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We formulate a theory of dissipative hydrodynamics with spontaneously broken translations, describing
charge density waves in a clean isotropic electronic crystal. We identify a novel linear transport coefficient,
lattice pressure, capturing the effects of background strain and thermal expansion in a crystal. We argue
that lattice pressure is a generic feature of systems with spontaneously broken translations and must be
accounted for while building and interpreting holographic models. We also provide the first calculation of
the coefficients of thermal and chemical expansion in a holographic electronic crystal.
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I. INTRODUCTION

Ever since the discovery of high-temperature supercon-
ductivity, cuprates continue to be enigmatic owing to their
intricate phase diagrams exhibiting various intertwined pat-
terns of symmetry breaking [1,2]. In particular, the phase
diagram of copper oxides contains electronic liquid crystal
phases that spontaneously break translations and/or rotations.
These include the elastic multicomponent charge density
wave (CDW) phases [3], smectic stripe phases, where the
CDWpatternonly appears alonga single direction, or nematic
spin density wave phases, where translations are intact but
rotations are spontaneously broken. All these phases can
potentially appear simultaneously with superconducting
phaseswhere the global U(1) symmetry is also spontaneously
broken (see [1,2,5] for a comprehensive review).Tonote is the
fact that CDWground states are an essential feature across the
phase diagram of copper oxides.
Electrons in cuprates, in particular in strange metallic

phases, are strongly correlated. This renders the quasipar-
ticle Fermi liquid crystal theory unreliable for these
systems, even qualitatively, leaving us with only a handful
of techniques for this plethora of phases [2]. Recently,
hydrodynamics has been proposed as a theoretical frame-
work for studying aspects of strongly correlated electron
systems [4,6,7], capable of explaining pinning in the optical
conductivity and predicting the magnitude of viscosity in

optimally doped Bismuth strontium calcium copper oxide
[4]. Another series of efforts has been directed toward
holography [8–15], where properties of strongly coupled
quantum systems are being probed using classical gravity.
In fact, within this setting, hydrodynamics is directly
related to such holographic models via the fluid/gravity
correspondence [16].
However, all previous treatments of hydrodynamics

for charged lattices (see e.g., [4,17–19]) have not
considered an essential transport coefficient in their
constitutive relations, namely the lattice pressure. This
coefficient first appeared in [20] in the context of
uncharged viscoelastic materials, and models a uniform
repulsion/attraction between lattice sites in a material with
translational order. However, the thermodynamic varia-
tion of lattice pressure can be understood as carrying
information about the thermal expansion of the lattice:
coefficients of thermal and chemical expansion [21]. As
also discussed in [20], lattice pressure is generically
present in holographic models of viscoelasticity.
The main purpose of this letter is to provide the complete

hydrodynamic theory for isotropic charged crystals, includ-
ing contributions from lattice pressure. We derive the
hydrodynamic predictions for linear modes and response
functions. As far as we are aware, the sound and diffusion
modes in the longitudinal sector for charged crystals have
not been previously worked out in full generality in the
literature. We also comment on the signatures of lattice
pressure in holography using a simple class of holographic
models. Our analysis illustrates that many previous works
have used an incomplete hydrodynamic framework to
interpret holographic results in CDW (e.g., [8–12]), as in
viscoelasticity (e.g., [22–26])[27]. We derive an analytic
formula for the coefficients of thermal and chemical
expansion in these simple models.
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For clarity of presentation and to effectively focus on the
impact of lattice pressure, we restrict our attention to clean
CDW phases. That is, we do not consider the effects of
pinning or momentum dissipation due to interactions with
the ionic lattice, or the presence of topological defects such
as disclinations and dislocations.

II. CRYSTAL FIELD THEORY
AND LATTICE PRESSURE

The fundamental ingredient in an effective theory for
crystals is a set of crystal fields ϕI. They represent the
spatial distribution of lattice cores within the crystal [20]
and can be understood as Goldstones of spontaneously
broken translations. The indices I; J;… ¼ 1;…; k ≤ d run
over the number of broken translations, while μ; ν;… ¼
0;…d run over spacetime indices. Physical distances
between the cores are measured by hIJ ¼ gμνeIμeJν, where
eIμ ¼ ∂μϕ

I and gμν is the background metric. The I; J;…
indices are raised/lowered using hIJ and hIJ ¼ ðh−1ÞIJ. The
crystal also carries a “preferred” reference configuration
hIJ ¼ δIJ=α2 where α is a constant parametrizing the
“inverse size” of the crystal. Distortions of the crystal
away from this reference configuration are measured by the
nonlinear strain tensor uIJ ¼ ðhIJ − hIJÞ=2.
The free energy of a crystal in an isotropic phase, up to

quadratic order in small strain expansion, takes the form
F ¼ −

R
ddx

ffiffiffiffiffiffi−gp
P with

P ¼ Pf þ PlðuII þ uIJuIJÞ −
1

2
BðuIIÞ2

−G

�
uIJuIJ −

1

d
ðuIIÞ2

�
þOðu3Þ: ð1Þ

Here Pf is the thermodynamic or “fluid” pressure and Pl is
the lattice pressure, while B and G are bulk and shear
modulus respectively. Classical elasticity theory usually
describes thermodynamically stable states, requiring the
free energy to be minimized with respect to strain and
setting the linear term Pljeq ¼ 0 in equilibrium [28].
However, in the context of various holographic models,
one finds that Pljeq ≠ 0. As argued in [8], such states can
be relevant for strange metallic regions where quantum
critical fluctuations of the order parameters do not provide
any stable ordered phase. Furthermore, even in states with
Pljeq ¼ 0, thermodynamic derivatives of Pl are generically
nonzero and measure the coefficients of thermal and
chemical expansion (see Sec. 6 of [28])

αT ¼ 1

B
∂Pl

∂T ; αμ ¼
1

B
∂Pl

∂μ : ð2Þ

These derivatives are shown to leave nontrivial signatures
in the hydrodynamic spectrum (see e.g., [20,29]).

III. VISCOELASTIC HYDRODYNAMICS

We are interested in low-energy fluctuations of a charged
crystal around thermal equilibrium. In addition to ϕI , the
dynamics in this regime is governed by conserved oper-
ators: stress tensor Tμν and charge/particle current Jμ

∇μTμν ¼ FνρJρ − Kext
I eIν; ∇μJμ ¼ 0: ð3Þ

Here Aμ and Kext
I are background sources coupled to Jμ

and ϕI , while gμν is the source for Tμν. Fμν ¼ 2∂ ½μAν�.
Collectively, these determine time-evolution of the hydro-
dynamic fields: velocity uμ (with uμuμ ¼ −1), temperature
T, and chemical potential μ. The most generic set of
constitutive relations for Tμν and Jμ for an isotropic [30]
charged viscoelastic fluid at one-derivative order in Landau
frame are given as

Jμ ¼ quμ − PIμσqIJP
Jν

�
T∂ν

μ

T
− Eν

�
− PIμγIJuνeJν ;

Tμν ¼ ðϵþ PÞuμuν þ Pgμν − rIJeIμeJν

− PIðμPJνÞηIJKLPKðρPLσÞ∇ρuσ: ð4Þ

Here, P is the thermodynamic pressure, ϵ, q, and s are the
energy, charge, and entropy densities, and rIJ is the elastic
stress tensor. All these quantities are functions of T, μ,
and hIJ. They obey the thermodynamic relations: dP ¼
sdT þ qdμþ 1

2
rIJdhIJ and ϵþ P ¼ sT þ qμ. We have

defined Pμν ¼ gμν þ uμuν, PIμ ¼ PμνeIν, Eμ ¼ Fμνuν.
Furthermore, ηIJKL, σ

q
IK , and γIK are dissipative transport

coefficient matrices. In addition, the constitutive relations
have to be supplemented with configuration equations
determining the time-evolution of ϕI , i.e.,

σϕIJu
μ∂μϕ

I þ γ0JKP
Kμ

�
T∂μ

μ

T
− Fμνuν

�

þ∇μðrJKeKμÞ ¼ Kext
J : ð5Þ

Here, σϕIK and γ0IK are two more matrices of dissipative
transport coefficients. At zeroth order in derivatives, these
equations imply that the crystal fields are constant along the
fluid flow. Taking ϕI ¼ αðxI − δϕIÞ, they turns into their
more familiar form ut∂tδϕ

I ¼ uI − ui∂iδϕ
I þ � � �.

Following our discussion in [20], it can be checked that
Eqs. (4) and (5) above are the most generic set of constitutive
relations and configuration equations that satisfy the local
second law of thermodynamics, ∇μSμ ≥ 0, with the entropy
current Sμ ¼ suμ − μ

T ðJμ − quμÞ, provided that the symmet-
ric parts of
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ηðIJÞ;ðKLÞ;
�
σqIK γIK

γ0IK σϕIK

�
; ð6Þ

are positive semidefinite matrices.

IV. LINEAR REGIME

We are typically interested in crystals close to mechani-
cal equilibrium, where we can expand the hydrodynamic
equations in small strain. The pressure P can be expanded
as in Eq. (1), which determines q, s, ϵ, and rIJ up to linear
order in strain through thermodynamics. At one derivative
order, we only keep the strain-independent terms, i.e.,

σqIJ ¼ σqhIJ; σ
ϕ
IJ ¼ σϕhIJ; γIJ ¼ γhIJ; γ0IJ ¼ γ0hIJ;

ηIJKL ¼
�
ζ −

2

d
η

�
hIJhKL þ 2ηhIKhJL: ð7Þ

We can identify η and ζ as shear and bulk viscosities, σq as
charge conductivity, σϕ as crystal diffusivity, while γ, γ’ as
certain mixed conductivities. The second law constraints in
Eq. (6) reduce to

η; ζ; σq; σϕ ≥ 0; σqσϕ ≥
1

4
ðγ þ γ0Þ2: ð8Þ

Finally, we arrive at the constitutive relations in the small-
strain regime

Jμ ¼ ðqf þ qluλλÞuμ − σqPμν

�
T∂ν

μ

T
− Eν

�
− γPμ

I u
νeIν;

Tμν ¼ ðϵf þ ϵluλλÞuμuν þ ðPf þ PluλλÞPμν þ Plhμν

− ησμν − ζPμν∂ρuρ − 2Guμν −
�
B −

2

d
G

�
uλλhμν:

ð9Þ
Here hμν ¼ hIJeIμeJν and uμν ¼ uIJeIμeJν . Similarly the
configuration equations (5) reduce to

σϕuμeIμ − hIJ∇μ

�
Ple

μ
J −

�
B −

2

d
G

�
uλλe

μ
J − 2GuμνeJν

�

þ γ0PIμ

�
T∂μ

μ

T
− Eνuν

�
¼ hIJKext

J : ð10Þ

We have defined the fluid thermodynamics dPf ¼ sfdTþ
qfdμ, ϵf þ Pf ¼ sfT þ qfμ and similarly for the lattice
pressure dPl ¼ sldTþqldμ, ϵlþPl ¼ slTþqlμ. Setting
uIJ ¼ 0, note that the mechanical pressure hTxxi¼PfþPl

gets contribution from both thermodynamic and lattice
pressure.

V. CONFORMALITY

Let us briefly comment on the conformal limit of our
theory, due to its relevance in holography. Requiring that the

stress tensor scales appropriately leads to the conformality
constraints at the nonlinear level: ϵ ¼ dP − rIJhIJ and
hIJηIJKL ¼ ηIJKLhKL ¼ 0. In the linear regime, they imply

ϵf ¼ dðPf þ PlÞ; ϵl ¼ dðPl − BÞ; ζ ¼ 0: ð11Þ
Notice that having Pl or ϵl nonzero in the theory
(unlike [4]), allows for a nonzero B in a conformal crystal.
Furthermore, using the expansion coefficients from Eq. (2),
we can derive the identity

TαT þ μαμ ¼ ðdþ 1ÞPl

B
− d: ð12Þ

In particular, in a state with no lattice pressure or chemical
potential, αT < 0. This is not surprising, as the size of a
conformal crystal scales inversely with temperature at
constant μ=T.

VI. LINEAR HYDRODYNAMICS AND MODES

Consider a charged crystal on flat spacetime, gμν ¼ ημν,
with trivial external sources, Aμ ¼ μ0δ

t
μ, Kext

I ¼ 0. An
equilibrium configuration on this background is given by
T ¼ T0, μ ¼ μ0, uμ ¼ δμt , ϕI ¼ αxI . We can expand
Eqs. (3) and (5) linearly in fields around this configuration
to obtain the constitutive relations of linear hydrodynamics.
We recover the previously known results of [4,31] with the
identification ξ¼1=σϕ, γ1 ¼ −γ=σϕ, and σ0 ¼ σq þ γ2=σϕ,
only if we choose γ0 ¼ −γ and set lattice pressure Pl and
both its derivatives sl, ql to zero [32].
Solving the linear equations in momentum space, we

can find the complete set of linear modes admitted by the
theory. We find two pairs of sound modes, one each in
transverse and longitudinal sectors, and two diffusive
modes in the longitudinal sector

ω¼�vk;⊥k−
i
2
Γk;⊥k2 þ � � � ; ω¼ −iDq;ϕ

k k2 þ � � � : ð13Þ

In the transverse sector, one finds that the modes take a
simple form known previously (e.g., [4])

v2⊥ ¼ G
χππ

; Γ⊥ ¼ w2
f

χ2ππ

G
σ
þ η

χππ
; ð14Þ

where χππ ¼ ϵf þ Pf þ Pl is the momentum susceptibility
and wf ¼ ϵf þ Pf is the enthalpy density. The transverse
speed v⊥ is controlled by the shear modulusG; in theG ¼ 0
case this mode reduces to the well-known shear diffusion
mode in hydrodynamics. Modes in the longitudinal sector
are considerably more involved. With applications to holog-
raphy in mind, we present the results for conformal
viscoelastic fluids here for simplicity. The general non-
conformal results are given in the Supplemental Material
[33]. The longitudinal sound mode simplifies in this limit to
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v2k ¼
1

d
þ2d−1

d G

χππ
; Γk ¼

w2
fð2d−1

d GÞ2
σϕχ3ππv2k

þ2d−1
d η

χππ
: ð15Þ

This is the usual sound mode present in hydrodynamics,
but gets modified on a lattice. Longitudinal diffusion
modes, on the other hand, are given by the solutions of
the quadratic

�
Dk −

w2
f

σϕ

2 d−1
d Gþ B − Pl

dχππv2kðwf þ wlÞ
��

ΞDk
dðwf þ wlÞ

−
σq
T2

�

¼ Dk
σϕ

�
sfql − qfsl
wf þ wl

þ γ

T

��
sfql − qfsl
wf þ wl

−
γ0

T

�
; ð16Þ

where Ξ ¼ ∂sf
∂T

∂qf
∂μ − ∂sf

∂μ
∂qf
∂T and wl ¼ ϵl þ Pl. The two

modes are controlled by the coefficients σq, σϕ: in the
σϕ → ∞ limit we recover the usual charge diffusion mode
Dq

k , but modified on a lattice, while in the σq → 0 limit we

obtain the uncharged crystal diffusion mode Dϕ
k character-

istic of a lattice [34] (see [18]).
We note that, in the conformal case, Pl appears explicitly

only in the diffusion modes (modulo the implicit depend-
ence in χππ ¼ hTtti þ hTxxi). Therefore, if we were to
ignore Pl, for instance as in [4], hydrodynamics would lead
to incorrect predictions for diffusion modes (see [29] for a
particular example in holographic massive gravity). For
nonconformal theories, however, Pl infects all the modes
in the longitudinal sector explicitly.

VII. RESPONSE FUNCTIONS AND
ONSAGER’S RELATIONS

We can compute retarded two-point functions in our
model by solving the hydrodynamic equations (9) and (10)
in presence of infinitesimal plain wave sources [36].
Working at zero wave vector, we find in the full non-
conformal case

GR
TxxTxx ¼ χππv2k − iω

�
ζ þ 2

d − 1

d
η

�
þ hTxxi;

GR
TxyTxy ¼ G − iωηþ hTxxi;

GR
JxJx ¼

q2f
χππ

− iωσ̃q;

GR
ϕxϕx ¼ 1

ω2χππ
þ σ̃ϕ
iω

GR
Jxϕx ¼ −

qf
iωχππ

þ γ̃;

GR
ϕxJx ¼

qf
iωχππ

þ γ̃0; ð17Þ

where we have defined the dissipative response coefficients

σ̃q ¼ σq þ
1

σϕ

�
qfPl

χππ
− γ

��
qfPl

χππ
þ γ0

�
;

σ̃ϕ ¼ w2
f

σϕχ
2
ππ
; γ̃ ¼ wf

σϕ

�
γ

χππ
−
qfPl

χ2ππ

�
;

γ̃0 ¼ wf

σϕ

�
γ0

χππ
þ qfPl

χ2ππ

�
:

All the remaining response functions are either zero or
related to these by isotropy. For Pl ¼ 0 and γ ¼ −γ0, these
results reduce to the expressions reported in [31], up to
contact terms.
If the system enjoys Θ ¼ T (time-reversal) or Θ ¼ PT

(spacetime parity) invariance, Onsager’s relations require
GR

Jxϕx ¼ −ΘGR
ϕxJx , setting γ ¼ −γ0. This is the case

assumed in [31]. In the case of Θ ¼ CPT invariance,
however, GR

Jxϕx ¼ΘGR
ϕxJx and we instead have γ0jμ→−μ¼ γ

(note that qf flips sign under CPT).

VIII. HOLOGRAPHY

As an application of our hydrodynamic theory, we
propose a simple holographic model for clean CDW phases
following the discussion in [20,37,38]. We also compute
the coefficients of thermal and chemical expansion in this
smodel. Specializing to four bulk dimensions, the model is
described by Einstein-Maxwell gravity in the bulk coupled
to two scalars

Sbulk ¼
1

2

Z
d4x

ffiffiffiffiffiffiffi
−G

p �
Rþ 6 −

1

4
F 2 − 2VðXÞ

�
: ð18Þ

Here Gab is the bulk metric with a; b;… being the bulk
indices, and F ab ¼ 2∂ ½aAb� is the field strength associated
with the gauge field Aa. Here VðXÞ ¼ X þ � � � is an
arbitrary potential in X ¼ δIJ

1
2
Gab∂aΦI∂bΦJ for a set of

scalar fieldsΦI. To describe a thermal state at the boundary,
we consider charged black brane solutions of the action
(18) of the form

ds2 ¼ 1

r2fðrÞ dr
2 þ r2ð−fðrÞdt2 þ δIJdxIdxJÞ;

Aμ ¼ μ

�
1 −

r0
r

�
δtμ; ΦI ¼ αxI; ð19Þ

where r0 is the horizon radius, r → ∞ is the conformal
boundary, μ the chemical potential, and α an arbitrary
constant. The blackening factor is given by

fðrÞ¼1−
r30
r3
−
r0μ2ðr−r0Þ

4r4
−
α2

r3

Z
r

r0

dr0
VðXðr0ÞÞ
Xðr0Þ ; ð20Þ

where XðrÞ ¼ α2=r2. The profile of the scalars breaks the
translational invariance in the boundary theory. This model,
with VðXÞ ¼ X, has been considered in the context of
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momentum dissipation in [39] with explicitly broken
translations. However, contrary to [39], we introduce
alternative boundary conditions for ΦI so as to describe
spontaneously broken translations at the boundary. We will
also allow for an arbitrary renormalization scale parameter
M in the boundary conditions breaking the conformal
symmetry of the model. The holographic renormalization
procedure along with the choice of boundary counterterms
is detailed in the Supplemental Material [33].
Identifying the onshell action as free-energy for the

boundary theory, we can read out the thermodynamic
pressure in equilibrium

Pf ¼ r30
2

�
1þ μ2

4r20
þ 2U0 − V0

�
− α2M: ð21Þ

Here UðXÞ ¼ −1
2
X3=2

R
dXX−5=2VðXÞ and X0 ¼ Xðr0Þ,

along with V0 ¼ VðX0Þ, V 0
0 ¼ V 0ðX0Þ, and U0 ¼ UðX0Þ.

We can also extract the stress tensor, charge current, and
scalar expectation values using the boundary behaviour of
the solution and read out

f ¼ r30

�
1þ μ2

4r20
−U0

�
þ α2M;

qf ¼
μr0
2

; sf ¼ 2πr20;

Pl ¼ r30
2
ðV0 − 3U0Þ þ α2M; ð22Þ

along with ϕI ¼ αxI . With temperature defined as
T ¼ r20f

0ðr0Þ=ð4πÞ, one can check that the expected
thermodynamic relations given below Eq. (10) are satisfied.
We can easily obtain the bulk modulus by deforming our
solution from α → αþ δα, leading to a uniform strain
uIJ ¼ −αδIJδα, and using Eq. (1). We find

B ¼ 3r30
4

ðV0 − 3U0Þ þ
1
2
X0V 0

0r
3
0ð3 − V0 þ μ2

4r2
0

Þ
3 − V0 þ 2X0V 0

0 þ μ2

4r2
0

þ α2M:

ð23Þ
One can check that these expressions satisfy the conformal
identities (11) in the absence of M, confirming that M
characterizes RG flow away from the conformal fixed
point. Expressions for G and the dissipative transport
coefficients have to be obtained numerically.
Finally, we can use the expressions for B and Pl to read

out the expansion coefficients in Eq. (2). In particular, in a
conformal model with M ¼ 0 around a state with zero
lattice pressure Pljeq ¼ 0, we simply find

αT ¼ −4sf
2sfT þ qfμ

; αμ ¼
−2qf

2sfT þ qfμ
; ð24Þ

irrespective of the model dependent potential VðXÞ. They
follow the conformal identity (12). We find both the

expansion coefficients to be negative for our holographic
conformal crystal. This behavior is altered for M ≠ 0.
However, negative thermal expansion is not unusual in solid
materials [40].
A lattice configuration is thermodynamically stable if it

minimizes the free energy: ðδPf=δαÞT;μ ¼ −2=αPljeq ¼ 0

for some α ≠ 0. Equivalently, hTxxi must be equated to Pf

[41]. Notice that Pl ≠ 0 in a generic equilibrium configu-
ration in (22). This is also the case for similar holographic
models with spontaneously broken translations [22–25].
In fact, simple monomial models with VðXÞ ¼ XN and
M ¼ 0, do not admit any thermodynamically stable
configurations. Fortunately, one can consider polynomial
models, such as VðXÞ ¼ X þ λX2 or the “higher-derivative
model” of [9], that do admit thermodynamically stable
configurations, in our case α2 ¼ r0ðr0 −MÞ=ð2λÞ. Though
the lattice pressure Pl is zero in such configurations, its
thermodynamic derivatives sl, ql, ϵl are still generically
nonzero and have to be taken into account in the hydro-
dynamic spectrum. This was verified for the uncharged
case in [29]. Previous holographic models for CDW have
not been taking the lattice pressure into account, leading to
the misinterpretation of some of their results.

IX. OUTLOOK

We have provided a complete formulation of hydro-
dynamics for clean isotropic CDW phases, taking into
account the new transport coefficient Pl. We find that Pl
nontrivially modifies the longitudinal sector of linear
fluctuations. Besides being crucial for correctly interpreting
the holographic results, including those of [8–12], lattice
pressure is also highly relevant for real condensed matter
systems. It can describe parts of the phase diagram for
which there are no thermodynamically stable ordered
phases and also accounts for the effects of thermal
expansion of the crystal. We have obtained an analytic
expression for the coefficients of thermal and chemical
expansion is a class of simple holographic models using
lattice pressure.
It will be interesting to further include the effects of

explicit translation symmetry breaking (momentum dis-
sipation and pinning) as well as incorporate spontaneous
breaking of U(1) global symmetry. This would provide a
more robust theory for realistic scenarios. In this context, it
would be relevant to revisit some of the results and
predictions of [4,6,7,42] with our understanding of lattice
pressure, potentially including weak/strong background
magnetic fields. In particular, it is an open question whether
the existing data can constrain the magnitude of Pl or its
gradients for specific materials. It would also be interesting
to work out an analogous formulation for smectic and
nematic charged liquid crystal phases.
In the context of holography, we focused on equilibrium

thermal states dual to planar black hole geometries.
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However, this work provides the necessary linear transport
theory for interpreting near-equilibrium states. By comput-
ing the quasinormal modes and using the Kubo formulas
reported here, one can extract all first order transport
coefficients and check whether the modes reported here
reproduce holographic results. We leave some of these
explorations for future work.
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