〉, Ja−n|αi〉, Ja−nJb−m|αi〉, . . .

}
(3.7)

which is infinite dimensional.

A natural resolution to this problem and the approach that we will adopt in this paper

is called the extended Hilbert space approach17 [18–20, 22, 24, 25, 55]. Although (3.5)

cannot exist as an equality, we can embed HΣ as a subspace in HA ⊗HAc . HA ⊗HAc , as

an extended Hilbert space, contains states that are not gauge invariant. However, it is a

simple matter to find the subspace of gauge invariant states by looking at the kernel of the

operators (3.6):

|ψ〉(∈H) ↪→ |ψ̃〉 ∈ HA ⊗HAc
(
Q̂[λA]⊗ 1̂Ac + 1̂A ⊗ Q̂[λAc ]

)
|ψ̃〉 = 0. (3.8)

16The factor V
(A)
α1,α2,...,αn is the fusion space for the handle-body with punctures that A forms when its

boundaries are shrunk down to anyon punctures. It is a finite non-zero factor that counts the conformal

blocks on this space.
17This is complemented by an alternative approach that might be called the algebraic approach (see for

instance [23, 53]). The algebraic entropy seems to be extremely constrained in Chern-Simons theory. See

section 6 for comments on this.
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Of course we have to say how we identify the gauge parameters across the entan-

gling surface. For each circular component parameterized by θ, we can express λA =∑
m∈Z(λ

(i)
A )me

imθ (and similarly λ
(i)
Ac). The natural identification, once accounting for a

flip in orientation, is

(λ
(i)
A )m = (λ

(i)
Ac)−m (3.9)

(we are suppressing Lie algebra indices). Denoting κab

2π

∫
S1
i
e−imθab ≡ J (i),a

m , this translates

to the preservation of the chiral symmetry algebra across that component of the entangling

surface:

(
Ĵ

(i),a
A,m ⊗ 1̂

(i)
Ac + 1̂

(i)
A ⊗ Ĵ

(i),a
Ac,−m

)
|ψ̃〉 = 0. (3.10)

The solution to this equation is the non-Abelian generalization of the Ishibashi state, and

the full state is the tensor product of such Ishibashi states for each circular component of

the entangling surface:

|ψ̃〉 =
⊗

i

|αi〉〉 |αi〉〉 =
∑

M

|αi,M〉 ⊗ |αi,M〉 (3.11)

where M labels an orthonormal basis of descendants of the conformal module with primary

αi. In this embedding, the notion of tracing out Ac is now clear: we simply trace |αi〉〉〈〈αi|
over basis states |αi,M〉. In [1], this result for Abelian Chern-Simons provided a universal

explanation for the equivalence between bulk entanglement spectrum and the spectrum of

chiral edge modes and for the efficacy of the calculation of spatial entanglement using left-

right entanglement of Ishibashi states [56]. Happily, we find that this explanation persists

into the non-Abelian theories.

3.1 Including interfaces

Now let us consider the same line of inquiry when states contain interfaces of the type

above, taking the entangling surface along some set of interfaces. As one might guess the

above paradox appears in this context as well: the Hilbert space of gauge invariant states of

a Riemann surface with interfaces is finite dimensional, while the “would-be” tensor factors

are infinite dimensional and correspond to integrable representations on which operators

of the form

Q̂L[λL]⊗ 1̂ + 1̂⊗ Q̂R[λR] (3.12)

act as a global symmetry (for each circular component of the entangling surface). Although

this is morally true, we do not have a generic construction of the Hilbert spaces in question.

What we show in appendix A is that the extended Hilbert space provides a construction of

the Hilbert space of gauge invariant states when interfaces are involved, and this Hilbert

space is finite dimensional (although both of its factors are infinite dimensional). The iden-

tification of the embedded Hilbert space follows from our discussion of TBCs. Focusing on

a single component of the entangling surface coinciding with an interface Ii, the unbroken

gauge group is generated by an isotropic subalgebra ĝi ⊆ ĝL ⊕ ĝR and as such the gauge
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Figure 4. Anyon αL,i branches into ⊕γmγ
αL γ when approaching the interface Ii; a similar branch-

ing occurs for αR,i. If they share a channel mγ
αL,i × mγ∗

α∗
R,i
6= 0 for some γ then this mediates

the transmutation of αL,i to αR,i across the interface. The effective set of Ishibashi states for this

interface are spanned by these branching channels.

parameters should be identified18

λ
(i)
L,n =

(
vL · λ̄(i)

)
n

λ
(i)
R,n =

(
vR · λ̄(i)

)
−n
, λ̄(i) ∈ ĝ. (3.13)

Under this identification we demand

1

4π

((
vtL · κL · Ĵ L

)
m
⊗ 1̂R + 1̂L ⊗

(
vtR · κR · Ĵ R

)
−m

)
|ψ̃〉 = 0 (3.14)

for each component of the circular interface. We are free to redefine
(
vL

t · κL · Ĵ L
)
m

:=

κeff · Ĵm and
(
vR

t · κR · Ĵ R
)
m

:= κeff · ˆ̃Jm, where from the arguments of section 2, the

currents Ĵm and
ˆ̃Jm each separately satisfy a Kǎc-Moody current algebra with level-

Killing form κeff . The resulting condition of gauge-invariance is then

κāb̄eff

4π

(
Ĵ b̄,m ⊗ 1̂R + 1̂L ⊗ ˆ̃J b̄,−m

)
|ψ̃〉 = 0. (3.15)

It is clear that the solution to (3.15) should be an Ishibashi state determined by the

algebra ĝi at level κ
(i)
eff but we also need to specify which Ishibashi state it is, i.e., we need

to specify a conformal primary. In fact, unlike the above situation where the Chern-Simons

theory is homogeneous (and all possible cuts are trivial interfaces), describing the Wilson

line configuration on the interior of Σg is not enough to specify a unique state. This is a

consequence of branching when the Wilson lines cross an interface. Indeed, let us suppose

that approaching our interface of interest, Ii, from the left side is a Wilson line carrying

a representation RαL,i , while on the right side, the Wilson line carrying representation

RαR,i emerges from the interface (see figure 4). As we argued above in section 2, in

order for this configuration to make sense a common representation must appear in the

branchings of RαL,R,i upon restriction to ĝi. In fact there might be several such channels

18We allow the possibility that vL,R can mix mode expansions as we saw in example 1 of section 2.1.
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for this branching and for each one we can choose an Ishibashi state for the corresponding

conformal primary:

HA ⊗HAc |Ii = span
{
|γi〉〉

∣∣ mγ
αi,L

mγ∗

α∗i,R
6= 0
}

(3.16)

4 Entanglement across interfaces

Let us now take this extended Hilbert space prescription adapted for systems with interfaces

and compute the entanglement entropy of a variety of scenarios.

4.1 S2 with a single equatorial interface

We now consider a state in the Hilbert space of the configuration depicted in figure 3

where the entangling surface is a single component taken along the equatorial interface.

As elaborated upon above, this configuration does not specify a unique state; the Hilbert

space is spanned by the mutual branching channels of αL and α∗R. Moving to the extended

Hilbert space, a generic state in HS2 [αL, αR] is mapped to

|ψ〉〉 =
∑

γ

ψγm
γ
αL
mγ∗

α∗R
|γ〉〉g,κeff

. (4.1)

where we have explicitly noted that the |γ〉〉 are conformal primary Ishibashi states of

ĝ with level κeff . Note that we have conveniently included the branching coefficients in

the wavefunctions and so the sum can be taken indiscriminately over all highest weight

representations of ĝ. From here the left-right entanglement of such a state can easily be

computed using standard techniques (see for example [56]). For the sake of a self-contained

discussion, we will repeat this calculation in this section only. The computations in the

later sections are wholly similar.

As is familiar, the Ishibashi state itself is non-normalizable and so the solution to (3.15)

is only formal and requires regularization. Although we defined |γ〉〉g,κeff
purely from bulk

considerations, it is a simple fact that it is in natural correspondence with a particular

Virasoro module of the CFT with Sugawara generators, which given our definitions of the

currents J and J̃ , are

Ln =
c

2 dim g

(
κ(eff)

)ab
: J a,mJ b,n−m : L̃n =

c

2 dim g

(
κ(eff)

)ab
: J̃ a,mJ̃ b,n−m : (4.2)

A natural way to regularize a given Ishibashi state is with the CFT Hamiltonian

|γ〉〉 → |γ(ε)〉〉 = e−εHeff |γ〉〉 Heff =
2π

`

(
L0 ⊗ 1 + 1⊗ L̃0 −

cL + cR
24

)
(4.3)

where ` is the circumference of the circular interface. The introduction of ε can equivalently

be thought of as defining the states, as usual, by moving into complex time. Although

we constructed Heff from ĝ generators (embedded into ĝL,R), as opposed to say from

L
(ĝL)
0 ⊗1+1⊗L(ĝR)

0 , there is no ambiguity here: the virtue of a conformal embedding is a

matching of not only the central charges cL = cR = c, but also the Sugawara stress tensor.
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The norm of |γ(ε)〉〉 is simply the character associated to the primary γ in the effec-

tive CFT:

n2
γ = χeff

γ

(
e
−8πε
`

)
. (4.4)

These regulated Ishibashi states, once divided by their norm, define a basis of normalized

states for the Hilbert space on S2 pierced by αL,R equipped with a finite norm:

H(ε)
S2[αL,αR]

= span

{
|γ(ε)〉〉
nγ

∣∣∣ mγ
αL
mγ∗

α∗R
6= 0

}
(4.5)

From here on, when we write equations of the form (4.1), we will really have in mind

their regulated versions defined with the same coeffcients but taken with the orthonormal

basis (4.5) equipped with finite norm:

|ψ〉〉 → |ψ(ε)〉〉 =
∑

γ

ψγ(mγ
αL
mγ∗

α∗R
)
|γ(ε)〉〉
nγ

(4.6)

The reduced density matrix is obtained by tracing out HAc :

ρ
(ε)
red =

∑

γ

|ψγ |2(mγ
αLm

γ∗

α∗R
)2

n2
γ

∑

M

e−
8πε
`

(heff(γ)+NM− c
24

)|γ;M〉〈γ;M | (4.7)

where heff is the conformal dimension of |γ; 0〉 under L0 and NM is the grade of M .19 The

resulting replica trace gives the character of the representation γ:

TrHA

(
ρ

(ε)
red

n)
=
∑

γ

|ψγ |2n(mγ
αLm

γ∗

α∗R
)2n

n2n
γ

χ(eff)
γ

(
e−

8πnε
`

)
. (4.8)

It is clear that the role of the regulator is to move a small distance away from the singular

point τ = 0 — effectively the regulator has fattened the interface into a torus. The

characters appearing in the numerator and denominator (via n2
γ) of (4.8) can be evaluated

in the limit of ε/` → 0 by performing a modular transformation; in the limit, only the

identity representation of ĝ contributes to the sum:

lim
ε/`→0

TrHA

(
ρ

(ε)
red

n)
=
∑

γ

|ψγ |2n(mγ
αLm

γ∗

α∗R
)2n

(
(Seff)γ

0
e
πc`
48ε

)n
(
Seff
)
γ

0
e
πc`

48nε (4.9)

It follows that the nth Rényi entropy is

Sn=
1

1−n log
Tr
(
ρ

(ε)
red

n)

(
Trρ

(ε)
red

)n =
1+n

n

πc`

48ε
+

1

1−n log

(∑

γ

|ψγ |2n(mγ
αL
mγ∗

α∗R
)2n

((
Seff
)
γ

0
)1−n

)

− n

n− 1
log

(∑

γ

|ψγ |2(mγ
αL
mγ∗

α∗R
)

)
(4.10)

19Recall that a weight space of an affine hight-weight representation is specified by r + 2 integers: the r

Dynkin labels of its highest weight, its grade, and the level of of the algebra. For an excellent and thorough

review of affine algebras see [42].
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Figure 5. The space of states on T 2 with a single patch (with connected boundary) of the R

topological phase. A generic state can be heuristically thought of as being produced by a the

interior path integral with an anyon αL running around the non-contractible cycle of the torus.

If the identity irrep of the R phase can branch to a non-trivial γ at the interface then it may be

possible for it to pair with a βL which can fuse with the interior anyon.

and the n→ 1 limit gives the corresponding von Neumann entropy:

SEE =
πcL`

24ε
+
∑

γ

pγ log

((
Seff
)
γ

0
)
−
∑

γ

pγ log pγ pγ ≡
|ψγ |2(mγ

αLm
γ∗

α∗R
)2

∑
γ |ψγ |2(mγ

αLm
γ∗

α∗R
)2
. (4.11)

Thus we see that the correction to the area law is given by the weighted sum of topological

entanglement entropies of the effective anyons threading the entangling surface plus the

Shannon entropy of the coefficients of the choice of state. This feature is generic; in all

examples that we examine below, we will see an analogous correction appears for each

circular interface of the entangling surface.

4.2 T 2 with a single interface

Now we consider the scenario depicted in figure 5, where again the entanglement cut is

taken at the interface surrounding the R topological phase. Within the extended Hilbert

space approach, HA is the Hilbert space of a T 2 in the L topological phase subtracted a

disc, while HAc is the Hilbert space of the remaining disc (now in the R topological phase):

HA =
⊕

αLβL

NL
αLα

∗
L

β∗LHS1 [βL] HAc = HS1 [0] (4.12)

where NL are the fusion coefficients of the L topological phase20 and HS1 is the Hilbert

space defined on the right-hand side of (3.7). The space of gauge invariant states inside

the extended Hilbert space HA ⊗HAc is

H̃ =
⊕

αL,βL

NL
αLα

∗
L

βL
mγ
βL
mγ∗

0R
span

{
|γ〉〉g,κeff

}
(4.13)

Note that the identity irrep, 0R, appearing in HAc can possibly branch into more than the

identity representation of ĝ.21 A generic state is given by

|ψ〉〉 =
∑

αL,βL

∑

γ

ψγαL,βL |γ〉〉αL,βL
∑

αL,βL

∑

γ

|ψγαL,βL |
2 = 1 (4.14)

20This result can be understood by thinking of T 2 \D2 as the gluing of an annulus to two of the holes of

the “pair of pants”: S2 \ (3D2). The Hilbert space of the latter is a direct sum with coefficients given by

NL, and the gluing to the annulus forces two of the indices to be conjugates of each other.
21For instance in Example 2 of section 2.1 we saw that the identity of su(3)1 can branch into both

(2j = 0) and (2j = 4) of su(2)4.
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(recall that we mean this in the regulated sense by the replacement |γ〉〉 → |γ(ε)〉〉/nγ
explained in section 4.1). We leave implicit that the coefficients ψγαL,βL are nonzero for

representations satisfying

NL
αLα

∗
L

βL
, mγ

βL
, mγ∗

0R
6= 0 (4.15)

Additionally note that there might be multiple choices of αL and βL giving rise to the same

irrep γ of ĝ and so we label the Ishibashi state by its corresponding sector.

The entanglement entropy is given by

SEE =
πc`

24ε
+
∑

γ

pγ log
(

(Seff)γ
0
)
−
∑

γ

pγ log pγ pγ =
∑

αL,βL

|ψγαL,βL |
2. (4.16)

Let us briefly discuss the physics of this result: the identity of the R topological phase

constrains the possible anyons appearing in the effective theory at the interface. This leads

to a weighted sum of topological corrections to the area law. Although there might be

multiple branching channels realizing the same effective anyon, the topological correction

only detects the effective anyon threading the interface: the choice of branching channels

only contributes to the Shannon term. Here we see the interface adds something novel: for

single entanglement cuts on T 2 in homogenous theories it was found that every state in

HT 2 gives the same topological correction (again up to a Shannon term) [17, 56].

4.3 T 2 with two interfaces

Now we consider states on T 2 with two interfaces. There are two separate set-ups to

consider; one with Ac disconnected (and each interface is contractible on the surface of T 2)

and one where Ac is connected (and each interface runs around the meridian of T 2). We

consider these cases separately.

4.3.1 Ac disconnected

We start with the case where the two interfaces separate disconnected islands (R1 and R2)

within the L topological phase. This is depicted in figure 6. We are allowed to choose

possibly distinct TBCs at each of these two interfaces and furthermore R1 and R2 can

also host distinct topological phases. We now construct an extended Hilbert space for this

set-up.

The Hilbert space factors are22

HA =
⊕

αL,βL,γL,δL

(
NL
αLβ

∗
L

γLNL
α∗LβL

δL
)
HS1 [γL]⊗HS1 [δL] HAc = HS1 [0]1 ⊗HS1 [0]2

(4.17)

The imposition of gauge invariance is wholly similar to the previous example and we are

led to an extended Hilbert space of the form

H̃ =
⊕

αL,βL,γL,δL,σ,η

NL
αLβ

∗
L

γL
mσ
γL
mσ∗

0R1
NL
α∗LβL

δL
mη
δL
mη∗

0R2
span

{
|σ〉〉g1,κeff,1 ⊗ |η〉〉g2,κeff,2

}

(4.18)

22Again, the factor HA follows from thinking of T 2 \ (2D2) as gluing two “pairs of pants”, (S2 \ (3D2))

along their legs. Each comes with their own fusion coefficient, and we must correctly identify the anyons

running through the legs.
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Figure 6. States on the torus with two contractible interfaces, separating the L topological phase

from two “islands” in phases R1 and R2.

A generic state in this Hilbert space is

|ψ〉〉 =
∑

αL,βL,γL,δL

∑

σ

∑

η

ψσ,ηαL,βL,γL,δL

(
|σ〉〉g1,κeff,1

αL,βL,γL
⊗ |η〉〉g2,κeff,2

αL,βL,δL

)
(4.19)

where, as before, the coefficients, ψ, are non-zero only when fusion/branching is possible

and chosen such that |ψ〉〉 is normalized. We also denote with subscripts (as we did before)

the possibility of |σ〉〉 or |η〉〉 appearing in multiple sectors. We again find that the topological

correction from the area law comes from a weighted sum over the possible “effective anyons”

threading the interfaces plus a Shannon term coming from a choice of the state in the

fusion/branching channels:

SEE =
πc`

12ε
+
∑

σ

∑

η

p(σ, η)
(

log
(

(Seff,1)σ
0
)

+ log
(

(Seff,2)η
0
))
−
∑

σ

∑

η

p(σ, η) log p(σ, η)

(4.20)

with p(σ, η) =
∑

αL,βL,γL,δL
|ψσ,ηαL,βL,γL,δL |

2.

4.3.2 Ac connected

As a final example, we consider the space of states on T 2 with two interfaces taken along

the meridian (as depicted in figure 7). Since Ac is now connected, there is only one L phase

and one R phase. However, we can still allow for possibly distinct TBCs at the separate

interfaces. The extended Hilbert space is given by factors

HA =
⊕

αL

HS1 [αL]⊗HS1 [α∗L] HAc =
⊕

αR

HS1 [αR]⊗HS1 [α∗R] (4.21)

and the quantum gluing determines the embedded Hilbert space to be

H̃ =
⊕

αL,αR,β̄1,β̄2

(mβ̄1
αL
m
β̄∗1
αR)(mβ̄2

α∗L
m
β̄∗2
α∗R

)span
{
|β̄1〉〉g1,κeff,1 ⊗ |β̄2〉〉g2,κeff,2

}
(4.22)

A generic state in this Hilbert space will be of the form

|ψ〉〉 =
∑

αL,αR

ψβ̄1,β̄2
αL,αR

(
|β̄1〉〉g1,κeff,1

αL,αR ⊗ |β̄2〉〉g2,κeff,2
αL,αR

)
(4.23)
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Figure 7. The states on torus with two noncontractible interfaces can be generated by the path

integral with Wilson line insertions αL and αR as long as they have mutual branching channels β̄1
and β̄2.

and its entanglement entropy is

SEE =
πc`

12ε
+
∑

β̄1,β̄2

p(β̄1, β̄2)
(

log
(

(Seff,1)β̄1

0
)

+ log
(

(Seff,2)β̄2

0
))

−
∑

β̄1,β̄2

p(β̄1, β̄2) log p(β̄1, β̄2). (4.24)

with p(β̄1, β̄2) =
∑

αL,αR
|ψβ̄1,β̄2
αL,αR |2.

5 Surgery

In this section, we describe how these results can be realized from surgery techniques.

Surgery provides an independent method for evaluating the entanglement entropy by re-

alizing the Rényi entropies as path integrals on replicated geometries. Here the full power

of Chern-Simons theory as a topological field theory can be brought to bear: in [17], these

techniques allowed the authors to extend the Kitaev-Preskill / Levin-Wen results [2, 3]

to a wide variety of manifolds with a wide variety of entanglement cuts. This section is

constructed in a similar spirit to that paper, although now with the inclusion of interfaces.

Before we describe this in detail, we will make a couple of remarks. Firstly, surgery,

as a tool, typically uses a formal description of TQFT, and as such, the results of [17]

naturally exclude the area term and calculate the TEE correction exactly. However since

these corrections are inherently negative,23 the interpretation of these replica path integrals

as an entropy is dubious; it is the area law that guarantees positivity, even if it is non-

universal. Secondly, the issue of the non-factorizability of the Hilbert space is completely

ignored in these replica path integrals. When including interfaces, we will soon see that

it will be necessary to regulate this formal description of surgery. While this regulator is

introduced to mitigate interface intersections, it provides a natural UV regulator and we will

see that through our “regulated surgery” an area law appears. This method, however, still

does not address the second remark. At the end of section 5.1, we will draw a connection to

23All of the statements in this section apply for compact groups, where S is a unitary matrix and as such

|S0
α| < 1. Interestingly enough, this does not have to be true for non-compact groups. For instance, [57]

continues the Stopo = log S0
α result to the non-compact SL(2,R) Chern-Simons theory and finds a positive

value for this correction matching the BTZ Bekenstein-Hawking entropy.
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the results of sections 3 and 4 which should be viewed as a more fine-grained, fundamental

description of the entanglement across the interface. That said, surgery remains a powerful

tool in the interface theory and complements the fine-grained calculations with geometric

intuition; we will see it easily verifies the above results and we will give an example in the

discussion (section 6) where surgery can evaluate Stopo when the corresponding extended

Hilbert space description would be complicated.

Let us recall that the standard description of surgery is predicated by the fact that the

dimension of the Chern-Simons Hilbert space on the two-sphere (possibly with two anyon

punctures in conjugate representations) is one-dimensional:

dimHS2 = 1. (5.1)

With this fact we can write the overlap of any two-states |ψ〉, |φ〉 ∈ HS2 in terms of their

overlap with any choice of fiducial state |χ〉 ∈ HS2 :

〈φ|ψ〉 =
〈φ|χ〉〈χ|ψ〉
〈χ|χ〉 (5.2)

When |ψ〉 and |φ〉 are produced by the path integral on manifolds Mψ and Mφ (with

boundaries ∂Mψ = ∂Mφ = S2) then the left-hand side of (5.2) is the path integral on the

manifold Mp
φ#S2Mψ (here the “p” on Mp

φ indicates a flip in orientation). The right-hand

side however is the multiplication of the path integrals on the Mp
φ#S2Mχ and Mp

χ#S2Mψ

divided by Mp
χ#S2Mχ. This is particularly nice when |χ〉 is produced by the path integral

on the interior of a three-ball (with possibly a pair of Wilson lines intersecting the boundary

S2). In this case we simply “cap off” the geometries Mφ and Mψ (which we will denote M̄φ

and M̄ψ) and divide by the expectation value of Wilson lines in S3. Using this iteratively,

the path integral on any compact three-manifold can eventually be evaluated as a rational

expression of path integrals on a handful of simple “ingredient” geometries (for instance

S2 × S1 and S3).

Now we repeat this procedure for a three-manifold with interfaces. A natural guess for

what should be done is to “cut” and “sew” along an interface, taking |χ〉 to be produced

on the 3-ball bisected by an interface. It turns out that this is not a very helpful approach,

since when anyon punctures are included

dimHS2[αL,αR] =WαL
αR (5.3)

which isn’t necessarily one if the interface is non-trivial. The resolution to this is to always

perform surgery along trivial interfaces (i.e., within a single topological phase) in such a

way as to isolate the non-trivial interfaces within a simple manifold (say S3). The price

to pay with this is we now regard this S3 as an input ingredient to the surgery and so

need to evaluate it independently. Once that has been done, we can use this procedure to

“chop down” any complicated three manifold with (isolated) interfaces into easily evaluated

objects. Figure 8 is provided as an illustration of this procedure.
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Figure 8. Manifolds ML and MR joined along an S2 interface. We can take surgery cuts just to

the left and right of the interface; the price we pay is that we have to independently evaluate the

path integral on S3 with an S2 interface (here denoted Z[S3
LR]).

Figure 9. (Left) The state prepared on the two-sphere with anyon punctures. The middle point

of the Wilson lines tunnel the interface through the effective theory in a fixed Rγ channel. (Middle)

The reduced density matrix (obtained by suppressing the azymuthal and conformally mapping to

the Euclidean plane). (Right) The replicated manifold representing Trρnred. We are suppressing a

dimension and so the intersection of the interfaces is inaccurately represented as two isolated points

when they are actually a line fixed under the Zn replica symmetry.

5.1 S2: entanglement cut along the interface

Let us consider first the situation of a spatial two-sphere with an interface separating two

anyon insertions αL and αR. As we stated above, there may be more than one state with

this configuration depending on the branchings of αL and αR at the interface. We pick a

particular state formed by the path integral inside the three ball with Wilson line insertions

restricted to the representation Rγ of ĝ at the interface for some γ such that mγ
αLm

γ∗

α∗R
6= 0.

The replica path integral is S3 with alternating wedges of L and R topological phases and a

Wilson loop that tunnels through the interfaces in either the Rγ or the Rγ∗ representations

(depending on orientation). This is depicted as a cartoon in figure 9. We will call this object

Zn
[
S3
LR(αL, αR; γ)

]
or Zn

[
S3
LR

]
for short.

It is clear from the geometry, that there is no meaningful way to surgically isolate the

interfaces in the above path integral. This is because they intersect at the line fixed by

replica symmetry. Because of this, Zn
[
S3
LR

]
is the new independent ingredient we must

supplement to the surgery method. As we will see in later sections, once we evaluate

Zn
[
S3
LR

]
, we can use it to surgically evaluate a large number of replica geometries. To

deal with the fixed line where the interfaces intersect, we will return to our reduced density
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Figure 10. (Left) A cartoon of reduced density matrix with the tubular neighborhood removed.

(Middle) The replica geometry; the mutual intersection of the interfaces has been regulated. (Right)

The geometry after mapping to S1 × D2. The Wilson threads this solid torus, intersecting the

interfaces transversely.

matrix and excise a small tubular neighborhood of radius δ about this fixed line. The

replica path integral is then over the manifold, S3
LR \ Nnδ. We will conformally map this

to D2×S1 where D2 is the Poincaré disc and the S1 has geodesic length 2πnδ.24 Without

loss of generality, we will take the Wilson lines to thread through the origin of the Poincaré

disc. This is illustrated in figure 10. To implement δ as a regulator, it is necessary to

introduce a length scale, `, as the perimeter of the D2. We will be interested in taking

δ/`→ 0 at the end of the computation.

Our expression for Zn[S3
LR] is then

Zn[S3
LR] = lim

δ/`→0

〈
n∏

q=1

P(ĝ)
γ ŴαL [θq, θq+1/2]P(ĝ)

γ ŴαR [θq+1/2, θq+1]P(ĝ)
γ

〉

D2×S1

(5.4)

where we write
〈
·
〉
D2×S1 as short-hand for the insertion of the above into the path-integral

on D2×S1 and not the expectation value in a fixed state; in particular, operator insertions

can be permuted cyclicly around the S1. For the Wilson line insertions, the subscripts

denote their associated representation and the endpoints are denoted in the brackets (it is

implicit that θn+1 ≡ θ1). P(ĝ)
γ is a projector onto the Rγ representation of the subalgebra

ĝ. Since we are dealing with Wilson line operators, we pause to discuss possible issues of

gauge invariance. Even under a proper gauge transformation (that is, one with support

localized in the bulk of the D2 × S1)

AL → g−1
L

(
d+AL

)
gL (5.5)

the Wilson line operator is not invariant: it responds by conjugation

ŴαL [θq, θq+1/2]→ π(ĝL)
αL

[g−1
L (0, θq)]ŴαL [θq, θq+1/2]π(ĝL)

αL
[gL(0, θq+1/2)] (5.6)

where π
(ĝL)
αL [gL] is the representation of gL acting on RαL . Wilson lines in the R phase

respond to gauge transformations of AR similarly. The TBCs, however, break the bulk

24Although the theory is topological, this statement is easily seen with a cylindrically symmetric metric:

ds2 = dz2 + dρ2 + ρ2dθ2 = ρ2
(
dθ2 + dρ2+dz2

ρ2

)
∼ ds2

S1 + ds2
H2 . Note that the ρ = δ boundary is mapped to

the boundary of H2. The hyperbolic half-plane H2 can then be mapped to Poincaré disc.
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gauge invariance at the interfaces between these phases by identifying AL with AR through

the isotropic subalgebra g. The unbroken gauge invariance preserves the TBCs: these are

group elements limiting to the appropriate subgroup as they approach an interface. For

instance, approaching the interface positioned at θq:

lim
θL→θq

gL(θL) = ιL ◦ ḡ(θq) lim
θR→θq

gR(θR) = ιR ◦ ḡ(θq) ḡ ∈ exp g. (5.7)

Upon this restriction π
(ĝL)
αL breaks up into irreps of this subgroup:

π(ĝL)
αL

[ιL ◦ ḡ] =
⊕

δ

π
(ĝ)
δ [ḡ] (5.8)

of which Rγ appears in a particular block that is singled out by acting on P(ĝ)
γ . A similar

statement holds for π
(ĝR)
αR . Thus under generic gauge transformations preserving the TBCs,

our expectation value (5.4) remains invariant:

Zn[S3
LR]→

lim
δ/`→0

〈
n∏
q=1

P(ĝ)
γ π(ĝL)

αL [g−1
L (θq)]ŴαLπ

(ĝL)
αL [gL(θq+1/2)]P(ĝ)

γ π(ĝR)
αR [g−1

R (θq+1/2)]ŴαRπ
(ĝR)
αR [gR(θq+1)]P(ĝ)

γ

〉
D2×S1

= lim
δ/`→0

〈
n∏
q=1

P(ĝ)
γ π(ĝ)

γ [ḡ−1(θq)]ŴαLπ
(ĝ)
γ [ḡ(θq+1/2)]P(ĝ)

γ π(ĝ)
γ [ḡ−1(θq+1/2)]ŴαRπ

(ĝ)
γ [ḡ(θq+1)]P(ĝ)

γ

〉
D2×S1

= lim
δ/`→0

〈
n∏
q=1

P(ĝ)
γ ŴαLP

(ĝ)
γ ŴαRP

(ĝ)
γ

〉
D2×S1

(5.9)

since π
(ĝ)
γ [ḡ]P(ĝ)

γ π
(ĝ)
γ [ḡ−1] = P(ĝ)

γ .

We will now evaluate (5.4). First we write out the projectors concretely,

P(ĝ)
γ =

∞∑

m̄=0

∑

ī

|γ, m̄, ī〉〈γ, m̄, ī|. (5.10)

Here we are explicitly notating the grade of a state by m̄; a basis of states at this grade

are labelled by ī. Sandwiching these projectors in between Wilson line operators, our task

is to evaluate overlaps of the form

〈γ, m̄1, ī1|ŴαL [θq, θq+1/2]|γ, m̄2, ī2〉 (5.11)

As noted in [58] the path integral of Chern-Simons theory along D2 × [θq, θq+1/2], where

the disc is punctured by a Wilson line in representation RαL is equivalent to a chiral WZW

path-integral on S1× [θq, θq+1/2]; this path integral is over group elements fixed in the con-

jugacy glass of the group element dual to integral weight αL. States of this theory furnish

the representation Rα. In this vein, we treat Ŵα[xq, yq] as an unrestricted WZW transition

amplitude in the αL sector. As written, this boundary theory has no Hamiltonian and as
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such the expectation value (5.4) diverges. We will supplement this transition amplitude

with the CFT Hamiltonian,25 H ĝL = 2π
`

(
LĝL

0 − cL
24

)
. Thus we arrive at

∑

n1,n2

∑

j1,j2

〈γ, m̄1, ī1|αL, n1, j1〉〈αL, n1, j1|e−δH
ĝL |αL, n2, j2〉〈αL, n2, j2|γ, m̄2, ī2〉

=
∑

n1

∑

j1

〈γ, m̄1, ī1|αL, n1, j1〉e−
2π δ
` (hαL+n1−

cL
24 )〈αL, n1, j1|γ, m̄2, ī2〉 (5.12)

Now let us look at the overlap 〈γ, m̄1, ī1|αL, n1, j1〉. The representation Rγ appears in the

restriction of RαL and so the state |γ, m̄1, ī1〉 appears at a particular grade of RαL . Let us

call this grade nm̄. The nature of the conformal embedding is such that LĝL
0 acts on states

of the ĝ CFT as Lĝ
0 and so

hαL + nm̄ = hγ + m̄. (5.13)

Within the grades nm̄ and m̄ there will be some rectangular change of basis matrix M(nm̄):

〈γ, m̄1, ī1|αL, n1, j1〉 = δn1,nm̄1
Mī1

j1 (5.14)

We will require that states of Rγ sit in the representation RαL isometrically such that

δm̄1,m̄2δī1 ,̄i2 =〈γ, m̄1, ī1|γ, m̄2, ī2〉 =
∑

n

∑

j

〈γ, m̄1, ī1|αL, n, j〉〈αL, n, j|γ, m̄2, ī2〉

=
∑

n,j

δn,nm̄1
δn,nm̄2

Mī1
jM∗ī2

j (5.15)

Putting these facts together we have the following expression for (5.11):

∑

n

∑

j

δn,nm̄1
δn,nm̄2

Mī1
jM∗ī2

je−
2πδ
`

(hγ+m̄1− c̄
24

) = δm̄1,m̄2δī1 ,̄i2e
− 2πδ

` (hγ+m̄1− c̄
24) (5.16)

This is precisely the expression we would have arrived at evaluating the transition amplitude

of a Wilson line in representation Rγ within a g Chern-Simons theory from the beginning.

By similar arguments we have for the R-phase Wilson lines

〈γ, m̄2, ī2|ŴαR [θq+1/2, θq+1]|γ, m̄3, ī3〉 = δm̄2,m̄3δī2 ,̄i3e
− 2πδ

` (hγ+m̄2− c̄
24) (5.17)

Again this expression follows precisely because ĝ is conformally embedded into ĝR and Rγ
appears in the restriction of RαR . Putting this all together we arrive at

Zn[S3
LR] = lim

δ/`→0

n∏

q=1

∑

m̄q

∑

īq

δm̄q ,m̄q+1δīq ,̄iq+1
e−

4πδ
` (hγ+m̄q− c̄

24) ≡ lim
δ/`→0

χ(ĝ)
γ

(
e
−8π nδ

`

)
(5.18)

25This corresponds to the addition of the boundary term Sbndy = 1
2π

∫
∂D2×I

κL (AL,∧∗AL) to the ficti-

tious cutoff surface. Note that this boundary term introduces a metric on the cutoff surface and a corre-

sponding geodesic length, `, around the circle; we shall see that this term is responsible for the area law.
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Figure 11. The state on the torus and (middle) the same state redrawn suggestively. (Right) The

three-manifold of the replica path integral.

Thus our path-integral in question is a character of Rγ in the effective subalgebra. Taking

δ/`→ 0, we recover the expected answer

Zn[S3[αL, αR; γ]] =
(
Seff
)
γ

0
e
πc̄`

48nδ (5.19)

That we arrived at this answer is probably no surprise: one might notice that if one views

the projector (5.10) as a maximally mixed (unnormalized) density matrix over the Rγ
representation, then its purification is precisely the Ishibashi state |γ〉〉. Thus while in this

computation, Zn is akin to a thermal partition function, the computations in section 4.1

are the analogous computation using a pure-state purification.

5.2 T 2 with a single interface

Now we repeat the calculation of section 4.2 from the viewpoint of surgery. For convenience,

in figure 11, we recall the path integral picture for the state, as well as what the replicated

geometry schematically looks like. Unlike section 4.2, we will choose a state fixed by a

specific choice of αL, βL and γ illustrated on the left of figure 11.

Let us see how to deal with the handles in the right subfigure of figure 11. We first

“cut” at the midway point of the handle by inserting the one dimensional projector on

HS2[αL,α
∗
L] (i.e., the two-sphere punctured by αL and α∗L). By pulling the handle away

from the “beachball”, we “cut” through the βL lines in the same way. This is depicted in

greater detail in figure 12. This isolates the αL and βL fusion vertex within a single S3.

Let us comment on this fusion vertex. We will write this as an overlap of states on the

two-sphere with a triple puncture (by supposition of NL
αLα

∗
L

βL 6= 0, this Hilbert space is

non-empty)

〈αL, α∗L, βL|S2 |αL, α∗L, βL〉S2 ≡ |ΨαL,α
∗
L,βL
|2. (5.20)

If NL
αLα

∗
L

βL > 1, then this overlap is ambiguous: we need to specify the fusion channel.

This is in fact data we need to supplement to completely specify our original state depicted

in the left panel of figure 11. We will suppose this data has been fixed. Regardless, as we

shall soon see, this ambiguity does not enter into the Rényi entropy.

Doing this for each handle, we find the following expression for the Rényi path-integral

Zn =
Zn[S3

LR[βL, 0; γ]] |ΨαL,α
∗
L,βL
|2n(

Z[S3
L[αL]]

)n (
Z[S3

L[βL]]
)n (5.21)
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Figure 12. (Left) One of the handles from the right subfigure of figure 11, with S2 surgery

performed at the indicated locations. (Right) The equivalent path-integral expression.

where Z[S3
L[αL]] = SLαL

0
is the path-integral on the three-sphere with an unknotted Wilson

loop in the αL representation. As promised, the overlap |ΨαL,α
∗
L,βL
|2 does not affect the

Rényi entropies and we only pick up the contribution from the effective anyon, γ, at the

interface:

Sn =
1

1− n log
Zn
Zn1

=
1

1− n
(
logZn[S3

LR[βL, 0; γ]]− n logZ1[S3
LR[βL, 0; γ]]

)

=
1 + n

n

πc̄`

48δ
+ log (Seff)γ

0
(5.22)

This is consistent with the results from section 4.2: regardless of the branching channel

from which it appears, the topological correction only knows about which effective anyon,

γ, threads the interface.

5.3 T 2 with two interfaces

Now we consider states on the torus with two interfaces, evaluating the surgical expressions

for each of the two possible configurations separately.

5.3.1 Ac disconnected

First, we revisit the setup of section 4.3.1. On the left of subfigure of 13 we de-

pict a path-integral preparation of a given state. Again we are fixing a particular set

{αL, βL, γL, δL, σ, η} appearing in the fusion and branching channels. On the right of the

same figure we give a schematic visualization of the replica path integral.

The procedure for simplifying this is similar to the last section and we find the following

expression for the replica path integral:

Zn =
Zn[S3

LR1
[γL, 0;σ]]Zn[S3

LR2
[δL, 0; η]] |ΨαL,β

∗
L,δL
|2n|Ψα∗L,βL,γL

|2n(
Z[S3

L[αL]]
)n (

Z[S3
L[βL]

)n (
Z[S3

L[γL]]
)n (

Z[S3
L[δL]]

)n (5.23)

Again we see that the overlaps |Ψ...|2 do not contribute to the Rényi entropies which are
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Figure 13. (Left) The state on the torus and (middle) the same state redrawn suggestively.

(Right) The three-manifold of the replica path integral.

completely controlled by the effective anyons at each interface:

Sn =
1

1− n
(

logZn[S3
LR1

[γL, 0;σ]]− n logZ1[S3
LR1

[γL, 0;σ]] + logZn[S3
LR2

[δL, 0; η]]

− n logZ1[S3
LR2

[δL, 0; η]]
)

=
1 + n

n

πc̄`

24δ
+ log (Seff,1)σ

0
+ log (Seff,2)η

0
(5.24)

as was expected from section 4.3.1.

5.3.2 Ac connected

Finally we revisit the states described in section 4.3.2. The path integral picture of the

state is recalled on the left of figure 14, while the replica path integral is schematically

drawn on the right of the same figure. As before, we are fixing the anyon content to a

particular set appearing in the fusion and branching channels.

Surgically removing the S2 handles from the geometry we have the following expression

for the replica path integral:

Zn =
Zn[S3

LR[αL, αR; β̄1]]Zn[S3
LR[αL, αR; β̄2]](

Z[S3
L[αL]]

)n (
Z[S3

R[αR]]
)n (5.25)

and consequently the expression for the Rényi entropies,

Sn =
1

1− n

(
log

Zn[S3
LR[αL, αR; β̄1]](

Z1[S3
LR[αL, αR; β̄1]]

)n + log
Zn[S3

LR[αL, αR; β̄2]](
Z1[S3

LR[αL, αR; β̄2]]
)n
)

=
1 + n

n

πc̄`

24δ
+ log (Seff,1)0

β̄1
+ log (Seff,2)0

β̄2
(5.26)

which matches our results from section 4.3.2.
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Figure 14. (Left) The state on the torus and (middle) the same state redrawn suggestively.

(Right) The three-manifold of the replica path integral.

6 Discussion

In this paper, we have extended the story of gapped interfaces in Chern-Simons theory

found in [1] in several different directions. First, in considering non-Abelian theories we

showed that the topological boundary conditions of the Abelian theories carry over in

a natural way and allow us to define the notion of isotropic interfaces. We addressed

how these boundary conditions affect the anyon excitations of the theory as the interface is

approached; this is consistent with other descriptions in the literature [14, 15]. We have also

explained how these boundary conditions fit into a resolution to the obstruction of Hilbert

space factorization in gauge theories by providing a definition of an extended Hilbert space.

From this we were able to compute the entanglement entropy across an interface, agreeing

with the results of [14]. We have also extended our analysis away from states defined on

the two-sphere. Although our examples stopped at interfaces on a torus, in principle the

construction of extended Hilbert spaces that we provide in appendix A gives a clear road

map for similar calculations on any Riemann surface. We then outlined a notion of surgery

for interface theories and used this alternative perspective to verify our previous results.

There are several natural open avenues for research that we describe below.

Further utilizing surgery. Although the above section on surgery is presented as a

novel verification of the exact results from the extended Hilbert space approach, we remark

that the full “power of topology” found in surgery methods was not leveraged in this paper.

Indeed one can envision configurations of interfaces and entangling surfaces, while easy to

manipulate as Rényi path integrals, whose states are difficult to describe analytically inside

an extended Hilbert space. One such scenario is an entangling surface passing through,

say, p interfaces transversely (while possibly leaving q interfaces as spectators). One such

configuration on the plane is pictured in figure 15. For this simple case we can easy use
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q
np

n

Zn

p+ nq
n

Figure 15. (Left) The state on the plane has p+ q interfaces, and we take the entangling surface

to pass through p of them transversely. The replica manifold (Right) is easy to describe as a

three-sphere with p+ nq islands.

surgery to evaluate the Rényi path integral as

Zn =
Z[S3

L]
∏p
i=1 Z[S3

LRi
[Ii]]

∏q
j=1 Z[S3

LRj
[Ij ]]n

Z[S3
L]p+nq

Sn = (1− p) log
(
S(κL)

0
0
)

+

p∑

i=1

log

(
S(κ

(Ii)
eff )

0

0
)
. (6.1)

We see that the q spectator interfaces add no contribution to the Rényi entropy as

expected, but we also get an interesting dependence on the p transversely intersected

interfaces as well as the background κL phase. It will be interesting to include anyon

punctures into this story and see if we can understand and extend the results of [15] from

the effective field theory perspective. We leave this to future work.

Algebraic entropy. We have heavily employed the notion of an extended Hilbert space

to construct the Hilbert spaces of these interface theories and to define and compute their

entanglement entropy. Let us make some comments as to whether these results can be

similarly interpreted in terms of the complementary algebraic entropy program [23].

Recall that instead of positing a Hilbert space sub-region factorization, this program

instructs one to define a local algebra of operators, AA, associated to a sub-region, A.

A direct consequence of non-factorization is that such local algebras generically have a

non-trivial intersection with their commutant. Note that there may be more than one

choice of algebra associated to a region and hence more than one choice for the resulting

center. Instead of embedding the state in an extended space, one performs the following.

Given a state ρ, there exists a unique “reduced state” ρA ∈ AA reproducing all expectation

values in A:

Tr (ρAOA) = Tr (ρOA) ∀OA ∈ AA. (6.2)

ρA can be block-diagonalized with respect to the center:

ρA =



λ1ρ1 0 . . .

0 λ2ρ2 . . .
...

...
. . .


 TrHiρi = 1

∑

i

λi = 1. (6.3)

with Hi a particular eigenspace of the center. The von Neumann entropy of ρA then has a

natural split into the weighted sum of the von Neumann entropies associated to each ρi and
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Figure 16. In a homogeneous su(2)k theory, j and j uniquely fuse to the identity operator as

δ → 0. Thus Wilson loop operators acting the edge of A can be represented as an operator acting

on the edge of Ac.

a Shannon entropy arising from the classical distribution, {λi}, with respect to the central

eigenspaces. The relation between the extended Hilbert space, possible definitions for local

algebras, and replica path integrals (which seems to ignore both subtleties) has begun to be

explored [59, 60]. One might guess that the finite dimensionality of Chern-Simons’ Hilbert

spaces makes this an ideal arena in which to explore these relations.

Indeed, intuition suggests a natural center generated by Wilson line operators parallel

to the entangling surface, however the dimensionality of the Hilbert spaces on Riemann

surfaces seems to be too restrictive to make this idea fruitful. As a trivial example, on the

two-sphere dimHS2 = 1, and the entire operator algebra is proportional to the identity

operator. Thus, for instance, if we declare AA to be Wilson loop operators acting exclusively

on the northern hemisphere, the center is both trivial and everything.

For states on the torus, the Hilbert space is more non-trivial and labelled by integrable

representations, HT 2 = {|α〉}. The operator algebra acting on HT 2 is the universal algebra

generated by Wilson loops acting on the meridian and on the longitude of the surface of

the torus:

A = U
[
Ŵ

(m)
β , Ŵ (`)

γ

]
(6.4)

Now consider the bipartition of T 2 with two non-contractible entangling surfaces similar

to section 4.3.2 (for simplicity in the homogenous theory). A natural declaration of the

algebra for the A region is the one generated by meridian Wilson operators acting on that

region

AA = U
[
Ŵ

(m)
β

∣∣∣
m∈A

]
(6.5)

as depicted in figure 17.

The problem is that these operators already act diagonally on the standard basis of

states [61]:

Ŵ
(m)
β |α〉 =

Sβα
S0

α |α〉 (6.6)
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Figure 17. States on the torus can be prepared via the interior path integral with a longitudinal

Wilson line insertion (α in this figure). For this particular bipartition, a natural candidate for AA
is generated by meridian Wilson loop operators acting in the A region (depicted here in red).

so while it is possible to construct a “reduced” matrix strictly from Wilson loop operators

acting in the A region that reproduces all the expectation values of a state |α〉:

ρ
(α)
A =

1

2

∑

γ

(
S0

α S†γ
α
Ŵ (m)
γ + h.c.

)
∈ AA (6.7)

it is easy to see that this reduced density matrix is in fact the full density matrix and its

von Neumann entropy vanishes. Of course the origin of this annoyance is the fact that the

operators appearing in (6.5) are identical to meridian operators acting in any region. This

is because the theory is topological.

It is curious that in this case, where the extended Hilbert space description works out

so well, the algebraic approach seems to yield no leverage. The center that we described

above is akin to the “magnetic center” described in [23]; in the topological Z2 lattice gauge

theory, the authors also found zero algebraic entropy for this choice of center. In that paper,

the authors also constructed an “electric center” correctly reproducing both the area law

and the TEE. However this center seems to only be available in the microscopic description

(and not, say, from the effective K = 2σx Abelian Chern-Simons theory [62]). In general,

without embedding the Chern-Simons theory into some larger Hilbert space, we expect that

the algebraic entropy corresponding to a bipartition of a closed surface cannot reproduce

the TEE. We can understand this, heuristically, from the following reasoning: the TEE is

an intrinsically negative contribution and can only appear in an entropic quantity because

it is subleading to a divergent area law. It is then unclear how this can appear from the

algebraic entropy which is (i) positive by definition, and (ii) bounded above by log dimH
and therefore finite. Setups where the algrebraic approach could possibly yield interesting

results will be a subject of future research. This includes states on surfaces with boundary

(such that dimH =∞) and Chern-Simons theories with a non-compact gauge group.

AdS3/CFT2. These questions lead to another natural area of inquiry: the AdS3/CFT2

correspondence. Investigations in this direction were initiated in [63] for Abelian Chern-

Simons theories propagating on AdS. Our construction of isotropic interfaces for non-

Abelian theories allows for deeper questioning. Indeed, the bulk matterless theory itself

has a natural description in terms of two SL(2,R) Chern-Simons connections. This fact

makes three-dimensional holography an ideal testing ground for exploring questions of bulk

entanglement and bulk factorization (or more precisely, the lack thereof). Interesting work
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has already appeared in this direction [29]. It would be interesting if our construction (with

suitable generalization), can provide precise realizations of entanglement wedge reconstruc-

tion, quantum error correction, and the “area operator” in 3d holography. Additionally

we hope inquiries along these lines can shed light on recent appearances of Ishibashi(-like)

states in AdS3/CFT2 and what role they play in both entanglement and Wilson line ex-

pectation values [64–67]. A challenge to these follows-up is the extension of this work to

non-compact gauge groups. This is a non-trivial and interesting subject in its own right.

After the present work was completed, ref. [68] appeared, which explores an interesting

example of non-Abelian interfaces between distinct Moore-Read states.
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A Hilbert space construction and ground state degeneracy

In this appendix we explore the role of our extended Hilbert space construction as a regu-

lated form of the “gluing” procedure familiar in axiomatic TQFT. That is to say, it provides

an identification of the constituent Hilbert spaces (as an extended, tensor product space)

and the final product manifold Hilbert space (as an embedded Hilbert space). This pre-

scription is both precise and effective: below we show that it can reproduce the known

ground state degeneracy (GSD) of the field theory on a Riemann surface and then also

extend it to Riemann surfaces with isolated interfaces. In fact, for this latter case, the ex-

tended Hilbert space provides a principled definition of the Hilbert space of these theories,

reproducing the ground state degeneracy (GSD) counting in [33].

Homogenous theories. Let us begin with a homogeneous theory on a Riemann sur-

face, Σg, of genus g. As a brief description, we want to decompose this Riemann surface

into a collection of simpler surfaces with circular boundaries. Associated to each circular

boundary is a WZW Hilbert space in a fixed conformal module (intuitively the primary

associated with an anyon threading the circle) and the Hilbert space on the surface is

given by the fusion space of these conformal primaries. The full Hilbert space HΣg will be

realized as an embedded subspace of the tensor product of the constituent Hilbert spaces;

this subspace is isolated by the kernel of appropriate gapping operators. To be specific,

let’s try to realize Σg as a two-sphere with 2g circular boundaries glued to g annuli. The

extended Hilbert space prescription tells us to realize HΣg as

HΣg ↪→ H̃Σg ⊂ HS2\(D2)2g ⊗
(

g⊗

i=1

HS2
i \(D2)2

)
(A.1)
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where each factor is given by

HS2\(D2)n =
⊕

α1...αn

(
Vα1,...,αnH

(WZW )gk
S1 [α1]⊗ . . .⊗H(WZW )gk

S1 [αn]
)

(A.2)

where H(WZW )gk
S1 [α] is an infinite dimensional module of the ĝk Kǎc-Moody with affine

weight α and Vα1,...,αn is the fusion space of the conformal primaries labelled {α1, . . . , αn}
(or equivalently the Hilbert space dimension of the S2 punctured by sources {α1, . . . , αn});
it is a finite number. The above embedding is uniquely specified by restoring bulk gauge

invariance of the CS theory on Σg; this is enforced at each circular boundary. Without

loss of generality, let us pick an ordering of the holes on the sphere into pairs (labelled by

an index i) that will be matched with a particular constituent annulus (also labelled by i).

Then to be precise

H̃Σg = ker
{
Q1,2
i

}
i=1,...,g

(A.3)

where Qi1,2 is shorthand for a collection of operators

Q1
i ≡ (

HS2\(D2)2g︷ ︸︸ ︷
1⊗ . . .⊗ Ja,n ⊗ 1︸ ︷︷ ︸

i

⊗ . . .

⊗
iHS2

i
\(D2)2

︷ ︸︸ ︷
1⊗ 1⊗ . . .) + (

HS2\(D2)2g︷ ︸︸ ︷
1⊗ . . . ⊗

H
S2

1\(D
2)2

︷ ︸︸ ︷
1⊗ 1 ⊗ . . .⊗

H
S2
i
\(D2)2

︷ ︸︸ ︷
Ja,−n ⊗ 1⊗ . . .)

Q2
i ≡ (

HS2\(D2)2g︷ ︸︸ ︷
1⊗ . . .⊗ 1⊗ Ja,n︸ ︷︷ ︸

i

⊗ . . .

⊗
iHS2

i
\(D2)2

︷ ︸︸ ︷
1⊗ 1⊗ . . .) + (

HS2\(D2)2g︷ ︸︸ ︷
1⊗ . . . ⊗

H
S2

1\(D
2)2

︷ ︸︸ ︷
1⊗ 1 ⊗ . . .⊗

H
S2
i
\(D2)2

︷ ︸︸ ︷
1⊗ Ja,−n⊗ . . .)

n,m ∈ Z (A.4)

This kernel forces an identification of the Kǎc-Moody weights at the glued interfaces. It

is instructive to focus on the action of (A.4) (ignoring the extraneous 1’s) on a particular

block in the decomposition of (A.2)

ker {Ja,n ⊗ 1 + 1⊗ Ja,−n}|rest. ⊂ H
(WZW )ĝk
S1 [α]⊗H(WZW )ĝk

S1 [β] ≡ H̃S2[α,β∗] (A.5)

and note that it is precisely how we described the embedded Hilbert space of a two-sphere

decomposed into two hemipheres punctured by anyons α and β∗. Hence the dimension of

this kernel is dim (ker (Ja,n ⊗ Ja,−n)) = dim H̃S2[α,β∗] = δα,β . Thus the gluing operators

pick out a unique state (per primary module) at each circular interface. This construction

of H̃Σg is heuristically correct; indeed we can now count the GSD at genus g:

dim H̃Σg =
∑

α1,...,αg

Vα1,α2,...,αg ,α∗1,α
∗
2,...,α

∗
g
. (A.6)
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Let us massage the above fusion space by fusing {α1, . . . , αg} into the representation γ and

similarly
{
α∗1, . . . , α

∗
g

}
into γ∗:

dim H̃Σg =
∑

α1...αg

∑

γ

N γ
α1...αgN γ∗

α∗1...α
∗
g

=
∑

α1...αg

∑

γ

∑

β1,β2

1
(
S0

β1
)g−1Sα1

β1 . . .Sαgβ1S†β1

γ 1
(
S0

β2
)g−1Sα∗1

β2 . . .Sα∗gβ2S†β2

γ∗

=
∑

β

1

|S0
β |2g−2

(A.7)

where the second line follows from the Verlinde formula [54] and the third from the unitarity

of the modular S matrix.

Interface theories. Now we move to theories defined on Hilbert spaces with isolated

interfaces (that we will for simplicity, take to be circular) that we will index by the pair

A,B: {IAB}. Given the discussion of the paper the generalization is entirely clear: each

interface IAB is determined by a topological boundary condition that i) maps the current

algebras on either side to a consistent diagonal subalgebra ĝ and ii) determines the set

of permeable anyons through their mutually nonzero branching channels upon restriction

to representations of g; the latter is enumerated by branching coefficients and the sum of

these channels are the tunneling matrices W(IAB).

Now let us imagine a Riemann surface, Σtotal, constructed from a collection of compact

two-manifolds ΣA residing in topological phases whose low-energy descriptions are gA CS

theories (with level-Killing forms κAi) by gluing them along their circular interfaces (here

labelled by the index i), {IAiBi}. As we saw above, this itself is a non-trivial affair. Every

pair (ΣA,ΣB) that are glued together along a boundary must be commensurate, that is

they must support an isotropic subalgebra. If there are several choices of subalgebras then

one must be specified. We will assume that these details have been sorted and describe

the resulting Hilbert space.

The Hilbert space of each constituent ΣA is simple enough to describe:

HΣA =
⊕

αA,1,αA,2,...

V(ΣA)
αA,1,αA,2,...

H(WZW )ĝA,κA
S1 [α1]⊗H(WZW )ĝA,κA

S1 [αA,2]⊗ . . . (A.8)

where V(ΣA)
αA,1,αA,2,... is the fusion space of the compact manifold formed from ΣA by shrinking

its circular boundaries to anyon punctures with the respective representation. Following

the discussion in section 3.1 and the preceding section, the Hilbert space on Σtotal should

be realized as the embedded space

H̃Σtotal
⊂
⊗

{Ai}

HΣAi

⊗

{Bi}

HΣBi
(A.9)

defined by the gapping operators given in section 3.1:

H̃Σtotal
= ker {QAi,Bi} QAi,Bi ∼

(
vtAi · κA · J Ai

)
m
⊗ 1Bi + 1Ai ⊗

(
vtBi · κBi · J Bi

)
−m

(A.10)
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where by “∼” we leave implicit all the 1’s acting on the additional tensor factors. As we

have seen the kernel of a particular QAi,Bi is spanned by Ishibashi states of the effective

Kǎc-Moody algebra g(Ai,Bi) with level-Killing form κeff,(Ai,Bi) = vtAi ·κAi ·vAi = vtBi ·κBi ·vBi
where the Ishibashi states in question are primary states associated to mutually nonzero

branching channels. In principle, once the topological boundary conditions have been

specified, this data uniquely determines this span of effective Ishibashi states and we can

regard (A.10) as definition of the full Hilbert space.

The counting of the associated GSD is facilitated by again noting that QAi,Bi restricted

to a fixed block appearing in (A.8):

ker
{(
vtAi · κAi · J Ai

)
n
⊗ 1 + 1⊗

(
vtBi · κBi · J Bi

)
−n

}∣∣∣
rest.

⊂ H
(WZW )ĝAi ,κAi
S1 [αAi ]⊗H

(WZW )ĝBi ,κBi
S1 [αBi ] (A.11)

is the extended Hilbert space description of the two-sphere with an equatorial interface

IAiBi separating anyons αAi and αBi . The dimension of this space is no longer necessarily

≤ 1 but instead given by the tunneling matrix elements,
(
W(IAi,Bi )

)
αAi

αBi
. Although the

precise GSD counting will depend on the specific configuration of interfaces, this gives an

effective algorithm for computing it: each interface comes associated with W(IAB) that we

must contract over the free indices of the fusion spaces V(ΣA) and V(ΣB).

To see how this works in practice, let us extend our homogeneous example and take

a two-sphere (with 2g discs excised) in a phase labelled by algebra g0 and level-Killing

form κ0 and we attach g annuli in phases described by {gi, κi}i=1,...,g. Each annulus comes

associated with two possible interfaces, I1
i and I2

i , and corresponding tunneling matrices

W(I1
i ), and W(I1

i ). Turning the crank we find

dim H̃Σtotal
=
∑

α1...αg

∑

β1...βg

∑

γ1...γg

∑

δ1δ2

∑

ε

1
(
S(κ0)

0
δ1
)g−1S(κ0)

β1

δ1
. . .S(κ0)

βg

δ1S(κ0)†
δ1

ε

× 1
(
S(κ0)

0
δ2
)g−1S(κ0)

γ1

δ1
. . .S(κ0)

γg
δ1S(κ0)†

δ2

ε∗
g∏

i=1

W(I1
i )
αi

βiW(I2
i )
α∗i

γi

=
∑

α1...αg

∑

δ

1∣∣∣S(κ0)
0
δ
∣∣∣
2g−2

g∏

i=1

(
W(I1

i ) · S(κ0)
)
αi

δ(
W(I2

i ) · S(κ0)
)
α∗i

δ

=
∑

δ

1∣∣∣S(κ0)
0
δ
∣∣∣
2g−2

g∏

i=1

(
W(I1

i )t · W(I2
i )
)
δ

δ
(A.12)

where we’ve used the fact that W intertwines modular S matrices as well as denoted

Wα
β = Wt

β
α
. In the cases where the above example matches an example in [33] (e.g.

g = 1: a torus with two non-contractible interfaces), the GSD matches.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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