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The Impact of Unmodeled Heteroskedasticity on Assessing Measurement Invariance
in Single-group Models
Laura Kolbe , Terrence D. Jorgensen , and Dylan Molenaar

University of Amsterdam

ABSTRACT
This study compared two single-group approaches for assessing measurement invariance across an
observed background variable: restricted factor analysis (RFA) and moderated nonlinear factor analysis
(MNLFA). In MNLFA models, heteroskedasticity can be accounted for by allowing the common-factor
variance and the residual variances to differ as a function of the background variable. In contrast, RFA
models assume homoskedasticity of both the common factor and the residuals. We conducted
a simulation study to examine the performance of RFA and MNLFA under common-factor and residual
homoskedasticity and heteroskedasticity. Results suggest that MNLFA and RFA with product indicators
outperform RFA with latent moderated structural equations in conditions with heteroskedastic com-
mon-factors, and MNLFA outperforms RFA in conditions with residual heteroskedasticity. We provide an
explanation for the robustness of RFA with product indicators to violations of common-factor
homoskedasticity.
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Research in the social and behavioral sciences commonly
depends upon measures of constructs that are not directly
observable. In order to meaningfully compare measurements
of latent constructs across individuals or groups, measure-
ment invariance is required. Measurement invariance is for-
mally defined as

f1ðXjT;VÞ ¼ f2ðXjTÞ; (1)

where f1ð�Þ and f2ð�Þ denote probability distributions, X is
a set of observed variables (also referred to as indicators in
this paper) measuring the latent construct of interest T, and V
is a set of background variables that is a potential source of
a violation of measurement invariance (Mellenbergh, 1989). If
measurement invariance holds, the measurement X depends
only on the latent construct T and is invariant with respect to
other variables V. However, if measurement invariance does
not hold (i.e., f1�f2), the measurement X depends not only on
the latent construct T but also on V. With a lack of measure-
ment invariance, individuals with an equal standing on the
latent construct may have different expected values of X, and
differences in the observed-score means may not represent
true differences in T. Hence, before comparing measures of
a latent construct, it is important to test the assumption of
measurement invariance.

The majority of studies about measurement invariance
involve omnibus tests for all of a particular type of measure-
ment parameter (i.e., factor loadings or intercepts; see
Drasgow & Kanfer, 1985; Finch & French, 2018; Horn &
McArdle, 1992; Marsh, 1994), as described below. But much
less advice is available for how researchers should proceed

when they reject an omnibus null hypothesis. Byrne et al.
(1989) introduced the idea that partial invariance is sufficient
to compare groups on their common-factor distributions. In
the absence of a strong theory to specify a priori partial-
invariance models to be tested, establishing partial invariance
requires exploring which indicators’ measurement parameters
differ as a function of V . In some cases (e.g., many groups, no
obvious reference group), recently proposed alignment
(Marsh et al., 2017; B. Muthén & Asparouhov, 2018) or
projection methods (Deng & Yuan, 2016; Jiang et al., 2017)
may offer a promising way to compare latent distributions
without explicitly locating violations of invariance. But when
comparing very specifically chosen groups (e.g., men and
women, clinical and healthy populations), it might be of
great substantive interest to discover and explain why some
indicators function differently across groups (or across
a continuous V such as age), with important implications
for how a scale or test is used in practice. When researchers
have such interest, an analysis of indicator-level measurement
invariance or differential item functioning (DIF) – as is more
frequently discussed in the context of item-response theory
(IRT) than structural equation modeling (SEM)1 – could be
indispensably informative.

A commonly used method to assess measurement invar-
iance with respect to a categorical variable V is multiple-
group confirmatory factor analysis (MGCFA; Vandenberg &
Lance, 2000). In MGCFA, a confirmatory factor model is
simultaneously estimated for each group in which the con-
struct T is modeled as a common factor with multiple indi-
cators X, and invariance constraints are imposed on the

CONTACT Laura Kolbe l.kolbe@uva.nl University of Amsterdam.
1Exceptions include Kolbe and Jorgensen (2019), Masyn (2017), and Suh (2015).

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL
2021, VOL. 28, NO. 1, 82–98
https://doi.org/10.1080/10705511.2020.1766357

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-4285-3939
http://orcid.org/0000-0001-5111-6773
http://orcid.org/0000-0002-7168-3238
https://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2020.1766357&domain=pdf&date_stamp=2021-02-10


parameter estimates in order to assess increasingly restrictive
levels of measurement invariance (Meredith, 1993).
Invariance can be tested for multiple factors without loss of
generality, but we focus on the context of a single-factor
model (Mellenbergh, 1994) to keep the discussion concise.
The least restrictive level of invariance, called configural
invariance, implies that the same factor structure holds across
different levels of V . A more restrictive level of invariance is
metric invariance, reflected by equality of the factor loadings
across different levels of V . Yet more restrictive is scalar
invariance, which posits that in addition to the factor load-
ings, each indicator’s intercept is also equal across V .
Additionally, constraining residual variances (i.e., the variance
of each indicator’s unique factor) to equality across V is
referred to as strict invariance.

An alternative method for evaluating measurement invar-
iance with respect to a categorical variable V is restricted
factor analysis (RFA; Oort, 1992, 1998). RFA models are
single-group confirmatory factor models in which T is mod-
eled as a common factor with multiple measures X as indica-
tors, and V is included as an exogenous variable that freely
covaries with T. To test whether scalar invariance is violated
with respect to a particular X, X is regressed on V, and that
slope represents a difference in intercepts of X across levels of
V. RFA is thus readily suited to assess (violations of) scalar
invariance, but assessing metric invariance requires estimating
an interaction effect of T with V on X (i.e., different loadings
across V imply that V moderates the effect of T on X). This
interaction can be modeled in several ways, including the
distribution-analytic approach called latent moderated struc-
tural equations (LMS; Barendse et al., 2010). Although RFA
with LMS has a high power to detect violations of scalar and
metric invariance, several studies observed severely inflated
Type I error rates (Barendse et al., 2010, 2012; Woods &
Grimm, 2011). An alternative to LMS for estimating the
interaction effect of T with V on X is the product indicator
(PI; Kenny & Judd, 1984) method. Studies showed that the PI
method generally performs well with respect to bias, preci-
sion, power, and Type I error rates in the context of modeling
latent interactions in SEM (Henseler & Chin, 2010; Lin et al.,
2010; Little et al., 2006; Marsh et al., 2004). Most recently,
Kolbe and Jorgensen (2018) proposed the use of PI in RFA
models to assess metric invariance. A simulation study on
RFA with PI has shown that this method obtains similar
power but more acceptable Type I error rates than LMS
(Kolbe & Jorgensen, 2019).

There are several advantages of RFA over MGCFA. As the
data are aggregated over subsamples in RFA models, RFA
may provide higher power than MGCFA to detect violations
of measurement invariance (Barendse et al., 2012). Another
advantage of RFA over MGCFA is that it easily accommo-
dates tests for measurement invariance with respect to
a continuous variable V. In MGCFA models, testing for
measurement invariance with respect to a continuous variable
would require the continuous variable V to be categorized,
which can lead to a loss of power and measurement reliability
(MacCallum et al., 2002). However, RFA comes with the
additional assumptions of equal common-factor variances

across different levels of V (i.e., common-factor homoskedas-
ticity) and equal indicators’ residual variances across different
levels of V (i.e., residual homoskedasticity). The robustness of
RFA to common-factor heteroskedasticity is relatively unex-
plored (see Chun et al., 2016; Harpole, 2015, for exceptions).
Chun et al. (2016) studied the effect of common-factor het-
eroskedasticity with a categorical V on assessing measurement
invariance using multiple-indicator multiple-cause (MIMIC)
models, which are statistically equivalent to RFA models.
Their study showed that Type I error rates were inflated as
a result of common-factor heteroskedasticity. A more exten-
sive study is required to examine whether the performance of
RFA (or MIMIC) varies as a function of different magnitudes
of factor-variance differences across V . The robustness of
RFA to residual heteroskedasticity has also not yet been
explored in depth; however, it has been argued that residual
heteroskedasticity has similar impacts as common-factor het-
eroskedasticity (Meredith & Teresi, 2006).

When common-factor variances are suspected to differ
with V , moderated nonlinear factor analysis (MNLFA) mod-
els may be a more suitable alternative to RFA for assessing
measurement invariance. MNLFA was developed by Bauer
and Hussong (2009, but see the earlier work by, e.g., Neale,
1998; Neale, Aggen, Maes, Kubarych and Schmitt, 2006;
Mehta and Neale, 2005) and described as a tool for measure-
ment invariance assessment by Bauer (2017). Similar to RFA,
MNLFA does not require dividing the sample into subsamples
by V, therefore also allowing for a continuous V. In MNLFA
models, measurement invariance is examined in a single-
group confirmatory factor model by means of parameter
moderation. The variable V may alter the values of any subset
of model parameters including the common-factor variance
and residual variances of the indicators X. As such, MNLFA
does not require assuming common-factor or residual homo-
skedasticity with respect to V. The use of MNLFA for asses-
sing measurement invariance has been evaluated with
empirical data (see Bauer, 2017; Hildebrandt et al., 2016),
and a simulation with categorical indicators showed that it
performs well in large samples (e.g., N ¼ 2000) when com-
bined with a regularization approach (Bauer et al., 2020).
However, its statistical properties (e.g., Type I error rates
and power) have not yet been compared to other methods
or investigated in simulation studies including conditions
with small samples and continuous indicators.

The aim of the present study was to compare the Type
I error rates and power of different single-group methods to
test for measurement invariance with respect to a categorical
or a continuous V. We conducted a Monte Carlo simulation
study to evaluate the performance of RFA and MNLFA under
common-factor and residual homoskedasticity and heteroske-
dasticity. The current study built on earlier work by Kolbe
and Jorgensen (2019) for RFA models – as well as by Chun
et al. (2016) for MIMIC models – but more extensively exam-
ined the impact of heteroskedasticity of both the common-
factor and indicators’ residuals on assessing metric and scalar
invariance. That is, we investigated different magnitudes and
directions of common-factor and residual variance differ-
ences, and we simulated conditions with either a categorical
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or continuous variable V. Additionally, we contrasted not
only LMS and PI within RFA models, but we also contrasted
RFA with MNLFA models.

Following the results of previous studies (Chun et al., 2016;
Harpole, 2015; Kolbe & Jorgensen, 2019), common-factor
heteroskedasticity was hypothesized to inflate Type I errors
using RFA with LMS to assess measurement invariance. We
expected no impact of common-factor heteroskedasticity
using RFA with PI because Kolbe and Jorgensen (2019) did
not observe inflated Type I error rates despite common-factor
variances being unequal. The Appendix offers an explanation
for the robustness of the PI approach to violations of com-
mon-factor homoskedasticity. Although residual heteroske-
dasticity appears relatively unexplored in the context of RFA
(or MIMIC), we held similar hypotheses about its inflation of
Type I error rates, although we were unsure whether its
impact would be as severe as that of common-factor
heteroskedasticity.

The remainder of the paper is organized as follows. First,
we briefly describe RFA with LMS and PI, followed by
a description of the MNFLA method for assessing measure-
ment invariance. Then, we present a Monte Carlo simulation
study to compare these methods under various conditions.
The paper concludes with advice for applied researchers and
suggestions for future research.

Single-Group Models

We will start by considering the general form of a single-
group confirmatory factor model. The basic principle of sin-
gle-group models is that a set of common factors is modeled
as being drawn from a single multivariate-normal distribution
with constant mean vector and covariance matrix for the
entire population from which data were sampled. As men-
tioned above, we focus on a single-factor model. In a single-
group model, the construct of interest T is operationalized as
a latent factor with multiple observed measures X as indica-
tors. Assuming continuous indicators X, the general form of
a single-group model may be written as

xi ¼ τ þ Λti þ εi; (2)

where xi is a J � 1 vector of J observed indicator scores for
person i, τ is a J � 1 vector of indicator intercepts, Λ is a J � 1
vector of factor loadings, ti is the common-factor score for
person i and εi is a J � 1 vector of residual scores for person i.

If measurement invariance holds with respect to
a background variable V, the observed indicators X are
affected directly only by the latent construct T, and only
indirectly by V via T. Metric invariance requires equal Λ
with respect to V, and scalar invariance additionally requires
equal intercepts τ. In order to evaluate metric and scalar
measurement invariance in a single-group model, the model
for continuous indicators X can be rewritten as

xi ¼ τi þ Λiti þ εi
¼ ðτ0 þ bviÞ þ ðΛ0 þ cviÞti þ εi;

(3)

where vi is the background variable score for person i, τ0 is a
J � 1 vector of baseline intercepts when person i’s score on

the variable V is vi ¼ 0, and Λ0 is a J � 1 vector of baseline
factor loading when vi ¼ 0. The J � 1 vectors b and c are of
special interest because they contain coefficients that reflect
violations of measurement invariance (i.e., DIF). A nonzero
element in b implies a difference in an indicator’s intercept τ
with respect to V, and thus represents a violation of scalar
invariance (called uniform DIF in the IRT literature).
Similarly, a nonzero element in c implies an indicator’s factor
loading differs with respect to V, violating metric invariance
(called nonuniform DIF).

The evaluation of scalar and metric invariance is thus
concerned with testing the significance of the coefficients b
and c. For each indicator, an omnibus test of metric and scalar
invariance can be conducted by comparing the fit of
a constrained model with the fit of an unconstrained model.
In the unconstrained model, all elements in b and c are freely
estimated, except for the indicators that serve as anchors (i.e.,
indicators that are known or assumed to be invariant, rather
than tested). In the constrained model for a particular tested
indicator, that indicator’s b and c are additionally fixed to
zero, implying invariance of that indicator’s measurement
parameters. Any potential violation of measurement invar-
iance in the other to-be-tested indicators is accounted for
because the elements in b and c of those indicators are freely
estimated in both models. The model comparison produces
a likelihood ratio test (LRT) statistic that is distributed as a χ2

random variable with df ¼ 2. A significant LRT statistic is
taken as evidence against the null hypothesis that the studied
indicator is measurement invariant. Equivalently, a Wald test
statistic can be used. A Wald test is asymptotically equivalent
to the LRT (Buse, 1982) but advantageously only requires
estimating the unconstrained model, not any constrained
models.

Multiple single-group modeling approaches, including
RFA and MNLFA, have been proposed for the purpose of
assessing measurement invariance. These appproaches share
the same general form (Equation (3)), but differ in the way
the background variable V is modeled and b and c are esti-
mated. We will discuss the RFA and MNLFA approaches in
the following paragraphs. First, we will describe RFA followed
by a description of MNLFA, because an RFA model can be
seen as a restrictive MNLFA model.

Restricted Factor Analysis

In RFA, the variable V – across which measurement invar-
iance is potentially violated – is added to the single-group
model as an exogenous variable that covaries with the com-
mon factor T. This covariance captures how common-factor
means differ across V . MIMIC models are statistically equiva-
lent to RFA models but include a direct effect of V on the
common factor instead of a covariance. This direct effect can
readily be interpreted as the difference in common-factor
means for each 1-unit increase in V.

Measurement invariance is evaluated in an RFA model by
means of direct and interaction effects of the background
variable V on the indicators X. In order to assess scalar
invariance, the elements in b are modeled as direct effects of
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V on X. A nonzero effect of V on X implies that the observed
measure depends on V even when holding the common factor
constant (i.e., the indicator’s intercept τ differs with V, con-
trolling for T). In order to assess metric invariance, the ele-
ments in c are modeled as interaction effects between T and V
(i.e., T � V) on X. A nonzero interaction effect implies that
the magnitude of DIF varies with T (i.e., the indicator’s factor
loading λ differs with V).

Using maximum likelihood to estimate RFA poses
a challenge to testing metric invariance because estimating c
– the T � V interaction effect on X – would require modeling
the product between V (which could be observed or latent)
and the latent common factor T. LMS provides an analytical
solution to estimate these interaction effects in RFA models
(Barendse et al., 2010; Woods & Grimm, 2011), and Kolbe
and Jorgensen (2018, 2019) proposed the PI method as a more
widely available alternative. Next, we elaborate on both meth-
ods to model interactions in RFA models.

Latent Moderated Structural Equations

LMS is a distributional analytic approach for the estimation of
latent interaction effects in structural equation models
(A. Klein & Moosbrugger, 2000). With LMS the variable V
is modeled as a single-indicator latent variable in the RFA
model, which allows c to be estimated as latent interaction
effects on the indicators X. The latent interaction effects are
estimated by means of a finite mixture of multivariate normal
distributions, which takes into account the nonnormality
induced by multiplying two normally distributed latent

factors. Specifically, the distribution of the observed variables
X is regarded as finite mixtures of multiple distributions
conditional on the latent variables.

Figure 1 shows an RFA model amenable to LMS for asses-
sing measurement invariance with respect to variable V . In
this example, T is measured by J indicators denoted X, and V
is measured by a single indicator Y . In order for the model to
be identified, the factor loading and residual variance of Y are
commonly fixed at unity and zero, respectively. Instead of
modeling the interaction of T with V as a factor with
observed indicators, the LMS approach estimates the interac-
tion effect of T � V directly using mixture distributions
(A. Klein & Moosbrugger, 2000). Therefore, the interaction
of T with V is represented in Figure 1 by the product T � V
in a dotted circle. Note that associations (i.e., covariances) of
the product factor with T and V are not explicitly depicted in
Figure 1 because they are not estimated, but the estimation
implicitly allows those associations to exist. A nonzero effect
of V on Xj, denoted bj, implies uniform DIF for indicator j,
whereas a nonzero effect of T � V on Xj, denoted cj, implies
nonuniform DIF for indicator j.

The LMS approach is a full information maximum like-
lihood approach that assumes multivariate normality for all
exogenous variables (e.g., the common factors and residuals)
in the model. But when V is a categorical variable, this
normality assumption is clearly violated. Studies showed that
LMS provides efficient estimators when the distributional
assumptions are met (Dimitruk et al., 2007; A. Klein &
Moosbrugger, 2000), but with nonnormal variables inflated
Type I error rates were observed when testing for the

Figure 1. An RFA model with LMS for assessing measurement invariance. The dashed and dotted arrows represent effects that may be estimated to assess scalar and
metric invariance, respectively.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 85



significance of a latent interaction effect (A. Klein &
Moosbrugger, 2000; A. G. Klein & Muthén, 2007).
A violation of multivariate normality can, however, be
accounted for by using a robust maximum likelihood
(L. K. Muthén & Muthén, 2012). Barendse et al. (2012) pro-
vided a description and example syntax of how to apply RFA
with LMS in Mplus (L. K. Muthén & Muthén, 2012).

Product Indicators

The PI method by Kenny and Judd (1984) involves the for-
mation of product indicators that serve as indicators of an ad
hoc latent interaction factor representing the interaction
between two latent variables. There are various ways to com-
pute the product indicators of the latent interaction factor.
Most recently, the double-mean-centering strategy was pro-
posed (Lin et al., 2010). With this strategy, product indicators
are built by mean-centering the product terms obtained by
multiplying the mean-centered indicators of the associated
latent variables. Kolbe and Jorgensen (2018) provided an
R (R Core Team, 2018) syntax example of RFA with the PI
method using the R packages lavaan (Rosseel, 2012) and
semTools (Jorgensen et al., 2019). Note that an advantage of
the PI method is that it can be applied using any standard
SEM software because it merely requires calculating products
of indicator scores to be treated as indicators of the latent
interaction factor.

Figure 2 depicts an RFA model for the assessment of
measurement invariance in which the latent interaction factor
T � V is measured by double-mean-centered product indica-
tors. The potential source of a violation V is a latent variable
measured by the indicator Y . Similar to LMS, the factor
loading and residual variance of Y can be fixed at unity and
zero, respectively, in order for the model to be identified. As
illustrated in Figure 2, the indicators of T and V are mean-
centered. The double-mean-centered product indicator of the

j-th indicator is denoted ðYC � XC
j ÞC. Nonzero b and c para-

meters imply violations of scalar and metric invariance,
respectively. Whereas LMS only estimates the covariance

between T and V, the PI method additionally allows for the
estimation of the covariance between V and T � V as well as
the covariance between T and T � V. The latter covariance
will be nonzero only when the common-factor variance differs
across levels of V , thus accounting for common-factor hetero-
skedasticity (see the Appendix for details).

The maximum likelihood estimation procedure typically
used with the PI method assumes multivariate normality of
all indicators in the model (including the product indicators).
This assumption is inevitably violated because even products
of normal variables are not normally distributed (Jöreskog &
Yang, 1996). A robust maximum likelihood estimator can be
used to correct for nonnormality (Satorra & Bentler, 2010).
Studies have shown that PI methods, including the double-
mean-centering strategy, are generally robust against viola-
tions of multivariate normality of the product indicators (Lin
et al., 2010; Marsh et al., 2004).

Moderated Nonlinear Factor Analysis

The MNLFA approach (Bauer, 2017; Bauer & Hussong, 2009)
includes the background variable V in the model only as
a moderator variable, whereby parameters can be defined as
functions of V . Figure 3 illustrates the parameter moderation
with the arrow pointing from V to the measurement model
for the indicators X. Subject to identification constraints, the
variable V may be a predictor of any parameter in the factor
analysis model, including the common factor mean and var-
iance, each indicator’s intercept and residual variance, and all
factor loadings. Thus, no latent interaction is needed.

Measurement invariance can be assessed for each indicator
by testing whether V moderates the indicator’s intercept τ or
factor loading λ. To assess scalar invariance, the vector of
intercepts can be written (following from Equation (3)) as

τi ¼ τ0 þ bvi; (4)

where any nonzero element of b indicates a linear change in τ
associated with V (i.e., uniform DIF). Metric invariance can
be assessed by expressing factor loadings as

Figure 2. An RFA model with PI for assessing measurement invariance. The dashed and dotted arrows represent effects that may be estimated to assess scalar and
metric invariance, respectively.
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Λi ¼ Λ0 þ cvi; (5)

where any nonzero element of c reflects a linear change in Λ
associated with V (i.e., nonuniform DIF).

In addition to measurement parameters, factor means and
variances may also depend on V. For example, the mean of
the common factor T can be written as

αi ¼ α0 þ Γvi: (6)

Here α0 is the baseline common-factor mean when vi ¼ 0 and
Γ captures the linear effect of V on the common-factor mean.
Similarly, the common-factor variance can be expressed as
a function of V, but a linear regression model is not suitable
for variances because it allows for negative values. Therefore,
Bauer and Hussong (2009) proposed to model variances as
exponential functions of V. The variance of the common
factor T may be written as

ψi ¼ ψ0expðβviÞ; (7)

where ψ0 is the baseline common-factor variance when vi ¼ 0
and β is the effect of V on the common-factor variance. This
effect thus captures heteroskedasticity of the common-factor.
To model the indicators’ residual variances as a function of V,
one can adopt the same idea as above, that is,

εi ¼ ε0expðδviÞ; (8)

where ε0 is a vector of baseline residual variances and the
effects of V on the residual variances are captured by δ.
The baseline coefficients for the common factor α0 and ψ0
can be fixed at 0 and 1, respectively, in order to identify the
model in the situation that an anchor indicator’s intercept
and loading are not constrained to 0 and 1 for
identification.

Although MNLFA and RFA differ in the way V is modeled
and b and c are estimated, they share the same general model
for the indicators X (Equation (3)). The MNLFA model is
equivalent to the RFA model when only the factor means,
indicators’ intercepts, and factor loadings are linearly moder-
ated by V . However, the advantage of MNLFA over RFA is
that it also allows the common-factor variance and the indi-
cators’ residual variances to vary as a function of V. The
MNLFA method can thus be conceptualized as an extended
RFA model in which variances need not be assumed equal
across different levels of V (Bauer, 2017), making it poten-
tially as unrestrictive as multigroup CFA when V is
a grouping variable, yet more so because V can also be
continuous. Bauer (2017) provided SAS and Mplus
(L. K. Muthén & Muthén, 2012) syntax examples of MNLFA
in their supplementary materials. For more details about
MNLFA and its precursors, see Mehta and Neale (2005),
Molenaar et al. (2010), Neale (1998), Neale et al. (2006), and
Purcell (2002).

Method

We conducted a Monte Carlo simulation study to evaluate the
robustness of RFA/LMS, RFA/PI, and MNLFA against viola-
tions of the homoskedasticity assumption in the case of cate-
gorical and continuous V. The outcomes of interest were
Type I error rates and power, which we evaluated for each
method under multiple conditions that differed with respect
to five design factors:

1. Type of noninvariance: scalar or metric.
2. Total sample size: N ¼ 100, 200, 500, or 1000.
3. Type of V: categorical or continuous.

Figure 3. An MNLFA model for assessing measurement invariance. The variable V may have an effect on all parameters in the model represented in the dashed
border.
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4. Magnitude and direction of common-factor
heteroskedasticity.

5. Magnitude and direction of residual heteroskedasticity.

The levels of the first design factor varied within replica-
tions, by assigning different indicators to have different types
of noninvariance. We did not vary the magnitude of nonin-
variance as a design factor because the focus of the current
study was not on the impacts of violations of measurement
invariance, but on the impacts of different sources of hetero-
skedasticity on (a) the power to detect violations of measure-
ment invariance and (b) the Type I error rates when
indicators have truly invariant measurement parameters. The
remaining four design factors were between-replications fac-
tors that were fully crossed. For each of these conditions, 1000
replications were generated. The relatively small group sample
sizes ( N2 ) were investigated because in such conditions single-
group models such as RFA models would be preferred over
MGCFA (Oort, 1998), as would be preferable when V is
continuous (regardless of sample size).

Data Generation

Data were simulated under different sample sizes using the
following data-generating model

xi ¼ τ þ Λti þ bvi þ ctivi þ εi (9)

where xi is a vector of 10 continuous indicator scores, ti is the
common-factor score, vi is the score on the background vari-
able, and εi is a vector of 10 residual scores of person i.
Moreover, the vector τ includes 10 intercepts set at 0 for all
indicators, Λ includes 10 common factor loadings set at 0.8
for all indicators, and b and c are vectors of regression

coefficients fixed at 0 for all indicators that did not violate
measurement invariance.

How we violated invariance and homoskedasticity assump-
tions in our population model depended on whether V was
continuous or categorical. For violations of both common-
factor and residual homoskedasticity, we strove to vary the
variances such that they ranged from approximately half to
double the variance across the range of V, whether that range
was across two categories or across two or three standard
deviations above and below the mean of V.

Continuous V. In conditions where the background vari-
able V is a continuous variable, scores on the background
variable were drawn from a standard normal distribution
vi,Nð0; 1Þ. The common-factor scores ti were drawn from
a normal distribution with a mean equal to vi and a variance
of either 1, expð�0:25viÞ, or expð0:25viÞ. Hence, there were
three levels of common-factor heteroskedasticity: β ¼ �0:25,
β ¼ 0 (i.e., homoskedasticity), and β ¼ 0:25. Figure 4 shows
the common-factor variances as a function of V for different
levels of β. In the two heteroskedastic conditions, the population
common-factor variances ranged from 0.61 to 1.65 for � 2 �
V � 2 and from 0.47 to 2.12 for � 3 � V � 3.

Residual scores of each indicator were drawn from a normal
distribution εi,Nð0; 0:3Þ in conditions with residual homoske-
dasticity. In order to test the effect of residual heteroskedasticity
with respect to a continuous V on the power and Type I error
rates, the residuals of one measurement-invariant indicator
(Indicator 1) and two indicators that violated measurement
invariance (Indicator 2 with uniform DIF and Indicator 4 with
nonuniform DIF) were drawn from a normal distribution with
a mean of 0 and variance of either 0.3 (in the homoskedastic
conditions), 0:3expð�0:25viÞ, or 0:3expð0:25viÞ. This resulted in
three levels of residual heteroskedasticity: δ ¼ �0:25, δ ¼ 0 (i.e.,

Figure 4. The common-factor and residual variances as a function of continuous V .
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homoskedasticity), and δ ¼ 0:25. Figure 4 shows the residual
variances as a function ofV for different levels of δ. The residual
variances in the population ranged from 0.18 to 0.49 for � 2 �
V � 2 and from 0.14 to 0.64 for � 3 � V � 3 in the two
conditions with residual heteroskedasticity.

Uniform DIF was introduced by setting b ¼ 0:25 for
the second and third indicators, and nonuniform DIF was
introduced by setting c ¼ 0:1 for the fourth and fifth indica-
tors. These magnitudes reflect the small effects of V and T �
V on these indicators (Cohen, 1988). A table with the popula-
tion parameter values for each indicator is available in the
online supplementary materials.

Categorical V. In conditions where the background vari-
able V is a categorical variable, we generated a dummy code
that represents group membership. In specific, we chose vi ¼
0 for the reference group and vi ¼ 1 for the focal group (for
more than two groups, multiple dummy codes would be
necessary). The common-factor scores ti were drawn from
a normal distribution with a mean of 0 for the reference
group and a mean of −0.5 for the focal group, representing
a moderate difference between groups (Kolbe & Jorgensen,
2019). The population common-factor variance in the refer-
ence group was equal to 1, whereas the population common-
factor variance of the focal group was equal to 0.5, 1, 1.5, or 2.
Hence, in total there were four levels of common-factor
heteroskedasticity: β ¼ lnð0:5Þ, β ¼ 0 (i.e., homoskedasticity),
β ¼ lnð1:5Þ, and β ¼ lnð2Þ.

Residual scores of each indicator for the reference group –
and all but three indicators in the focal group –were drawn from
a normal distribution εi,Nð0; 0:3Þ. The residual variances of
one measurement-invariant indicator (Indicator 1) and two
indicators that violated measurement invariance (Indicator 2
with uniform DIF and Indicator 4 with nonuniform DIF) were
0.15, 0.3, or 0.6 for the focal group, representing three levels of
residual heteroskedasticity: δ ¼ lnð0:15=0:3Þ, δ ¼ 0 (i.e., homo-
skedasticity), and δ ¼ lnð0:6=0:3Þ.

A violation of scalar invariance of the second and third
indicators was introduced by fixing b at 0.5, and a violation of
metric invariance of the fourth and fifth indicators was intro-
duced by fixing c at 0.25. These effect sizes reflect small
violations of scalar and metric invariance with respect to
a categorical V (Barendse et al., 2010).

Analysis

When measurement invariance was examined with RFA, an
unconstrained model was fitted in which all elements in b and
c were freely estimated, except for the elements corresponding
to the ninth and tenth indicators. These indicators were used

as anchor indicators to set the scale of the common factor T,
and were not assessed for measurement invariance.2

Violations of scalar and metric invariance were examined
simultaneously for each of the nonanchor indicators by test-
ing the null hypothesis that the studied indicator j’s bj ¼ 0
and cj ¼ 0 using a 2-df Wald test with α ¼ :05 level of
significance. In order to enable the estimation of the b and c
parameters, V was modeled as a single-indicator factor whose
factor loading was fixed at unity and residual variance fixed to
zero in the RFA models with PI, whereas this residual var-
iance was fixed at a near-zero value of 0.001 in the RFA
models with LMS to prevent estimation problems. A robust
maximum likelihood estimator was used to account for viola-
tions of the normality assumption.

When indicators were assessed for measurement invar-
iance with MNLFA, a measurement model for the common
factor T with indicators X was estimated where the common-
factor mean and variance, the residual variances,3 and non-
anchor indicators’ intercepts and factor loadings are
a function of V . Similar to RFA, the ninth and tenth indica-
tors were used as anchor indicators and were not tested for
measurement invariance. The common-factor mean and var-
iance for the reference group (V ¼ 0) were fixed at 0 and 1,
respectively, for identification. Violations of scalar and metric
invariance were examined simultaneously for each indicator
by testing the null hypothesis that the effect of V on the
indicator’s intercept and factor loading is equal to zero,
again tested using a 2-df Wald test with α ¼ :05 level of
significance. A robust maximum likelihood estimator was
used with MNLFA to account for nonnormality.

Power and Type I error rates were calculated across all
conditions. Power was estimated as the proportion of replica-
tions in which Indicator 2 and Indicator 4 (i.e., indicators
with uniform and nonuniform DIF, respectively) were cor-
rectly flagged as violating measurement invariance. The Type
I error rate was estimated as the proportion of replications in
which Indicator 1 (i.e., a measurement-invariant indicator)
was incorrectly flagged as violating measurement invariance.
A 95% Agresti–Coull confidence interval (CI; Agresti & Coull,
1998) around the expected Type I error rate of α ¼ :05 was
calculated to evaluate whether observed error rates were sta-
tistically significantly different from the nominal value (i.e., by
checking whether the observed value was in the 95% CI). We
considered values inflated > 0.1 as being substantially impor-
tant (i.e., practical significance).

In addition to the power and Type I error rates, the
accuracy and efficiency of the parameter estimates in b and
c of the indicators with DIF were evaluated for each method
by calculating the relative bias, root mean squared error

2In the present study, we focus on the inflation of Type I error rates due solely to unmodeled heteroskedasticity, but see Kolbe and Jorgensen (2019) for
a guidance on empirically selecting anchor indicators and for the impact of contaminated anchor sets on Type I error rates.

3This MNLFA specification allows for both types of heteroskedasticity, so it is, therefore, less restrictive than RFA. When MNLFA does not include effects of V
on variances, it would be as restrictive as RFA/LMS. Because the estimation method is so computationally intensive, we did not include such
a “homoskedastic MNLFA” in our simulation. But we did conduct a set of example analyses applied to real data, available on our Open Science
Framework project https://osf.io/vsp4f/, which showed the results from a homoskedastic MNLFA and RFA/LMS yielded very similar results.
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(RMSE), and coverage rates. The relative bias of the para-
meter estimate b of Indicator 2 was defined as a percentage
using ðð�b� bÞ=bÞ � 100%, where �b is the average parameter
estimate across replications and b is the true parameter value.
We considered relative bias larger than 5% as substantial
bias. Moreover, the RMSE of the parameter estimate b of

Indicator 2 was defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�b� bÞ=b

q
. The coverage rate of

the parameter estimate b of Indicator 2 was defined as the
proportion of replications in which the 95% confidence inter-
val around the parameter estimate contained the population
value b. The relative bias, RMSE, and convergence rates of
the parameter estimate c of Indicator 4 were defined
similarly.

The power, Type I error rates, relative bias, RMSE, and
coverage rates are presented in figures, but tables of these out-
come variables are available in the online supplementary materi-
als. The RFA/LMS and MNLFA models were fit in Mplus
(version 7; L. K. Muthén & Muthén, 2012) via the
MplusAutomation package (version 0.7–2; Hallquist & Wiley,
2018), and the RFA/PI models were fit with the R (version 3.4.3;
R Core Team, 2018) package lavaan (version 0.5–23; Rosseel,
2012), relying on the semTools function indProd() to calculate
double-mean-centered product indicators. All data generation
and analysis of results were conducted in R. See our Open
Science Framework project https://osf.io/vsp4f/ for example,
scripts.

Results

Before we present the power and Type I error rates, we first
elaborate on the convergence rates of the different methods.
Detailed convergence rates across conditions are available in
the online supplementary materials. Across all methods, we
encountered the largest nonconvergence rates for RFA/LMS.
The nonconvergence rates when V was continuous decreased
with sample size. In the smallest sample-size conditions the
percentages of nonconvergence ranged from 0.10 to 4.80,
whereas in the largest sample-size condition the RFA/LMS
model always converged.

The nonconvergence rates were substantially larger for
RFA/LMS when V was a categorical variable. On average
across all conditions with a categorical V, the RFA/LMS
model did not converge in 16.64% of all replications. The
largest nonconvergence rates were observed in conditions in
which the common-factor variance of the focal group was
larger than the common-factor variance of the reference
group. All replications with nonconvergence were excluded
from the analysis for RFA/LMS, because in such replications,
measurement invariance could not be assessed with this
method.

The MNLFA method only once produced convergence
problems. Similar to RFA/LMS, this replication could not be
included in the analysis for MNLFA. The RFA/PI models
converged for every replication in each condition. Because
in some conditions, the results for RFA/LMS were based on
a notably smaller number of replications compared to RFA/PI
and MNLFA, the validity of a comparison between the

methods could be questioned. In a comparable study, Kolbe
and Jorgensen (2019) showed that using a smaller subset of
replications for RFA/LMS does not affect the pattern of the
results. Hence, below we present the results based on all
available converged replications in each condition.

Continuous V

Power and Type I error rates
The power to detect violations of metric invariance using
each method across conditions with a continuous variable V
is presented in Figure 5. Because for scalar invariance the
differences across the methods were quite negligible, we only
include a figure for the power to detect scalar invariance in
the online supplementary materials. For each of the meth-
ods, power to detect violations of both scalar and metric
invariance increased with sample size and was effectively
1.00 in all conditions with a sample size of N � 500. More
apparent differences in power were observed when N ¼ 100
or N ¼ 200. The RFA/LMS method generally obtained
higher power to detect violations of metric invariance than
RFA/PI and MNLFA in conditions with a positive effect of
V on the common-factor variance (but at the expense of
inflated Type I error rates), and lower power to detect
violations of metric invariance than RFA/PI and MNLFA
when this effect was negative. Residual heteroskedasticity
did not seem to substantially affect the power of the
methods.

Figure 6 illustrates the Type I error rates of each method in
conditions with a continuous variable V . The light gray region
from .01 to .10 represents a region of practical equivalence
(ROPE), outside of which are substantially inflated error rates.
The darker gray region is the Agresti–Coull 95% CI around
α ¼ :05, values inside of which are not statistically signifi-
cantly different from the nominal level. When β ¼ 0 (com-
mon-factor homoskedasticity), Type I error rates were
comparable across the three methods and decreased with
sample size. In general, Type I error rates in these conditions
were only substantially inflated when N ¼ 100. Residual het-
eroskedasticity hardly affected the Type I error rates of any of
the methods in conditions where β ¼ 0.

In conditions with common-factor heteroskedasticity (i.e.,
β ¼ �0:25 or 0:25), the Type I error rates were substantially
different across the methods. In almost all conditions, the RFA/
LMS method obtained the most inflated Type I error rates
compared to the other methods. Especially when the effects of
V on the common-factor variance and residual variances were in
similar directions (e.g., β ¼ 0:25 and δ ¼ 0:25), large inflation of
the error rates of RFA/LMS was observed, and the inflation was
exacerbated in larger samples. In contrast, when the effects on
the variances were in opposite directions (e.g., β ¼ �0:25 and
δ ¼ 0:25), the Type I error rates of RFA/LMS were less inflated,
but almost always remained higher than for other methods. The
RFA/PI and MNLFA Type I error rates were not substantially
affected by combined common-factor and residual heteroske-
dasticity. Overall, MNLFA obtained error rates closer to .05 than
other methods.
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Relative bias of DIF estimates
Figures of the relative bias of the b and c parameter estimates
across all conditions with a continuous V can be found in the
online supplementary materials. The relative bias of the

parameter estimate b was negligible for RFA/PI and generally
acceptable (i.e., smaller than 5%) for RFA/LMS and MNLFA.
Larger differences between the methods were observed for the
relative bias of the c parameter estimates. Overall, MNLFA

Figure 5. The power to detect a violation of metric invariance of Indicator 4 (i.e., c4�0) of each method across all conditions with a continuous V . Note that β is the
effect of V on the common-factor variance, and δ is the effect of V on the indicator’s residual variance.

Figure 6. The Type I error rates for Indicator 1 of each method across all conditions with a continuous V . Note that β is the effect of V on the common-factor
variance, and δ is the effect of V on the indicator’s residual variance.
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obtained the least biased parameter estimates c. The relative
bias of this method was always below 5%, except in some
conditions where N ¼ 100. The RFA/PI and RFA/LMS meth-
ods substantially overestimated c in all conditions. The rela-
tive bias in c produced by RFA/PI ranged from 23.66% to
26.67% and seemed unaffected by sample size and common-
factor and residual heteroskedasticity. The RFA/LMS method
obtained the most biased parameter estimates c, with relative
bias ranging from 21.93% to 59.56%. The relative bias of this
method was the largest when β was positive.

RMSE of DIF estimates
Figures of the RMSE of the b and c parameter estimates across
all conditions with a continuous V can be found in the online
supplementary materials. The differences between the meth-
ods with respect to RMSE of the parameter estimate b were
relatively small in all conditions with a continuous V. Overall,
the RMSE of the parameter estimate b decreased with sample
size but seemed unaffected by common-factor and residual
heteroskedasticity. The only conditions in which MNLFA
produced a substantially higher RMSE than the other methods
were conditions in which β ¼ �0:25 and N ¼ 100. With
respect to parameter estimate c, differences in the RMSE
across the methods were observed more frequently. In gen-
eral, MNLFA obtained the lowest RMSE of the parameter
estimate c, followed by RFA/PI. In almost all conditions,
RFA/LMS obtained the highest RMSE for the parameter esti-
mate c.

Coverage rates of DIF estimates
Figures of the coverage rates of the b and c parameter
estimates across all conditions with a continuous V can be
found in the online supplementary materials. Overall, all
methods showed acceptable coverage rates (always > 0:90)
for the parameter estimate b. The RFA/PI method obtained
coverage rates closest to 0.95 for b, followed by MNLFA.
The coverage rates of RFA/LMS for b were slightly smaller
compared to other methods. Different patterns were
observed for the coverage rates of the parameter estimate
c. Whereas MNLFA frequently obtained coverage rates
above 0.90 for c, RFA/PI and RFA/LMS frequently obtained
unacceptable coverage rates. For both methods, the coverage
rates for c decreased with N and β. The RFA/LMS method
obtained the lowest coverage rates for the parameter esti-
mate c. The lowest coverage rate of 0.07 was obtained when
β ¼ 0:25, δ ¼ �0:25, and N ¼ 1000.

Categorical V

Power and Type I error rates
Again, power showed nearly no difference between methods
for detecting violations of scalar invariance with respect to
a categorical V, so a figure is included only in the online
supplementary materials. For each of the methods, the power
to detect violations of measurement invariance increased as
a function of sample size. The power to detect violations of

scalar invariance when N ¼ 100 ranged from 0.83 to 0.98,
where a negative effect on the residual variance led to
a higher power and a positive effect on the residual variance
led to lower power for each of the methods. In the other
sample-size conditions, the power to detect violations of scalar
invariance was generally 1.00. Hence, the methods performed
similarly well with respect to detecting violations of scalar
invariance.

Figure 7 shows the power of methods to detect violations
of metric invariance. In conditions with equal common-factor
variances across groups (i.e., β ¼ 0), RFA/LMS and RFA/PI
obtained slightly higher power than MNLFA. Moreover, RFA/
LMS outperformed RFA/PI and MNLFA when the focal
group had a larger common-factor variance than the reference
group (i.e., β ¼ lnð1:5Þ or β ¼ lnð2Þ), but performed substan-
tially worse when the focal group’s common-factor variance
was smaller (i.e., β ¼ lnð0:5Þ).

The Type I error rates across all conditions with
a categorical V are illustrated in Figure 8. Note that we
specified y-axis limits of 0 and 0.15 in order to make details
more visible, at the expense of plotting a few extremely
inflated values for RFA/LMS outside the plot range. Type
I error rates of all methods under common-factor homoske-
dasticity were close to the nominal .05, within the ROPE
[.01–.10]. The majority of MNLFA’s Type I error rates were
not significantly inflated, whereas RFA/LMS and RFA/PI had
statistically significant errors, particularly under residual het-
eroskedasticity. However, RFA/PI’s error rates were not sub-
stantially inflated under any conditions (i.e., the Type I error
rates were almost always < .10).

In contrast, the RFA/LMS method obtained severely
inflated Type I error rates under common-factor heteroske-
dasticity, so severe that many conditions have error rates
beyond the y-axis limits (see the online supplementary mate-
rials for exact error rates). This inflation was smallest when
the effects of V on the common-factor and residual variances
were in opposite directions and was largest when these effects
were in similar directions. For example, when β ¼ lnð0:5Þ,
δ ¼ lnð0:15=0:3Þ, and N ¼ 1000, RFA/LMS obtained a Type
I error rate of .87. Though not practically significant, inflation
of the Type I error rates of RFA/PI was observed mainly when
β and δ were both nonzero. The Type I error rates of MNLFA
were not substantially affected by common-factor or residual
heteroskedasticity.

Relative bias of DIF estimates
Figures of the relative bias of the b and c parameter estimates
across all conditions with a categorical V can be found in the
online supplementary materials. The observed patterns were
similar to those in conditions with a continuous V . Each
method obtained negligible relative bias (i.e., smaller than
5%) of the parameter estimate b, whereas only MNLFA
obtained negligible relative bias of the parameter estimate c.
Again, the parameter estimates c obtained by RFA/PI and RFA/
LMS were substantially biased. The RFA/PI method consis-
tently overestimated c, while RFA/LMS underestimated c in
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conditions with a negative effect on the common-factor var-
iance and overestimated c in conditions with a positive effect
on the common-factor variance. The relative bias obtained by

RFA/LMS was largest when β and δ were in similar directions.
In contrast, this method generally obtained acceptable relative
bias (i.e., smaller than 5%) in homoskedastic conditions.

Figure 7. The power to detect a violation of metric invariance of Indicator 4 (i.e., c4�0) of each method across all conditions with a categorical V . Note that β is the
effect of V on the common-factor variance, and δ is the effect of V on the indicator’s residual variance.

Figure 8. The Type I error rates for Indicator 1 of each method across all conditions with a categorical V . Note that β is the effect of V on the common-factor
variance, and δ is the effect of V on the indicator’s residual variance. The y axis stops at 0.15 in order to allow a detailed comparison of methods with (nearly)
nominal error rates, but note that it prevents plotting some extremely inflated error rates in certain conditions of RFA/LMS.
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RMSE of DIF estimates
Figures of the RMSE of the b and c parameter estimates across
all conditions with a categorical V can be found in the online
supplementary materials. The differences across the methods
with respect to RMSE of the parameter estimate b were
negligible in all conditions with a categorical V. The differ-
ences in RMSE were more apparent for the parameter esti-
mate c. MNLFA obtained the lowest RMSE of the parameter
estimate c in almost all heteroskedastic conditions (i.e., β�0
or δ�0). The RFA/PI method generally obtained the second
lowest RMSE of the parameter estimate c when β was positive,
but obtained the highest RMSE when β was negative and δ was
positive. In the conditions with common-factor homoskedasti-
city (i.e., β ¼ 0), MNLFA and RFA/LMS obtained slightly lower
RMSE for the parameter estimate c than RFA/PI.

Coverage rates of DIF estimates
Figures of the coverage rates of the b and c parameter esti-
mates across all conditions with a categorical V can be found
in the online supplementary materials. Similar to conditions
with a continuous V, all methods obtained acceptable cover-
age rates for the parameter estimate b (always > 0:90), and
only MNLFA obtained acceptable coverage rates for the para-
meter estimate c in all conditions. The RFA/PI and RFA/LMS
methods performed substantially worse than MNLFA with
respect to the coverage rates of the parameter estimate c.
For RFA/PI, the coverage rates for c where acceptable (i.e.,
larger than 0.80) in smaller sample-size conditions, but were
frequently unacceptable (i.e., smaller than 0.80) when N ¼
500 or 1000. The RFA/LMS performed worst with respect to the
coverage rates for the parameter estimate c, especially in condi-
tions with common-factor heteroskedasticity. In these condi-
tions, the coverage rate of RFA/LMS was 0.01 at its lowest.

Supplemental simulation study
To further investigate the relative robustness of MNLFA and
RFA/PI to heteroskedasticity across a wider array of condi-
tions, we conducted additional simulations within the following
condition from the original simulation study: a grouping vari-
able V, a total sample size of 200, a factor variance in the focal
group of 1.5 (representing common-factor heteroskedasticity),
and residual variances of the indicators with unequal residual
variances in the focal group of 0.15 (representing residual het-
eroskedasticity). Within this condition, we fully crossed three
additional factors: the total number of indicators (10 or 20), the
percentage of indicators violating measurement invariance (40%
or 80%), and the percentage of indicators violating residual
homoskedasticity (30% or 90%). We generated data using the
same procedure as in the first simulation, and we recorded the
effect of these new factors on power and Type I error rates.

The results of the supplemental simulations can be found
in the online supplementary materials. With all other condi-
tions of the simulation study being equal, the results are
comparable to the results of the original simulation study:
(a) RFA/LMS is not robust against violations of common-
factor and residual homoskedasticity, (b) MNLFA maintains
Type I error rates quite well across all conditions, and (c) so
does RFA/PI, although not quite so well as MNLFA.

Moreover, none of the additional manipulated factors sub-
stantially affected the power or Type I error rates. The total
number of indicators and the percentage of indicators that
violate residual homoskedasticity only led to a minor differ-
ence in power and Type I error. Moreover, the percentage of
indicators that violate measurement invariance did not seem
to affect the power and Type I error at all.

Discussion

This study addressed the impact of heteroskedasticity on
assessing measurement invariance with respect to categorical
and continuous observed background variables in single-
group models. A common single-group method to assess
measurement invariance is RFA (or MIMIC). Previous studies
showed that RFA has a high power to detect violations of
measurement invariance, but severely inflated Type I error
rates have also been observed (Barendse et al., 2010, 2012;
Kolbe & Jorgensen, 2019; Woods & Grimm, 2011). Most
recently, MNLFA was introduced as a single-group method
to assess measurement invariance (Bauer, 2017). MNLFA is
more flexible than RFA because the former can allow com-
mon-factor and residual variances to differ across V . In this
study, we examined how the power and Type I error rates of
RFA and MNLFA varied as a function of differences in
common-factor variances and residual variances with respect
to V. Specifically, we compared the performance of RFA/LMS,
RFA/PI, and MNLFA under conditions of common-factor
and residual homoskedasticity and heteroskedasticity, provid-
ing the first empirical evaluation of MNLFA since it was
proposed for testing measurement invariance (Bauer, 2017).

In accordance with previous research (Chun et al., 2016;
Harpole, 2015), we found that the Type I error rates obtained
by RFA/LMS substantially increased as a function of com-
mon-factor heteroskedasticity with respect to a categorical V .
Whereas in conditions with equal common-factor variances
the Type I error rates were only occasionally and slightly
inflated, the error rates were severely inflated when common-
factor variances differed across groups. The inflation of the
Type I error rates obtained by RFA/LMS was largest when the
effect of the categorical V on the common-factor variance and
residual variances was in similar directions. We observed
comparable patterns but less severely inflated Type I error
rates of RFA/LMS in conditions with a continuous V.
Although the range of differences in variances were compar-
able between categorical- and continuous-V conditions, dif-
ferences can be considered more severe in the categorical
conditions because all cases are drawn from distributions
with variances at one extreme or another, rather than var-
iances along a continuum between those extremes.

Overall, the results of the present study suggest that RFA/
LMS is not robust to common-factor or residual heteroske-
dasticity. As in previous research (Kolbe & Jorgensen, 2019),
we observed a large percentage of nonconvergence for RFA/
LMS, especially when V is a categorical variable. This is an
important practical limitation of LMS because it may prevent
researchers from being able to infer whether indicators are
measurement invariant with respect to V.
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Following previous research findings (Kolbe & Jorgensen,
2019), we expected no impact of common-factor heteroske-
dasticity for RFA/PI. The results of this study indeed suggest
that RFA/PI is robust against violations of the common-factor
homoskedasticity assumption. This observation coincides
with the mathematical proof in the Appendix, showing that
the covariance between the common factor T and the inter-
action factor T � V – which is estimable with RFA/PI but not
with RFA/LMS – indirectly captures information about the
difference in common-factor variances across different levels
of V . Similar to the RFA/LMS model, the RFA/PI model does
assume residual homoskedasticity. The Type I error rates of
RFA/PI were slightly inflated by residual heteroskedasticity
across a categorical V. When V was a continuous variable,
similar patterns were observed but the Type I error rates were
less severely inflated.

In contrast to RFA, the MNLFA method does not need to
assume homoskedastic common factors or residuals across V.
This is because in MNLFA models each parameter including
common-factor variances and residual variances of the indi-
cators may be moderated by V. We, therefore, expected that
the Type I error rates were unaffected by heteroskedasticity.
In accordance with our expectations, the magnitude of the
difference in common-factor and residual variances did not
seem to have any impact on the Type I error rates of MNLFA.
Both in conditions with a categorical and continuous V , the
Type I error rates of this method were rarely inflated. Hence,
the results of this study suggest that MNLFA can better
minimize Type I error rates than RFA when residual variances
differ with respect to V. The present study only investigated
a limited number of conditions that varied with the magni-
tude of heteroskedasticity and sample size. It would be valu-
able to further investigate the performance of MNLFA as
a tool for measurement invariance assessment under other
conditions, such as different numbers of indicators, multiple
variables V (including multiple dummy codes for a single
categorical variable), unbalanced samples, or nonlinear mod-
erating effects.

It is worth noting that despite the advantages of MNLFA, it
is only implemented in SAS, Mplus (L. K. Muthén & Muthén,
2012) and OpenMx (Boker et al., 2011); although it could
easily be implemented in general Bayesian software, it is not
yet available in other dedicated SEM software packages. Of the
methods considered in this study, only RFA/PI can be imple-
mented in any SEM program. Because we have shown RFA/PI
to be practically robust to heteroskedasticity (i.e., minimally
inflated error rates), we can recommend its use to researchers
without access to SAS and Mplus or when MGCFA is under-
powered (due to small N) or inappropriate (continuous V).

In addition to the Type I error rates, we examined the
power of each method to detect violations of measurement
invariance. Because the Type I error rates of RFA/LMS were
severely inflated in conditions with heteroskedasticity, we
advise against comparing its power to the other methods.
However, a valid comparison between MNLFA and RFA/PI
can be made. In each of the conditions, the power to detect
violations of scalar invariance was generally comparable
across these two methods. A larger difference between the

methods occurred for the power to detect violations of metric
invariance. These differences were most apparent in smaller
samples, where RFA/PI was generally more powerful than
MNLFA. This method could, therefore, be preferred over
MNLFA in small samples.

An examination of the accuracy and efficiency of DIF
parameter estimates revealed large differences between the
methods. MNLFA performed substantially better than RFA/
PI and RFA/LMS with respect to relative bias, RMSE, and
coverage rates of nonuniform DIF estimations (i.e., ĉ). Both
RFA/PI and RFA/LMS yielded biased estimates and low cov-
erage rates for the effects that reflect a violation of metric
invariance. The practical impact seems especially problematic
for RFA/LMS because of its severely inflated Type I error
rates.

In addition to RFA and MNLFA, many other methods for
assessing measurement invariance have recently been pro-
posed, including SEM trees (Brandmaier et al., 2013). SEM
trees allow for detection of heterogeneity with respect to
continuous or categorical variables by recursively partitioning
the data into subsets with significantly different SEM-
parameter estimates. Although simulation studies showed
that SEM trees are generally able to correctly partition the
data into subsets with different parameter estimates (Usami
et al., 2017, 2019) and detect uniform DIF in an IRT frame-
work (Strobl et al., 2015; Tutz & Berger, 2016), these methods
have only been shown to be effective in large samples, which
is a common result for machine-learning algorithms in gen-
eral. Other methods for the assessment of measurement invar-
iance worth investigating are local SEM (LSEM; Hildebrandt
et al., 2016), heteroskedastic latent trait models (Molenaar,
2015; Molenaar et al., 2012, 2011; Molenaar et al., 2010), and
stochastic process-based testing (Merkle et al., 2014; Merkle &
Zeileis, 2013). An advantage of LSEM and heteroskedastic
latent trait models is that these methods can easily be adapted
for binary and ordinal indicators; stochastic process-based
testing can too, but it is more suitable for ordinal background
variables V.

Although indicators in the present study are assumed to be
continuous, MNLFA and RFA/LMS can also handle binary
and ordinal indicators (see Bauer, 2017; Woods & Grimm,
2011). A generalization of RFA/PI for binary and ordinal
indicators is less straightforward. For example, if both the
indicators of T and the background variable V are ordinal,
the indicators of the latent interaction factor T � V are pro-
ducts of ordinal indicators. This brings up the question of
how products of ordinal indicators can be interpreted (e.g.,
what is the measurement level of such indicators?). In a recent
simulation study, Lodder et al. (2019) evaluated the perfor-
mance of the PI method in conditions with ordinal data in
a more general context of latent interactions among common
factors. The results of their simulation study showed that
treating the product indicators as continuous performs at
least as well as treating them as ordinal in terms of power,
Type I error, and estimation bias. Given that the use of
product indicators for the specific purpose of measurement
invariance assessment with ordinal data is yet unexplored,
much more research is needed to evaluate its performance.
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The present study illuminated the impact of unmodeled
heteroskedasticity on assessing measurement invariance using
single-group models. In the presence of heteroskedastic com-
mon factors or residuals, we advise against using the LMS
method in RFA models because of severely inflated Type
I error rates. RFA/PI and MNLFA are quite robust to hetero-
skedasticity because these models (at least partially) account
for it. Further evaluation of MNLFA for assessing measure-
ment invariance is warranted.
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Appendix

Consider the one-factor model for the common factor T given by

xij ¼ τj þ λjti þ εij; (A1)

where xij is the observed indicator score of person i ¼ 1; . . . ;N on
indicator j ¼ 1; . . . ; J, τj is an intercept, λj is a factor loading, ti is
a common factor score and εij is a residual. In addition, consider
a background variable V to be a grouping variable dummy-coded
vi ¼ 0; 1, representing membership in a reference or focal group,
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respectively. In this proof V is a categorical variable, but the proof
generalizes to a continuous V.

Below we demonstrate that group differences in VarðTÞ can be
captured by the interaction between T and V.

Let σ2 denote the variance of the common factor T. First, we specify
T as a scaled version of T0, which has unit-variance:

T ¼ σT0; (A2)

where

VarðT0Þ ¼ 1: (A3)

A traditional two-group factor model with unequal variances in T
between the groups can be written as

xij ¼ τj þ λjσt
0
i þ εij; (A4)

where

σ ¼ σ0 þ σ1V: (A5)

In this model, VarðTjvi ¼ 0Þ ¼ σ20 and VarðTjvi ¼ 1Þ ¼ ðσ0 þ σ1Þ2
which is equivalent to a two-group one-factor model with equal factor
loadings, residual variances, and intercepts, but with unequal variance of
T across groups.

Substituting Equation (A5) in Equation (A4) and slightly rewriting,
we obtain

xij ¼ τj þ λjðσ0t0i þ σ1vit
0
iÞ þ εij; (A6)

which is the one-factor measurement model from Equation (A1), but
with the common factor T from Equation (A1) regressed on VT0 in the
structural model.

The proof that a covariance between T and VT captures the information
in σ1 is that σ1 is the effect of VT0 on T. In simple regression, a slope is
a simple function of the analogous covariance and variance of the predictor:

βY;X ¼ CovðY;XÞ
VarðXÞ : (A7)

Then, it would follow from Equation (A7) and Equation (A8) treating T
as Y and VT0 as X that

σ1 ¼ CovðT;VT0Þ
VarðVT0Þ : (A8)

However, because Equation (A7) is not analogous to a simple regression
model but a multiple regression, expressing σ1 as a function of
CovðT;VT0Þ would be more complicated:

σ1 ¼ CovðT;VT0ÞVarðT0Þ�CovðT;T0ÞCovðT0;VT0Þ
VarðVT0ÞVarðT0Þ�CovðVT0;T0ÞÞ2

¼ CovðT;VT0Þ�CovðT;T0ÞCovðT0;VT0Þ
VarðVT0Þ�CovðVT0 ;T0ÞÞ2 :

(A9)

Replacing T0 by σ�1T, the expression of σ1 in Equation (A9) – which is
the difference in common-factor variances across groups – is a complex
function of three model parameters: the variances of the common factor
and interaction terms and their covariance.

σ1 ¼ CovðT;Vσ�1TÞ�CovðT;σ�1TÞCovðσ�1T;Vσ�1TÞ
VarðVσ�1TÞ�CovðVσ�1T;σ�1TÞÞ2

¼ σ�1CovðT;VTÞ�σ�3CovðT;VTÞ
σ�1VarðVTÞ�σ�4CovðVT;TÞÞ2 :

(A10)

Because a regression slope (or a correlation) between two variables is
simply a ratio of their covariance to the variance of the predictor (or to
the product of their standard deviations), it follows that by estimating the
parameters CovðT;VTÞ, VarðVTÞ, and VarðTÞ ¼ σ2, RFA models with
product indicators indirectly capture the same information about com-
mon-factor heteroskedasticity that MNLFA can capture by directly esti-
mating the slope σ1.
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