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Emergence of spatio-temporal variations in
chemotherapeutic drug efficacy: in-vitro
and in-Silico 3D tumour spheroid studies
M. V. Sheraton1,2†, G. G. Y. Chiew3†, V. Melnikov2, E. Y. Tan4, K. Q. Luo5*, N. Verma6* and P. M. A. Sloot2,7,8*

Abstract

Background: The mechanisms of action and efficacy of cisplatin and paclitaxel at cell population level are well
studied and documented, however the localized spatio-temporal effects of the drugs are less well understood. We
explore the emergence of spatially preferential drug efficacy resulting from variations in mechanisms of cell-drug
interactions.

Methods: 3D spheroids of HeLa-C3 cells were treated with drugs, cisplatin and paclitaxel. This was followed by
sectioning and staining of the spheroids to track the spatio-temporal apoptotic effects of the drugs. A mechanistic
drug-cell interaction model was developed and simulated to analyse the localized efficacy of these drugs.

Results: The outcomes of drug actions on a local cell population was dependant on the interactions between cell
repair probability, intracellular drug concentration and cell’s mitosis phase. In spheroids treated with cisplatin, drug
induced apoptosis is found to be scattered throughout the volume of the spheroids. In contrast, effect of paclitaxel
is found to be preferentially localized along the periphery of the spheroids. Combinatorial treatments of cisplatin
and paclitaxel result in varying levels of cell apoptosis based on the scheduling strategy.

Conclusions: The preferential action of paclitaxel can be attributed to the cell characteristics of the peripheral
population. The model simulations and experimental data show that treatments initiated with paclitaxel are more
efficacious due to the cascading of spatial effects of the drugs.

Keywords: Reaction-diffusion model, Pharmacokinetics, Pharmacodynamics, Mitotic spindle stabilization,
Cytotoxicity
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Background
Multicellular tumour spheroid models have become an in-
valuable in-vitro method for gaining insight into the inter-
action between tumour cells and their microenvironment.
3D spheroid models have been able to replicate the fea-
tures of in-vivo tumour, such as activation of pathways
upon cell-cell interactions [1], presence of concentration
gradients within the tumour, and heterogenous micro-
environment which can alter pharmacokinetics (PK) of
the chemotherapeutic drug [2]. These systems provide a
clear advantage over the classical monolayer or 2D culture
systems which do not resemble the in-vivo conditions of
tumour growth. Moreover, 2D cultures exhibit exponen-
tial cell proliferation and altered cell morphologies, thus
preventing them from becoming reliable drug testing
setup. Co-culture 3D spheroids can capture the cell-cell
interactions, elevated levels of protein expression and
physiological conditions [3, 4] present in-vivo, thus pre-
senting themselves as a suitable candidate for drug screen-
ing and post-screening analysis.
Patra et al. [5] designed a high throughput microfluidic

device capable of forming multiple (5000 numbers) uni-
formly sized spheroids in a semi-autonomous fashion.
By combining the device with flow cytometry, it was
possible to conduct drug testing and analysis on the
formed 3D spheroids. Such devices could expedite drug
screening and be a useful tool for tissue in chip studies.
Sectioning of a drug treated spheroid could reveal the
internal architecture [6] and changes in morphology of
the cells due to drug effects. This could also aid in un-
derstanding the PK of the drugs and its effects on cell
cytology. However, sectioning and staining of spheroids
is a time-consuming process. There are methods [7, 8]
proposed in literature, which help to overcome such te-
dious process. Anand et al. [7] proposed a real-time
FRET-based cell viability monitoring system for detect-
ing apoptosis in a 3D spheroid. Using confocal micros-
copy, it should be possible to observe in real time the
cells in the different stages of their life cycles at different
layers inside the spheroid.
There exists a few concerns regarding, the use of 3D

spheroid models for therapeutic screening: (1) size re-
producibility of the spheroids, (2) factors (cell density,
extracellular matrix) that affect mass transport of drugs,
and (3) time spent in single sample testing or analysis. It
has been reported that small variations in spheroid sizes
could lead to large variations in the sensitivity of tumour
cells to photodynamic treatment [9] and anti-cancer
drug treatment [10] . West et al. [9] showed that the
treatment sensitivity of the cells decreased by approxi-
mately 12 folds with a five-fold increase in spheroid size.
This clearly shows that characteristics of spheroid sys-
tems are not scalable or directly extendable from a sys-
tem of different sizes. Spheroids of larger sizes have also

been shown [10] to be resistant to drug treatment.
Therefore, if a drug test were to be carried out on a
spheroid and proven successful, it does not necessarily
imply that it works on a larger in-vivo tumour at the
same dosage. In the same study, it was also observed
that large spheroids were populated with more apoptotic
cells than viable cells. This observation indicates that
there are variations in the spatial distributions of differ-
ent cell types and cell packing density within the spher-
oid. These variations could alter the drug diffusion
kinetics and the uptake rate at different layers within the
spheroid leading to a localized effect, which would
otherwise be absent in the homogenously packed small-
sized spheroids. Further, spheroid systems that use algin-
ate or agarose coatings [11–13] could lead to changes in
transport phenomena and cytotoxicity within the spher-
oid due to imperfections in coating or non-uniform dry-
ing of the agarose material.
Spheroid models for drug screening are known to be

tedious and time-consuming. Friedrich et al. [14] pro-
posed that the time taken to run the complete protocol
for a proper spheroid-based drug screening will be
around 170 h. The post screening analysis must be car-
ried out for the next 14 days in succession. Also, analysis
must be carried out for different drug dosages, spheroids
of different sizes, supporting material of different stiff-
ness, and combinations of all the above in case of com-
binatorial drug tests. It is well known that drug
concentration is not the only free parameter in the
spheroid model, factors such as mass transport within
the tumour, size of the tumour and local density of vi-
able cells, can also influence the drug efficacy. Because
of this inherent complexity, it is hard to separate and
study the major contributors of drug efficacy and their
impacts on the tumour environment through a single
experiment or multiple experiments. In some cases, it is
not even possible to tailor the experimental setups
needed for drug testing with adequate accuracy, using
existing 3D spheroid culture techniques, such as setups
needed for studying the effects of variation in intra-
tumoral mass transfer on the drug efficacy. One way to
handle such complexities associated with interactions of
the cells, variations in local densities and drug’s mass
transfer is through the use of in-silico models. If suffi-
cient data on diffusion parameters, lethal drug concen-
trations and drug mechanisms are available, all major
factors controlling tumour-drug evolution can be in-
cluded into a computational model and simulated to
predict the outcome of drug screening experiments,
Cellular automata (CA)-based models have been used

to simulate 3D tumour growth [15, 16]. These models
include the interaction between the tumour cells and
their micro-environment. Alarcon et al. [16] proposed a
cellular automata and finite difference-based hybrid
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model to describe the evolution of nutrient concentra-
tion. The cells were modelled to proliferate based on nu-
trient uptake. Jiang et al. [15] developed a multi
timescale-based model combining lattice Monte Carlo
and CA-based methods for predicting the avascular
tumour growth. The predictions from such models re-
semble closely the growth of multicellular spheroids
without any drug testing parameters. Other models such
as cancer stem cell driven cell growth models [17, 18]
and tumour shrinkage model [19] have also been devel-
oped for simulating the tumour growth. These models
have shown that the growth of multicellular spheroid
can be captured using simpler reaction kinetics and
force balances. However, numerical models, that are for-
mulated based on experimental evidence or clinical data
should be able to capture much more than just tumor
growth. This aspect is currently inadequately addressed
in existing literature.
In this study, we develop an experimental data driven

numerical model capable of simulating drug response in
spheroids. We interpret the drug chemotherapeutic
mechanism to physically and stochastically definable pa-
rameters that can be directly implemented in the model.
These parameters can be related to experimental obser-
vations and also can be quantified. The developed model
enables us to analyse the spatially localized effects of the
drug and the heterogeneity associated with a drug
treated spheroid. By simulating multicellular spheroids,
it should be possible to explore complex microenviron-
ment settings, which would be otherwise not feasible to
study using experiments. We consider the effects of two
commercially available chemotherapy drugs, namely,
Taxol (paclitaxel) and cisplatin on the spheroids of hu-
man cervical cancer HeLa cells. We performed experi-
ments of growth dynamics and drug testing on the 3D
HeLa spheroids. Using the experimental data, the model
is tuned for the cell proliferation rate and changes in cel-
lular oxidative stress levels and cell cycles arising from
drug actions. The model simulations are validated
against the spatial effects caused by the drugs used in
the experiments. The model is further used for exploring
temporal effects of combinatorial treatments on the sim-
ulated and experimental spheroids.

Methods
Cell culture
HeLa-C3 cells were generated by transfecting HeLa cells
with sensor C3 plasmid encoding for a fluorescence res-
onance energy transfer (FRET)-based sensor for detect-
ing caspase-3 activation [20]. HeLa-C3 cells were
maintained in Dulbecco’s modified Eagle medium
(DMEM, Thermo Fisher Scientific, USA) supplemented
with 10% fetal bovine serum (FBS, Hyclone, USA) and
1% penicillin/streptomycin (PS, Thermo Fisher

Scientific). The spheroid cultures were maintained in
DMEM with 20% FBS and 1% PS.
HeLa-C3 cells were chosen as the model cell line due

to the incorporated presence of fluorescence resonance
energy transfer (FRET)-based biosensor. This enabled us
to differentiate and estimate apoptosis and necrosis in
the cells in real time. Additionally, their ability to readily
form 3D spheroids and their susceptibility to both pacli-
taxel and cisplatin made them an excellent candidate for
our study.

3D HeLa-C3 spheroid cell proliferation assay
The 3D culture was performed as previously described
[7]. Non-adhesive round bottom 96-well plates (Sigma
Aldrich, USA) were first pre-coated with 1% pluronic-
F127 (Sigma Aldrich) before seeding HeLa-C3 cells. The
plates were then centrifuged at 1000 g for 5 min in the
Sorvall Legend XTR Centrifuge (Thermo Fisher Scien-
tific) and left to incubate at 37o C and 5% CO2. The
medium was changed every day to ensure maximal oxy-
gen and nutrient penetration into the spheroid. Presto-
blue (Invitrogen) was added to the cells for each day and
the absorbance was measured 2 h post addition of re-
agent. The radius of the spheroids was measured from
10 spheroid samples.

Chemotherapeutic response with HeLa-C3 spheroids
Two hundred newton meter of paclitaxel and 10 μM of
cisplatin were added to the spheroids 24 h after the seed-
ing of 1500 HeLa-C3 cells. The concentration of Taxol
and cisplatin exposed to the spheroids were assessed
every 24 h. Spheroids were stained with propidium iod-
ide (red) and images were captured with an inverted
fluorescence microscope (Carl Zeiss, Thornwood, USA)
attached to a SPOT CCD camera (Diagnostic Instru-
ments, Sterling Heights, USA). FRET images were cap-
tured with dual filters of YFP and CFP under the same
excitation (436 ± 10 nm) while PI images were captured
with the RFP filter. Images collected from the filter sets
were merged in Image Pro Plus (Media Cybernetics, Sil-
ver Spring, USA) to obtain FRET images of live (green),
apoptotic (cyan) or dead (red) HeLa-C3 cells. Prestoblue
was added to the cells and the absorbance at 570 nm
and 600 nm were measured with the SpectraMax M5
Microplate Reader (Molecular Device) 2 h post addition
of the reagent. For every individual well, the absorbance
at 570 nm was subtracted by the absorbance at 600 nm
to obtain sample readings before subtracting the average
value of the control well.

H&E staining
3D spheroids were fixed with formalin, processed and
embedded in paraffin using standard protocols (Leica).
Hematoxylin and eosin (H&E) stains were performed on
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5-μm sections of the spheroids. Standard protocols were
used, and spheroids were captured with a color camera
(AxioCam 506, Carl Zeiss).

Model description
Tumour cell proliferation and apoptosis
We use a 151x151x151 3D lattice simulation domain in
which each lattice site can be occupied by fixed mass of
cells. At the start of the simulation, t = 0, the domain is
filled with a crucial growth nutrient, glutamine [21] of
concentration, Cg and diffusion coefficient, Dg. A cluster
of cells is placed at the centre of the lattice domain. The
cells consume glutamine at their lattice point at a rate
rc, which is dependent on its mass Mc, metabolic main-
tenance coefficient ‘m’, specific growth rate ‘ Kcg ’, half
saturation coefficient ‘S’ and yield coefficient ‘Y’ as de-
scribed in eq. 1. Time variation of glutamine concentra-
tion at different lattice points is modelled by the
reaction-diffusion equation (eq. 2). In the corresponding
experiments, we replace the spent glutamine each day
with fresh glutamine from new medium. Therefore, glu-
tamine is available in excess throughout the duration of
the experiments. In a similar fashion, glutamine solute is
modelled as a constant source boundary on all sides of
the simulation domain. The open source finite volume
method-based solver, FiPy [22] (3.1.1), is used to simu-
late the steady state reaction-diffusion of glutamine
within the domain. The simulation time taken to reach
steady state concentration is assumed to be 1 hour, after
which cells proliferate, die or move. The cells uptake the
surrounding glutamine and increase in mass after
expending a part of the uptake proportional to the con-
stant cell metabolic maintenance factor (m), governed by
the Monod eqs. 1 and 3. The Monod kinetics used in
the model ensures glutamine availability-dependant
growth of the spheroids in the simulations. This closely
mimics the nutrient limitation governed tumor growth
observed in experiments. The daughter cell placement
rules in the model may however give rise to growth pat-
terns different from experimental observations. To over-
come this limitation, multiple simulation runs with fixed
parameters were carried out and the average growth ob-
servations are reported.
It is assumed that the cell mass at a lattice site divides

when the mass doubles its initial value (Mc, ini). At the
instance after division, the daughter cell is placed at a
random location within the radius of 2.5 lattice sites
from the mother cell. If no space is available within the
2.5 lattice radius, then the cell mass will not divide. If
the concentration of glutamine decreases to a level
below the prescribed threshold ‘ Cgmin ’, the cell can nei-
ther grow nor satisfy the metabolic maintenance cost,
then the cell is assumed to undergo apoptotic stress
damage ‘ dt ’. The stress evolves with time (eq. 4 and 5)

until it reaches the critical apoptotic stress value (dapopto-
sis). Cells having cumulative stress damage d(t) higher
than dapoptosis are declared as dead cells (eq. 6), which
continue to occupy the same lattice site for 4 hours.
After 4 hours (clearing time, ct) the dead cells are
cleared from the system, by allowing the cells directly
above the empty sites to move and occupy the space.
This replicates the experimental and clinical observation
of temporal shrinkage in tumour size.

rc Cg;MC
� � ¼

Kcg

Y
þm

� �
McCg

Sþ Cg
ð1Þ

∂Cg

∂t
¼ Dg

∂2Cg

∂x2
þ ∂2Cg

∂y2
þ ∂2Cg

∂z2

� �
− rc ð2Þ

dMc

dt
¼ McKcg

Cg

S þ Cg
ð3Þ

d tð Þ ¼
X

t
dt ð4Þ

dt ¼ 1;when Cg < Cgmin

0;when Cg≥Cgmin

� �
ð5Þ

Mc ¼ 0;when d tð Þ > dapoptosis ð6Þ

Effects of cisplatin on cells
Cisplatin is primarily considered to mediate cell death
by targeting fast proliferating cells. It damages cellular
DNA by cross linking the DNA of the cells to form
DNA-cisplatin adducts [23, 24]. The nucleotide excision
repair (NER) pathway is activated in order to remove
these adducts; however, upon failure of repair, cell apop-
tosis is triggered in mitotic cells and the dividing cells
undergo cell death. Yet, recent studies have indicated
that the cytotoxicity of cisplatin is not only limited to
replicating cells. Cisplatin may elicit cell death independ-
ently of DNA damage via oxidative stress [25, 26] at
three primary locations [27]. The first is the plasma
membrane, where NOX induces reactive oxygen species
(ROS) [28] which in turn trigger Fas aggregation [29] and
influence the activity of membrane channels such as Ca2+

channels [28, 30]. Engagement and clustering of Fas re-
ceptor mediates caspase activation, while Ca2+ influx
changes electrolyte capacities of the cells [28], which ul-
timately leads to cell apoptosis. Second, cytoplasm pro-
duces cellular superoxide formation through the
interaction of cisplatin with nuclear DNA, thereby activat-
ing an important regulator of cell proliferation, differenti-
ation and survival, the MAPK pathway [27, 31]. The final
and most important location is the mitochondrion, which
generates free radical during oxidative phosphorylation
and is one of the most important source of endogenous
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ROS [27]. Treatment of cisplatin in NER deficient cells
displayed similar mitochondrial ROS generation as NER
proficient cells, demonstrating cisplatin-induced mito-
chondrial ROS production regardless of the ability of cells
to repair cisplatin-induced nuclear DNA damage [25]. At
high doses of 10 μM or more, loss of mitochondrial mem-
brane permeabilization, activation of BAK and caspases
[32] are triggered by superoxide formation induced by cis-
platin [25, 29], which is effectively blocked by antioxidants
Manganese superoxide dismutase (MnSOD) and glutathi-
one [29, 33] and reactive oxygen species (ROS) scavengers
[32].

∂Ccis

∂t
¼ Dcis

∂2Ccis

∂x2
þ ∂2Ccis

∂y2
þ ∂2Ccis

∂z2

� �
−Kintraδcell Ccis −Cintracisð Þ

ð7Þ
∂Cintracis

∂t
¼ Kintraδcell Ccis −Cintracisð Þ − KbondingδcellCintracis − KdegδcellCintracis

ð8Þ
∂Cadduct

∂t
¼ KbondingCintracis ð9Þ

δcell ¼ 0;where Mc ¼ 0
1;where Mc > 0

� �
# ð10Þ

Cadduct ¼ 0; if Prep tð Þ < R
Cadduct; if Prep tð Þ≥R

� �
ð11Þ

Cl ¼ Ccismax
1

Aþ Be − tg

� �

here; tg ¼ tm − tcg
� � ð12Þ

Mc ¼ 0;when Cadduct > Cl ð13Þ
The effects of cisplatin on the cells are numerically

modelled by assuming that cancer cells experiencing oxi-
dative stress suffer DNA damage upon treatment with
cisplatin. DNA damage builds-up during the course of
the treatment. Therefore, ROS formation in the model
correlates with the quantity of cisplatin uptake by the
cells. The drug uptake is modelled by eqs. 7–10, where
A and B are constants. To model the uptake of cisplatin
more accurately, cisplatin concentration is split into two
parts, cisplatin concentration outside the cell or extracel-
lular concentration (Ccis), with diffusion coefficient (Dcis)
and concentration inside the cell or intracellular concen-
tration (Cintracis) with passive diffusion rate constant
(Kintra). The intracellular cisplatin degrades based on the
degradation rate constant (Kdeg). The rate of formation
of DNA adducts (Cadduct) is assumed to be directly pro-
portional to the intracellular concentration with a rate
constant (Kbonding). The cells attempt to remove excess
ROS via their endogenous antioxidant defence mechan-
ism in-vivo and in-vitro. In accordance with these ex-
perimental observations, in the model, the cells

eliminate the adducts formed based on the probability
‘R’ and Prep(t) as shown in eq. 11. The cells in the model
are assumed to repair themselves with equal probability
‘R’. Cells exposed to cisplatin respond differently based on
their exposure times to the drug. Therefore, an apparent
lethal concentration Cl is calculated based on eq. 12,
which is dependent on the cell’s cumulative generational
age tcg, maximum generational age for mutation tm, and
the age-independent maximum adduct concentration Ccis-

max as shown in eq. 12. Cumulative generational age is the
total existing time of the cell’s generation. The cumulative
age is divided equally between the daughter cells at the
time of division. In the model, we assume no mutation of
the cells and therefore do not consider the effects of ac-
quired drug resistance to cell lysis. Therefore, we include
the maximum generational age parameter tm, which im-
poses maximum probability of cell lysis for a long-lasting
cell generation capable of mutating. This sets an artificial
time boundary after which none of cells are allowed to
exist in the simulation and accumulate mutations. If the
adduct concentration Cadduct is larger than the permissible
lethal adduct concentration Cl, after all possible cell repair
processes, the cells undergoes apoptosis. However, if the
cell is able to overcome cisplatin cytotoxicity, in-vivo or
in-vitro, with its NER pathway, and reduce ROS through
its antioxidant defence, the cell mass divides with the oxi-
dative stress level lesser than the lethal threshold. This
phenomenon is modelled in such a way that both the
daughter cell and the parent cell do not inherit any DNA
damage, that is, Cadduct and Ccis are reset.

Effects of Taxol on cells
Cells uptake Taxol from their surroundings through pas-
sive diffusion [34]. Taxol uptake is modelled by eqs.
(14–16). Taxol is separated into three different compo-
nents based on its localization [35], concentration out-
side the cell Ctax, concentration inside the cell Cintratax

and concentration of Taxol bound to intra-cellular com-
ponents Cbound. A part of extracellular Taxol binds to
the proteins in the medium, which is quantified by the
third term in eq. 14, where, kb is the rate constant for
protein binding, Bm and Kp are the Michaelis-Menten
constants for protein binding. The drug molecules
remaining after protein binding move from the medium
into the cells through passive diffusion with clearance cl.
Similar to the extracellular protein binding, the intracel-
lular Taxol binds to saturable and non-saturable sites of
the cellular components as quantified by the second and
third terms in eq. 15 respectively, where Bmc and Kpc are
the Michaelis-Menten constants for cellular component
binding and Ns is the rate constant for binding to non-
saturable sites. The bound Taxol (Cbound) then acts on
the cells in their G2/M phase by stabilising the microtu-
bules. This causes mitotic arrest of the cells at the
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spindle checkpoint [36], resulting in cell apoptosis.
There are reports [37, 38] on the formation of multi-
polar spindles in the cells post Taxol treatment. It is im-
portant to note that Taxol is found to affect only the
cells that have undergone mitosis in the presence of
drug and the cells that are in their interphase during the
drug treatment. Similar to the progressive, concentration
based, lethal effects of cisplatin on the cells, the activity
of Taxol is dependent on the intracellular concentration
levels of the drug [39].
To mimic these mechanisms of actions, in our simula-

tion model, Taxol is assumed to affect only the parent
cells that have divided in the presence of the drug. This
assumption is applicable through the generation of the
cells, meaning, the daughter cells from a cell division will
be affected by the drug only if they have been exhibited
their G2/M phase in the presence of the drug. This as-
sumption makes sure that the effects of the drug do not
carry over to the future generations after cell division as
observed by Gascoigne [40]. Cells in the simulation
whose mass is 1.5 times higher than the initial cell mass
(Mc, ini) are tagged as cells in their G2/M phase (G2cell).
Cell apoptosis is modelled in a stochastic fashion in ac-
cordance with experimental observations [40]. Cells in
the simulations are chosen for apoptosis only if their
bound Taxol concentration is above lethal Taxol con-
centration (Clethal) and the chosen cells are declared
dead if the probability of cell survival (Psur(t)) is lower
than the fixed cell apoptosis probability (Rd).

∂Ctax

∂t
¼ Dtax

∂2Ctax

∂x2
þ ∂2Ctax

∂y2
þ ∂2Ctax

∂z2

� �
− clδcell Ctax −Cintrataxð Þ − kb

Bm

Kp þ Ctax
Ctax

ð14Þ
∂Cintratax

∂t
¼ clδcell Ctax − Cintrataxð Þ − kb

Bmc

Kpc þ Cintratax
Cintratax −NsCintratax

ð15Þ
∂Cbound

∂t
¼ kb

Bmc

Kpc þ Cintratax
Cintratax þNsCintratax

ð16Þ

G2cell ¼ 0;where Mc < 1:5Mc;ini

1;where Mc≥1:5Mc;ini

� �
ð17Þ

Mc ¼ 0; if Cbound≥Clethal;Psur tð Þ < Rd and G2cell ¼ 1
Mc; if Cbound < Clethal

� �

ð18Þ

Results
HeLa-C3 cell proliferation profiles
Experimental quantification and validation of simulation
profiles for proliferation of HeLa-C3 cells and increases
in spheroid diameter are prerequisites for subsequent
drug efficacy estimations. Hence, experiments were

carried out using three different initial cell seedings,
1000, 1500 and 2000 cells and their proliferation rates
are summarized in Fig. 1a. For cell seedings with 1000
and 1500 cells, the experimental results and simulated
values are numerically similar to each other at different
time points within acceptable error margins (approxi-
mately ±5%). However, for initial cell seeding of 2000
cells, the mismatch of cell viability between the experi-
mental data and simulation results is high. This is due to
the fixed domain size introduced in the simulations,
which artificially constrains the available free glutamine
in the simulated medium. In case of experiments, glu-
tamine is an excess solute. Due to the limited availability
of glutamine for a large simulated tumor, the cell growth
saturates. This numerical artefact is well reflected in the
simulated diameters of the spheroids (Fig. 1b), where the
diameter increase is linear at the start of simulation and
saturates as the simulation progresses. Therefore, to
avoid any artificial growth saturation effects, simulations
and experiments with 1500 cell seedings are used in all
drug and parameter estimation studies. The values of
model simulation parameters used in the study are listed
in Table 1.
The shape variations in tumor growth is summarized

in Fig. 1c. Spheroids retain their spherical shapes with
little localized distortions throughout the observation
duration in both simulation and experiment. The green
spots in the experiments panel, Fig. 1c, indicate live cells
and cyan spots indicate cells undergoing apoptosis. The
cyan spots are seen to increase at the core of the spher-
oids as time progresses suggesting the formation of nec-
rotic core. The simulated spheroids in Fig. 1c also exhibit
a similar color profile to that of the experiments. However,
because of variations in hue and translucency of simulated
and experimental spheroids, sectioning of spheroids is ne-
cessary to properly visualize the formation of necrotic core
in the spheroids. Sectioned and stained spheroids are
shown in Fig. 1d experiments panel. There are empty
spots (white color) present in the sectioned spheroids in
both the experiments and simulations. These spots indi-
cate the absence of live cells at those positions, indicating
improper packing of cells within the tumor. This im-
proper packing can be a result of slow cell migration/mo-
tility to occupy a lysed cell’s spot in the experiments and
an outcome of the discrete clearing time ct used in the
simulations. In the sectioned simulation contours, the cells
undergoing apoptosis, because of value interpolation, will
have a value ranging from 3 ng to 0 ng color bars. The
necrotic cells in the experimental images are indicated by
white arrows. The dotted circle in the experimental and
simulated sectioned images indicates the extent of nec-
rotic zone in the spheroids. Necrotic core forms as a result
of diffusion limitation of glutamine resulting from in-
creased spheroid sizes at later stages of growth.
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Fig. 1 Cell proliferation in absence of drug treatment. Comparison of experimental data and simulation results for (a) normalized cell viability of
HeLa-C3 cells, (b) spheroid diameter, (c) shape evolution of spheroids and (d) sectioned spheroids at different time points. Green spots in the
experimental panel of (c) indicate live cells and cyan spots indicate dead cells. GraphPad Prism software v6.01 was used to generate plots (a) and
(b). Tecplot 360 2018 R1 was used to generate plots (c) and (d) simulations subplots
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Spatial effects of cisplatin on HeLa-C3 spheroids
An initial cell seeding of 1500 cells was selected as the
starting configuration for all simulations incorporating
drug treatment. To avoid any undesirable artifacts aris-
ing from drug depletion due to cell uptake, cisplatin
used in the experiments was replaced at the end of every
day. The differential response of cells to various cisplatin
concentrations is simulated using the numerical model
for cisplatin described in the model description. To
avoid overfitting of the numerical model, most of the pa-
rameters used in the cisplatin simulations were adapted
from experimental values in the literature. Only two
values, lethal adduct concentration Cl and cell repair
probability R, were free (adjustable) parameters in the
simulation. These values were tuned through trial and
error process with multiple simulation runs, to obtain
the optimum parameter values that represent the

experimental results. The comparison of experimental
and simulated cell viability values is summarized in
Fig. 2a. Cell viability values for cisplatin treated spher-
oids was always lower than the control values in both
experiments and simulations. The simulated values of
normalized cell viability are found to correspond to the
experimental values at all time points as shown in Fig. 2a.
To further understand the spatial variations of cell viabil-
ity, the concentration contours of normalized adduct con-
centration are plotted at different time points as shown in
Fig. 2b. The spatial adduct concentration is found to be
randomly distributed throughout the spheroid at all time
points. Peak adduct concentrations (red color) are ob-
served at random locations within the spheroids and do
not exhibit any localization effects.
Three different fluorescence indicators were used in

experiments to differentiate the effect of cisplatin and

Table 1 Summary of model simulation parameters

Parameter Notation Value Units

Concentration of glutamine (maximum) 2.0 mM

Diffusivity of glutamine 7.6 × 10− 10 m2 s− 1

Initial mass of cell , 3.3 × 10− 12 kg

Metabolic maintenance coefficient 2.0 × 10− 8 s− 1

Max Specific growth rate 8.75 × 10− 6 s− 1

Half saturation coefficient 0.1 mol m− 3

Yield coefficient 100

Critical apoptotic stress value 8–14 h

Threshold concentration of glutamine 0.6 mM

Cell clearing time 4 h

Maximum concentration of cisplatin 10.0 μM

Diffusivity of cisplatin 8.2 × 10−10 m2 s−1

Diffusivity of cisplatin (Intra-spheroidal) 1.78 × 10− 11 m2 s− 1

Cisplatin degradation rate constant 1 × 10− 4 s− 1

Cisplatin bonding rate constant 3 × 10− 3 s− 1

Maximum generational age 8 days

Maximum age-independent adduct concentration 2.8 × 10− 3 μM

Passive diffusion rate constant of cisplatin 20.96 h−1

Concentration of Taxol (maximum) 200.0 nM

Diffusivity of Taxol (Intra-spheroidal) 9.25 × 10−12 m2 s− 1

Diffusivity of Taxol 4.26 × 10–10 m2 s− 1

Taxol drug clearance 1.91 × 10− 1 s− 1

Lethal Taxol concentration 1.5 × 10− 3 nM

Drug binding rate constant of Taxol 3.0 × 10− 6 s− 1

Drug binding rate constant of Taxol to unsaturable sites 4.1 × 10− 5 s− 1

Michaelis-Menten constant for extracellular protein binding 3.94 × 10− 3 mol m− 3

Michaelis-Menten constant for cellular component binding 5.92 × 10− 2 mol m− 3

Half saturation coefficient for extracellular protein binding 7.81 × 10− 4 mol m− 3

Half saturation coefficient for cellular component binding 4.93 × 10− 6 mol m− 3
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Fig. 2 Cell proliferation under cisplatin treatment. a Comparison of experimental data and simulation results for normalized cell viability of HeLa-
C3 cells at different time points, b Contours plots of adduct concentration in the cells at the centre slice of simulated spheroid at different time
points and (c) Comparison of experimental data and simulation results for spatial activity of cisplatin at different time points. Green spots in the
experimental panel of (c) indicate live cells, cyan spots indicate dead cells due to apoptosis alone and red spots indicate dead cells from
apoptosis triggered by cisplatin. Green spots in the simulation panel of (c) indicate live cells and red spots indicate dead cells. GraphPad Prism
v6.01 was used to generate plot (a). Tecplot 360 2018 R1 was used to generate plots (b) and (c) simulations subplot
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cell apoptosis in spheroids. The green spots in the ex-
periments panel of Fig. 2c indicate the live cells, cyan
spots indicate apoptotic cells and red spots indicate cells
affected by cisplatin. In Fig. 2c, from the experimental
panel it is evident that drug activity increases with time
progress as indicated by increase in red spots. Results
summarized in the simulation panel are found to exhibit
multiple dead cells (red color) at random locations
within the spheroid. This observation is further con-
firmed by the microscopy images with color-coded cells
in the spheroids as shown in the experiments panel of
Fig. 2c. Red dots (cells affected by cisplatin) are spotted
all over the volume of spheroids indicating the spatially
randomized effect of cisplatin. From these observations
it is clear that the effects of cisplatin are not localized to
specific cell populations in the spheroid.
It is also known that cisplatin’s toxicity is more ef-

fective at higher concentrations, this means that cells
exposed to higher cisplatin concentration should be
affected earlier than those residing in low concentra-
tions. From the simulations it is observed that the
drug penetrates evenly throughout the volume of the
spheroid. This should mean that intracellular drug
concentration and consequently the adduct concentra-
tion must be almost uniform throughout the spher-
oid, but the simulations do not conform to this logic,
adduct concentration is not uniformly distributed
within the spheroid. As seen in Fig. 2b the distribu-
tion of adduct concentration within the spheroids is
randomly distributed. Based on eqs. 7,8 and 9, the ad-
duct concentration (Cadduct) is dependent on the dif-
fusivity of cisplatin, passive diffusion rate constant
(Kintra) and degradation rate (Kdeg). All these values
are constants and should therefore result in uniform
concentration profile development in the domain. A
stochastic parameter that can drastically alter the dis-
tribution profile is the cell repair probability (R) listed
in eq. 11, which is an inherent property of the cell.
This property enables efflux of any adduct formed
post cell repair, thereby altering the distribution dy-
namics throughout the spheroid. Any spatially local-
ized segregation of this property will result in
preferential action or inaction of cisplatin on this
local population. In fact, cell repair has been largely
implicated in cisplatin drug resistance development
[41–44]. In contrast to drug resistance development,
cell repair property has been exploited to increase ef-
ficacy of cisplatin treatment in recent studies [42, 45,
46] . Cell repair property has also been implicated in
pathological complete response of triple-negative
breast cancers [47]. In cell populations without any
abnormal cell repair characteristics, cisplatin will not
exhibit any structurally preferential effects over the
spheroid volume.

Spatial effects of Taxol on HeLa-C3 spheroids
The same cell seeding of 1500 cells used in cisplatin
simulations and experiments was selected as the starting
configuration for taxol drug treatment. Taxol used in
the experiments was replaced at the end of every day to
avoid any artificial artifacts. Similarly, the boundaries of
the domain are fixed with constant concentration
boundary conditions in the simulations. Cell cycle is in-
directly modelled in Taxol simulations by considering
the cell’s mass. Any growing cell whose mass is higher
than 1.5 times its initial mass is considered to be in G2/
M phase. Cell cycle phase is considered in the numerical
model due to the mechanistic requirement of Taxol’s ac-
tivity as explained in the model description. All parame-
ters used in the Taxol model simulations were adapted
from experimental values in the literature except for two
values lethal Taxol concentration Clethal and the fixed
cell apoptosis probability (Rd). Cell apoptosis probability
is the same for all cells in the simulations. Therefore, all
the cells exhibit same levels of resistance to Taxol activ-
ity. The two values were tuned through trial and error
process with multiple simulation runs, to obtain the
optimum parameter values that represent the experi-
mental results. The comparison of experimental and
simulated cell viability values is shown in Fig. 3a. Cell
viability values for the Taxol treated spheroids in experi-
ments and simulations are found to be within their each
other’s variations and lower than the control values at all
time points. Between cisplatin (Fig. 2a) and Taxol (Fig.
3a), Taxol is more effective with much lower cell viabil-
ity values than cisplatin. To examine the spatial varia-
tions of cell viability, the concentration contours of
normalized bound Taxol concentration are plotted at
different time points as shown in Fig. 3b. From the con-
tour plots it can be observed that as time progresses the
fraction of cells with drug bound to cellular components
decreases. This is because of the fast drug-induced apop-
tosis permeated by Taxol, as evident from the viability plots.
Compared to cisplatin’s adduct concentration (Fig. 2b),
Taxol’s cell bound concentration appears to be more
homogenously distributed, barring a couple of hotspots at
each time point. If Taxol’s efficacy is solely dependent on
its cell bound concentration, then it should induce apop-
tosis in all cells in the spheroid irrespective of their posi-
tions. However, the experiments and simulations panel of
Fig. 3c show that most of the cells along the periphery of
the spheroid are affected. The experiments panel visually
distinguishes the localization effect of Taxol and nutrient
deficient cell apoptosis. Specifically, on day 4 a cyan core
can be observed at the centre of the spheroid surrounded
by concentric layers of red cells affected by Taxol. Similar
to experimental observations, simulation images also show
preferential action of Taxol along the periphery of the
spheroids. To understand the reason behind such spatially
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Fig. 3 Cell proliferation under Taxol (paclitaxel) drug treatment. a Comparison of experimental data and simulation results for normalized cell
viability of HeLa-C3 cells at different time points, (b) Contours plots of bound Taxol concentration in the cells at the centre slice of simulated
spheroid at different time points, (c) Comparison of experimental data and simulation results for spatial activity of cisplatin at different time points
and (d) Heat map of ratio of dead to live cells found at different areas of spheroids treated with cisplatin and Taxol at different time points. Green
spots in the experimental panel of (c) indicate live cells, cyan spots indicate dead cells due to apoptosis alone and red spots indicate dead cells
from apoptosis triggered by cisplatin. Green spots in the simulation panel of (c) indicate live cells and red spots indicate dead cells. The color bar
in (d) indicates the dead to live cell ratio. GraphPad Prism v6.01 was used to generate plot (a). Tecplot 360 2018 R1 01 was used to generate
plots (b) and (c) simulations subplot. Matplotlib v3.3.2 was used to generate plot (d)
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preferential action of Taxol, the mechanism of Taxol action
should be carefully considered. As discussed in the model
description, Taxol only affects the cells that have previously
undergone mitosis and are in G2/M phase of cell cycle.
Cells that are present along exterior layers of the spheroids
have a high likelihood of undergoing multiple cell divisions
due to ready availability of glutamine in the surrounding.
This increased frequency of cell mitosis at the periphery
will result in high probability of cell apoptotic induction by
Taxol. Thus, the efficacy of Taxol is affected by the nutrient
concentration available to local population. The response of
cells to Taxol is, therefore, not only dependent on the
quantity of drugs bound to the cells, but also on their mi-
totic history and current stage of cell cycle.
To compare and contrast the spatial effects of cisplatin

and Taxol on the cells in the spheroid, the simulated
dead to live cell ratio should be quantified. The spatial
domain is binned into twelve areas. These areas occupy
the space between concentric circles with the increase in
radius by one grid. Ratio of dead cells to live cells
present within these binned areas is plotted as a heat-
map at different timepoints as shown in Fig. 3d. For uni-
form representation, empty areas, (where, dead/live = 0/
0) a value of 0.0 is used. At all timepoints, cisplatin is
found to exhibit a homogenous dead to live cell distribu-
tion compared to Taxol. In both cisplatin and Taxol, the
core of the spheroid (bin 1) is found to have a value of
0.0 indicating absence of dead cells, suggesting absence
of necrotic core until day 4 because of decreased cell via-
bility in the drug treated spheroids compared to control.
From experimental data and simulation results we know
that Taxol preferentially affects the cells in the periph-
ery. This is once again confirmed by the appearance of
dark patches at day 2 along zones 8,9 and 10 in Fig. 3d
for Taxol. In addition to the local segregation of Taxol
effect, a remarkable pattern occurs in Taxol treated
spheroids with progress of time. This pattern is the in-
ward shifting of high efficacy zones (dark color) as the
simulation progresses. Taxol shows maximum efficacy in
zones 8–10 on day 2, in zones 6–8 on day 3 and in
zones 5–6 on day 4. These results show that Taxol af-
fects the spheroid in a concentric manner with progress
of time. Such a pattern emerges from the interplay of
newly exposed layer of cells to the incoming nutrients
and the binding action of Taxol. Excess glutamine pro-
motes cell proliferation, while bound Taxol increases the
probability of apoptosis induction in such frequently div-
iding cells.

Temporal effects of drug scheduling on HeLa-C3
spheroids
The unique spatial effects of cisplatin and Taxol assert
that each drug has its own preferential sites of action
where its efficacy is high. If these two drugs are used in

a combinatorial manner and if the overlap of their high
efficacy zones are minimized, then the outcomes from
such combinations should surmount the efficacy of indi-
vidual drug treatments. In fact, such combinatorial treat-
ments are quite common for treating carcinoma
patients. However, most of their combinatorial effects
have been attributed to synergistic effects arising from
the action of drugs in tandem. In addition to these syn-
ergistic effects, spatial effects must play a crucial part in
increased efficacy of combinatorial treatments. For in-
stance, consider an alternating Taxol-cisplatin treatment
schedule. In this treatment schedule, initially the cells
are treated with Taxol for a fixed duration followed by
cisplatin treatment for the same fixed duration and the
cycle is repeated. According to our findings, Taxol
should first affect the outer layers of the tumor. Then, a
lag sets in for inward Taxol effect propagation, since the
cells in the layer which is in immediate proximity should
take their time for proliferation. Introduction of cisplatin
during this lag interval will help eliminate other cells in
the tumor and also give the required time for cell prolif-
eration. Subsequent Taxol treatment should result in im-
mediate elimination of the penultimate layer, thereby
making the combinatorial process highly efficient.
Therefore, to analyse these temporal effects, in addition
to the studies on spatial effects of the drug on HeLa-C3
spheroids, the temporal effect of combinatorial drug
treatment was studied experimentally and numerically.
The results from these studies are summarized in Fig. 4.
Two different schemes of drug scheduling were imple-
mented, alternating treatment of cisplatin and Taxol for
(i) 24 h and (ii) 12 h. The schemes are further split into
two strategies, (a) treatment initialized with Taxol and
(b) treatment initialized with cisplatin. In Fig. 4a and b
the tags, cisplatin/Taxol indicate the treatment strategy
and the time points indicate the scheduling. For ex-
ample, a 24-h scheme initialized with Taxol will be as
follows; day 1 – Taxol treatment, day 2 – cisplatin treat-
ment (with Taxol been removed) and day 3 – Taxol
treatment (with cisplatin been removed). The removal of
the treated drug at the end of a treatment cycle ensures
that treated drug effects are not carried over to the next
cycle.
For the spheroid treatment initialized with Taxol, the

cell apoptosis effects on day 2 are predominantly found
along the periphery compared to the volume-spread ef-
fects of the treatment initialized with cisplatin as seen in
Fig. 4a (panel 48 h). After alternating the treatment on
day 2, both cisplatin initialized, and Taxol initialized
treatments are found to exhibit identical spatial effects
(panel 72 h). This shows that irrespective of the
initialization strategy, the spatial effects should converge
for alternating drug treatments of same duration. How-
ever, this result should not be generalized to the overall
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Fig. 4 Summary of cell proliferation behaviours for different drug scheduling strategies. Experimental data/microscopy images of spheroids subjected
to different treatment combinations at different time points for (a) 24-h alternate scheduling and (b) 12-h alternate scheduling, (c) Comparison of
experimental data and simulation results for normalized cell viability of HeLa-C3 cells at different time points for 12-h and 24-h alternate treatment.
The labels cisplatin and taxol in (a) and (b) indicate the initialisation drug or the drug used at the start of the scheduling after which the other drug
was alternated, and the cycle was repeated at different time points. GraphPad Prism v6.01 was used to generate plot (c)
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efficacy of the treatment strategy or the cell viability
quantification. The results of cell viability are summa-
rized in Fig. 4c. The experimental data and simulation
results show that the average cell viability at the end of
treatment (day 4) is lower for Taxol initialized treatment
strategies than cisplatin initialized treatments. Thus, al-
though the spatial effects converge with progress of
treatment schedule, the efficacy of the treatments is
dependent on the order of scheduling.
In contrast to the outcomes of 24-h scheduling, 12-h

scheduling produces similar spatial cytotoxic effects and
cell viabilities irrespective of cisplatin or Taxol
initialization as shown in Fig. 4b and c. An additional
phenomenon that occurs in the 12-h scheduling is the
drastic reduction in size of the spheroid with progress of
time. From the viability plots, we observe that 12-h
scheduling is more efficacious than 24-h treatment
scheduling, especially for cisplatin-initialized treatment.
Hence, the size decrease can be attributed to the expe-
dited cell elimination produced by the 12-h combinator-
ial treatment. The end points (day 4) of the simulated
and experimental viability values for 24-h treatment
scheduling, are found to be in a close range, however
the model overestimates the effect of cisplatin on day 3.
Similarly, the 12-h model simulated viability values fol-
low a trend comparable to the 12-h experimental values.
However, they quantitatively differ from each other, with
the simulations underestimating the efficacy of the com-
binatorial treatment. This could arise from the missing
numerical parameters for defining any synergistic effects
that arise from such short alternation (12 h) durations.
Although, 12-h scheduling produced highly efficacious
treatment strategy, the use of such scheduling strategy
for clinical purposes could be restricted by toxicity and
practicality considerations.

Influence of drugs’ molecular mechanisms on treatment
outcomes
Cisplatin through its action of DNA adduct formation
causes DNA damage in the cell. If this damage accumu-
lation proceeds unchecked, it results in cell apoptosis.
This is the known pathway of cell cycle and cell death
progression for cells undergoing apoptosis due to cis-
platin penetration. An alternate route of progression
would be the repair of the inflicted DNA damage
through nucleotide excision [42], proliferating cell nu-
clear antigen (PCNA) accumulation at damage site [44]
and/or mismatch repair (MMR). In the model and ex-
periments, the choice between these two routes is de-
cided by the probability of successful cell repair and the
cytotoxic concentration of cisplatin. This is the primary
reason for the volume-wide action of cisplatin without
any localization effects. On the other hand, paclitaxel
works through mitotic spindle stabilization. There is a

possibility of mitotic spindle rectification followed by
mitosis, or mitotic arrest followed by cell apoptosis. Even
though the mechanism of paclitaxel incorporates a sto-
chastic variable, the outcome is not a volume-wide ac-
tion but rather localized. This is due to its cell cycle
specific action which consequently affects only a select-
ive region where this population is localized. Thus, the
mechanisms actions, which appear to affect cells ran-
domly, may result in selective population culling based
on the primary driving step of drug action. In this study,
for cisplatin, the primary is found to be DNA repair, and
for paclitaxel, it the mitotic spindle stabilization.
The current model provides a better understanding of

how solid tumours are affected by drug treatments.
Since a single tumour is comprised of various subclones,
some with differing chemosensitivities, targeting the
right subpopulation will result in increased drug efficacy.
In addition to clonal heterogeneity, spatial distribution
of blood vessels also differs within the tumours, such
that diffusion gradients vary across the tumour. These
can affect the drug response. Tumours may respond to
chemotherapy such that only a single smaller tumour
focus remain or may respond with multifocal invasive
foci scattered across the entire extent of the original
tumour. A greater insight into how a tumour will re-
spond has relevance to tumour re-evaluation after neo-
adjuvant chemotherapy, where it will impact on the
decision between a mastectomy or breast conservation
surgery.

Conclusions
In this study, we examined the drug response of human
cervical cancer HeLa-C3 cell spheroids to the combina-
torial administration of two first line anti-cancer drugs ̶
cisplatin and Taxol. 3D spheroids were employed in our
studies instead of 2D cell culture experiments to capture
the spatial mass-transfer kinetics and cell growth dy-
namics. This helps to emulate an environment similar to
in-vivo microenvironmental settings. Our mechanistic
model was validated by experimental findings that dem-
onstrate the spatio-temporal effects of cisplatin and
Taxol. From our studies, it is clear that it is the innate
characteristics of Taxol to affect the cells along the per-
iphery of the spheroid. In contrast, the capability of cis-
platin is to influence the entire volume of the spheroid
limited by the cell DNA repair mechanism. Although,
there are multiple studies in literature which analyse the
effects of various drug combinations, there is a lack of
clear understanding of the localized spatial effects of
multiple alternative drug scheduling. In our study, com-
binatorial scheduling (24 h) of the two drugs was mani-
fested in noticeably different treatment outcomes for
different drug ordering. Treatments (24 h) initiated with
Taxol were found to be more effective than their
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counterparts because of the concentric inward penetrat-
ing effect of Taxol. The model simulations were vali-
dated against experimental data, paving the way towards
in-silico determination of optimal treatment strategies
comprising the drugs and their scheduling. The numer-
ical model enabled us to quantify the effect of such
spatial drug activity levels by providing a microscopic
picture of the individual cells, their cycle phase, drug up-
take, DNA damage, and the other parameters which are
difficult to determine in real time using laboratory ex-
periments. Although this numerical model was success-
fully validated using experiments on spheroids, the
model was found to underpredict the treatment out-
comes for alternation periods less than 24 h. Such limita-
tions arise from the presence of unknowns such as
synergistic effects, which are needed to completely
mimic the short-term temporal drug efficacies. Never-
theless, the developed model was capable of capturing
single drug-cell interactions and 24-h drug alternation
treatments to qualify and quantify the combinatorial
drug efficacy. Missing parameters such as hysteresis
loops in PK of the drugs and synergy variables could be
included in the future models to improve the prediction
capability of the simulations. Such in-silico models can
be used as a test bed for predicting the drug treatment
efficacies within practically acceptable accuracies. Im-
proving the model to accommodate for human physio-
logical and tumour micro-environmental parameters will
pave way for precise patient specific chemotherapy.
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