
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement

Kool, W.; van Hoof, H.; Welling, M.

Publication date
2020
Document Version
Final published version
Published in
Journal of Machine Learning Research
License
CC BY

Link to publication

Citation for published version (APA):
Kool, W., van Hoof, H., & Welling, M. (2020). Ancestral Gumbel-Top-k Sampling for Sampling
Without Replacement. Journal of Machine Learning Research, 21, [47].
https://jmlr.csail.mit.edu/papers/v21/19-985.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://dare.uva.nl/personal/pure/en/publications/ancestral-gumbeltopk-sampling-for-sampling-without-replacement(c417653a-689d-42f6-8d7e-70f8f34ca7ab).html
https://jmlr.csail.mit.edu/papers/v21/19-985.html

Journal of Machine Learning Research 21 (2020) 1-36 Submitted 11/19; Published 1/20

Ancestral Gumbel-Top-k Sampling
for Sampling Without Replacement

Wouter Kool w.w.m.kool@uva.nl
University of Amsterdam
P.O. Box 19268, 1000GG, Amsterdam, The Netherlands
ORTEC
Houtsingel 5, 2719EA, Zoetermeer, The Netherlands

Herke van Hoof h.c.vanhoof@uva.nl
University of Amsterdam

Max Welling m.welling@uva.nl

University of Amsterdam, CIFAR

Editor: Kilian Weinberger

Abstract

We develop ancestral Gumbel-Top-k sampling: a generic and efficient method for sampling
without replacement from discrete-valued Bayesian networks, which includes multivariate
discrete distributions, Markov chains and sequence models. The method uses an extension
of the Gumbel-Max trick to sample without replacement by finding the top k of perturbed
log-probabilities among all possible configurations of a Bayesian network.

Despite the exponentially large domain, the algorithm has a complexity linear in the
number of variables and sample size k. Our algorithm allows to set the number of parallel
processors m, to trade off the number of iterations versus the total cost (iterations times
m) of running the algorithm. For m = 1 the algorithm has minimum total cost, whereas
for m = k the number of iterations is minimized, and the resulting algorithm is known as
Stochastic Beam Search.1 We provide extensions of the algorithm and discuss a number of
related algorithms.

We analyze the properties of Gumbel-Top-k sampling and compare against alternatives
on randomly generated Bayesian networks with different levels of connectivity. In the
context of (deep) sequence models, we show its use as a method to generate diverse but
high-quality translations and statistical estimates of translation quality and entropy.

Keywords: sampling without replacement, ancestral sampling, bayesian networks, stochas-
tic beam search, gumbel-max trick

1. This paper is an extended version of Kool et al. (2019b) which introduced Stochastic Beam Search.

c©2020 Wouter Kool, Herke van Hoof and Max Welling.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-985.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-985.html

Kool, van Hoof and Welling

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(a) Independent
p(y) =

∏
v
p(yv)

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(b) Markov chain
p(y) = p(y1)

∏
t>1

p(yt|yt−1)

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(c) General network
p(y) =

∏
v
p
(
yv|ypa(v)

)
𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒

(d) Sequence model
p(y) =

∏
t
p
(
yt|y1:t−1

)

Figure 1: Examples of Bayesian networks.

1. Introduction

Sampling from graphical models is a widely studied problem in machine learning. In many
applications, such as neural machine translation, one may desire to obtain multiple samples,
but wish to avoid duplicates, i.e. sample without replacement. In general, this is non-trivial:
for example rejection sampling may take long if entropy is low.

In this paper, we extend the idea of sampling through optimization (Papandreou and
Yuille, 2011; Hazan and Jaakkola, 2012; Tarlow et al., 2012; Hazan et al., 2013; Ermon
et al., 2013; Maddison et al., 2014; Chen and Ghahramani, 2016; Balog et al., 2017) to
generate multiple samples without replacement. The most well-known example of sampling by
optimization is the Gumbel-Max trick (Gumbel, 1954; Maddison et al., 2014), which samples
from the categorical distribution by optimizing (i.e. taking the argmax of) log-probabilities
perturbed with independent Gumbel noise. Whereas the Gumbel-Max trick only considers
the argmax (top 1), taking the top k of perturbed log-probabilities actually results in a
sample without replacement from the categorical distribution (Yellott, 1977; Vieira, 2014).

We consider sampling from discrete-valued Bayesian networks (since sampling without
replacement from continuous domains is trivial), which means that we sample from a discrete
multivariate distribution which is represented by a probabilistic directed acyclic graphical
model (for examples, see Figure 1). By treating each possible configuration of the variables in
the network as a category in a single (flat) categorical distribution, we can use ‘Gumbel-Top-k
sampling’ to sample k configurations without replacement. To efficiently sample from the
exponentially large domain, we use a top-down sampling procedure (Maddison et al., 2014)
combined with an efficient branch-and-bound algorithm, which runs in time linear in the
number of variables and number of samples.

The algorithm presented in this paper, which we refer to as ancestral Gumbel-Top-k
sampling, is a generalization of Stochastic Beam Search (originally presented in Kool et al.
2019b2), which allows to trade off ‘parallelizability’ against total required computation and
is applicable to general Bayesian networks. As such, it serves the same purposes and can be
used to generate representative and unique sequences from sequence models, for example
for task such as neural machine translation (Sutskever et al., 2014; Bahdanau et al., 2015)
and image captioning (Vinyals et al., 2015), where the diversity can be controlled by the
sampling temperature. Additionally, being a sampling method, it can be used to construct
statistical estimators as we show in Section 5. The ability to sample without replacement
enables the construction of lower variance gradient estimators (Kool et al., 2019a, 2020).

2. This paper is an extended version of Kool et al. (2019b). The applicability is extended to general Bayesian
Networks. The algorithm is extended to allow trading off parallelism and computational cost and an
experiment has been added to evaluate this trade-off. Related algorithms and alternatives are discussed,
as well as several possible extensions. The presentation has been improved and extended with graphics.

2

Ancestral Gumbel-Top-k Sampling

2. Preliminaries

This section introduces Bayesian Networks, Deep Learning and the Gumbel-Max trick.

2.1. Bayesian Networks

A Bayesian network, also known as belief network, is a probabilistic directed acyclic graphical
model that represents a joint probability distribution over a set of variables, which are nodes
in a directed acyclic graph. We index the variables by v ∈ V, where a node v can take
values yv ∈ Dv. For an arbitrary subset S ⊆ V, we write the corresponding set of values as
yS = (yv : v ∈ S), with domain DS =

∏
v∈S Dv. For the complete network we write y = yV

with domain D = DV . The probability distribution for yv is defined conditionally on the
parents pa(v) ⊆ V \ {v}, with values ypa(v). This way, the distribution p(y) is given by

p(y) =
∏
v∈V

p
(
yv|ypa(v)

)
. (1)

Any directed acyclic graph has at least one topological order (see e.g. Kahn 1962), which
is an ordering in which each node is preceded by its parent nodes. For an example of a
Bayesian network in topological order, see Figure 1c. Examples of Bayesian networks include
multivariate categorical distributions where yv, v ∈ V are independent (Figure 1a), Markov
chains where yt depends only on yt−1 (assuming V = {1, ..., T}), and (finite length) sequence
models where yt depends on the complete ‘prefix’ y1:t−1 and the topological order is natural.

To keep notation compact, in general, we will not make the distinction between variables
and their realizations. As each variable yv has a finite domain Dv, there is a finite number of
possible realizations, or configurations, for the complete Bayesian network, specified by the
domain D =

∏
v∈V Dv. A configuration y ∈ D has probability given by (1) and therefore,

ignoring the graphical structure, we can treat y as a ‘flat’ categorical variable over the
domain D, where each category corresponds to a possible configuration y.

2.2. Deep Learning

Our focus is on modern Deep Learning (LeCun et al., 2015) applications, especially sampling
from models represented as (discrete-valued) Stochastic Computation Graphs (Schulman
et al., 2015), which can be considered Bayesian networks. Such models specify conditional
distributions for variables using neural networks, dependent on parameters θ and an input or
context x. In a discrete setting, such models usually output probabilities for all yv ∈ DV in a
single model evaluation, by computing a softmax (with temperature τ ≥ 0) over unnormalized
log-probabilities φθ(yv|ypa(v),x):

pθ(yv|ypa(v),x) =
exp (φθ(yv|ypa(v))/τ)∑

y′v∈Dv exp (φθ(y′v|ypa(v))/τ)
∀yv ∈ Dv. (2)

In Deep Learning, model evaluations involve millions of computations, which is why we
seek to minimize them. Additionally, to make efficient use of modern hardware, algorithms
should be efficiently parallelizable. In the remainder of this paper, we are concerned with
sampling (without replacement) given fixed values of θ and x so we will omit these in the
notation.

3

Kool, van Hoof and Welling

2.3. The Gumbel-Max Trick

Treating the Bayesian network as specifying a categorical distribution, we can use the
Gumbel-Max trick (Gumbel, 1954; Maddison et al., 2014) to sample from it by finding the
configuration y with the largest perturbed log-probability. We define φy as the log-probability
of y ∈ D:

φy = log p(y) =
∑
v∈V

log p
(
yv|ypa(v)

)
. (3)

Next we define Gφy as the perturbed log-probability of y, which is obtained by adding
(independent!) Gumbel noise Gy ∼ Gumbel(0) to φy, where Gumbel(φ) is the Gumbel
distribution with CDF

Fφ(g) = exp(− exp(φ− g)). (4)

Using inverse transform sampling, this noise is generated asGy = F−10 (Uy) = − log(− logUy),
where Uy ∼ Uniform(0, 1). By the shifting property of the Gumbel distribution, we have

Gφy := Gy + φy = φy − log(− logUy) ∼ Gumbel(φy). (5)

For any subset B ⊆ D it holds that (Maddison et al., 2014)

max
y∈B

Gφy ∼ Gumbel

log
∑
y∈B

expφy

 , (6)

arg max
y∈B

Gφy ∼ Categorical

 expφy∑
y′∈B

expφy′
,y ∈ B

 . (7)

Equation (6) is a useful property that states that the maximum of a set of Gumbel variables
is a Gumbel variable with as location the logsumexp of the individual Gumbel locations.
Equation (7) states the most important result: the configuration y corresponding to the
largest perturbed log-probability is a sample from the desired categorical distribution (since
expφy = p(y)). Additionally, the max (6) and argmax (7) are independent, which is an
important property that is used in this paper. For details, see Maddison et al. (2014). Figure
2 gives a visual illustration of the Gumbel-Max trick.

𝐺𝒚 ∼ Gumbel(0)
Gumbel noise

𝜙𝒚 = log 𝑝(𝒚)
log-probability

𝐺"𝒚 ∼ Gumbel 𝜙𝒚
perturbed log-probability

=+

max
𝒚
𝐺"𝒚 ∼ Gumbel log∑𝒚 exp𝜙𝒚

𝒚∗ = argmax
𝒚

𝐺"𝒚 ∼ Categorical
exp𝜙𝒚

∑𝒚K exp𝜙𝒚K

max and argmax
are independent

Figure 2: The Gumbel-Max trick: the argmax of perturbed log-probabilities has a categorical
distribution. The maximum has an independent Gumbel distribution.

4

Ancestral Gumbel-Top-k Sampling

2.4. Gumbel-Top-k Sampling

An extension of the Gumbel-Max trick can be used to sample from the categorical distribution
without replacement (Yellott, 1977; Vieira, 2014). To this end, let y∗1, ...,y

∗
k = arg top k Gφy ,

i.e. y∗1, ...,y
∗
k are the configurations with the k largest perturbed log-probabilities in decreasing

order (see Figure 3). Denoting with D∗j = D\{y∗1, ...,y∗j−1} the domain (without replacement)
for the j-th sampled element, the probability for this ordered sample without replacement is
given by

p (y∗1, ...,y
∗
k) =

k∏
j=1

p
(
y∗j
∣∣y∗1, ...,y∗j−1) (8)

=
k∏
j=1

P

(
y∗j = arg max

y∈D∗j
Gφy

∣∣∣∣∣max
y∈D∗j

Gφy < Gφy∗
j−1

)
(9)

=
k∏
j=1

P

(
y∗j = arg max

y∈D∗j
Gφy

)
(10)

=
k∏
j=1

expφy∗j∑
y∈D∗j

expφy
(11)

=
k∏
j=1

p(y∗j)

1−
∑j−1

`=1 p(y
∗
`)
. (12)

𝒚;∗ , … , 𝒚W∗ = arg top 𝑘
𝒚

𝐺"𝒚

Figure 3: Gumbel-Top-k sampling:
the top k perturbed log-
probabilities are a sample
without replacement.

To understand the derivation, note that condi-
tioning on y∗1, ...,y

∗
j−1 means that y∗1, ...,y

∗
j−1 are the

configurations with the j − 1 largest perturbed log-
probabilities, so y∗j , the configuration with the j-th
largest perturbed log-probability, must be the arg max
of the remaining log-probabilities. Additionally, we
know that maxy∈D∗j Gφy , the maximum of the remain-
ing log-probabilities, must be smaller than Gφy∗

j−1
,

which is the smallest of the j − 1 largest perturbed
log-probabilities. This allows us to rewrite (8) as (9).
The step from (9) to (10) follows from the indepen-
dence of the max and arg max (Section 2.3) and the
step from (10) to (11) uses the Gumbel-Max trick.

The form (11) is also known as the Plackett-Luce
model (Plackett, 1975; Luce, 1959) and the form (12)
highlights its interpretation as sampling without re-
placement, where the probabilities get renormalized
after each sampled configuration. We refer to sam-
pling without replacement by taking the top k of
Gumbel perturbed log-probabilities as Gumbel-Top-k
sampling. This is mathematically equivalent to weighted reservoir sampling (Efraimidis and
Spirakis, 2006) which can be seen as a streaming implementation of Gumbel-Top-k sampling.

5

Kool, van Hoof and Welling

3. Ancestral Gumbel-Top-k Sampling

Ancestral Gumbel-Top-k sampling is an efficient implementation of Gumbel-Top-k sampling
for sampling from a probability distribution specified as a Bayesian network. It exploits the
graphical structure to sample variables one at a time, conditionally on their parent variables,
similar to ancestral sampling. The algorithm finds the top k configurations with largest
perturbed log-probabilities (which determine the sample without replacement) implicitly, i.e.
without sampling perturbed log-probabilities for all possible configurations of the Bayesian
network. It does so by bounding the perturbed log-probabilities for parts of the domain,
such that they can be pruned from the search if they are guaranteed to not contain a top k
perturbed log-probability. Therefore, it can be considered a branch-and-bound algorithm
(see e.g. Lawler and Wood 1966).

To derive ancestral Gumbel-Top-k sampling, we start with explicit Gumbel-Top-k
sampling to sample k configurations y without replacement from the Bayesian network. This
requires instantiating all configurations y ∈ D, sampling their perturbed log-probabilities
and finding the k largest to obtain the sample. See for an example Figure 4, where the
leaf nodes represent all 8 possible configurations for a Bayesian network with 3 binary
variables. As the size of the domain D is exponential in the number of variables |V|, this
is not practically feasible in general, and we will derive ancestral Gumbel-Top-k sampling
as an alternative, equivalent, sampling procedure that does not require to instantiate the
complete domain. Instead, it uses a top-down sampling procedure to sample perturbed
log-probabilities for partial configurations yS (internal nodes in Figure 4) first, which is
equivalent but allows to obtain a bound on the perturbed log-probabilities of completions of
yS (descendants of yS in the tree). This allows the dashed parts of the tree in Figure 4 to
be pruned from the search, while obtaining the same result.

3.1. The Probability Tree Diagram

To help develop our theory, we will first assume a fixed topological order of the nodes
V = {1, ..., T}. For t ≤ T , we will use the notation y1:t = y{1,...,t} = (y1, ..., yt) to indicate a
prefix of y, which is a partial configuration of the Bayesian network with domain D1:t =∏
v∈{1,...,t}Dv. This topological order allows us to represent possible configurations of the

Bayesian network as the tree diagram in Figure 4, where level t has |D1:t| nodes: one node
for each possible partial configuration y1:t ∈ D1:t. Given a partial configuration y1:t of the
nodes {1, ..., t}, let S be a superset of those nodes (i.e. {1, ..., t} ⊆ S) and let DS|y1:t be the
domain of configurations yS given the partial assignment y1:t:

DS|y1:t = {y′S ∈ DS : y′1:t = y1:t} =
∏

v∈{1,...,t}

{yv} ×DS\{1,...,t}.

In particular, for S = {1, ..., t+ 1}, D1:t+1|y1:t =
∏
v∈{1,...,t}{yv} ×Dt+1 is the set of possible

extensions of y1:t by the variable yt+1, which defines the set of direct child nodes of y1:t in
the tree diagram. D|y1:t = DV|y1:t is the set of possible complete configurations compatible
with (or given) y1:t, which corresponds to the set of leaf nodes in the subtree rooted at y1:t
in the tree diagram.

6

Ancestral Gumbel-Top-k Sampling

CA

CCCAACAA

CCCCCACACCAAACCACAAACAAA

𝐺"𝒚$:& = max
𝒚∈,(𝒚$:&)

𝐺"𝒚 ∼ Gumbel log 7
𝒚∈,(𝒚$:&)

exp𝜙𝒚

𝐷(𝒚;:<)

𝜙𝒚$:& = log 𝑝(𝒚;:<)

𝐺𝒚$:& ∼ Gumbel(0)

perturbed log-probability of “C”
= maximum of perturbed

log-probabilities in subtree

Idea: obtain sample from leaf
nodes using Gumbel-Top-𝑘 trick

without constructing complete tree

𝑝(𝐴)

𝑝(𝐶|𝐴)

𝑝(𝐴|𝐴𝐶)

𝑝 𝐴 𝑝 𝐶 𝐴 𝑝 𝐴 𝐴𝐶 = 𝑝(𝐴𝐶𝐴)

Figure 4: Example of Gumbel-Top-k sampling (k = 3) for a Bayesian network p(y) =
p(y1)p(y2|y1)p(y3|y1, y2), represented by probability tree diagram. The shaded leaf
nodes correspond to the configurations y ∈ D with the largest perturbed log-
probabilities, which is the resulting sample without replacement. We also indicate
the perturbed log-probabilities for partial configurations y1:t (internal nodes in
the tree diagram), which are the maximum of the perturbed log-probabilities in
the subtree. Using top-down sampling, the dashed parts of the tree do not need
to be instantiated.

We define the marginal probability for the partial configuration y1:t by marginalizing
over all possible configurations y ∈ D|y1:t that match the partial configuration:

p(y1:t) =
∑

y∈D|y1:t

p(y) (13)

=
∑

y∈D|y1:t

∏
v∈{1,...,t}

p
(
yv|ypa(v)

) ∏
v∈{t+1,...,T}

p
(
yv|ypa(v)

)
=

∏
v∈{1,...,t}

p
(
yv|ypa(v)

) ∑
y∈D|y1:t

∏
v∈{t+1,...,T}

p
(
yv|ypa(v)

)
=

∏
v∈{1,...,t}

p
(
yv|ypa(v)

)
= p(y1:t−1)p

(
yt|ypa(t)

)
. (14)

Note that y1:t−1 is the direct parent of the node y1:t so (14) allows efficient computation
of the probability p(y1:t−1) by multiplying the conditional probability p

(
yt|ypa(t)

)
(note

that pa(t) ⊆ {1, ..., t− 1}) with the marginal probability p(y1:t−1) of the parent in the tree
diagram.

7

Kool, van Hoof and Welling

3.2. Explicit Gumbel-Top-k Sampling

By using Gumbel-Top-k sampling (see Section 2.4) explicitly, we can (inefficiently!) obtain a
sample without replacement of size k from the Bayesian network as follows:

• Compute φy = log pθ(y) for all configurations y ∈ D. This means that the complete
tree diagram is instantiated, as in Figure 4.

• For y ∈ D, sample Gφy ∼ Gumbel(φy), so Gφy is the perturbed log-probability of y.

• Let y∗1, ...,y
∗
k = arg top k Gφy , then y∗1, ...,y

∗
k is a sample of configurations from (1)

without replacement.

Note that the result corresponds to a subset of leaf nodes in the tree diagram. As explicit
Gumbel-Top-k sampling requires to instantiate the complete tree diagram to compute
perturbed log-probabilities for all leaf nodes, this is computationally prohibitive. Therefore,
we construct an equivalent process that we call ancestral Gumbel-Top-k sampling, which
implicitly finds the configurations y∗1, ...,y

∗
k with computation that is only linear in the

number of samples k and the number of variables T .

3.3. Perturbed Log-Probabilities of Partial Configurations

So far, we have only defined the perturbed log-probabilities Gφy for complete configurations
y ∈ D, corresponding to leaf nodes in the tree diagram. To derive ancestral Gumbel-Top-k
sampling, we find it convenient to also define the perturbed log-probabilities for partial
configurations y1:t ∈ D1:t, which correspond to internal nodes in the tree diagram. From
Equation (13), it follows that a partial configuration y1:t has log-probability

φy1:t = log p(y1:t) = log
∑

y∈D|y1:t

p(y) = log
∑

y∈D|y1:t

expφy.

For a partial configuration y1:t, we now consider the maximum of the perturbed log-probabilities
Gφy of compatible complete configurations y ∈ D|y1:t . This corresponds to the maximum
of perturbed log-probabilities in the subtree below y1:t in Figure 4. By the Gumbel-Max
trick (Equation 6), it has a Gumbel distribution with location φy1:t . Therefore, we use the
notation Gφy1:t :

Gφy1:t = max
y∈D|y1:t

Gφy ∼ Gumbel(φy1:t). (15)

Since Gφy1:t ∼ Gumbel(φy1:t), we can rewrite it as

Gφy1:t = φy1:t +Gy1:t , (16)

where we have defined Gy1:t ∼ Gumbel(0). Equation (16) reveals that we can interpret
Gφy1:t as the perturbed log-probability of partial configuration y1:t. Thus, the perturbed
log-probability of a partial configuration y1:t is the maximum of perturbed log-probabilities
of its possible completions D|y1:t . This relation is key to the top-down sampling algorithm
that we will derive.

Looking at the tree diagram in Figure 4, the maximum below a node y1:t must be
attained in one of the subtrees, such that the perturbed log-probability of y1:t must be the
maximum of perturbed log-probabilities of its possible one-variable extensions (children)

8

Ancestral Gumbel-Top-k Sampling

y1:t+1 ∈ D1:t+1|y1:t . Formally, we can partition the domain D|y1:t based on the value of
yt+1 ∈ Dt+1 as D|y1:t =

⋃
yt+1∈Dt+1

D|y1:t+1
, such that we can write (15) as

Gφy1:t = max
yt+1∈Dt+1

max
y∈D|y1:t+1

Gφy = max
yt+1∈Dt+1

Gφy1:t+1
. (17)

This means that we can compute Gφy1:t for all nodes in the tree recursively, sampling Gφy
for the leaf nodes y ∈ D and computing Equation (17) recursively up the tree. We refer to
this procedure as bottom-up sampling of the perturbed log-probabilities. Here we consider
computing Gφy1:t using Equation (17) as a sampling step because Gφy1:t is a random variable
which has a degenerate (constant) distribution by conditioning on the children.

3.4. Top-down Sampling of Perturbed Log-Probabilities

As an alternative to sampling the perturbed log-probabilities ‘bottom-up’, we can reverse
the process. Starting from the root of the tree diagram with an empty configuration, which
we denote by y∅ with length t = 0, we conditionally sample the perturbed log-probabilities
for the children recursively.

For the root y∅ at level t = 0 it holds that D(y∅) = D and the log-probability is

φy∅ = log
∑
y∈D

expφy = log
∑
y∈D

p(y) = log 1 = 0.

This means that we can sample its perturbed log-probability Gφy∅ ∼ Gumbel(0), or we can
simply set Gφy∅ = 0, which conditions the sampling process on the event that maxy∈DGφy =
0, which does not affect the result since the sample is determined by the arg max / arg top k,
which is independent of the maximum (see Section 2.3).

Given the log-probability φy1:t of a node y1:t, we can efficiently compute the log-
probabilities φy1:t+1 for its children as φy1:t+1 = φy1:t + log p(yt|ypa(t)) (this follows from
Equation 14). Similarly, given the perturbed log-probability Gφy1:t and the log-probabilities
φy1:t+1 , we can top-down sample the perturbed log-probabilities Gφy1:t+1

for each possi-
ble yt+1 ∈ Dt+1. However, there is a dependence between Gφy1:t and Gφy1:t+1

given by

Gφy1:t = maxyt+1∈Dt+1 Gφy1:t+1
(Equation 17). Therefore, when sampling Gφy1:t+1

, we need

to make sure this dependency is satisfied, i.e. we need to sample a set of (independent)
Gumbel variables conditionally upon their maximum.

3.5. Sampling a Set of Gumbel Variables Conditionally on Their Maximum

To sample a set of Gumbel variables Gφi ∼ Gumbel(φi) with a given maximum T , we can:

• Sample Gφi for all i independently

• Let Z = maxiGφi be the observed maximum

• Let G̃φi = F−1φi,T
(Fφi,Z(Gφi)), where Fφi,Z and F−1φi,T

are the CDF and inverse CDF of
truncated Gumbel Distributions.

The CDF of a Gumbel(φ) distribution truncated at T is given by

Fφ,T (g) = P (G ≤ g|G ≤ T) =
P (G ≤ g ∩G ≤ T)

P (G ≤ T)
=
P (G ≤ min(g, T))

P (G ≤ T)
=
Fφ(min(g, T))

Fφ(T)
,

9

Kool, van Hoof and Welling

where Fφ(g) = exp(− exp(φ− g)) is the CDF of the (untruncated) Gumbel(φ) distribution
(Equation 4). The inverse CDF of the truncated Gumbel distribution is given by

F−1φ,T (u) = φ− log(exp(φ− T)− log u),

such that the transformation G̃φi = F−1φi,T
(Fφi,Z(Gφi)) can be written explicitly as

G̃φi = F−1φi,T
(Fφi,Z(Gφi))

= φi − log(exp(φi − T)− exp(φi − Z) + exp(φi −Gφi))
= − log(exp(−T)− exp(−Z) + exp(−Gφi)). (18)

This shows that the samples with maximum Z are effectively ‘shifted’ towards their desired
maximum T , in (negative) exponential space through the (inverse) truncated Gumbel CDF.
See Appendix A for a numerically stable implementation.

The validity of the sampling procedure is shown by conditioning on arg maxj Gφj .

For i = arg maxj Gφj it holds that

P (G̃φi ≤ g|i = arg max
j

Gφj)

=EZ
[
P (G̃φi ≤ g|i = arg max

j
Gφj ,max

j
Gφj = Z)

]
=EZ

[
P (G̃φi ≤ g|Gφi = Z)

]
=EZ

[
P (F−1

φi,T
(Fφi,Z(Gφi)) ≤ g|Gφi = Z)

]
=EZ

[
P (F−1

φi,T
(Fφi,Z(Z)) ≤ g)

]
=EZ [P (T ≤ g)]

=P (T ≤ g)

=P (Gφi ≤ g|Gφi = T)

=P (Gφi ≤ g|max
j

Gφj = T, i = arg max
j

Gφj).

For i 6= arg maxj Gφj it holds that

P (G̃φi ≤ g|i 6= arg max
j

Gφj)

=EZ
[
P (G̃φi ≤ g|i 6= arg max

j
Gφj ,max

j
Gφj = Z)

]
=EZ

[
P (G̃φi ≤ g|Gφi < Z)

]
=EZ

[
P (F−1

φi,T
(Fφi,Z(Gφi)) ≤ g|Gφi < Z)

]
=EZ

[
P (Gφi ≤ F−1

φi,Z
(Fφi,T (g))|Gφi < Z)

]
=EZ

[
Fφi,Z(F−1

φi,Z
(Fφi,T (g)))

]
=EZ [Fφi,T (g)]

=Fφi,T (g)

=P (Gφi ≤ g|Gφi < T)

=P (Gφi ≤ g|max
j

Gφj = T, i 6= arg max
j

Gφj).

Combining the two cases, it holds that

P (G̃φi ≤ g) =P (G̃φi ≤ g|i = arg max
j

Gφj)P (i = arg max
j

Gφj)+

P (G̃φi ≤ g|i 6= arg max
j

Gφj)P (i 6= arg max
j

Gφj)

=P (Gφi ≤ g|max
j
Gφj = T, i = arg max

j
Gφj)P (i = arg max

j
Gφj)+

P (Gφi ≤ g|max
j
Gφj = T, i 6= arg max

j
Gφj)P (i 6= arg max

j
Gφj)

=P (Gφi ≤ g|max
j
Gφj = T).

This procedure allows us to recursively sample Gφy1:t for the complete tree diagram
top-down, which is equivalent to sampling the perturbed log-probabilities for the complete
tree diagram bottom-up. This means that for the leaves, or complete configurations y,
it holds that Gφy ∼ Gumbel(φy) independently. The benefit of the top-down sampling
procedure is that we can choose to sample only the parts of the tree diagram needed to
obtain the top k leaves.

10

Ancestral Gumbel-Top-k Sampling

3.6. Ancestral Gumbel-Top-k Sampling

At the heart of the ancestral Gumbel-Top-k sampling is the idea that we can find the
configurations corresponding to the top k perturbed log-probabilities, without instantiating
the complete domain, by using top-down sampling. To do so, we maintain a queue Q of
partial configurations y1:t, where no partial configuration y1:t ∈ Q is a prefix of another
one. By doing so, each element y1:t ∈ Q can be seen as the root of a (disjoint) part of the
domain D|y1:t ⊆ D. We do this in such a way that the queue represents a partitioning of
the complete domain, so D =

⋃
y1:t∈QD|y1:t .

For each of the partial configurations in the queue, we also keep track of the perturbed
log-probability Gφy1:t , which is obtained by top-down sampling. The queue represents the
set of leaf nodes of a partially constructed probability tree diagram (see Figure 5). At
any point in time, we can remove an element y1:t from the queue and add to the queue
the set of extensions y1:t+1 for yt+1 ∈ Dt+1, for which we can sample the perturbed log-
probabilities Gφy1:t+1

conditionally upon the value of their parent Gφy1:t , as in standard
ancestral sampling. Repeating this process will ultimately result in a queue Q = D, sampling
all complete configurations y ∈ D, including their perturbed log-probabilities, such that the
top k determines the sample without replacement. To improve efficiency, we can bound the
size of the queue, limiting the total number of expansions, without changing the result.

CA CA

ACAA

CA

ACAA

ACCACA

Start from root, sample
𝐺"𝒚$:& ∼ Gumbel(0)
(𝜙∅ = log 1 = 0) …

𝐺"𝒚$:&

… sample children
𝐺"𝒚$:&E$conditionally on
max
F&∈,&

𝐺"𝒚$:&E$ = 𝐺"𝒚$:& … … repeat for node with
highest 𝐺"𝒚$:&…

No need to expand!

CA

CCCAACAA

CACCAAACCACA

… the result is equivalent to
sampling GG𝐲 for leaves directly!

CA

CCCAACAA

ACCACA
No need to expand!

𝐺"𝒚$:&E$

𝐺"𝒚$:&

Figure 5: Ancestral Gumbel-Top-k sampling, with k = 3 and m = 1. Configurations in the
queue are shaded and in each iteration, the single (m = 1) incomplete configuration
with the highest perturbed log-probability is expanded, sampling the perturbed
log-probabilities for the extensions conditionally. This takes 5 iterations and has
a total cost of 5 model evaluations to obtain k = 3 samples without replacement.

11

Kool, van Hoof and Welling

3.7. Bounding of the Queue Size at k

Assuming we are interested in sampling k configurations without replacement, let κ = κ(D) be
the k-th largest of the perturbed log-probabilities {Gφy : y ∈ D} of complete configurations
y ∈ D. We call κ the threshold since, using Gumbel-Top-k sampling, y will be part of the k
samples without replacement if Gφy ≥ κ.

Lemma 1 (Lower bound) Let κ(Q) be the k-th largest perturbed log-probability of (partial)
configurations in the queue Q. Then κ(Q) is a lower bound for κ, i.e. κ ≥ κ(Q).

Proof For each of the k largest perturbed log-probabilities Gφy1:t in the queue Q, it holds
that Gφy1:t ≥ κ(Q) (by definition). By the definition of Gφy1:t as the maximum of perturbed
log-probabilities Gφy for y ∈ D|y1:t (Equation 15), there must necessarily be a completion
y ∈ D|y1:t for which Gφy = Gφy1:t ≥ κ(Q). Since for y1:t ∈ Q the corresponding domains
D|y1:t are disjoint, this means that there are (at least) k distinct configurations y ∈ D such
that Gφy ≥ κ(Q). Since there are at least k configurations y ∈ D for which Gφy ≥ κ(Q),
and κ is the k-th largest perturbed log-probability in D, it must hold that κ ≥ κ(Q).

Lemma 2 (Upper bound) For y1:t ∈ Q, the perturbed log-probability Gφy1:t is an upper
bound for the perturbed log-probabilities of its possible completions, i.e. Gφy1:t ≥ Gφy for
y ∈ D|y1:t.

Proof It follows directly from the the definition of Gφy1:t (Equation 15) that

Gφy1:t = max
y′∈D|y1:t

Gφy′ ≥ Gφy ∀y ∈ D|y1:t .

Theorem 3 (Limit queue size) All except the k configurations with the largest perturbed
log-probabilities in the queue Q can be discarded while still resulting in a sample without
replacement of size k.

Proof For y1:t ∈ Q that does not belong to one of the top k perturbed log-probabilities, it
holds that Gφy1:t < κ(Q) (assuming uniqueness of Gφy1:t since the domain is continuous)
such that for its possible completions y ∈ D|y1:t it holds that (using Lemma 1 and 2)

Gφy ≤ Gφy1:t < κ(Q) ≤ κ ∀y ∈ D|y1:t .

If y1:t is not one of the top k in Q, then Gφy < κ for all possible completions of y1:t, and
any such completion will not be in the sample without replacement of size k. This means
that y1:t can be discarded from the queue without affecting the result.

12

Ancestral Gumbel-Top-k Sampling

As a consequence of Theorem 3, if we desire to sample k configurations, then at any
point in time, we need to keep at most the k partial configurations with largest perturbed
log-probabilities in the queue. This can be implemented by maintaining Q as a priority queue
of limited size k, where the priorities are given by the perturbed log-probabilities. Repeatedly
removing the first incomplete configuration (with the highest perturbed log-probability) from
the queue, and replacing it by its extensions, ultimately results in a queue with k complete
configurations, corresponding to the k largest perturbed log-probabilities, as is illustrated in
Figure 5. By its equivalence to explicit Gumbel-Top-k sampling, this is a sample without
replacement of size k (in order!). By repeatedly expanding the partial configuration with
highest perturbed log-probability, the algorithm is a best first search algorithm.

In a practical implementation, we can directly ‘yield’ the first complete configuration
once it is found, remove it from the queue and decrease the queue size limit by 1. This will
yield the first sample in exactly T iterations (where T is the number of variables), as if we
used standard ancestral sampling. Then, it will ‘jump’ back to the partial configuration
y1:t with the highest perturbed log-probability and repeat the best first search from there,
lazily generating each next sample as the algorithm proceeds. By reusing partially sampled
configurations, the algorithm evaluates the model for each possible partial configuration at
most once. It is ‘anytime optimal’ in the sense that to yield k′ ≤ k samples, it only computes
model evaluations that are strictly necessary. The algorithm is a special case of Algorithm 1
with m = 1 (see Section 3.8) and a fixed variable selection strategy (Section 3.9).

Algorithm 1 AncestralGumbelTopkSampling(pθ, k, m)

1: Input: Bayesian network pθ(yv|pa(v)) ∀v ∈ V , max. sample size k, parallel expansion parameter
m, variable selection strategy V

2: Initialize result and queue empty
3: add (S = ∅,yS = ∅, φyS = 0, GφyS

= 0) to queue
4: while queue not empty do
5: expand ← take and remove top m from queue according to G̃
6: for (S,yS , φyS , GφyS

) ∈ expand (in parallel) do
7: if S = V then
8: add (S,yS , φyS , GφyS

) to queue
9: else

10: select v from {v ∈ V \ S : pa(v) ⊆ S} according to variable selection strategy V
11: let S ′ = S ∪ {v}
12: compute φyS′ ← φyS + log pθ(yv|ypa(v)) ∀yv ∈ Dv (here yS′ = yS ∪ {yv})
13: sample GφyS′

∼ Gumbel(φyS′) ∀yv ∈ Dv conditionally given maximum GφyS

14: add (S ′,yS′ , φyS′ , GφyS′
) to queue for all yv ∈ Dv

15: end if
16: end for
17: queue ← take top k from queue according to G̃
18: while first element from queue is complete, i.e. has S = V do
19: remove first element from queue and add it to result
20: k ← k − 1
21: end while
22: end while
23: Return result

13

Kool, van Hoof and Welling

3.8. Parallelizing the Algorithm

Instead of only expanding the first partial configuration in the queue, we can assume
availability of m ≤ k parallel processors and expand m partial configurations in parallel,
replacing all of them by their (disjoint) expansions. This results in fewer required iterations
(known as the span or depth) of the algorithm, but an increase of total cost of the algorithm,
which is the number of iterations times m. This is because of the cost incurred for ‘idle’
parallel processors if initially the queue size is smaller than m, and because of redundant
model evaluations if nodes are expanded which, in a fully sequential setting, would have
been ‘pushed’ of the queue by other expansions (see Figure 6 for an example).

For m = k, the complete queue gets replaced in every iteration by the top k of all
expansions, and the resulting algorithm is a limited width breadth first search which was
originally presented in Kool et al. (2019b) as Stochastic Beam Search. While this algorithm
requires the fewest iterations, as it guarantees k samples are generated in exactly T iterations
(where T is the number of variables), it is the least efficient in terms of total cost.

Ultimately, the optimal choice of m depends on properties of the model and available
parallel hardware, e.g. the number of GPUs3 (or parallel processors on a single GPU) in
modern Deep Learning applications. For example, if a single model evaluation can already
fully utilize the GPUs (e.g. if it is a large and highly parallelizable neural network model),
then setting m = 1 is optimal as this computes only strictly necessary model evaluations.
On the other hand, if GPUs cannot be fully utilized for individual model evaluations, or
additional GPUs are freely available, one should use m = k to minimize the number of
iterations which then directly translates to minimizing running time.

CA CA

CCCAACAA

CA

CCCAACAA

CCCCCACACCAAACCACA

Start from root, sample
𝐺"𝒚$:& ∼ Gumbel(0)
(𝜙∅ = log 1 = 0) …

𝐺"I 𝐺"I

J𝐺"IK

… sample children
𝐺"𝒚$:&E$conditionally on
max
F&∈,&

𝐺"𝒚$:&E$ = 𝐺"𝒚$:& … … repeat for best 𝑚 = 𝑘 nodes …

… the result is equivalent to
sampling GG𝐲 for leaves directly!

No need to expand!

Figure 6: Ancestral Gumbel-Top-k sampling, with k = m (= 3), also known as Stochastic
Beam Search (Kool et al., 2019b). This version expands in each iteration all partial
configurations in the queue in parallel, traversing the tree diagram per level, i.e.
using breadth first search. Compared to ancestral sampling with m = 1, this
reduces the number of iterations from 5 to 3, but has a total cost of 3 iterations ×
3 processors = 9. The total cost can be divided into a cost of 6 (rather than 5) for
model evaluations, in this case since ‘CC’ is expanded unnecessarily, and a cost of
3 for idle processors if the queue (marked by shaded nodes) size is smaller than
m: this cost is 2 in the first iteration and 1 in the second. The result is equivalent
to using m = 1 (Figure 5) or any other m < k.

3. GPU is an abbreviation of Graphical Processing Unit.

14

Ancestral Gumbel-Top-k Sampling

3.9. Variable Selection Strategy

CA

*CC*ACC*AA*A

CCCACCCACAACCCACAAACAAAA

Figure 7: Example of top-down sampling us-
ing a dynamic variable selection
strategy for a graphical model
p(y) = p(y1)p(y2)p(y3).

We can consider a tree diagram as a tree
representing the possible paths (from root
to leaf) that standard ancestral sampling
can take to generate a sample. In the tree
diagram in Figure 4, each level t corresponds
to the fixed variable yt, such that the sample
is always generated in the order y1, ..., yT .
However, if the graphical model has multiple
topological orderings, any such order yields
a valid tree diagram and thus valid order
for ancestral sampling. Moreover, the order
does not have to be globally fixed, but can
vary depending on the partial configuration
sampled so far.

In general, when ancestral sampling, we
are free to choose any variable yt to sample
next, as long as its parents ypa(t) have been
sampled. For example, for a fully factorized
model p(y) = p(y1)p(y2)p(y3), we are free to start sampling with y3, and, depending on
the value of y3, select either y1 or y2 to sample next. This is an example of a variable
selection strategy, which is represented by the tree diagram in Figure 7. While the resulting
distribution is the same, the variable selection strategy affects which parts of the tree can
be discarded (dashed nodes in Figure 7) and thus the number of iterations that are required
by the algorithm. Sampling low-entropy variables first is a good idea, as this allows larger
partial configurations to be ‘reused’ for subsequent samples (see Section 5.1.4). Algorithm 1
is presented in the form that can take an arbitrary variable selection strategy.

4. Related Algorithms

In this section we discuss a number of algorithms related to ancestral Gumbel-Top-k sampling.

4.1. The ‘Trajectory Generator’

For m = 1, our ancestral Gumbel-Top-k sampling algorithm is similar to the ‘trajectory
generator’ with ε = 0 described by Lorberbom et al. (2019), where it is used in the context
of reinforcement learning (Sutton and Barto, 2018) to generate direct policy gradients.
Our algorithm replaces a partial configuration y1:t in the queue by all expansions y1:t+1,
motivated by the idea that this is efficient if we consider computing p(y1:t+1|y1:t) for all yt+1

to be a single model evaluation, e.g. the forward pass of a neural network with a softmax
output layer (Equation 2). In the probability tree diagram, this means that if node is
expanded, all childnodes are added to the tree. In the context of reinforcement learning, the
algorithm by Lorberbom et al. (2019) is assumed to operate on a ‘state-reward tree’, where
generating a new node corresponds to taking an action which requires an interaction with
the environment. Therefore, they only add a single child node to the tree in each iteration.

15

Kool, van Hoof and Welling

In the implementation by Lorberbom et al. (2019), elements in the queue do not (only)
represent leaf nodes of the tree, but the idea that they form a partition of the domain is
still maintained. In particular, in our implementation, upon expansion we partition the
domain D|y1:t represented by y1:t as D|y1:t = ∪yt+1∈DtD|y1:t+1

, whereas Lorberbom et al.
(2019) expand only a single child node and partition the domain as D|y1:t = D|y1:t+1

∪
(D|y1:t \ D|y1:t+1

). When a single child node y1:t+1 is created, this corresponds to the
maximum and thus it inherits the perturbed log-probability from the parent. For the
parent, a new perturbed log-probability is sampled, truncated at the previous maximum,
which then becomes the maximum of perturbed log-probabilities for the remaining domain
D|y1:t \D|y1:t+1

corresponding to the child nodes that have not yet been instantiated.

4.2. (Stochastic) Beam Search

Beam search is a widely used method for approximate inference in various domains such as
machine translation (Sutskever et al., 2014; Bahdanau et al., 2015) and image captioning
(Vinyals et al., 2015). In machine learning, beam search is typically a test-time procedure,
but there are works that include beam search in the training loop (Daumé et al., 2009;
Wiseman and Rush, 2016; Edunov et al., 2018b; Negrinho et al., 2018; Edunov et al., 2018a).
Beam search suffers from limited diversity of the results, and variants have been developed
that encourage diversity (Li et al., 2016; Shao et al., 2017; Vijayakumar et al., 2018).

We argue that adding stochasticity is also a principled way to increase diversity in a
beam search: this motivated the development of Stochastic Beam Search (Kool et al., 2019b).
While Stochastic Beam Search is equivalent to ancestral Gumbel-Top-k sampling (only) for
m = k, the result (a sample without replacement) is equivalent for any m ≤ k. As such, we
also consider ancestral Gumbel-Top-k sampling as a principled alternative to a heuristically
randomized/diversified beam search, even though it is not (in general) a beam search.

We analyze the result of ancestral Gumbel-Top-k sampling by comparing Stochastic Beam
Search to a näıve alternative implementation of a randomized beam search. In particular,
imagine that we use an ordinary beam search, but replace the deterministic top-k operation
by sampling without replacement in each step, e.g. using Gumbel-Top-k sampling, but
without top-down sampling conditionally. In this näıve approach, a low-probability partial
configuration will only be extended to completion, if it gets to be re-sampled, independently,
again with low probability, at each step during the beam search. The result is a much lower
probability to sample this configuration than assigned by the model.

Intuitively, we should somehow commit to a sampling ‘decision’ made at step t. However,
a hard commitment to generate exactly one completion for each of the k partial configurations
at step t would prevent generating any two completions from the same partial configuration.
By using top-down sampling, Stochastic Beam Search propagates the Gumbel perturbation
of a partial configuration to its extensions, which can be seen as a soft commitment to that
partial configuration. This means that it gets extended as long as its total perturbed log-
probability is among the top k, but ‘falls off’ the beam if, despite the consistent perturbation,
another partial configuration becomes more promising. By this procedure, the result is a
sample without replacement, which is true to the model, suggesting that Stochastic Beam
Search, or equivalently, ancestral Gumbel-Top-k sampling, is a principled alternative to a
heuristically randomized beam search.

16

Ancestral Gumbel-Top-k Sampling

4.3. Threshold Sampling

While Gumbel-Top-k sampling uses a fixed sample size of k, a related algorithm is threshold
sampling (Duffield et al., 2005), which instead sets a fixed threshold and returns a variable
sized sample. In analogy with Gumbel-Top-k sampling, threshold sampling would sample
all configurations in the domain for which the perturbed log-probability exceeds a fixed
threshold, instead of the k largest. Threshold sampling is a special case of Poisson sampling
as each configuration is included in the sample with probability independent of the other
configurations. This allows to use the sample for statistical estimation using the Horvitz-
Thompson estimator (Horvitz and Thompson, 1952). To overcome the limitation of a
variable sample size, priority sampling (Duffield et al., 2007) uses the (k+ 1)-th largest value
as empirical threshold to obtain a fixed sample size k. This is equivalent to Gumbel-Top-k
sampling and we experiment with using the resulting estimator in Section 5.3. An alternative
method to control the sample size is to use an adaptive threshold (Ting, 2017).

4.4. Rejection Sampling

As an alternative to our algorithm, we can draw samples without replacement by rejecting
duplicates from samples drawn with replacement. However, if the domain is large and the
entropy low (e.g. with a translation model where there are only a few valid translations),
then rejection sampling requires many samples and consequently many (expensive) model
evaluations. Also, we have to estimate how many samples to draw (in parallel) or draw
samples sequentially. Our algorithm allows to set m = k, which guarantees generating k
unique samples with exactly kT model evaluations in a single pass of T steps, which is equal
to the computational requirement for taking k samples with replacement. When allowing
our algorithm to generate samples sequentially, setting m < k, it can generate k samples
with fewer model evaluations than standard sampling with replacement.

4.5. Näıve Ancestral Sampling Without Replacement

As an alternative to ancestral Gumbel-Top-k sampling, we can also derive an algorithm based
on ‘standard’ sampling without replacement. This means sampling the first configuration
y∗1 , then renormalizing the probability distribution to the domain D \ {y∗1} to sample y∗2 , et
cetera. The näıve method we propose is similar to Wong and Easton (1980), but instead of
an arbitrary binary tree, we use the tree structure (Figure 4) induced by ancestral sampling
from the graphical model. This method was concurrently proposed by Shi et al. (2020).

We represent configurations y ∈ D as ‘buckets’ on a horizontal axis, with size equal to
their probability p(y). Sampling from p(y) is equivalent to uniformly selecting a point on
this axis and returning the configuration of the corresponding bucket. See an example in
Figure 8. Sampling without replacement means that to obtain the second sample, we should
remove the bucket corresponding to the first sample, as indicated by the dark shading in
Figure 8, and sample uniformly a position on the horizontal axis that is not shaded. When
using ancestral sampling, we can determine the bucket by first determining the larger bucket,
corresponding to the assignment of the first variable y1, then sequentially narrowing it down
to the final bucket by sampling y2, ..., yT . Note that, although this consists of multiple
sampling steps, this can be done using a single random number, as illustrated by the dotted

17

Kool, van Hoof and Welling

line in Figure 8, such that the result will be equivalent to the result without ancestral
sampling with the same random number.

When sampling without replacement, we desire unique complete configurations, but
we may have duplicate partial configurations. This means that if we desire to use näıve
ancestral sampling to obtain a second sample without replacement, we cannot remove any
partial configurations from the domain, but we need to remove the probability mass already
sampled from the partial configurations, as illustrated in Figure 8. We can keep track of the
probability mass already sampled for each partial configuration by building a prefix tree (or
trie) representing the samples, removing the probability mass from each partial configuration
by backtracking the path that was used to generate each sample. Each next sample can
then be generated by sampling a path down this tree using the adjusted probabilities to
sample without replacement, until we arrive at a partial configuration that has not been
sampled before, which means that the remaining variables in the configuration can be
sampled straightforwardly and the tree is grown to include this path.

Similar to ancestral Gumbel-Top-k sampling, näıve ancestral sampling without replace-
ment has the benefits that it can reuse model evaluations for partial configurations and
generate samples one at the time. As downside, this näıve method requires more iterations
as it starts from the root for each sample, whereas ancestral Gumbel-Top-k sampling directly
jumps to a partial configuration from the priority queue. Also, this näıve method requires
careful administration of a complete tree structure whereas ancestral Gumbel-Top-k sampling
only requires to keep track of a queue of partial configurations (without any tree structure).
Lastly, näıve ancestral sampling without replacement is inherently sequential.

A

AC

ACC

C

CCCAAA

CCCCCACACCAAACAAACAAA

A

AC

ACCACA

C

CCCAAA

CCCCCACACCAAAACAAA

CA

CAAC

CAAACCACA

CCAA

CCCCCACACAACAAA

A

AC

ACC

A

AC

ACA

C

CA

CAA

Figure 8: Sampling from a discrete domain visualized as selecting a point uniformly on
a horizontal axis. The bucket (with size equal to sampling probability) which
contains the random point is the sample. Ancestral sampling can be seen as
sequentially narrowing down the ‘bucket’ that contains the sampled point, indicated
by light shading. Sampling without replacement requires removing probability
mass corresponding to the buckets that have already been sampled (indicated by
dark shaded areas) and selecting the random point uniformly from the remaining
area. When using ancestral sampling ‘näıvely’, we can use a tree to keep track of
the probability mass that should be removed for partial configurations that have
been sampled before.

18

Ancestral Gumbel-Top-k Sampling

4.6. Weighted Reservoir Sampling with Exponential Jumps

Weighted reservoir sampling (Efraimidis and Spirakis, 2006) is an algorithm for sampling
without replacement from a stream of items given weights (unnormalized probabilities) to
sample each item. Mathematically, it is equivalent to Gumbel-Top-k sampling (see Section
2.4), but it is executed in a streaming manner, i.e. perturbing (unnormalized) log-probabilities
as they arrive while keeping track of the k largest perturbations so far.

In the streaming implementation, each next item replaces an item in a priority queue if
its perturbed log-probability exceeds the k-th largest so far. Efraimidis and Spirakis (2006)
note that the total weight that is ‘skipped’ before a next item enters the queue follows an
exponential distribution, which can also be sampled directly, such that one can directly
make an ‘exponential jump’ to the next item to insert the queue, without sampling the
perturbations for each item individually. This can be seen as a form of top-down sampling.

Using weighted reservoir sampling, or equivalently, ‘streaming’ Gumbel-Top-k sampling,
we can derive yet another algorithm for sampling without replacement from a Bayesian
Network, by iterating over the complete domain (leaf nodes in the tree diagram in Figure 4)
using a tree traversal algorithm, and keeping track of the k-largest perturbed log-probabilities
so far. While this needs to enumerate the complete domain, we can use the ‘exponential
jumps’ to directly jump to the next sequence in the domain. In doing so, complete subtrees
can be skipped directly as the total weight (probability mass) in the subtree is given by the
probability of the partial configuration corresponding to the root of the subtree. This means
it can be executed without instantiating the complete tree. Additionally, traversing the tree
by expanding the highest probability children first will limit the number of additions to the
priority queue as more likely elements are inserted earlier.

While this algorithm is closely connected to our method, it is not equivalent. In
particular, using streaming Gumbel-Top-k sampling with exponential jumps, the queue will
be initially filled with k complete configurations, which get replaced later by other complete
configurations with higher perturbed log-probabilities. The result can only be returned after
the complete domain has been traversed. By contrast, ancestral Gumbel-Top-k sampling
maintains partial configurations in the queue, which can be used to bound parts of the
domain, and additionally returns samples without replacement as they are found, in order.

5. Experiments

This section presents the experiments and results.

5.1. Different Methods for Sampling Without Replacement

In our first experiment, we analyze different methods for sampling without replacement:

• Ancestral Gumbel-Top-k sampling (Section 3), where we experiment with different
values of m to control the paralellizability of the algorithm.

• Rejection sampling (Section 4.4) which generates samples with replacement (using
standard ancestral sampling) sequentially and rejects duplicates. We also implement a
‘parallel’ version of this, that generates m samples with replacement in parallel, then
rejects the duplicates and repeats this procedure until k unique samples are found.

19

Kool, van Hoof and Welling

• Näıve ancestral sampling without replacement (Section 4.5). This algorithm is in-
herently sequential, but we also implement a ‘näıve’ parallelizable version similar to
rejection sampling. This version generates m samples (with replacement) in parallel,
removes duplicates and then constructs the tree in Figure 8 to remove the correspond-
ing probability mass from the distribution. Then it uses this tree to generate (again in
parallel) m new samples, which are distinct from the first m samples but may contain
duplicates, which are again removed, after which the tree is updated. This is repeated
until in total k unique samples have been generated.

5.1.1. Data Generation

We generate a random Bayesian Network of 10 variables, where each variable yi has a
Bernoulli distribution. We generate the variables in topological order, and variable i has
a dependency on variable j < i (so j ∈ pa(i)) with probability c ∈ [0, 1], where c is the
connectivity factor of the graph. For c = 0, the resulting graph will be fully independent
(Figure 1a), while for 0 < c < 1 the result will (most likely) be a sparse Bayesian network
(Figure 1c) and for c = 1 the result is a ‘fully connected’ sequence model (Figure 1d). The
Bernoulli distribution for yi ∈ {0, 1} is a mixture between an independent prior and a
distribution depending on the parents, which is given by

P (yi = 1|ypa(i)) = αip
ypa(i)
i + (1− αi)pi.

Here αi ∼ Uniform(0, 1) is a parameter that determines how much the variable yi is influenced
by its parents pa(i), pi ∼ Uniform(0, 1) is the ‘independent’ or ‘prior’ probability that yi = 1,
and p

ypa(i)
i ∼ Uniform(0, 1) ∀ypa(i) ∈ Dpa(i) determines the influence of the parents on the

probability that yi = 1, given as a table for each of the 2|pa(v)| possible values in Dpa(i).

5.1.2. Number of Iterations

First we set m = 1, making all algorithms fully sequential. For our algorithm, we measure the
number of iterations (removing m = 1 element from the queue and adding its expansions),
which is equal to the number of model evaluations. For rejection sampling and the näıve
ancestral sampling algorithm, we count as iteration the sampling of one variable, such that
the number of iterations is also equal to the number of model evaluations and generating
a single sample y with T variables takes T iterations/model evaluations. In Figure 9a
we compare the number of iterations (model evaluations) needed for generating different
numbers of samples using the different methods. We clearly observe how our method requires
the fewest iterations/model evaluations to generate the same number of samples.

5.1.3. Parallelizing the Algorithms

By choosing the number of parallel processors m we can trade off the total time (iterations)
it takes to run the algorithm, also known as the depth or span, against the total cost of
running the algorithm, which is m times the depth or span. Figure 9b shows for different
numbers of parallel processors how many iterations it takes to generate k = 100 samples,
i.e. it summarizes the result for the previous experiment run for different values of m. It is
clear how increasing the parallelization quickly decreases the number of iterations required
although the effect diminishes as m increases.

20

Ancestral Gumbel-Top-k Sampling

0 20 40 60 80 100
Samples generated

0

200

400

600

800

1000

1200

1400

1600

Ite
ra

tio
ns

Iterations vs. samples generated (c = 0.5, m = 1)
Gumbel
Rejection
Naive

(a) Number of iterations / model evaluations as
function of number of samples generated with-
out replacement, without parallelism (m = 1).

0 20 40 60 80 100
Parallel processors m

0

100

200

300

400

500

Ite
ra

tio
ns

Iterations vs. parallel processors m (c = 0.5, k = 100)
Gumbel
Rejection
Naive

(b) Number of iterations to generate k = 100
samples without replacement for different num-
bers of parallel processors m.

0 20 40 60 80 100
Parallel processors m

250

500

750

1000

1250

1500

1750

2000

2250

Co
st

 (i
te

ra
tio

ns
 ×

m
)

Cost vs. parallel processors m (c = 0.5, k = 100)
Gumbel
Rejection
Naive

(c) Total cost (iterations ×m) as function of
number of samples generated without replace-
ment, without parallelism (m = 1).

0 50 100 150 200 250 300 350 400
Iterations

250

500

750

1000

1250

1500

1750

2000

Co
st

 (i
te

ra
tio

ns
 ×

m
)

m = 1
m = 10

m = 100

m = 10

m = 100

m = 10

m = 100
Cost vs. iterations (c = 0.5, k = 100)

Gumbel
Rejection
Naive

(d) Trade-off between total cost and number
of iterations, as controlled by the number of
parallel processors m.

Figure 9: Results of sampling from 100 randomly generated models (Bayesian networks)
with 10 Bernoulli variables each and a connectivity of c = 0.5. For each model,
we generated k = 100 samples without replacement, using different methods and
different numbers of parallel processors m. Rejection sampling and näıve ancestral
sampling show a peak at m = 50 since they typically generate 3 × 50 = 150
samples (cost 1500) to obtain 100 unique samples, whereas m = 40 and m = 60
can suffice with generating 3× 40 or 2× 60 = 120 samples. Results are presented
as mean and standard deviation over the 100 different models. Results with c = 0
or c = 1 (not shown) are similar in terms of iterations and costs.

21

Kool, van Hoof and Welling

To visualize the overhead from the parallelization, Figure 9c visualizes the total cost,
which is the number of iterations (Figure 9b) multiplied by m. For ancestral Gumbel-Top-k
sampling, the increased costs for larger m has two different sources as explained in Section
3.8: redundant model evaluations of partial configurations which would have been pushed of
the queue in the sequential setting, and ‘idle’ parallel resources if the queue size is smaller
than m. For rejection sampling, the parallel version is suboptimal because too many samples
may be generated since they are generated in batches of size m. For the näıve ancestral
sampling algorithm, by the batching in parallel, there may still be duplicates compared to
the sequential (m = 1) algorithm, and more than k samples may be generated in total.

Ultimately, m determines the trade-off between the number of iterations and the total
cost of the algorithm, which is visualized in Figure 9d. Our algorithm with m = k = 100 (i.e.
Stochastic Beam Search) uses 10 iterations (since there are 10 variables) and has a cost of
10× 100 = 1000, which is the minimum for näıve ancestral sampling and rejection sampling.
On the other extreme, the sequential algorithm with m = 1 uses around 300 iterations with a
cost of 300. The difference is large because of the small setting, where, with m = 100, many
processors are idle in 6 of the 10 iterations since 26 = 64 < 100. We expect the difference to
be smaller in real applications, but this experiment clearly shows that there is a trade-off,
and suggests that limited parallelization (in this case m = 10) rapidly decreases the number
of iterations without increasing total cost too much.

5.1.4. Variable Selection Strategy

As explained in Section 3.9, we can select any variable from {v ∈ V \ S : pa(v) ⊆ S} to
sample in each iteration. We experiment with the following variable selection strategies:

• Fixed uses the order in which the variables are generated. Since we generated the
Bayesian network in topological order, this is valid.

• Random chooses the variable from {v ∈ V \ S : pa(v) ⊆ S} to sample next uniformly
at random.

• Minimum entropy computes the (conditional) entropy for all variables {v ∈ V \ S :
pa(v) ⊆ S} as −p̂v log(p̂v) − (1 − p̂v) log(1 − p̂v), where p̂v = P (yv = 1|ypa(v)) and
selects the variable v with minimum entropy.

• Maximum entropy selects the variable v with maximum entropy.

We note that selecting v based on entropy requires the model to be evaluated, which
may be undesirable in some cases. However, theoretically these model evaluations can be
cached/reused as most evaluations will be required eventually to sample the remaining
variables. In the extreme case of c = 0, i.e. the fully independent model in Figure 1a, we
can simply precompute all model evaluations (which is a good idea anyway), and using the
entropy variable selection strategy reduces to sorting the variables by their entropy before
starting the Gumbel-Top-k sampling algorithm.

In Figure 10a we clearly see that selecting variables with minimum entropy first is the
best strategy (it requires fewest iterations), whereas selecting based on maximum entropy
performs worst, with a random strategy or using the fixed generation order (which can also
be considered random) in between. As explained in Section 3.9, this is because selecting

22

Ancestral Gumbel-Top-k Sampling

0 20 40 60 80 100
Samples generated

0

50

100

150

200

250

300

350

Ite
ra

tio
ns

Iterations vs. samples generated (c = 0, m = 1)
Fixed
Random
Min entropy
Max entropy

(a) Number of iterations as function of number
of samples generated without replacement, for
a fully independent model (c = 0).

0.0 0.2 0.4 0.6 0.8 1.0
Connectivity factor c

240

260

280

300

320

340

360

380

Ite
ra

tio
ns

Iterations vs. connectivity c (m = 1, k = 100)
Fixed
Random
Min entropy
Max entropy

(b) Number of iterations to generate k = 100
samples without replacement for different levels
of connectivity c of the model.

Figure 10: Results of generating k = 100 samples using ancestral Gumbel-Top-k sampling
with m = 1 and different variable selection strategies, for models with different
levels of connectivity c. Results are presented as mean and standard deviation
over 100 randomly generated models.

variables with low entropy allows maximum reuse of partial configurations. In Figure 10b we
show how the difference between different variable selection strategies decreases as there are
more dependencies between variables, where for a ‘fully connected’ sequence model (c = 1,
Figure 1d) there is no freedom in variable selection and all strategies perform the same.

5.2. Diverse Beam Search

This experiment was originally presented in Kool et al. (2019b). The results were obtained
using Stochastic Beam Search, but are valid for any implementation of ancestral Gumbel-Top-
k sampling with parallelism factor m < k. In this experiment we compare Stochastic Beam
Search as a principled (stochastic) alternative to Diverse Beam Search (Vijayakumar et al.,
2018) in the context of neural machine translation to obtain a diverse set of translations
for a single source sentence x. Following the setup by Vijayakumar et al. (2018) we report
both diversity as measured by the fraction of unique n-grams in the k translations as well as
mean and maximum BLEU score (Papineni et al., 2002) as an indication of the quality of
the sample. The maximum BLEU score corresponds to ‘oracle performance’ reported by
Vijayakumar et al. (2018), but we report the mean as well since a single good translation and
k− 1 completely random sentences scores high on both maximum BLEU score and diversity,
while being undesirable. A good method should increase diversity without sacrificing mean
BLEU score.

We compare four different sentence generations methods: Beam Search (BS), Sampling
(with replacement), Stochastic Beam Search (SBS) (sampling without replacement) and
Diverse Beam Search with G groups (DBS(G)) (Vijayakumar et al., 2018). For Sampling
and Stochastic Beam Search, we control the diversity of samples generated using the
softmax temperature τ (see Equation 2) used to compute the model probabilities. We use

23

Kool, van Hoof and Welling

τ = 0.1, 0.2, ..., 0.8, where a higher τ results in higher diversity. Heuristically, we also vary
τ for computing the scores with (deterministic) Beam Search. The diversity of Diverse
Beam Search is controlled by the diversity strengths parameter, which we vary between
0.1, 0.2, ..., 0.8. We set the number of groups G equal to the sample size k, which Vijayakumar
et al. (2018) reported as the best choice.

We modify the Beam Search in fairseq (Ott et al., 2019) to implement Stochastic Beam
Search4, and use the fairseq implementations for Beam Search, Sampling and Diverse
Beam Search. For theoretical correctness of the Stochastic Beam Search, we disable length-
normalization (Wu et al., 2016) and early stopping (and therefore also do not use these
parameters for the other methods). We use the pretrained model from Gehring et al. (2017)
and use the wmt14.v2.en-fr.newstest2014 test set5 consisting of 3003 sentences. We run
the four methods with sample sizes k = 5, 10, 20 and plot the minimum, mean and maximum
BLEU score among the k translations (averaged over the test set) against the average
d = 1

4

∑4
n=1 dn of 1, 2, 3 and 4-gram diversity, where n-gram diversity is defined as

dn =
of unique n-grams in k translations

total # of n-grams in k translations
.

In Figure 11, we represent the results as curves, indicating the trade-off between diversity
and BLEU score. The points indicate datapoints and the dashed lines indicate the (averaged)
minimum and maximum BLEU score. For the same diversity, Stochastic Beam Search
achieves higher mean/maximum BLEU score. Looking at a certain BLEU score, we observe
that Stochastic Beam Search achieves the same BLEU score as Diverse Beam Search with a
significantly larger diversity. For low temperatures (< 0.5), the maximum BLEU score of
Stochastic Beam Search is comparable to the deterministic Beam Search, so the increased
diversity does not sacrifice the best element in the sample. Note that Sampling achieves
higher mean BLEU score at the cost of diversity, which may be because good translations
are sampled repeatedly. However, the maximum BLEU score of both Sampling and Diverse
Beam Search is lower than with Beam Search and Stochastic Beam Search.

(a) k = 5 (b) k = 10 (c) k = 20

Figure 11: Minimum, mean and maximum BLEU score vs. diversity for different sample
sizes k. Points indicate different temperatures/diversity strengths, from 0.1 (low
diversity, left in graph) to 0.8 (high diversity, right in graph).

4. Our code is available at https://github.com/wouterkool/stochastic-beam-search.
5. Available at https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2.

24

https://github.com/wouterkool/stochastic-beam-search
https://s3.amazonaws.com/fairseq-py/data/wmt14.v2.en-fr.newstest2014.tar.bz2

Ancestral Gumbel-Top-k Sampling

5.3. BLEU Score Estimation

In our second experiment, also presented originally in Kool et al. (2019b), we use sampling
without replacement to evaluate the expected sentence level BLEU score for a translation
y given a source sentence x. Although we are often interested in corpus level BLEU
score, estimation of sentence level BLEU score is useful, for example when training using
minibatches to directly optimize BLEU score (Ranzato et al., 2016). We leave dependence
of the BLEU score on the source sentence x implicit, and write f(y) = BLEU(y,x). We
want to estimate the following expectation:

Ey∼pθ(y|x) [f(y)] =
∑
y∈D

pθ(y|x)f(y). (19)

Under a Monte Carlo (MC) sampling with replacement scheme with size k, we write S as
the set6 of sampled sequences and estimate (19) using

Ey∼pθ(y|x) [f(y)] ≈ 1

k

∑
y∈S

f(y). (20)

If the distribution pθ(y|x) has low entropy (for example if there are only few valid transla-
tions), then MC estimation may be inefficient since repeated samples are uninformative. We
can use sampling without replacement as an improvement, but we need to use importance
weights to correct for the changed sampling probabilities. Using Gumbel-Top-k sampling, we
can implement an estimator equivalent to the estimator described by Vieira (2017), which
can be seen as a Horvitz-Thompson estimator (Horvitz and Thompson, 1952) used with
priority sampling (Duffield et al., 2007):

Ey∼pθ(y|x) [f(y)] ≈
∑
y∈S

pθ(y|x)

qθ,κ(y|x)
f(y). (21)

Using this estimator, we ‘sacrifice’ the k-th sample to obtain the empirical threshold κ
(which is the k-th largest perturbed log-probability, see Section 3.7), and we define S as the
set of the k − 1 sequences corresponding to the k − 1 largest perturbed log-probabilities.
It holds that y ∈ S if Gφy > κ, which highlights the relation to threshold sampling (see
Section 4.3). We define

qθ,a(y|x) = P (Gφy > a) = 1− exp(− exp(φy − a)). (22)

If we would assume a fixed threshold a and variably sized sample S = {y ∈ D : Gφy > a},
then qθ,a(y|x) = P (y ∈ S) and pθ(y|x)

qθ,a(y|x) is a standard importance weight. Surprisingly, using

a fixed sample size k (and empirical threshold κ) also yields in an unbiased estimator, and
we include a proof adapted from Duffield et al. (2007) and Vieira (2017) in Appendix B.

Empirically, the estimator (21) has high variance, and in practice we find it is preferred

to normalize the importance weights by W (S) =
∑
y∈S

pθ(y|x)
qθ,κ(y|x) (Hesterberg, 1988):

Ey∼pθ(y|x) [f(y)] ≈ 1

W (S)

∑
y∈S

pθ(y|x)

qθ,κ(y|x)
f(y). (23)

6. Formally, when sampling with replacement, S is a multiset.

25

Kool, van Hoof and Welling

The estimator (23) is biased but consistent: in the limit k = |D| we sample the entire
domain, so we have empirical threshold κ = −∞ and qθ,κ(y|x) = 1 and W (S) = 1, such
that (23) is equal to (19).

We have to take care computing the importance weights as depending on the entropy the
terms in the quotient pθ(y|x)

qθ,κ(y|x) can become very small, and in our case the computation of

P (Gφy > a) = 1− exp(− exp(φy − a)) can suffer from catastrophic cancellation. For details,
see Appendix C.

Because the model is not trained to use its own predictions as input, at test time errors
can accumulate. As a result, when sampling with the default temperature τ = 1, the
expected BLEU score is very low (below 10). To improve quality of generated sentences we
use lower temperatures and experiment with τ = 0.05, 0.1, 0.2, 0.5. We then use different
methods to estimate the BLEU score:

• Monte Carlo (MC), using Equation (20).

• Stochastic Beam Search (SBS), where we compute estimates using the estimator in
Equation (21) and the normalized variant in Equation (23).

• Beam Search (BS), where we compute a deterministic beam S (the temperature τ
affects the scoring) and compute

∑
y∈S pθ(y|x)f(y). This is not a statistical estimator,

but a lower bound to the target (19) which serves as a validation of the implementation
and gives insight on how many sequences we need at least to capture most of the

mass in (19). We also compute the normalized version
∑
y∈S pθ(y|x)f(y)∑
y∈S pθ(y|x)

, which can

heuristically be considered as a ‘determinstic estimate’.

In Figure 12 we show the results of computing each estimate 100 times (BS only once
as it is deterministic) for three different sentences7 for temperatures τ = 0.05, 0.1, 0.2, 0.5
and sample sizes k = 1 to 250. We report the empirical mean and 2.5-th and 97.5-th
percentile. The normalized SBS estimator indeed achieves significantly lower variance than
the unnormalized version and for τ < 0.5, it significantly reduces variance compared to MC,
without adding observable bias. For τ = 0.5 the results are similar, but we are less interested
in this case as the overall BLEU score is lower than for τ = 0.2.

5.4. Conditional Entropy Estimation

Additionally to estimating the BLEU score we use f(y) = − log pθ(y|x) such that Equation
(19) becomes the model entropy (conditioned on the source sentence x)

Ey∼pθ(y|x) [− log pθ(y|x)] .

Entropy estimation is useful in optimization settings where we want to include an entropy
loss to ensure diversity. It is a different problem than BLEU score estimation as high BLEU
score (for a good model) correlates positively with model probability, while for entropy rare
y contribute the largest terms − log pθ(y|x). We use the same experimental setup as for
the BLEU score and present the results in Figure 13. The results are similar to the BLEU
score experiment: the normalized SBS estimate has significantly lower variance than MC for
τ < 0.5 while for τ = 0.5, results are similar. This shows that Stochastic Beam Search can
be used to construct practical statistical estimators.

7. These are sentences 1500, 2000 and 2500 from the WMT14 data set.

26

Ancestral Gumbel-Top-k Sampling

Figure 12: BLEU score estimates for three sentences sampled/decoded by different estimators
for different temperatures.

Figure 13: Entropy estimates for three sentences sampled/decoded by different estimators
for different temperatures.

27

Kool, van Hoof and Welling

6. Possible Extensions of Ancestral Gumbel-Top-k Sampling

Our algorithm can be extended in various ways, to give efficient implementations of two
existing algorithms or to perform efficient sampling with replacement.

6.1. Memory Augmented Policy Optimization

Our algorithm can be extended to give an efficient implementation of Memory Augmented
Policy Optimization (MAPO) (Liang et al., 2018), an extension of REINFORCE (Williams,
1992) that optimizes a policy in reinforcement learning using a replay buffer of good
experiences. MAPO computes an exact gradient for the b experiences (configurations) in the
buffer, which requires b model evaluations, and uses a sample from the model outside of the
buffer, obtained using (potentially inefficient) rejection sampling. We can adapt ancestral
Gumbel-Top-k sampling to implement MAPO efficiently, by modifying the priority queue to
use a hierarchical criterion, that will put in the front partial configurations which correspond
to partial configurations in the buffer,8 and sort the remaining configurations based on the
perturbed log-probability. When using k = b+ 1, the result will be the b configurations in
the buffer (with their model evaluations), and a single sample outside of the buffer.

6.2. Rao-Blackwellized Stochastic Gradients

While MAPO is an estimator that computes an exact gradient for a number of ‘good’
configurations, Liu et al. (2019) proposed a similar estimator that computes an exact
gradient for high probability configurations (instead of ‘good’ ones), which may have a
greater contribution overall. While they consider 1-dimensional categorical distributions
only, we note that the estimator can also be used in multi-dimensional settings, where high
probability categories can be found by an approximate algorithm such as (deterministic)
beam search, but in this case it is challenging to obtain a sample from the remaining domain.

Similar to MAPO, we can make a modification of our algorithm, to yield both the high
probability configurations, and a sample from the remaining domain. In particular, we can
modify Stochastic Beam Search (our algorithm with m = k) to maintain in the queue the
k − 1 partial configurations with highest log-probability (without Gumbel perturbation)
and one partial configuration which has the highest perturbed log-probability among the
remaining configurations. This means that we have a ‘deterministic’ beam of size k − 1 as
well as a single sample (partial configuration) outside of the beam.9

In general, it may be preferred to have fewer exact and more sampled configurations;
see the relevant discussions in Fearnhead and Clifford (2003); Liu et al. (2019). Using our
algorithm, we could maintain k−` configurations by their log-probability, and ` configurations
by the perturbed log-probability. The resulting ` samples without replacement can be
converted to (at least) ` samples with replacement using resampling (see below), or one can
use an estimator based on sampling without replacement (Kool et al., 2019a, 2020).

8. Existence of a partial configuration/trajectory in the buffer can be efficiently checked by representing the
replay buffer as a prefix tree (trie), similar to Figure 8.

9. The result may be slightly different than deterministic beam search with size k − 1, since extensions of
the k-th configuration (the sample) may have high log-probability and push other configurations off the
beam. If desired, this can be heuristically prevented.

28

Ancestral Gumbel-Top-k Sampling

6.3. Sampling with Replacement with Sampling Without Replacement

Sampling without replacement can be used to sample with replacement by using a resampling
algorithm. The basic idea is that using ancestral Gumbel-Top-k sampling (Algorithm 1)
‘lazily’, we can obtain the first sample y∗1, for which sampling with/without replacement is
the same. Then for the second sample, we can take y∗1 with probability p(y∗1), or sample from
D \ {y∗1} with probability 1− p(y∗1), which can be done by continuing incremental sampling
without replacement. At any point, if y∗1, ...,y

∗
n are the samples without replacement so

far, we can get another sample with replacement by choosing y∗1 with probability p(y∗1), y∗2
with probability p(y∗2), et cetera or find the next sample y∗n+1 (without replacement) with
probability 1−

∑n
i=1 p(y∗i). Repeating this algorithm to obtain a desired number of samples

has a lower computational cost (as measured by model evaluations) than standard sampling
with replacement, as resampling is cheap (it does not require additional model evaluations)
and the inner ancestral Gumbel-Top-k sampling algorithm uses model evaluations efficiently.

7. Discussion

We introduced ancestral Gumbel-Top-k sampling, an algorithm that allows to efficiently
draw samples without replacement from a probability distribution represented as a Bayesian
network. It allows to control the parallelizability of the algorithm, trading off the number of
required iterations versus the total cost of running the algorithm, such that it can make
efficient use of modern hardware. We discussed possible extensions of the algorithm, which
allow implementations of the gradient estimators by Liang et al. (2018) and Liu et al. (2019)
and a resampling algorithm to efficiently obtain samples with replacement.

We have discussed related algorithms and empirically shown the benefits of using
ancestral Gumbel-Top-k sampling: it enables to generate samples without replacement using
a significantly lower computational cost than alternatives. We have analyzed the influence
of the number of parallel processors experimentally, suggesting that limited parallelism
quickly decreases the number of required iterations without increasing total cost too much.
Additionally, we have shown how selecting the order of sampling based on entropy can reduce
the cost of the algorithm, which is especially useful for sampling from fully independent
models where the ‘optimal’ order of sampling can be determined upfront.

In the context of sequence models, Gumbel-Top-k sampling relates to sampling (with
replacement) and (deterministic) beam search and can be seen as a method that combines the
advantages of both. Our experiments support the idea that Gumbel-Top-k sampling can be
used as a drop-in replacement in places where sampling (with replacement) or (deterministic)
beam search is used. In fact, our experiments show that sampling without replacement can
be used to yield lower-variance estimators and high-diversity samples from a neural machine
translation model.

We hope that our method motivates future work to develop improved statistical learning
methods, especially in the context of Deep Learning, based on sampling without replacement,
a direction of research that has, in fact, already started (Kool et al., 2019a, 2020). We
believe that ancestral Gumbel-Top-k sampling has potential to increase both computational
and statistical efficiency in Deep Learning applications that involve discrete computations,
such as neural machine translation (Sutskever et al., 2014; Bahdanau et al., 2015) and image
captioning (Vinyals et al., 2015).

29

Kool, van Hoof and Welling

Acknowledgments

This research was funded by ORTEC.

Appendix A. Sampling a Set of Gumbels with Maximum k

As explained in Section 3.4, to sample a set of Gumbels with maximum T , let Gφi ∼
Gumbel(φi), let Z = maxiGφi and define

G̃φi = F−1φi,T
(Fφi,Z(Gφi)) = − log(exp(−T)− exp(−Z) + exp(−Gφi)). (24)

Direct computation of (24) can be unstable as large terms need to be exponentiated. Instead,
we compute

vi = T −Gφi + log1mexp(Gφi − Z),

G̃φi = T −max(0, vi)− log1pexp(−|vi|)

where we have defined

log1mexp(a) = log(1− exp(a)), a ≤ 0

log1pexp(a) = log(1 + exp(a)).

This is equivalent as

T −max(0, vi)− log(1 + exp(−|vi|))
=T − log(1 + exp(vi))

=T − log (1 + exp (T −Gφi + log (1− exp (Gφi − Z))))

=T − log (1 + exp (T −Gφi) (1− exp (Gφi − Z)))

=T − log (1 + exp (T −Gφi)− exp (T − Z))

= − log (exp(−T) + exp(−Gφi)− exp(−Z))

= G̃φi

The first step can be easily verified by considering the cases vi < 0 and vi ≥ 0. log1mexp and
log1pexp can be computed accurately using log1p(a) = log(1+a) and expm1(a) = exp(a)−1
(Mächler, 2012):

log1mexp(a) =

{
log(− expm1(a)) a > −0.693

log1p(− exp(a)) otherwise,

log1pexp(a) =

{
log1p(exp(a)) a < 18

x+ exp(a) otherwise.

30

Ancestral Gumbel-Top-k Sampling

Appendix B. Unbiasedness of the Importance Weighted Estimator

We give a proof of unbiasedness of the importance weighted estimator, which is adapted
from the proofs by Duffield et al. (2007) and Vieira (2017). For generality of the proof, we
enumerate categories in the domain D by i = 1, ..., n and we consider general random keys
hi for i = 1, ..., n (not necessarily Gumbel perturbations). As was noted by Vieira (2017),
the actual distribution of the keys does not influence the unbiasedness of the estimator, but
does determine the effective sampling scheme. Using Gumbel perturbed log-probabilities as
keys (e.g. hi = Gφi) is equivalent to the PPSWOR scheme described by Vieira (2017). For
simplicity, we write pi = pθ(i) and qi(a) = qθ,a(i) = P (hi > a) (see Equation 22), and we
define h1:n = {h1, ..., hn} and h−i = {h1, ..., hi−1, hi+1, ..., hn} = h1:n \ {hi}.

Given a fixed threshold a, it holds that qi(a) = P (i ∈ S) is the probability that category
i is included in the sample S, so it can be thought of as the inclusion probability of i. Given
a fixed sample size k, let κ be the (k + 1)-th largest element of h1:n, so κ is the empirical
threshold. Let κ′i be the k-th largest element of h−i (the k-th largest of all other elements).
We first prove Lemma 4, which is then used to prove Theorem 5, which states that the
importance weighted estimator is an unbiased estimator of E[f(i)], for a given function f(i).

Lemma 4 The expected weight of each term in the importance weighted estimator is 1:

Eh1:n
[
1{i∈S}

qi(κ)

]
= 1.

Proof We make use of the observation (slightly rephrased) by Duffield et al. (2007) that
conditioning on h−i, we know κ′i, and the event i ∈ S implies that κ = κ′i since i will
only be in the sample if hi > κ′i, which means that κ′i is the (k + 1)-th largest value of
h−i ∪ {hi} = h1:n. The reverse is also true: if κ = κ′i then hi must be larger than κ′i since
otherwise the (k + 1)-th largest value of h1:n will be smaller than κ′i. By separating the
expectation over h1:n it follows that

Eh1:n
[
1{i∈S}

qi(κ)

]
=Eh−i

[
Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣hi]]
=Eh−i

[
Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣h−i, i ∈ S]P (i ∈ S|h−i) + Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣h−i, i 6∈ S]P (i 6∈ S|h−i)
]

=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣h−i, i ∈ S] qi(κ′i) + 0

]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣κ = κ′i

]
qi(κ

′
i)

]
=Eh−i

[
1

qi(κ′i)
qi(κ

′
i)

]
= Eh−i [1] = 1.

31

Kool, van Hoof and Welling

Theorem 5 The importance weighted estimator is an unbiased estimator of E[f(i)]:

Eh1:n

[∑
i∈S

pi
qi(κ)

f(i)

]
= E[f(i)].

Proof

Eh1:n

[∑
i∈S

pi
qi(κ)

f(i)

]
=Eh1:n

[
n∑
i=1

pi
qi(κ)

f(i)1{i∈S}

]

=

n∑
i=1

pif(i) · Eh1:n
[
1{i∈S}

qi(κ)

]

=

n∑
i=1

pif(i) · 1

=E[f(i)].

Appendix C. Numerical Stability of Importance Weights

We have to take care computing the importance weights as depending on the entropy the
terms in the quotient pi

qi(κ)
(using notation from Appendix B) can become very small, and

in our case the computation of qi(κ) = 1− exp(− exp(φi − κ)) (Equation (22)) can suffer
from catastrophic cancellation. We can rewrite this expression using the more numerically
stable implementation expm1(x) = exp(x) − 1 as qi(κ) = −expm1(− exp(φi − κ)) but in
some cases this still suffers from instability as exp(φi − κ) can underflow if φi − κ is small.
Instead, for φi − κ < −10 we use the identity

log(1− exp(−z)) = log(z)− z

2
+
z2

24
− z4

2880
+O(z6)

to directly compute the log importance weight using z = exp(φi − κ) and φi = log pi (we
assume φi is normalized). Since qi(κ) = 1− exp(−z), we have

log

(
pi
qi(κ)

)
= log pi − log qi(κ)

= log pi − log (1− exp(−z))

= log pi −
(

log(z)− z

2
+
z2

24
− z4

2880
+O(z6)

)
= log pi −

(
φi − κ−

z

2
+
z2

24
− z4

2880
+O(z6)

)
=κ+

z

2
− z2

24
+

z4

2880
+O(z6).

If φi − κ < −10 then 0 < z < 10−6 so this computation will not lose any significant digits.

32

Ancestral Gumbel-Top-k Sampling

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In International Conference on Learning
Representations (ICLR), 2015.

Matej Balog, Nilesh Tripuraneni, Zoubin Ghahramani, and Adrian Weller. Lost relatives
of the Gumbel trick. In International Conference on Machine Learning (ICML), pages
371–379, 2017.

Yutian Chen and Zoubin Ghahramani. Scalable discrete sampling as a multi-armed bandit
problem. In International Conference on Machine Learning (ICML), pages 2492–2501,
2016.

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
learning, 75(3):297–325, 2009.

Nick Duffield, Carsten Lund, and Mikkel Thorup. Learn more, sample less: control of
volume and variance in network measurement. Transactions on Information Theory, 51
(5):1756–1775, 2005.

Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation of
arbitrary subset sums. Journal of the ACM (JACM), 54(6):32, 2007.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation
at scale. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 489–500, 2018a.

Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato.
Classical structured prediction losses for sequence to sequence learning. In Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL),
pages 355–364, 2018b.

Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a reservoir.
Information Processing Letters, 97(5):181–185, 2006.

Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. Embed and project:
Discrete sampling with universal hashing. In Advances in Neural Information Processing
Systems (NeurIPS), pages 2085–2093, 2013.

Paul Fearnhead and Peter Clifford. On-line inference for hidden Markov models via particle
filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(4):
887–899, 2003.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convo-
lutional sequence to sequence learning. In International Conference on Machine Learning
(ICML), pages 1243–1252, 2017.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a
series of lectures. Number 33. US Govt. Print. Office, 1954.

33

Kool, van Hoof and Welling

Tamir Hazan and Tommi Jaakkola. On the partition function and random maximum
a-posteriori perturbations. In International Conference on Machine Learning (ICML),
pages 1667–1674. Omnipress, 2012.

Tamir Hazan, Subhransu Maji, and Tommi Jaakkola. On sampling from the Gibbs distribu-
tion with random maximum a-posteriori perturbations. In Advances in Neural Information
Processing Systems (NeurIPS), pages 1268–1276, 2013.

Timothy Classen Hesterberg. Advances in importance sampling. PhD thesis, Stanford
University, 1988.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replace-
ment from a finite universe. Journal of the American statistical Association, 47(260):
663–685, 1952.

Arthur B Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):
558–562, 1962.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline
for free! In Deep Reinforcement Learning Meets Structured Prediction Workshop at the
International Conference on Learning Representations (ICLR), 2019a.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find them:
The Gumbel-top-k trick for sampling sequences without replacement. In International
Conference on Machine Learning (ICML), pages 3499–3508, 2019b.

Wouter Kool, Herke van Hoof, and Max Welling. Estimating gradients for discrete random
variables by sampling without replacement. In International Conference on Learning
Representations (ICLR), 2020.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Operations
research, 14(4):699–719, 1966.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Jiwei Li, Will Monroe, and Dan Jurafsky. A simple, fast diverse decoding algorithm for
neural generation. arXiv preprint arXiv:1611.08562, 2016.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V Le, and Ni Lao. Memory
augmented policy optimization for program synthesis and semantic parsing. In Advances
in Neural Information Processing Systems (NeurIPS), pages 9994–10006, 2018.

Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael Jordan, and Jon Mcauliffe. Rao-
Blackwellized stochastic gradients for discrete distributions. In International Conference
on Machine Learning (ICML), pages 4023–4031, 2019.

Guy Lorberbom, Chris J Maddison, Nicolas Heess, Tamir Hazan, and Daniel Tarlow. Direct
policy gradients: Direct optimization of policies in discrete action spaces. arXiv preprint
arXiv:1906.06062, 2019.

34

Ancestral Gumbel-Top-k Sampling

Robert Duncan Luce. Individual choice behavior. 1959.

Martin Mächler. Accurately computing log(1− exp(−|a|)) assessed by the Rmpfr package,
2012. URL https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-
note.pdf.

Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Advances in Neural
Information Processing Systems (NeurIPS), pages 3086–3094, 2014.

Renato Negrinho, Matthew Gormley, and Geoffrey J Gordon. Learning beam search policies
via imitation learning. In Advances in Neural Information Processing Systems (NeurIPS),
pages 10673–10682, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In
Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

George Papandreou and Alan L Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In International Conference on
Computer Vision (ICCV), pages 193–200, 2011.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 311–318, 2002.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 24(2):193–202, 1975.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence
level training with recurrent neural networks. In International Conference on Learning
Representations (ICLR), 2016.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation
using stochastic computation graphs. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3528–3536, 2015.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray Kurzweil.
Generating high-quality and informative conversation responses with sequence-to-sequence
models. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 2210–2219, 2017.

Kensen Shi, David Bieber, and Charles Sutton. Incremental sampling without replacement
for sequence models. arXiv preprint arXiv:2002.09067, 2020.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), pages
3104–3112, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

35

https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf
https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf

Kool, van Hoof and Welling

Daniel Tarlow, Ryan Adams, and Richard Zemel. Randomized optimum models for structured
prediction. In Artificial Intelligence and Statistics, pages 1221–1229, 2012.

Daniel Ting. Adaptive threshold sampling and estimation. arXiv preprint arXiv:1708.04970,
2017.

Tim Vieira. Gumbel-max trick and weighted reservoir sampling, 2014. URL
https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-
weighted-reservoir-sampling/.

Tim Vieira. Estimating means in a finite universe, 2017. URL https:

//timvieira.github.io/blog/post/2017/07/03/estimating-means-in-a-finite-
universe/.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasaath R Selvaraju, Qing Sun, Stefan Lee,
David J Crandall, and Dhruv Batra. Diverse beam search for improved description of
complex scenes. In AAAI, 2018.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural
image caption generator. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3156–3164, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-search
optimization. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1296–1306, 2016.

Chak-Kuen Wong and Malcolm C. Easton. An efficient method for weighted sampling
without replacement. SIAM Journal on Computing, 9(1):111–113, 1980.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

John I Yellott. The relationship between Luce’s choice axiom, Thurstone’s theory of
comparative judgment, and the double exponential distribution. Journal of Mathematical
Psychology, 15(2):109–144, 1977.

36

https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
https://timvieira.github.io/blog/post/2017/07/03/estimating-means-in-a-finite-universe/
https://timvieira.github.io/blog/post/2017/07/03/estimating-means-in-a-finite-universe/
https://timvieira.github.io/blog/post/2017/07/03/estimating-means-in-a-finite-universe/

	Introduction
	Preliminaries
	Bayesian Networks
	Deep Learning
	The Gumbel-Max Trick
	Gumbel-Top-k Sampling

	Ancestral Gumbel-Top-k Sampling
	The Probability Tree Diagram
	Explicit Gumbel-Top-k Sampling
	Perturbed Log-Probabilities of Partial Configurations
	Top-down Sampling of Perturbed Log-Probabilities
	Sampling a Set of Gumbel Variables Conditionally on Their Maximum
	Ancestral Gumbel-Top-k Sampling
	Bounding of the Queue Size at k
	Parallelizing the Algorithm
	Variable Selection Strategy

	Related Algorithms
	The `Trajectory Generator'
	(Stochastic) Beam Search
	Threshold Sampling
	Rejection Sampling
	Naïve Ancestral Sampling Without Replacement
	Weighted Reservoir Sampling with Exponential Jumps

	Experiments
	Different Methods for Sampling Without Replacement
	Data Generation
	Number of Iterations
	Parallelizing the Algorithms
	Variable Selection Strategy

	Diverse Beam Search
	BLEU Score Estimation
	Conditional Entropy Estimation

	Possible Extensions of Ancestral Gumbel-Top-k Sampling
	Memory Augmented Policy Optimization
	Rao-Blackwellized Stochastic Gradients
	Sampling with Replacement with Sampling Without Replacement

	Discussion
	Sampling a Set of Gumbels with Maximum k
	Unbiasedness of the Importance Weighted Estimator
	Numerical Stability of Importance Weights

