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Abstract

We recast superfluid hydrodynamics as the hydrodynamic theory of a system with an
emergent anomalous higher-form symmetry. The higher-form charge counts the winding
planes of the superfluid – its constitutive relation replaces the Josephson relation of con-
ventional superfluid hydrodynamics. This formulation puts all hydrodynamic equations
on equal footing. The anomalous Ward identity can be used as an alternative starting
point to prove the existence of a Goldstone boson, without reference to spontaneous
symmetry breaking. This provides an alternative characterization of Landau phase tran-
sitions in terms of higher-form symmetries and their anomalies instead of how the sym-
metries are realized. This treatment is more general and, in particular, includes the case
of BKT transitions. As an application of this formalism we construct the hydrodynamic
theories of conventional (0-form) and 1-form superfluids.

Copyright L. Delacrétaz et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 15-09-2019
Accepted 27-02-2020
Published 26-03-2020

Check for
updates

doi:10.21468/SciPostPhys.8.3.047

Contents

1 Preliminaries and framework 1
1.1 An alternative to Goldstone’s theorem 3
1.2 Scales and defects in the superfluid EFT 4
1.3 Decoupling of currents in the superfluid EFT 5

2 An incoherent superfluid appetizer 7
2.1 Phase relaxation and vortices 8

3 Relativistic superfluid hydrodynamics 8
3.1 Zeroth-order hydrodynamics 8

3.1.1 Entropy current conservation and anomaly 10
3.2 First order hydrodynamics 10

4 Generalization to higher-form superfluids 12
4.1 1-form superfluid hydrodynamics 12

5 Outlook 14

A Thermodynamic argument to fix τ 16

B Conversion between conventions 16

1

https://scipost.org
https://scipost.org/SciPostPhys.8.3.047
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.8.3.047&amp;domain=pdf&amp;date_stamp=2020-03-26
http://dx.doi.org/10.21468/SciPostPhys.8.3.047


SciPost Phys. 8, 047 (2020)

C First order tensor structures in 0-form superfluids 16

References 18

1 Preliminaries and framework

Consider a superfluid, i.e. a system that spontaneously breaks a U(1) symmetry. If it is Lorentz
invariant, it can be described by the low energy effective field theory (EFT) [1,2]

S =

∫

dd x P
�
q

−DµφDµφ
�

+ · · · , (1.1)

with Dµφ = ∂µφ − qAµ. Here, P(·) is a smooth function away from zero and the ellipses
denote higher derivative terms. From the high energy perspective, φ represents the phase of
the charged operator that condenses, q is its charge and Aµ is a background U(1) gauge field1.
The U(1) current is given by

Jµ =
δS

δ(Dµφ)
= P ′

Dµφ
p

−DνφDνφ
+ · · · . (1.2)

Now, following the nomenclature from [3], notice that the EFT also enjoys a (d − 2)-form
symmetry U(1)(d−2) carried by the current Kµ1µ2...µd−1

given, compactly, by2

(?K)µ = Dµφ , (1.3)

where ? is the Hodge dual operator. Charged objects under this symmetry are winding planes
of the superfluid phase φ. This higher form symmetry is explicitly broken by the proliferation
of vortices as one returns to the normal phase, and typically will not be a symmetry of the
microscopic theory: it is an emergent symmetry of the superfluid phase. In the presence of
non-trivial background gauge fields F = dA 6= 0, the conservation of the higher form current
is also broken at low energies by an anomaly as

d ? K = −aF , (1.4)

where a is the anomaly coefficient. It can be connected to UV data by a = q. Notice that
even without invoking UV arguments relating to charge quantization, it is easy to see that flux
quantization implies a ∈ Z for a compact U(1) symmetry,

Unlike axial-type anomalies, this mixed anomaly between U(1) and U(1)(d−2) symmetries
can occur in any dimension. It is similar to the axial anomaly in d = 2 (e.g. in the Schwinger
model) and generalizes it to higher dimensions. This anomaly has a simple physical interpre-
tation: without background fields, the number of winding planes (or the supercurrent in a
superconductor) is conserved. In an external electric field the number of winding planes (or
the supercurrent) will increase linearly in time. Winding planes in any direction can be added
or removed by turning on an appropriate electric field.

1The ultraviolet reader uncomfortable with this EFT will find a discussion in section 1.2 on how this theory
emerges as the low-energy description of certain microscopic models.

2The current associated with the higher-form symmetry is (?K)µ = ∂µφ. Nevertheless, this current is not
invariant under U(1) gauge transformations, and the gauge invariant combination is given in (1.3), which is not
conserved. The non-conservation of (1.3) leads to the anomalous conservation equation (1.4).
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Spontaneous symmetry breaking (SSB) leads, therefore, to an emergent (d−2)-form sym-
metry with anomaly (1.4). In section 1.1 below, we show that there exists an (almost) converse
statement, namely a system with U(1) × U(1)(d−2) symmetry with anomaly (1.4) contains a
massless Goldstone boson transforming non-linearly in its spectrum3. As a consequence, SSB
phases of systems enjoying abelian symmetries can equivalently be formulated in terms of
mixed anomalies (1.4). It is tempting to adjust Landau’s paradigm for classifying phases by
only specifying which generalized symmetries each phase has, along with their anomalies, dis-
regarding how they are realized – linearly or non-linearly (i.e. whether the symmetries are
spontaneously broken or not). For example, the BKT transition in 2+1 dimensional superflu-
ids is sometimes said to be non-Landau because there is only quasi-long range order at low but
finite temperatures. Generalized symmetries however distinguish both phases. Conservation
of the emergent higher form symmetry in the superfluid phase has tangible consequences: it
leads, in particular, to an infinite dc conductivity σ(ω) ∼ i/ω, observed experimentally even
in 2+ 1 dimensions e.g. in thin superconducting films or superfluids when T < TBKT [4,5].

The philosophy of insisting on symmetries alone rather than how they are realized on mi-
croscopic fields plays a central role in hydrodynamics. In this paper, we propose to recast
superfluid hydrodynamics as a the hydrodynamical theory of a system with U(1)× U(1)(d−2)

symmetry with a mixed anomaly (1.4). This fomulation puts all hydrodynamic equations on
equal footing – as conservation laws and constitutive relations for the various currents. The
‘Josephson relation’ in the standard treatment of superfluid hydrodynamics [6] is replaced by
the constitutive relation for the higher form current (see Ref. [7] for the analogous statement in
the context of spontaneous breaking of translation symmetry). This streamlines the hydrody-
namics algorithm along the lines of what was done recently with magnetohydrodynamics [8].
How anomalies enter hydrodynamics has been understood since the seminal work of Son and
Surowka [9] where it was shown that the chiral anomaly fixes terms in the constitutive rela-
tions at first order in derivatives. Furthermore, the understanding of the interplay between
hydrodynamics and anomalies has led to many important results in the field, e.g. see [10–17].
The case at hand is in some sense the simplest anomaly in hydrodynamics, since it enters at
zeroth order in derivatives.

Mixed anomalies of higher form symmetries have also been discussed recently in the con-
text of 2-groups [18,19] and for discrete symmetries in the context of topological phases [20].

1.1 An alternative to Goldstone’s theorem

The standard input for the Nambu-Goldstone theorem is that a symmetry breaking order pa-
rameter acquires a vacuum expectation value. Here, we obtain the equivalent result for rel-
ativistic QFTs with a different starting point; namely that the theory has a global symmetry
U(1)× U(1)(d−2) with mixed anomaly

∂µ〈Jµ〉= 0 , ∂[µ〈(?K)ν]〉= −a Fµν . (1.5)

The Fourier transform of the mixed correlator is constrained by Lorentz invariance to take the
form

Πµν(p)≡
∫

dd x ei x p



T (?K)µ(x)Jν(0)
�

= f (p2) pµpν + g(p2) p2 gµν , (1.6)

where T denotes time-ordering. The Ward identity for the 0-form current gives

Πµνpν = 0 ⇒ f (p2) + g(p2) = 0 . (1.7)

3Strictly speaking, this is weaker than SSB as there does not need to be a charged operator that acquires an ex-
pectation value. Therefore, the symmetry structure presented here, including the anomaly, is a weaker assumption
than SSB, making it more general.
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The anomalous Ward identity for the (d − 2)-form current (1.5) reads

p[αΠµ]ν = −a p[αgµ]ν ⇒ g(p2) = −
a
p2

. (1.8)

The mixed correlator is therefore completely fixed by the anomaly

Πµν(p) = a
pµpν − p2 gµν

p2
. (1.9)

An important remark here is that the U(1)(d−2) symmetry is emergent, and is broken by vor-
tices. This will lead to corrections to (1.9) which are non-singular as p2→ 0 and vanish when
pµ → 0, since the vortices are gapped. The p2 = 0 pole in (1.9) is therefore a robust con-
sequence of the anomaly (1.5) of the emergent symmetry, and is all that is needed for this
proof.

We now proceed along lines similar to current-algebra proofs of Goldstone’s theorem [1].
The Källén-Lehmann representation of the time-ordered correlator (1.9) is4

Πµν(p) =

∫ ∞

0

dµ2ρKJ (µ
2)

pµpν − p2 gµν
p2 −µ2 + iε

, (1.10)

where the spectral density ρKJ (p2) (non-sign definite since it involves two different operators)
is defined as

∑

n

(2π)dδd(p− pn)〈0|(?K)µ(0)|n〉〈0|Jν(0)|n〉∗ ≡ ρKJ (p
2)pµpν . (1.11)

Comparing with (1.9) one immediately concludes that there exists a massless state p2
n = 0 that

is created by both currents, i.e.

ρKJ (µ
2) = aδ(µ2) + · · · , (1.12)

where · · · are contributions that are finite as µ→ 0.
Notice that, up to contact terms (see footnote 4) and identifying

�

?Kµ
�

= ∂µφ, we can
interpret (1.9) as coming from the momentum space correlation function

〈φ Jν〉= a
pν
p2

. (1.13)

This precisely satisfies the Ward identity for a fieldφ transforming non-linearly under the U(1)
induced by Jµ, indicating that this symmetry is spontaneously broken in d > 2. While there is
no spontaneous symmetry breaking in d ≤ 2, our arguments do go through even in that case
showing that our setup is more general than the usual classification of phases by the realization
of symmetries and includes more exotic cases, such as BKT transitions.

A short but important conclusion from this analysis is that it is really anomalies that are
responsible for the existence of massless modes, as a more general statement than symmetry
breaking. This discussion connects with the study of topological phases [22,23], where topo-
logical insulators accommodate massless modes at their boundaries, stabilized by anomaly
inflow. The present anomaly (1.4) can be canceled by inflow from a bulk with the term
Sbulk = a

∫

B ∧ F , where B is the (d − 1)-form source for the current K .
A mixed anomaly can similarly be seen to protect the masslessness of the photon or higher-

form gauge fields – the hydrodynamics of such a system is discussed in Sec. 4. The proof above

4 A non-covariant contact term has to be added to make the time-ordered correlator of spin-1 operators covari-
ant. This can be done while preserving Ward identities, see [21].
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can easily be generalized to the case where an anomalous U(1)(p) × U(1)(d−p−2) is present,
leading to the presence of p-form massless gauge fields in the spectrum for 0 ≤ p ≤ d − 2.
When d = 2p+2, we expect the emergence of a conformal phase at low energies, as the gauge
coupling constant is dimensionless. In this very special case the converse of this statement was
proven in [24]: a conformal theory enjoying a U(1)(p) symmetry in d = 2p + 2 dimensions
must also have an anomalous U(1)(d−p−2).

1.2 Scales and defects in the superfluid EFT

Before studying the hydrodynamics we pause to make a few comments on the effective field
theory (1.1). A paradigmatic microscopic model that leads to it is the Landau-Ginzburg model
for a complex scalar

L= −1
2
|DµΦ|2 − V (|Φ|2) , (1.14)

where DµΦ≡ ∂µΦ+ iAµΦ and with potential

V (ρ2) = −
1
2

m2ρ2 +
g
4
ρ4 =

g
4
(ρ2 − v2)2 + const , (1.15)

where v = m/
p

g. Expanding around the saddle Φ= (v+ r)eiφ and integrating out the radial
mode at tree level this leads to (for energies E� m)

Seff = −v2

∫

dd x
1
2
(Dµφ)

2 +
a4

m2
(Dµφ)

4 +
a6

m4
(Dµφ)

6 + · · · , (1.16)

where the an are combinatorial factors. This is clearly a special case of (1.1), where5 we can
understand P(µ) as an analytic series expansion in µ2. The strong coupling scale in this model

is Λsc ∼
�

m4

g

�
1
d , which, as usual, is parametrically larger than the scale of new physics m if the

UV is weakly coupled. In this cases we can imagine resumming the series to obtain a function
P(µ) and still retain perturbative control. The leads to the treatment discussed around (1.1).

From the point of view of the higher form current (1.3), the UV scale Λsc has clear physical
meaning. The theory (1.14) admits vortex solutions which can be constructed (up to loga-
rithmically IR divergent terms) as soon as we hit the symmetry restoration scale given by Λsc.
When this happens, the winding planes charged under U(1)(d−2) can end on the vortices and
the symmetry becomes explicitly broken.

Of course this weakly coupled description does not have to be valid. While the superfluid
system described above exists even with zero chemical potential, so that one can consistently
take µ � Λsc, certain superfluid phases only occur at finite chemical potential (such as in
QCD). In this case the strong coupling scale is typically of order the chemical potential. A
simple example of such a situation is a conformally invariant superfluid, where P(µ) = αµd

by scale invariance so Λsc ∼ µ (in this case P(µ) might not be analytic in µ2). More generally
the equation of state P(µ) entirely fixes the EFT at leading order in gradients – the equation
may however be complicated away from the conformal situation. See [25] for an extended
discussion.

1.3 Decoupling of currents in the superfluid EFT

The reader may wonder to what extent the two currents (1.2) and (1.3) should be treated as in-
dependent vectors in the hydrodynamic description. Although the operators Jµ and (?K)µ are

5This notation is natural if one notices that for constant field configurations, in a background time-like field,
the argument of P(µ) is indeed the chemical potential.

5
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different (for example in (1.16) they differ by terms suppressed in m2), they remain collinear
when evaluated in any given field configuration. This is no longer the case in a thermal ensem-
ble. T 6= 0 introduces a preferred vector (uµ = δµ0 in the rest frame of the fluid) which together
with the superfluid winding distinguishes both currents. Since uµ is even under charge con-
jugation6, the decoupling of currents can only happen when also at finite chemical potential
µ 6= 0. The difference between the currents corresponds to the ‘normal density’ in the two-
fluid picture of finite temperature superfluids, coming from thermally populated superfluid
phonons. In this section we show how a thermal 1-loop computation in the effective theory
(1.1) distinguishes the two currents at finite (but small) temperature T . Although this calcu-
lation has been done in certain microscopic models that exhibit superfluidity (see e.g. [26] for
a field theory calculation in the Landau-Ginzburg model), we are not aware of a calculation
in the universal EFT. This decoupling of the currents at finite temperature justifies why they
should be treated as independent vectors in the hydrodynamic setup of section 3.

Taking Aµ = µδ0
µ and expanding the action in fields around a solution with finite superfluid

winding7 ∂µφ→ δI
µρ̃I + ∂µφ leads to

S =

∫

dd x P(
q

−DµφDµφ) + · · ·

=

∫

dd x P −
P ′

2X0
(∂µφ)

2 +
1
2

�

P ′′

X 2
0

−
P ′

X 3
0

�

(µφ̇ + ρ̃ · ∇φ)2 +O(∂ φ)3 + · · · ,
(1.17)

where the functions without argument (P, P ′, etc.) are evaluated at X0 ≡
p

µ2 − ρ̃2. We can
identify these with the pressure P, charge density ρ = P ′ and susceptibility χ = P ′′ at zero
temperature. The speed of superfluid sound is clearly anisotropic, see [26] for an extended
discussion.

The currents in this theory are given by (1.2) and (1.3); expanding again in fields gives

(?K)µ = ∂µφ +δ
I
µρ̃I −µδ0

µ , (1.18)

Jµ =
(?K)µ

X0

�

P ′ −
�

P ′′

X0
−

P ′

X 2
0

�

(µφ̇ + ρ̃ · ∇φ) +O(∂ φ)2 + · · ·
�

. (1.19)

In the ground state the normal ordered operators above have no expectation value and we
have the densities 〈J0〉 = P ′ = ρ and 〈(?K)I〉 = ρ̃I at T = 0 as expected. For any single
field configuration, the two currents are manifestly parallel. However they are distinguished
in the finite temperature ensemble, where φ̇2 and ∇φ2 acquire thermal expectation values at
1-loop. Here we will work at small temperature for simplicity so that the equation of state can
be expanded around T = 0. The expectation value of the dual current is simply

〈(?K)µ〉β = δI
µρ̃I −µδ0

µ . (1.20)

The finite temperature correction in the direction of the regular current is

〈Jµ〉β − 〈Jµ〉= −
�

P ′′

X 2
0

−
P ′

X 3
0

�

〈∂µφ(µφ̇ + ρ̃ · ∇φ)〉β . (1.21)

Here we neglected two contributions to 〈Jµ〉β , coming from the temperature dependence of
P ′ and the thermal expectation value of the O(∂ φ)2 term in (1.19). Both of these will give
corrections to the magnitude of 〈Jµ〉β , but not to its direction which we are interested in. In the

6Charge conjugation acts in the EFT (1.1) as φ→−φ, µ→−µ.
7The index I = 1,2, . . . , d − 1 runs over the spatial dimensions.
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traditional language, they are finite temperature corrections to the superfluid density, instead
of contributions to the normal density.

In order to prove that the two currents are independent, one must compute the thermal
expectation value (1.21) in the linearized theory (1.17) and show that it is not parallel to
(1.20). We will do so to leading order in ρ̃.

〈∂µφ(µφ̇ + ρ̃ · ∇φ)〉β =
�

µδ0
µ〈φ̇

2〉β +
1

d − 1
δI
µρ̃I〈∇φ2〉β +µδI

µ〈φ̇∂Iφ〉β
�

+O(ρ̃2) . (1.22)

The first two terms can be computed in the isotropic theory, where a 1-loop calculation with
appropriate UV regulator gives

〈φ̇2〉β = c2
s 〈∇φ

2〉β =
(d − 1) fd

βd cd−1
s P ′′

, with fd =
Γ ( d

2 )ζ(d)

πd/2
, (1.23)

where the isotropic speed of sound is given by c2
s =

P ′
µP ′′ . The last term is slightly more subtle

but can be computed similarly, one finds

〈φ̇∂Iφ〉β =
1− c2

s

c2
s

ρ̃I

µ
〈φ̇2〉β +O(ρ̃3) . (1.24)

We therefore find that the contribution (1.21) to the current is

〈Jµ〉β − 〈Jµ〉=
1− c2

s

µβd cd−1
s
(d − 1) fd

�

δ0
µ +

ρ̃Iδ
I
µ

µ

�

d
(d − 1)c2

s
− 1

�

�

, (1.25)

which is never parallel to (1.20). At low temperatures, we see that as long as c2
s < 1 the

deviation between the two currents (and therefore the ‘normal density’) is∼ T d , in agreement
with standard results (see e.g. [27]).

2 An incoherent superfluid appetizer

The existence of the anomaly (1.4) applies to any local system with a spontaneously broken
U(1) symmetry and does not rely on translational or boost invariance. This leads us to consider
a system where conservation of energy and momentum can be ignored8 and focus on the
hydrodynamics of the conserved currents (1.2) and (1.3) alone. This constitutes the simplest
instance of a hydrodynamic system with the (anomalous) symmetry structure discussed in the
introduction. The XY model on a lattice is a simple microscopic realization of such a system.

The full hydrodynamics, including energy-momentum, is treated in the next section in a
systematic manner (including a careful study of the role of anomalies); we take advantage
of the simpler setting in this section to make the conceptual issues more clear. We therefore
consider the hydrodynamics of a system satisfying the conservation laws

d ? J = 0 , (2.1)

d ? K = −aF , (2.2)

with a ∈ Z where J and (?K) are one forms and F = dA is a background two-form for the U(1)
gauge field that couples to J . At finite temperature, there exists a preferred rest frame for this
system given by a (non-dynamical) velocity field uµ. This allows us to discuss the physics in

8Strictly speaking, one would also have to consider the conservation of energy. For simplicity we disregard this
contribution which would just lead to an additional diffusive mode.

7

https://scipost.org
https://scipost.org/SciPostPhys.8.3.047


SciPost Phys. 8, 047 (2020)

manifest SO(d −1) non-relativistic notation in what follows. We will consider the case where
there are no background sources, A= 0.

The hydrodynamic variables are the charge densities J0 = ρ and (?K)I = ρ̃ I . We will
denote their conjugate dynamical potentials by µ and µ̃I and the corresponding susceptibil-
ities9 χ and χ̃. As a further simplification in this section, we will assume the background
dual potential vanishes ¯̃µI = 0 (corresponding to the absence of a background winding of the
superfluid). This assumption is lifted in the general treatment of Sec. 3.

The most general constitutive relations up to first order in derivatives are

J I = aµ̃I −σ∂ Iµ+ · · · , (2.3)

(?K)0 = aµ− σ̃∇ · µ̃+ · · · . (2.4)

Onsager relations require both terms that are zeroth order in derivatives to have the same
coefficient, which is fixed to be the anomaly coefficient a by Luttinger’s argument10. There
are only two transport parameters σ, σ̃ ≥ 0, which are positive by the second law of thermo-
dynamics. Identifying temporarily ?K with the gradient of the superfluid phase reproduces
the equations of conventional superfluid hydrodynamics, in particular (2.4) gives rise to the
Josephson relation (see e.g. Eqs. (11) and (13) in Ref. [29]).

The conservation equations read

0= χ∂tµ+ a∂I µ̃
I −σ∇2µ+ . . . , (2.5)

0= χ̃∂t µ̃
I + a∂Iµ− σ̃∇2µ̃I + . . . , (2.6)

0= ∂I µ̃J − ∂J µ̃I . (2.7)

These equations represent two physical (first order) modes, as the third equation above is a
constraint. They combine into a single (second order) damped sound mode

ω= ±
a

p

χχ̃
|k| −

i
2

�

σ

χ
+
σ̃

χ̃

�

k2 +O(k3) . (2.8)

Introducing a background dual potential ¯̃µI 6= 0 would lead to anisotropies in the speed of
sound (as was shown in the non-dissipative treatment of section 1.3) and in the sound atten-
uation rate.

2.1 Phase relaxation and vortices

In this language, phase relaxation due to proliferating vortices is naturally captured as explicit
breaking of the higher form symmetry. If the explicit breaking is weak (i.e. if the relaxation
rate is small in units of the hydrodynamics cutoff), it can be incorporated in the hydrodynamics
by replacing the higher form conservation equation with

∂µKµν = Γ uµKµν + · · · , (2.9)

to leading order in derivatives. Here we specialized to 2+1 dimensions so that vortices do not
break isotropy. As usual with weak explicit breaking of symmetries, the relaxation rate Γ can
be related to microscopic relaxation mechanisms via a Kubo formula [30]

Γ δI J = lim
ω→0

1
ω

Im GR
K̇0I K̇0J

(ω) . (2.10)

See Refs. [29,31] for applications of this Kubo formula to thin film incoherent superconductors.
Generalized symmetries therefore allow to recast weak phase relaxation as weak breaking of
higher form symmetries.

9The dual susceptibility is related to the superfluid stiffness fs as χ̃ = 1/ fs.
10The argument [28] is as follows: in equilibrium the charge densities respond to background fields δJ0 = χA0,

and the currents vanish. Their constitutive relations should therefore be functions of 1
χ δJ0 − A0 = δµ− A0.
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3 Relativistic superfluid hydrodynamics

In this section we will systematically construct the complete hydrodynamics of a system en-
joying an (anomalous) U(1)× U(1)(d−2) symmetry, including its energy-momentum sector, to
first non-trivial order in derivatives. We will show that the result agrees precisely with previ-
ous results in the literature [32–34], without invoking any extra assumptions except for the
symmetries but with no reference to the character of their realization.

The way to construct a hydrodynamic theory is to write down the most general constitu-
tive relations for all conserved quantities in the system in terms of equilibrium thermodynamic
functions and the tensor structure that represents the (explicit) breaking of space-time sym-
metries.

3.1 Zeroth-order hydrodynamics

We want to build the hydrodynamical theory for d-dimensional relativistic superfluids. There-
fore we must have a conserved energy-momentum tensor Tµν, a conserved current Jµ and a
second, anomalous, conserved current Kµ1...µd−1 that is associated to the dual symmetry. We
expect that the system can be completely described in terms of three scalars and two vectors
that we take to be the temperature T , two chemical potentials µ and µ̃, a velocity vector uµ

that specifies the rest frame and a vector hµ that specifies the orientation of the co-dimension
1 charged objects (i.e. planes) under K . Since it is the codimension of these objects that is
fixed, it is more convenient to write the hydrodynamics in terms of the Hodge dual ?K instead
of K . Furthermore we have the freedom to consider orthonormalized vectors as

uµuµ = −1 , hµhµ = 1 , uµhµ = 0 . (3.1)

In addition, we can define a projector onto the plane orthogonal to both uµ and hµ as

∆µν = ηµν + uµuν − hµhν , (3.2)

whose trace is ∆ µ
µ = d − 2.

The most general expressions for the conserved tensors in terms of these quantities at
zeroth order in derivatives are

Tµν = (ε+ p−τ)uµuν + (p−τ)ηµν +τhµhν + γu(µhν) , (3.3)

Jµ = ρuµ +σhµ , (3.4)

(?K)µ = σ̃uµ + ρ̃hµ , (3.5)

where all scalar functions are understood to depend on T , µ and µ̃. We define symmetrization
and antisymmetrization without the conventional factor of two, i.e u(µhν) = uµhν + uνhµ.

In the presence of a background field Aµ for the current Jµ, the conservation equations
read

∂µTµν = FνρJρ , (3.6)

∂µJµ = 0 , (3.7)

∂[µ(?K)ν] = −aFµν , (3.8)

where
Fµν = ∂µAν − ∂νAµ , (3.9)

and we have allowed for an anomaly coefficient a.
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As a sanity check we see that we have 2d dynamical equations11 for 2d degrees of freedom
contained in T,µ, µ̃, uµ, hµ. While we expect one equation of state to fix the scalar functions
p,ε,ρ, ρ̃ in (3.6-3.8) in terms of T,µ, µ̃, the remaining four scalars must be fixed by other
means.

First, the function γ can be fixed to any desired value by boosting the system in the (u, h)
plane. This preserves the norms, so it is an ambiguity of the parametrization. Normally we
would like to pick γ= 0, but we will keep it arbitrary for now as it simplifies the discussion of
the anomaly. We will fix it by demanding that the entropy current is at rest in the frame given
by uµ later on.

Second, τ corresponds to the tension of the charged planes in the fluid. It can be uniquely
fixed using a thermodynamic argument equivalent to the one displayed in [8] in the case of
magnetohydrodynamics. It amounts to showing that this tension has to be a particular fixed
function of µ̃ and ρ̃ in order for our system to show the thermodynamic volume scaling charac-
teristic of local theories. We reproduce this argument in appendix A, but we will shortly show
that this is not necessary as this coefficient is fixed uniquely, as well, by entropy conservation.

Lastly,σ and σ̃will be fixed by the anomaly and its effect in the conservation of the entropy
current. If there were no anomaly, we would just set σ = σ̃ = 0 as we would consider a frame
where the charges are at rest simultaneously with the entropy. Once the anomaly is included
we will see this is no longer possible.

This discussion makes the system of equations closed. The thermodynamics is hence com-
pletely fixed by a single function that is the pressure p(T,µ, µ̃), and the relevant relations12

ε+ p = sT +ρµ+ ρ̃µ̃ , (3.10)

dε= T ds+µdρ + µ̃dρ̃ . (3.11)

Notice that here we are discussing co-dimension 1 charged planes as opposed to [8] where
strings were present. This explains why the tension appears differently in (3.3) compared
to [8].

3.1.1 Entropy current conservation and anomaly

We now want to show that the entropy current is conserved at this order in the hydrodynamic
expansion. In the process, we will obtain the values of the yet undefined scalar functions. We
consider the following combination of the equations of motion:

Ω= uν∂µTµν +µ∂µJµ + µ̃uµhν
�

∂µ (?K)ν − ∂ν (?K)µ
�

. (3.12)

This quantity can be computed using the constitutive relations (3.3-3.5) as well as the ther-
modynamic relations (3.10) and (3.11) but leaving τ,γ, σ and σ̃ arbitrary. We obtain

Ω= −T∂µ(su
µ) + (τ− µ̃ρ̃)∆µν∂µuν − (γ−µσ)∂µhµ + (γ− µ̃σ̃)uµuν∂µhν

−hµ∂µγ+µhµ∂µσ+ µ̃hµ∂µσ̃ . (3.13)

On the other hand, we can also compute Ω using the conservation equations (3.6), (3.7) and
(3.8). In this case, we obtain

Ω= uµhνFµν (σ− aµ̃) . (3.14)

If there were no anomaly (a = 0), it is trivial to see that τ− µ̃ρ̃ = γ = σ = σ̃ = 0 is the only
possibility that yields a conserved entropy current which is at rest in the frame defined by uµ.

11Only d − 1 dynamical equations can be derived from (3.8). The rest are constraints on the initial conditions.
12Note that our definition of the pressure differs from the one in [33] and [35] because we want it to be symmetric

in terms of tilde and non-tilde quantities. This also explains the difference in (3.3).
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This is the statement that charges must be at rest in the same frame as the energy/entropy.
With the anomaly, the equation (3.14) fixes σ = aµ̃ since it must be zero for arbitrary Fµν. For
the entropy to be conserved in arbitrary flows and backgrounds, we have to impose

τ= µ̃ρ̃, γ= aµµ̃ , σ = aµ̃ , σ̃ = aµ . (3.15)

Allowing for the identifications described in appendix B, this agrees exactly with the results
from [33] and [32].

Notice that this manifestation of the interplay between anomalies and entropy current
conservation is, in some way, a simpler version of the first example discussed in [9]. There
the effect appeared at first order in the derivative expansion, while here it is already present
at zeroth order.

3.2 First order hydrodynamics

Hydrodynamics is organised as a derivative expansion. The constitutive equations (3.3-3.5)
are only the zeroth-order term in this expansion. Here, we construct the next order as

Tµν = Tµν(0) + Tµν(1) + . . . , (3.16)

Jµ = Jµ(0) + Jµ(1) + . . . , (3.17)

(?K)µ = (?K)µ(0) + (?K)
µ

(1) + . . . . (3.18)

The first order corrections are parametrized in terms of scalar quantities called transport coef-
ficients and dissipation appears at this order. The requirement that the entropy has to increase
over time strongly constrains these corrections.

In constructing first order corrections, discrete symmetries such as charge conjugation (C)
and parity (P) play an important role. Notice that, because of the anomaly, there is only one
notion of charge conjugation that changes the signs of J and K simultaneously. In this work,
we assume the charge assignments displayed in Table 1.

Table 1: Charges under discrete symmetries for 0-form symmetry

Tµν Jµ (?K)µ uµ hµ ε, p, τ, γ ρ, µ, σ ρ̃, µ̃, σ̃
P + + + + + + + +
C + − − + + + − −

The most general corrections that we can write for the first-order terms are

Tµν(1) = δεuµuν +δ f∆µν +δτhµhν + `(µhν) +m(µuν) + tµν , (3.19)

Jµ(1) = δρuµ +δσhµ + jµ , (3.20)

(?K)µ(1) = δσ̃uµ +δρ̃hµ + kµ . (3.21)

In this decomposition, lµ, mµ, jµ and kµ are transverse vectors to both uµ and hµ, and tµν is
a symmetric traceless tensor. Note that in (3.19), we have not added a term δγu(µhν). This is
because as explained previously, we can always boost our system in the (u, h) plane to modify
the value of γ. Our frame is fixed once and for all at zeroth order by choosing the entropy
current to remain at rest.

In hydrodynamics, we have the freedom to change the hydrodynamical frame. This is be-
cause the fluid variables {uµ, hµ,µ, µ̃, T} have no intrinsic microscopic definition out of equi-
librium. The currents and the stress-energy tensor must be invariant under such redefinition.
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We use the scalar redefinitions of µ, µ̃, and T to set δρ = δρ̃ = δε = 0 and the two vector
redefinitions of uµ and hµ to set lµ = mµ = 0. We end up with the simpler first order expansion:

Tµν(1) =δ f∆µν +δτhµhν + tµν , (3.22)

Jµ(1) =δσhµ + jµ , (3.23)

(?K)µ(1) =δσ̃uµ + kµ . (3.24)

To proceed, we need to determine the most general form of the first order corrections
{δ f , δτ, δσ, δσ̃, jµ, kµ, tµν} in terms of derivatives of fluid variables. This is done in ap-
pendix C. In any case, most possible structures do not appear as a consequence of the second
law of thermodynamics to which we turn now.

The entropy current needs to be modified to first order in derivatives as

Sµ = suµ −
1
T

Tµν(1)uν −
µ

T
Jµ(1) −

µ̃

T
(?K)(1)νh

[νuµ] . (3.25)

One can easily check that this combination is invariant under frame redefinitions as required
[36]. Note that, in (3.25), we could have expected corrections coming from the anomaly as
in [9]. However, this is not the case as the anomaly was already included at zeroth order.

We can now compute the divergence of this quantity. After some algebra, we obtain

∂µSµ = −Tµν(1)∂µ
�uν

T

�

− Jµ(1)

�

∂µ

�µ

T

�

−
uνFνµ

T

�

− (?K)(1)ν∂µ
�

µ̃

T
h[νuµ]

�

. (3.26)

The second law of thermodynamics implies that the right hand side of (3.26) must always
be positive. Because the contributions to the divergence of the entropy current decompose is
scalar, vector and tensor channels, we can impose positivity on each sector separately. This
fixes completely the form the first order correction to the constitutive equations up to a number
of transport coefficients. Concretely, in the tensor sector,

tµν = −η(∆µα∆νβ −
1

d − 2
∆µν∆αβ)∂(αuβ) , (3.27)

where η is the shear viscosity and must be positive. The vector sector yields,

�

jµ

kµ

�

= −∆µρ
�

Σ11 Σ12
Σ12 Σ22

�

�

∂ρ
� µ

T

�

− uσFσρ
T

∂σ

�

µ̃
T h[ρuσ]

�

�

. (3.28)

The matrix Σ of conductivities must be positive semi-definite implying Σ11 ≥ 0 and
Σ11Σ22 ≥ Σ2

12. Onsager relations enforce that this matrix must be symmetric [36]. A small
detail is that the vector structures used above contain terms that include time derivatives. This
term can easily be removed by the considerations of appendix C and written in terms of other
structures if one wanted to preserve the nature of the initial value problem.

In the scalar sector,







δ f
δτ

δσ

δσ̃






= −







ζ11 ζ12 ζ13 ζ14
ζ12 ζ22 ζ23 ζ24
ζ13 ζ23 ζ33 ζ34
ζ14 ζ24 ζ34 ζ44

















∆µν∂µ
�uν

T

�

hµhν∂µ
�uν

T

�

hµ
�

∂µ
� µ

T

�

− uνFνµ
T

�

hµ∂µ
�

µ̃
T

�

+
�

µ̃
T

�

∆µν∂µhν











. (3.29)

Once again, the matrix of transport coefficients in equation (3.29) has to be symmetric due to
Onsager relations on mixed correlation functions [36] as well as positive definite. This matrix
contains terms such as bulk viscosities and components of the conductivity.

All in all, we have fourteen transport coefficients that are split as 1+ 3+ 10 = 14 in the
tensor, vector and scalar sectors respectively. This completely agrees with [33].
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4 Generalization to higher-form superfluids

Using the technology of the previous section one can easily build the equivalent hydrodynamic
theories for systems enjoying a p-form abelian symmetry U(1)(p) that is spontaneously broken.
All the physics is, in this case, contained in an anomalous emergent U(1)(d−p−2) symmetry. We
sketch an example of this construction for p = 1 and d = 4; generalizations to other cases
are straightforward. This particular system describes the hydrodynamic behavior of Quantum
Electrodynamics (QED) at energy scales below the electron mass. The Goldstone mode is none
other than the (partially screened) photon.

The results obtained here match the construction in [37] in terms of an effective action.

4.1 1-form superfluid hydrodynamics

Consider a system with a U(1)(1)×U(1)(1) symmetry in d = 4 in the presence of a background
two-form gauge field B that couples to one of the U(1) currents (which we call magnetic,
keeping the QED example in mind). The conservation equations for this system read

∂µTµν = Hναβ Jαβ , (4.1)

∂µJµν = 0 , (4.2)

∂µKµν = −
a
3
εναβγHαβγ , (4.3)

where
Hαβγ = ∂αBβγ − ∂βBαγ + ∂γBαβ , (4.4)

and Bµν is a two-form gauge potential. Notice that this system, in a non-trivial state, possesses
no continuous space-time symmetries, as the magnetic and electric field can point in arbitrary
directions. In these conditions a new situation arises: the charges, even in equilibrium, need
not be collinear with the chemical potentials. As all space-time symmetries are broken we can
pick a basis of orthonormal vectors:

uµuµ = −1 , hµhµ = eµeµ = 1 , uµhµ = uµeµ = hµeµ = 0 , (4.5)

and write
µµ = µhµ , µ̃µ = µ̃‖h

µ + µ̃⊥eµ . (4.6)

Here, uµ is the fluid velocity as in conventional hydrodynamics, hµ indicates the direction of
the magnetic chemical potential related to J while the electrical analog quantity related to K
is contained in the (h, e) plane. The most general constitutive relations for the currents are

Jµν = ρu[µhν] +ρ×u[µeν] +σ‖ε
µνρσuρhσ +σ⊥ε

µνρσuρeσ , (4.7)

Kµν = ρ̃‖u
[µhν] + ρ̃⊥u[µeν] + σ̃εµνρσuρhσ + σ̃×ε

µνρσuρeσ . (4.8)

Because charges and chemical potentials don’t need to be aligned, we cannot remove any
of the structures above. Notice that equations (4.7-4.8) allow the inclusion of a parity odd
structure. This follows from the existence of a parity odd scalar in this system. In QED this is
the familiar scalar product between the electric and magnetic field. In Table 2 we display our
conventions for charge conjugation (C), which as in the previous section reverses the sign of
both J and K , and parity (P), appropriate for QED.

With these charges under discrete symmetries, we can write the constitutive equation for
the stress-energy tensor

Tµν = (ε+ p)uµuν + pηµν −τhµhν − τ̃ eµeν −ϕ h(µeν) − γε(µαβγuαhβ eγu
ν) , (4.9)
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Table 2: Charges under discrete symmetries for 1-form symmetry

Tµν Jµν Kµν uµ hµ eµ ε, p, τ, τ̃, γ ϕ µ, ρ, σ̃ µ̃‖, ρ̃‖, σ‖ µ̃⊥, ρ̃⊥, σ⊥ ρ×, σ̃×
P + − + + − + + − + − + −
C + − − + − − + + + + + +

where ε is the energy density, p is the pressure and τ, τ̃,ϕ parameterize the stress tensor of
magnetic and electric strings13. The γ term contains the effect of the anomaly. While the
symmetries allow another term quadratic in εµνρσ, this term in not linearly independent from
the ηµν term.

The thermodynamics is completely specified by an equation of state and the relevant ther-
modynamic relations are

ε+ p = sT +ρµµ
µ + ρ̃µµ̃

µ , (4.10)

dε= T ds+µµdρµ + µ̃µdρ̃µ , (4.11)

where
ρµ = ρhµ +ρ×eµ , ρ̃µ = ρ̃‖h

µ + ρ̃⊥eµ . (4.12)

In a less covariant, but more transparent notation these equation can be rewritten as:

ε+ p = sT +ρµ+ ρ̃‖µ̃‖ + ρ̃⊥µ̃⊥, (4.13)

dε= T ds+µdρ +µρ×hµdeµ + µ̃‖dρ̃‖ + µ̃‖ρ̃⊥hµdeµ + µ̃⊥dρ̃⊥ + µ̃⊥ρ̃‖eµdhµ. (4.14)

Provided we can use the conservation of the entropy current and the anomaly argument from
the previous section to fix uniquely σ‖,σ⊥, σ̃, σ̃×,τ, τ̃,ϕ,γ,ρ×, the above is a closed system of
equations. In total, there are ten hydrodynamic variables in µ, µ̃‖, µ̃⊥, T, uµ, hµ, eµ and twelve
equations of motion of which two are constraints, making the system closed.

Notice that one of the densities, which we choose to be ρ× needs to be fixed. This is
consistent with the fact that there are (due to rotational symmetry) only 3 chemical potentials
(µ, µ̃‖, µ̃⊥) as, covariantly, the pressure p can only be a function of (µ · µ, µ̃ · µ̃, µ · µ̃). As a
consequence, only 3 densities can be independent. This is equivalent to the final expressions14

ε+ p = sT +ρµ+ ρ̃‖µ̃‖ + ρ̃⊥µ̃⊥, (4.15)

dε= T ds+µdρ + µ̃‖dρ̃‖ + µ̃⊥dρ̃⊥ , (4.16)

dp = sdT +ρdµ+ ρ̃‖dµ̃‖ + ρ̃⊥dµ̃⊥ , (4.17)

ρ× =
µ̃⊥ρ̃‖ − µ̃‖ρ̃⊥

µ
. (4.18)

We now proceed as with the 0-form case and demand the entropy current to be conserved.
Consider

Ω= uν∂µTµν +µhν∂µJµν + µ̃‖hν∂µKµν + µ̃⊥eν∂µKµν . (4.19)

This quantity can be computed from the conservation equations (4.1-4.3) to give

Ω= Hναβ
h

uνεαβρσuρ
�

σ‖h
σ +σ⊥eσ

�

−
a
3
ελναβ

�

µ̃‖h
λ + µ̃⊥eλ

�

i

. (4.20)

13In principle, techniques similar to those displayed in appendix A can be used to find the values of τ, τ̃,ϕ. In
this case one needs to consider more general volume preserving deformations of the fluid element, not present
for the 0-form case. These are important in the theory of elasticity and have been considered in a modern setup
recently in [38].

14This result also follows direct from entropy conservation as explained below.
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This must vanish for arbitrary Hναβ in order for the entropy to be conserved. On the other
hand, using constitutive relations (4.7), (4.8) and (4.9) we must obtain Ω= −T∂µ(suµ). Both
these conditions can only be satisfied provided

τ= µρ + µ̃‖ρ̃‖, , τ̃= µ̃⊥ρ̃⊥ , (4.21)

ϕ = µ̃⊥ρ̃‖ , ρ× =
µ̃⊥ρ‖ − µ̃‖ρ̃⊥

µ
, (4.22)

σ‖ = aµ̃‖ , σ⊥ = aµ̃⊥ , (4.23)

σ̃ = −aµ , σ̃× = 0 , (4.24)

γ= aµµ̃⊥ . (4.25)

This results in a hydrodynamic system equivalent to the one presented in [37], if one considers
the set of identifications presented in appendix B.

With this information, it is straightforward to follow the standard procedure outlined in
the previous section and construct higher order corrections to the constitutive relations in the
derivative expansion. We will not do this in this present work, but refer the reader instead
to [37] for the general structure of these corrections, albeit in a different formalism.

5 Outlook

In this work, we have shown that the masslessness of bosons coming from spontaneous break-
ing of abelian symmetries (superfluids, photons, etc.) can be interpreted as being protected
by an anomaly, analogously to the masslessness of fermions. This observation was upgraded
into a fundamental principle by reversing the logic and classifying certain phases of matter by
their (higher-form) symmetries and their anomalies without reference to how the symmetries
are realized. As an example of this program we have presented constructions of 0-form and
1-form superfluids in a systematic fashion in a formalism that puts the Josephson relation on
equal footing with the other conservation equations.

It is tempting to explore the consequences of this new paradigm. For example, are all gap-
less phases protected by anomalies? Goldstones for non-abelian symmetries are parametrized
by an element of a coset g ∈ G/H. The natural generalization of the current ?K = dφ to
this situation is the Maurer-Cartan form ?K ≡ g−1d g. This current fails to be conserved but
instead satisfies the Cartan structure equation

d ? K = −(?K)∧ (?K) . (5.1)

Since sigma models are IR-free in d ≥ 3, the theory abelianizes at low energies where one can
neglect the non-linear term in (5.1). A mixed abelian anomaly of the form (1.4) can therefore
also be said to protect the massless modes of this non-abelian theory.

There are other generalizations to non-abelian groups that are possible in certain circum-
stances. Although higher-form symmetries are always abelian (because the objects counting
higher-form charges have enough codimensions to be swapped nonviolently), the 0-form sym-
metry can be non-abelian. The anomaly (1.4) is canceled by inflow from a bulk term

∫

B ∧ F .
One natural generalization is for the bulk term to be replaced with

∫

B ∧ Tr F n. For n even, a
theory with an anomaly of this form is given by the GL × GR/Gdiag sigma-model. Focusing on
n = 2 for concreteness, this theory can have a closed Wess-Zumino (WZ) 3-form ω(3) (which
can be used to add a WZ term to the theory in 2 dimensions), whose closedness is spoiled
if a certain subgroup F ⊂ GL × GR is gauged [39] – a simple example is F = GL . The best
improvement of ω(3) that one can construct then satisfies

dω(3)∝ Tr
�

F2
L − F2

R

�

. (5.2)
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The theory therefore contains an anomalous U(1)(d−4) symmetry carried by the (d − 3)-from
current ?K ≡ ω(3) – this is the skyrmion number current [40]15. See Ref. [41] for further
obstructions to gauging WZ terms. Interesting generalizations that can accommodate a non-
abelian structure in a more fundamental fashion, such as connections to 2-groups [18], should
be pursued. We leave this for future work.

The ideas discussed here are in line with recent progress in incorporating higher form
symmetries in hydrodynamics [7,8,37,38,42–46] and we expect to see further developments
in this area.

The identification of higher form symmetries in this paper also revealed the fact that the
BKT transition is a regular Landau transition between two phases with different symmetries
(and anomalies). One can then ask: which phases are truly non-Landau, after generalized
symmetries (continuous and discrete) and their anomalies are taken into account? Certain
fractional quantum hall phases16 can also be distinguished by the symmetries of their effec-
tive Chern-Simons descriptions. A discrete higher-form symmetry similarly distinguishes both
phases of the Ising model, obviating the need to specify whether the symmetries are sponta-
neously broken or not. It is important to understand if and under which conditions the Landau
paradigm effectively fails.

It would also be of interest to use this new point of view to shed light on the traditional
treatment of superfluids within the gauge/gravity duality [35,47,48]. The proper treatment of
higher form symmetries within holography requires the inclusion of bulk Chern-Simons terms
and a careful consideration of the boundary conditions in some cases [49]. A second look at
this system might provide a holographic version of the anomaly inflow mechanism described
in section 1.1, giving a clearer connection to the study of topological phases.
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A Thermodynamic argument to fix τ

Consider a system that contains surfaces of area A running perpendicular to lines of length L,
with an associated tension τ and a conserved charge Q̃ given by the number of planes through
the line. The variation of the internal energy for this system is

dU = T dS − pdV +τLdA+ µ̃AdQ̃ . (A.1)

Now, since Q̃ is defined by a line integral, it is given by Q̃ = ρ̃L. Consider a Legendre transform
to the Landau grand potential:

Φ= U − TS − µ̃AQ̃ , (A.2)

dΦ= −sV dT − pdV − ρ̃V dµ̃+ (τ− ρ̃µ̃)LdA , (A.3)

15Note that in the context of chiral symmetry breaking, this symmetry is not emergent but carries the baryon
number U(1) present in the UV, as required by anomaly matching.

16Interestingly, the simpler case of integer quantum hall states is more resistant to the Landau paradigm treat-
ment. D.H. thanks Anton Kapustin and David Tong for discussions on this issue.
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where s is the entropy density. This quantity is naturally calculated by the on-shell action; we
thus expect this to scale with the volume. This scaling is spoiled unless τ= µ̃ρ̃.

B Conversion between conventions

We provide here the map between our results and the well established zeroth order superfluid
hydrodynamics results from [33]. They are given, in the form (theirs= ours) by

Æ

ξ2 + a2µ2 = ρ̃ , fs = ρ̃/µ̃ , ξµ = aµuµ + ρ̃hµ , (B.1)

n+ fsa
2µ= ρ , ε+ fsa

2µ2 = ε , P = P − µ̃ρ̃ . (B.2)

Below we list the map between the conventions in [37] and our results from section 4. As
before, they are given in the form (theirs= ours)

ζ̄µ = −ρ̃µ‖ hµ − ρ̃⊥eµ , ζµ = −µhµ , (B.3)

q̄ = −
µ̃⊥
ρ̃⊥

, q× = −
µ̃‖

µ
+
µ̃⊥ρ̃‖

ρ̃⊥µ
, q =

ρ

µ
+
µ̃‖ρ̃‖

µ2
−
µ̃⊥ρ̃

2
‖

ρ̃⊥µ2
, (B.4)

εthem = εus , pthem = pus , −1= aus . (B.5)

C First order tensor structures in 0-form superfluids

Scalars

We are looking for all the scalars that we can construct out of {T,µ, µ̃, uµ, hµ} with exactly one
derivative17. Let us start by listing all linearly independent scalars:

uλ∂λT , hλ∂λT , (C.1)

uλ∂λ
µ

T
, hλ∂λ

µ

T
, (C.2)

uλ∂λ
µ̃

T
, hλ∂λ

µ̃

T
, (C.3)

∆µν∂µuν , ∆µν∂µhν , (C.4)

hµhν∂µuν , uµhν∂µuν . (C.5)

Now, we can also use the conservation equations

∂µJµ = 0 , ∂[µ(?K)ν] = 0, , ∂µTµν = 0 , (C.6)

with which we can build four scalar equations, namely

∂µJµ = 0 , (C.7)

u[µhν]∂[µ(?K)ν] = 0 , (C.8)

uν∂µTµν = 0 (C.9)

hν∂µTµν = 0 . (C.10)

17In this section we turn off the background gauge field A.
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We use these equations to zeroth order to further remove terms containing time derivatives.
This preserves the nature of the initial value problem. This way we remove uλ∂λT , uµhν∂µuν,
uλ∂λµ and uλ∂λµ̃. Finally, we take our set of independent scalars to be

hλ∂λ
µ

T
, hλ∂λ

µ̃

T
, (C.11)

hµhν∂µuν , hλ∂λT , (C.12)

∆µν∂µuν , ∆µν∂µhν , (C.13)

where the first line is charge odd and the two remaining lines are charge even. Of these struc-
tures, only four will be allowed by the second law of thermodynamics (3.29).

Vectors

The transverse vector conservation equations are

∆ρα∂µTµα = 0 , (C.14)

∆µαuα∂[µ(?K)ν] = 0 , (C.15)

∆µαhα∂[µ(?K)ν] = 0 . (C.16)

All the transverse vector quantities that we can consider are

∆µν∂νT , ∆µν∂ν
µ

T
, (C.17)

∆µν∂ν
µ̃

T
, ∆µνhλ∂νuλ , (C.18)

XXXXXX∆µνuλ∂λuν , ∆µνhλ∂λuν , (C.19)
XXXXXX∆µνuλ∂λhν ,

XXXXXX∆µνhλ∂λhν , (C.20)

where we have used (C.14-C.16) to get rid of the three last components. Only two structures
are allowed by the second law of thermodynamics (3.28).

Tensors

In this case there are no transverse symmetric tensor equations. The transverse traceless sym-
metric tensors are given by

σµν = (∆µα∆νβ −
1

d − 2
∆µν∆αβ)∂(αuβ) , (C.21)

ζµν = (∆µα∆νβ −
1

d − 2
∆µν∆αβ)∂(αhβ) . (C.22)

Only one structure is allowed by the second law of therodynamics (3.27).
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