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Abstract

Non-equilibrium steady states are of great interest for the study of photosynthesis,
molecular motors, biological switches or driven systems in statistical physics. The
aim of this thesis is to broaden the understanding of non-equilibrium steady states
(NESS) in soft-matter systems and provide a framework for reweighting dynami-
cal information between NESS. The method is applied to phenomenological single
particle systems described in full configurational coordinates and a tetraalanine
peptide described in system-specific collective variables. We avoid the combinato-
rial explosion of microtrajectories by systematically constructing pathways through
Markovian transitions. The reweighting is based on the information theoretic ap-
proach of Jaynes’ Maximum Caliber, connecting data drawn from simulation or
experiment to system information in the form of constraints. It is shown that local
entropy production constraints define a NESS by controlling dissipation of a sys-
tem on a local level. Non-dissipative contributions to the dynamics are drawn from
the reference data and are shown to define an invariant quantity under reweighting.
The presented reweighting method demonstrates the potential of the Maximum
Caliber to understand and analyse systems off-equilibrium.
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1 Introduction

Statistical Physics uses probability theory and statistical methods to describe phys-
ical systems with many degrees of freedom. It provides a relation of macroscopic
quantities in equilibrium like temperature or pressure to probabilities of detailed
microscopic configurations of a material. It is intuitively understood from an exper-
imental point of view: Controlling temperature and pressure of a material allows
us to control system properties like the state of matter or the heat capacity and
measure such quantity of interest. Repeating the experiment will always produce
the same result within the error of measurement uncertainty. The exact micro-
scopic configuration of all atoms in the systems on the other hand are unknown
and will differ between measurements but do not influence the outcome. Still,
we understand that the microscopic behaviour of the system is greatly influenced
by a few macroscopic variables. For instance, a liquid phase does not consist of
well-ordered atoms. From the microscopic perspective, having full knowledge of
all microscopic configuration of a system provides full thermodynamic information
of it. Each microscopic state can be assigned a probability to show up depending
on macroscopic parameters. The key for the experimentalist and the statistical
physicist is to identify these parameters and find their mathematical link to the
microscopic probabilistic description of the system. Such relations are well known
for systems that do not gain heat from or dissipative heat to its environment, i.e.
they are in equilibrium. For the broad number of systems that do not meet this
requirement a full theory is not formulated until today [1].

The scope of statistical physics has greatly increased since the emergence of com-
putational physics in the 1940s [2, 3]. The impact on physics lies in the possibility
to support and compare analytical work with numerical and expand it beyond
its analytical accessibility. The advantage is found in the possibility to sample
microscopic states of a system and connect these to macroscopic thermodynamics
via ensemble averages [4]. Simulations provide a method to study off-equilibrium
statistical mechanics because one can define non-equilibrium conditions without
understanding their macroscopic influence on the system, e.g. one might define a
force or a heat source and measure the macroscopic effect on the system to gain
off-equilibrium information without having a access to a general theory.
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1 Introduction

With the rapid development of computational hardware, a number of simulations
were performed in fields like mechanics, electrodynamics, particle physics, astro-
physics, fluid dynamics and chemistry [5]. The field of soft matter physics with the
feature of large fluctuations aims to probe polymers, liquid crystals and the whole
area of colloidal system [6]. However, most simulations are performed in ther-
modynamic equilibrium until today because they are more efficient based on our
wide understanding of equilibrium statistical mechanics. In particular Boltzmann
and Gibbs formulation of ensembles teaches us that microstates weighted by the
Boltzmann factor hold all thermodynamic information on equilibrium systems [7].

Off-equilibrium cannot draw from such a theory and we have to sample microtra-
jectories without additional information on the ensemble of a system. Macroscopic
motion or heat transport from a source are examples of off-equilibrium processes.
The dynamics are time-dependent and cannot be understood by static microstates
but through a chain of microscopic states. Stochastic thermodynamics provides a
conceptual framework to create such weighted trajectories for a large class of soft
matter systems under fairly general non-equilibrium conditions [8]. It models aque-
ous solution of the system implicitly by a coupling to a heat bath while allowing
off-equilibrium disturbances based on external forces or unbalanced chemical po-
tentials. This framework allows us to model off-equilibrium systems and estimate
macroscopic information of interest.

Increasing computational power gave rise to a number of simulation off-equilibrium
like crystal growth morphology [9, 10], phase separation [11] or glassy dynam-
ics [12], just to name a few. We distinguish between different types of non-
equilibrium processes: (i) A system can be time-dependent out of equilibrium
by external forces. For instance an external alternating electric field disturbs a
molecular system and the system response is studied. (ii) A system is driven
out of equilibrium by a time-constant external force, for instance a hydrodynamic
forces, chemical reactions, mechanical forces or temperature gradients. An external
reservoir provides heat flow to maintain the disturbance. The system will settle in
a non-equilibrium steady state (NESS) that shows non-equilibrium behaviour like
path-dependence while its macroscopic state does not change in time. The prob-
ability of taking a specific microtrajectory will be time-independent, irrespective
on assumptions of the history of the system.

This property makes the NESS the ideal case to expand the well-know equilib-
rium reweighting technique from equilibrium to off-equilibrium. Reweighting is
a powerful tool in computational physics because it connects data collected from
simulation under different thermodynamic conditions. In equilibrium, one draws
mathematical relations from statistical mechanics that allow to reassign probabil-
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ities of recorded data under changing thermodynamic condition correctly. This
technique is a pivot point for efficient sampling methods of equilibrium systems,
like multicanonical simulation [13], replica exchange [14] or metadynamics[15].
Such methods rely on reweighting the configuration space between equilibrium sys-
tems [16–18]. More recent attempts focus on sampling the dynamics and reweight
the data on trajectories between equilibrium ensembles [19–21]. These methods
expanded the scope of simulations to complex dynamic processes like folding of
proteins [22], protein kinase [23] or ligand binding [24]. Having a comparable tool
for NESS would expand the scope of soft-matter simulation further. Possible sys-
tems of interest are for instance molecular motors [25] or biological switches [26].
The key for such tool is the identification of controlling parameters defining the
state of a NESS and a theory that connects simulation data to such parameters.
First results were recently developed, relying on reweighting microscopic trajecto-
ries individually [27, 28]. In this thesis, we will coarse-grain these trajectories and
shift to an ensembles based reweighting method similar to the ensemble reweight-
ing of microstates in equilibrium.

The dynamics are coarsened by applying Markov State Models (MSM). The idea
is to discretise the space and record the trajectories transitioning between discrete
states. The formed bundle of short trajectories can be reassembled to form longer
trajectories. This approach of collecting dynamic information is more efficient
because shorter trajectories are faster to sample than long ones and dynamically
similar microstates are clustered while preserving long timescale information. An
MSM model can be constructed in the high-dimensional configuration space or —
if this space grows too large for complex systems — in system specific collective
variables [29]. The MSM approach was applied to analyse simulation sampled
from equilibrium [30] and non-equilibrium systems [31, 32].

The reweighting method needs a foundation in off-equilibrium to reweight the data
according to the thermodynamic information available to the user. The equilib-
rium maximum entropy principle of statistical mechanics says that a statistical
system tends to the state where most microscopic realisations are possible subject
to constraints. The constraints act as the thermodynamic environment like the
temperature. Jaynes proposed with the Maximum Caliber an extension of this
principle to non-equilibrium processes [33]. This method was shown to recover
physical relations in off-equilibrium [34], model dynamical complex systems from
limited information [35, 36], correct dynamic data by inferring physical informa-
tion [37, 38] and more application on statistical systems in physics, chemistry and
biology [39]. Here we will use it as the basis for our reweighting method on NESS.
Jaynes evolved the equilibrium maximum entropy theory to an information the-
oretic point of view: Based on information I have on a system, what is the most
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1 Introduction

likely state it is in? Jaynes answers this question assuming the most uncertain (or
highest entropy) probability distribution is as noncommittal as possible regarding
unknown information. This change in view allowed him to propose an expansion
to the equilibrium theory on microstates to any kind of system. It opens the theory
to collect microtrajectories and maximise the entropy of all paths.

The thermodynamic environment for NESS is defined by constraining the local
dissipation of heat in the system. This constraint describes how the state of the
system changes depending on where and how much heat is inserted or withdrawn
from the system. The non-dissipative contribution to dynamics are drawn from
the reference data. It is shown how this contribution originates from a dynamical
invariant for NESS. The quantity is comparable to the density of states in equilib-
rium. We will discuss how to the Maximum Caliber determines a thermodynamic
state and how too choose the constraints to model a physical system.

The structure of the thesis is as follows: The first part will give a short introduction
to equilibrium statistical mechanics and off-equilibrium stochastic thermodynamic
with its consequences. A toy model for a NESS is introduced and theoretical and
practical introduction to Markov state modelling will be given on the example
of this model. The third part focuses on the introduction to the framework of
Jaynes Maximum Caliber and an extensive derivation of the novel reweighting
scheme. The following chapters will test the procedure (i) by reweighting systems
by conformational variables and (ii) reweighting systems by collective variables.
The last chapter will present (i) a discussion on the physical basis of the reweight-
ing scheme based on the underlying invariant in NESS and (ii) a discussion on
trajectory-based stochastic thermodynamics of the chosen NESS ensembles.

4



2 Background

2.1 Statistical Mechanics

Statistical Mechanics is a branch of physics that deals with complex systems with
many degrees of freedom using statistics and probability theory. It emerged from
thermodynamics that deals with heat and temperature and is based on three laws
that were defined by observing nature. While this is a macroscopic theory treat-
ing temperature and heat as natural quantities, statistical mechanics dives into
the microscopic world, resulting in a deeper understanding of the thermodynamic
principles. Statistical Physics derives macroscopic matter properties through in-
ference from its microscopic features and marginalising details that are not of
importance. [40].

2.1.1 Density of States

To understand this view on thermodynamics, we have to define a microscopic
and macroscopic state. We assume a set of N particles in a box, each particle
labelled i has a precise position xi and momentum pi. The microscopic state of
a system contains all these information. Mathematically it is a 6N -dimensional
vector in the phase space that contains all possible microstates of a system. The
phase space grows large even for simple systems of a few particles. Fortunately, the
overall information in the system is of minor importance, compared to macroscopic
variables, like the system’s energy E, its volume V and others [40].

Each macroscopic system consists of a large number of possible microscopic states,
and it is impossible to determine in which of these states the system is. We define
the number of possible states depending on a macroscopic variable as the density
of states Ω(E, V, ..).
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2 Background

2.1.2 Ensemble Averages

We prepare a system and wait for some time such that the system relaxes to
equilibrium. From a thermodynamical point of view, this means that no heat Q
is transferred to or from the system. From a microscopic perspective, we have to
assume that the heat can fluctuate but no heat is transferred on average and the
distribution of microstates does not change. Only the microstate of the system does
change in time. Hypothetically, one can record all these microstates to find their
distribution. Similarly, one may duplicate the equilibrated system with the same
macroscopic variables and record the microscopic configuration for each system
individually. Both methods give the same answer if the system is ergodic. That
means that the system can evolve in time and reach any point in phase space with
given macroscopic constraints by only passing through allowed states. This can be
problematic if, for instance, a constant energy prevents the system from crossing an
energy barrier and discovering new states satisfying the constraint. The outcome
of the measurement would depend on its initial state. For this reason, we will
assume an ensemble of the system, i.e. the duplication with equal macroscopic
constraints [40].

In practice, it is inconvenient to count microstates in order to find the distribution
of microstates. There are three frequently used ensembles in equilibrium statistical
mechanics with known probability distribution [41]:

• The microcanonical ensemble of N particles is isolated from the environment
and does not exchange energy or particles with it. Each microstate occurs
with the probability p = 1

N
.

• The canonical ensemble, where the system is connected weakly to a heat bath
of constant temperature and interchanges energy with it. The probability

distribution is pi = 1
Z

exp
(
− Ei

kBT

)
, where Z is the normalisation, kB is the

Boltzmann constant and T is the temperature of the reservoir and the system.

• The grandcanonical ensemble is connected weakly to a reservoir and in-
terchanges particles and energy with it. The probability distribution is

pi = 1
Y

exp
(
−Ei−µN

kBT

)
, where Y is the normalisation and µ is the chemi-

cal potential.

The aforementioned probability distributions will not be derived here because they
emerge directly from Jaynes Maximum Caliber as presented in the corresponding
chapter 3.
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2.1 Statistical Mechanics

Given the probability of all microstates in the system, we could calculate the
ensemble average of an observable O by

〈O〉 =
microstates∑

i

piOi. (2.1)

For calculating the probability distribution with respect to the macroscopic ob-
servable O, we have to sum over all probabilities of all microstates satisfying the
observable

p(O) =
∑
i∈O

pi. (2.2)

We note that it is useful to define the density of states according to the controlling
parameter of the ensemble, e.g. the energy in the canonical ensemble. In this case
we can write

p(O) =
∑
E

Ω(E,O)

Z
exp

(
− E

kBT

)
. (2.3)

These basic relations open up a way to reweight microstates between ensembles.
We assume an energy distribution pT (E) in canonical ensemble at temperature T
sampled from a simulation of a system. Given above relation, we can reweight the
distribution to another temperature T ′′ by

pT ′′(E) =
Ω(E)

Z
exp

(
− E

kBT ′′

)
=

Ω(E)

Z ′
exp

(
− E

kBT
+

E

kBT ′

)
=
pT (E)

Z ′
exp

(
− E

kBT ′

)
,

(2.4)

using the reference data pT (E). T ′ is the shift from the original temperature T
to reach the target temperature T ′′. This technique will be derived and discussed
using Jaynes Maximum Caliber in chapter 3. It relies on knowing the density of
states. In fact, the density of states is a starting point to calculate all thermo-
dynamic properties of the system. Therefore, it is the quantity that is of most
interest when running a simulation [42].

2.1.3 Molecular Dynamics

Simulations are frequently used to discover the phase space of complex systems.
Molecular Dynamics (MD) simulations collect information on the micro- and macrostates

7



2 Background

of the system by numerically solving Newton’s equation of motion forward in time.
It is thus of importance to set up the simulation such that the ensemble of choice
is sampled correctly. For instance, sampling the canonical ensemble requires to
model the heat exchange with the reservoir correctly. Heat is transferred via colli-
sion between particles of the system and the reservoir. We do not know when the
collision occur so they are modelled using a stochastic variable ζ(t) acting on the
particles in collision. The reservoir and the system are at the same temperature,
meaning that each degree of freedom carries the same amount of energy on average
by the equipartition theorem [41].

m〈v(t)2〉 = kBT. (2.5)

The average energy transferred to the system should be zero, so the stochastic
variable has zero mean. Furthermore, weak coupling ensures that collision are
uncorrelated and we write

〈ζ(t)〉 = 0

〈ζi(t)ζj(t′)〉 = Cδ(t− t′)δij,
(2.6)

where C is a constant to be determined and the indices i, j denote single compo-
nents of a vector. The equation of motion to be solved becomes

mẍ = −mγẋ + ζ(t), (2.7)

where m is the mass of a particle and γ is a constant friction term that dissipates
energy. Integrating this equation once gives

ẋ(t) = v0e
−γt +

∫ t

0

eγsζ(s) ds , (2.8)

where v0 is the initial velocity. The average over an ensemble is

〈ẋ(t)〉 = v0e
−γt. (2.9)

The fluctuation around the average are

〈(v(t)− v0e
−γt)2〉 =

C

m2γ
(1− e−2γt). (2.10)

Letting the system relax to equilibrium for large t gives the equilibrium fluctuation.
Equating these fluctuations with the equipartition theorem in equation 2.5 gives

C = mγkBT, (2.11)

8



2.2 Stochastic Thermodynamics

allowing to find the strength of the random force. This ensures fluctuations char-
acteristic for the chosen temperature and sampling the correct ensemble [43]. Note
that this derivation uses the fluctuation around the equilibrium value so the ther-
malisation is not bound to work in off-equilibrium.

The presented Langevin thermostat is only one possible way of controlling the
system, other methods are the DPD thermostat [44] or the Nosé-Hoover ther-
mostat [45] that can be applied in various equilibrium ensembles. The Langevin
equation of the system of interest is numerically integrated using the velocity-verlet
algorithm [46] or the Runge-Kutta method [47] for overdamped dynamics.

2.2 Stochastic Thermodynamics

Stochastic thermodynamics is a framework for soft-matter systems under general
off-equilibrium conditions: (i) The system is embedded in a liquid solution func-
tioning as a heat-bath with constant temperature T , (ii) the system is pushed out
of equilibrium with external mechanical forces or unbalanced chemical potentials
and (iii) fluctuations play a major role in the system [48]. These assumptions
were experimentally verified beyond the linear regime on particles moved by laser
traps [49] and DNA or RNA manipulated by optical tweezers [50]. The main
plan is to adapt ideas like heat, entropy, energy and their relations from classical
thermodynamics and translate them to the nano- and microscopic world with-
out assuming equilibrium. We start with the Langevin equation for overdamped
motion

ẋ = µF(x, λ) + ζ(t), (2.12)

where the force F(x, λ) = ∂V (x,λ)
∂x

+ f(x, λ) consists of a conservative and non-
conservative part, ζ(t) is Gaussian noise and µ is the mobility. The thermal noise
is assumed to be independent of the external disturbance and the temperature of
the thermal bath is given by the equilibrium Einstein relation T = D

µkB
, where kB

is the Boltzmann constant and D is the diffusion coefficient. The parameter λ
controls an external change of the potential or forces on a system and introduces
time-dependent off-equilibrium effects [48].

Initialising the system at some point x0 and integrating forward in time produces
a possible trajectory. We have introduced ensembles for microstates and ensemble
averages in the previous section 2.1.2. We will now do this for the off-equilibrium
ensemble defined above. Dynamics of off-equilibrium processes are often time-
dependent, so microstates are not sufficient for description and we have to collect
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2 Background

Technical Point 2.1 Stratonovich vs Itô Integration

The overdamped Langevin Equation 2.12 can be written in a more general form

dx = A(x, t) +B(x, t) dW (t) , (2.13)

where A(x, t) = µ
m
F (x), B(x, t) = 1

m
and dW (t) = ζ(t) dt being the Wiener

process [51]. The process is reduced to one dimension for simplicity. The Wiener
process is not a continuous function by definition because it integrates over a
stochastic variable W (t). Applying Riemann integration to the stochastic term
shows

lim
n→∞

n∑
j

B(x, τj)(W (tj+1)−W (t)), (2.14)

where τj lies in [tj, tj+1]. The limit does not exist because W(t) depends on a
stochastic variable. The difference in Itô and Stratonovich integration lies in the
choice

τj = tj (Itô)

τj =
tj + tj+1

2
(Stratonovich),

(2.15)

resulting in different solutions of the integral. The different choices in τj indi-
cate if the δ-like collision occurs in the beginning or during the discrete time-step.
For example, Itô integration is chosen for modelling photon emission or chemical
reaction, Stratonovich integration for external effects like connected noise genera-
tors [51]. The latter one is chosen in the present case because the modelled degrees
of freedom are much slower than the time between collision. The large amount of
collisions imitates the behaviour of noise generators.

trajectories. Through Stratonovich integration (see Technical Point 2.1) of equa-
tion 2.12, we find for the weight of a trajectory x(t) with starting point x0[8]

p[x(t), λ(t)|x0] =
∏
i

exp

[
−
∫ t

−t
dτ

(ẋi − µFi(x, λ))2

4D
+
µ

2

∂Fi(x, λ)

∂xi

]
, (2.16)

where i iterates over all dimension. The integration over all trajectories denoted
by d[x(t)] with initial distribution p(x0) should be normalised

1 =

∫ ∫
dx0 d[x(t)] p[x(t), λ(t)|x0]p(x0). (2.17)

Similarly, one can define the ensemble expectation value over trajectories

〈O〉 =

∫ ∫
dx0 d[x(t)]O[x(t), λ(t)]p[x(t), λ(t)|x0]p(x0). (2.18)

10



2.2 Stochastic Thermodynamics

The action is defined equivalent to equilibrium statistical mechanics by p[x(t), λ(t)] =
exp(−A[x(t), λ(t)]) so one finds from equation 2.16

A[x(t), λ(t)] =
∑
i

∫ t

−t
dτ

(ẋi − µFi(x, λ))2

4D
+
µ

2

∂Fi(x, λ)

∂xi
. (2.19)

The existence of a trajectory x(t) implies the existence of the same trajectory
under time reversal x̃(−t) [52]. Time reversal includes a reversed control protocol
λ(t) → λ̃(−t) and trajectories x(t) → x̃(−t), ẋ(t) → ˙̃x(−t). The action of the
reversed trajectory becomes

A[x̃(t), λ(t)] =
∑
i

∫ t

−t
dτ

ẋ2
i + 2µFi(x, λ)ẋi + Fi(x, λ)2

4D
+
µ

2

∂Fi(x, λ)

∂xi

= A[x(t), λ(t)] +

∫ t

−t
dτ

1

T
F(x, λ) · ẋ.

(2.20)

The microscopic definition of heat dissipated q[x(t), λ(t)] along a trajectory can be
calculated by the ratio of the weight of a forward trajectory and its time inverted
counterpart. The entropy produced in the reservoir sm[x(t), λ(t)] is related to the
heat by dividing with the temperature like in thermodynamics.

p[x(t), λ(t)|x0]

p[x̃(t), λ̃(t)|x̃0]
= exp

(
1

T

∫ t

−t
dτ F(x, λ) · ẋ

)
= exp

(
q[x(t), λ(t)]

T

)
= exp (sm[x(t), λ(t)]) .

(2.21)

The more heat is generated in a forward process, the less likely is the reverse pro-
cess [48]. This relates forward and time-inverted processes for non-equilibrium pro-
cesses. Note that this exponential relation implies sm[x(t), λ(t)] = −sm[x̃(t), λ̃(t)]
and therefore, that the heat produced in a forward process is the same as the heat
consumed by its time-inverted process and vice versa.

We expect stochastic thermodynamics to obey the main laws of thermodynamics.
The first law states that energy is conserved in an isolated system. A change in
internal energy ∆U consists of heat Q transferred to the system and the work W
done by the system on its environment

∆U = Q−W. (2.22)

for a Langevin process on a microscopic level, this becomes [53]

dω = du+ dq

=

(
∂V

∂λ
λ̇ dτ

)
+ f dx ,

(2.23)
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2 Background

where du is identified with ∂V
∂λ
λ̇ dτ as the change in potential at fixed particle

position and dq is identified by f dx as the heat dissipated by the medium due
to the non-conservative force f in agreement to the finding in equation 2.21. The
second law of thermodynamics states that two initially isolated and equilibrated
systems increase their combined entropy when they get in contact. The entropy
does not change when the systems were already in equilibrium with each other.
The second law is validated by defining the total entropy production

∆stot[x(t), λ(t), pi, pf] = log
p[x(t)|x0]pi(x0)

p[x̃(t)|x̃0]pf(x̃0)

= log
p[x(t)|x0]

p[x̃(t)|x̃0]
+ log

pi(x0)

pf(x̃0)

= sm[x(t), λ(t)] + ssys(pi, pf ),

(2.24)

where the distribution change along the trajectory from initial pi to final pf is the
system contribution to total entropy production. sm[x(t), λ(t)] is the contribution
of the reservoir. The result is used to derive

〈exp (−∆stot)〉 =

∫ ∫
dx0 d[x(t)] pi(x0) exp (−∆stot)

=

∫ ∫
dx̃0 d[x̃(t)] p[x̃(t)|x̃0]pf(x̃0)

= 1.

(2.25)

The second law of thermodynamics 〈∆stot〉 ≥ 0 follows directly from 〈exp−∆stot〉 =
1 . Note that equation 2.25 does not exclude single trajectories to violate the sec-
ond law, but these trajectories are exponentially suppressed and the second law is
only valid for ensembles of trajectories. The contributions to entropy production
are well separated in contributions of the system and medium, like the first law in
equation 2.23 [48].

2.2.1 Transfer Operator

The Langevin equation 2.7 can produce numerous realisations of a process due to
its dependence on a stochastic variable. All of these realisations are possible path-
ways and are combined in an ensemble of trajectories. A probability distribution
P (x) can be constructed depending on the space passing point x [54]. This dis-
tribution is evolved in time according to a generator L ,containing all dynamical
information by knowledge of a all trajectories passing x, denoted by

P (xt+δt) = L ◦ P (xt). (2.26)

12



2.2 Stochastic Thermodynamics

The initial probability distribution can be chosen according to physical conditions.
The infinitesimal generator L and dependence on the whole history P (xt) is in-
convenient for computational purposes and is approximated by a time-discretised
transfer operator.

2.2.2 Markov Processes

We want the transfer operator to evolve the system over a time-range τ � δt and
we want it to fulfil the Markov property. The probability distribution P (yi, ti) of a
Markov process only depends on the information at the previous time-point ti−1.
For n successive time-points (t1 < t2 < .. < tn) we call

P (tn, yn|t1, y1; t2, y2; ...; tn−1, yn−1) = P (tn, yn|tn−1, yn−1) (2.27)

the time dependent Markovian transition probability. Note that the time evolution
of a probability distribution can be expressed using the Markov property by the
hierarchy

P (t1, y1; t2, y2; t3, y3) = P (t1, y1)P (t2, y2|t1, y1)P (t3, y3|t2, y2), (2.28)

where P (t1, y1) is the initial probability distribution. The Markov process is fully
characterised by knowledge of the transition probabilities and the initial probabil-
ity distribution. Integrating over y2 and dividing by P (t1, y1) gives

P (t1, y1|t3, y3) =

∫
dy2P (t2, y2|t1, y1)P (t3, y3|t2, y2) (2.29)

where the definition of conditional probabilities was used on the left-hand side [51].
Equation 2.29 is known as the Chapman-Kolmogorov equation and will be used
to test if the Markov property is fulfilled.

The transfer operator with the Markov property is defined by

Pt+τ (y) = T (τ) ◦ Pt(x) =

∫
Ω

dyW (x|y); τ)Pt(y), (2.30)

where Ω represents the full conformational space of the system and W (x|y; τ) is a
transition probability in continuous space from state y to state x after time-step
τ . The operator is related to the time-continuous operator in equation 2.26 by

T (τ) = exp (L τ) , (2.31)
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where the eigenvectors Ψi of both are the same and the eigenvalue λi of T and Λi

of L are related by λi = exp(τΛi) [54].

We note that the stationary distribution is reached when T (τ)◦Ps(x) = Ps(x), i.e.
it is the eigenvector with eigenvalue 1 of the transfer operator [55]. It is assumed
to be singular such that the stationary distribution of a system is unique. The
smaller eigenvalues are related to the relaxation dynamics of the system, as will
be discussed in detail in section 2.3.

2.2.3 Non-Equilibrium Steady States

A Non-Equilibrium Steady State (NESS) is a special type of non-equilibrium pro-
cess because the fluxes and population densities do not depend on time. It is
generated by driving a system with time-independent non-conservative forces for
a long time. The resulting stationary distribution and fluxes are generally un-
known. The external driving results in an input heat flow in the system. The
same amount of heat is dissipated in a coupled reservoir to maintain the steady
state [56]. The contribution to total entropy production in equation 2.24 of the
system is zero and only the medium produces entropy.

Assuming a Markovian process with transition probability W (y|y′) from state y′

to y per unit time, we may describe the dynamics by the Master equation [51]

∂P (y, t)

∂t
=

∫
dy′ (W (y|y′)P (y′, t)−W (y′|y)P (y, t)) . (2.32)

The first term on the right hand side of the equation adds up all probability fluxes
to state y, while the second term adds up all fluxes going out of that state. The
result of all probability fluxes is the change in population of that state. We want
to deal with NESS, so the time dependence of the distribution is set to ∂P (y,t)

∂t
= 0

. Under this condition, the equation can be solved by assuming the fluxes cancel
pairwise

W (y|y′)P (y′, t) = W (y′|y)P (y, t). (2.33)

In fact, this is the detailed balance condition that holds true in equilibrium sys-
tems. However, a general solution can be found by use of the normalisation∫

dy′W (y′|y) = 1

P (y) =

∫
dy′W (y|y′)P (y′, t), (2.34)

called the global balance condition that always holds true for NESS. It shows that
the probability to be in a state y is the sum over all probability fluxes from all
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2.2 Stochastic Thermodynamics

states. The fluxes transport probability in cycles in the system, unlike for detailed
balance where fluxes cancel each other. Note that detailed balance implies global
balance but not the other way around [51].

We can introduce another NESS condition by integrating the microscopic re-
versibility condition in equation 2.21. The dependence on an external controlling
parameter is dropped in a NESS because the disturbance is permanent. For future
use, we want to discretise the space. The indicator function assigns each point in
space p to a state

χi(p) =

{
1 if p ∈ i
0 if p /∈ i.

(2.35)

Each discrete state will be called microstate [54], not to be confused with the
microstate of statistical physics described in 2.1 that consists of all coordinates of
every particle in the system. The present microstates emerges from coarse-graining
the conformational space. The coarse-grained states can be chosen according to
the system studies. In the next step, the probability distribution over entropy
production ∆S for a given transition of microstates is sought. We integrate over
all existing trajectories with entropy production ∆S that start in microstate i and
end in microstate j. This produces a trajectory ensemble average over all time
forward processes, denoted by subscript F :

Pij(∆S) =

∫
δ(χi(x0)) dx0

∫
δ(χj(x1)) dx1∫

d[x(t)]P (x0)p[x(+t)]δ(∆S −∆SF [x(t)])

(2.36)

where x0 and x1 denotes the start and endpoint of a trajectory. Making use of
equation 2.21 transforms the expression to the inverse trajectory ensemble, denoted
by subscript R:

Pij(∆S) =

∫
δ(χi(x0)) dx0

∫
δ(χj(x1)) dx1∫

d[x(t)]P (x0)p[x̃(−t)|λ̃(−t)]e∆Sδ(∆S + ∆SR)

=e∆SPji(−∆S)

(2.37)

where the relation ∆SF = −∆SR is used, meaning that the heat gained from the
reservoir in a forward trajectory is the same heat ejected for the time-reversed tra-
jectory. Note, that the probability distributions P (x0) = P (x1) remain the system

for a non-equilibrium steady state. The resulting equation
Pij

Pji
= exp(∆Sij) relates

the amount of heat dissipated or drawn from the reservoir with the probability
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of the forward and backward jump between predefined microstates, acting like
a coarse-grained version of equation 2.21. In fact, it is a special case of Crooks
fluctuation theorem [57] with defined starting and end state in long time approxi-
mation. It simplifies to detailed balance in equilibrium when Boltzmann statistics
can be assumed.

2.2.4 Driven Particle in a periodic Potential

The following construction of a Markov State Model will be presented on the ex-
ample of a driven single particle. The model is a simple case of a NESS [58] and
consists of a particle driven by a non-conservative force f that may emerge from
magnetic fields, mechanical flows, or mechanical dragging. The particle is influ-
enced by a potential shown in figure 2.1. An analogous experiment was performed
using silica spheres on a tilted crystalline glass substrate [59]. Another discrete
example is a weakly interacting Bose-Einstein condensate on a one-dimensional
optical lattice [60]. The overdamped equation of motion for the particle is given
by

0 = −∂U(x)

∂x
− γẋ+

√
2γkBTζ(t) + f, (2.38)

where a reservoir of temperature T is coupled to the system by friction constant γ
and ζ(t) is a δ-correlated Gaussian process with mean 0. Results are presented in
reduced units, where the box size is set to L, the mass of the particle is set toM,
and energy is measured in ε. The temperature is T = 1 ε/kB, the energy barriers
shown in figure 2.1 are varied between 2−4 ε and the unit of time is T = L

√
M/ε

. The integration time step was set to δt = 10−5 T . The non-conservative force is
varied between 0 and 9 ε/L and the space is separated in 60 microstates of same
size.

The presented potential is described by:

U(x) = U0

(
1

1 + exp(−2k(x− sN+1))

)
− UN

(
1

1 + exp(−2k(x− s0))

)
+

j≤N∑
j=0

Uj

(
1

1 + exp(−2k(x− sj))
− 1

1 + exp(−2k(x− sj+1))

)
,

(2.39)

where sj shifts each summand of the potential to its chosen position, Uj denotes the
potential of the N local maxima or minima. The potential has periodicity p such
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Figure 2.1: An example potential, where the minima or chosen to be at position
smin = 3

12
L, 7

12
L, 11

12
L with potential minima Umin = 0 ε,−1 ε, 0 ε re-

spectively and maxima are at position smax = 1
12
L, 5

12
L, 9

12
L with

potential Umax = 4 ε, 2 ε, 2 ε respectively. The green and orange arrow
represent two different set of paths going from position xi to xj.

that U(x) = U(x+p) and sN+1 = s0 +p. Parameter k describes the smoothness of
the potential and is chosen as k = −N log

(
1

0.999
− 1
)
. k should be chosen larger to

minimise a force discontinuity at the periodic boundary. The potential becomes a
set of Heaviside steps functions without discontinuity for k → ∞. This potential
allows us to construct a model with arbitrary barrier heights, well depths, steepness
of transition regions, and number and position of wells and barriers.

Entropy Production

We want to derive an expression for the local entropy productions ∆Sij as intro-
duced in 2.2.3. The local entropy production of a single continuous trajectory x(t)
is given by

∆S[x(t)] =

∫
dt

F · ẋ
kBT

, (2.40)

where ẋ is the velocity and T is the temperature [61]. Making use of numerically
discretised trajectories from simulation, x(t) ≈ {xk}, ∆S is approximated between
starting and target points x0 and xT , respectively,

∆S[{xk}] ≈
1

2T

∑
d

t=T∑
t=1

(
x

(d)
t − x

(d)
t−1

) (
F (d)(xt) + F (d)(xt−1)

)
, (2.41)

where Stratonovich integration is used (see technical point 2.1 ) and d iterates over
the dimensions.
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The solution above requires to integrate along trajectories and average over a
trajectory ensemble. We approximate the solution by ignoring the fluctuations,
allowing us to apply Riemann integration. We make use of the analytic expression
F = −∂U(=x)

∂x
+ f and find

∆S[x(t)] =
1

kBT

∫
dt
∑
d

(
∂U

∂xd

∂xd
∂t

+ fd
∂xd
∂t

)
=

1

kBT

∫
dt

dU

dt
+
∑
d

(∫
dt fd

∂xd
∂t

)
=
U(xT )− U(x0)

kBT
+
∑
d

(∫
dt fd

∂xd
∂t

)
.

(2.42)

The non-conservative force f cannot be expressed by a potential and the integral
depends on the path of x. For the current 1D-case, two different sets of paths ex-
ist between x0 and xT by using the periodic boundaries as indicated in figure 2.1.
For equilibrium systems with f = 0 both pathways have the same entropy pro-
duction, otherwise there are two different solutions. By choosing the time-length
of trajectories short, the longer path has negligible weight and we can assume a
unique solution to the entropy production. The expression for the local entropy
production becomes

∆S(x0, xT ) ≈ U(xT )− U(x0) + (xT − x0)f

kBT
, (2.43)

only depending on start and endpoint of the trajectory. The solution of this
equation differs from the solution of equation 2.41 by ignoring fluctuations and
giving us an analytic estimate for the entropy production. The path ensemble
average of the entropy production is assumed to agree with the analytic solution
as discussed in section 6.2. The approximated analytic solution is used throughout
the thesis as it is much easier to solve.

2.3 Markov State Model

Markov State Modeling (MSM) aims to map the slow dynamics of a complex
system to an underlying discrete Markovian process. This involves several steps,
including space discretisation, time discretisation and dimensional reduction [54].
The analysed models in this thesis are constructed such that space discretisation
is performed manually. All steps of the Markov State Model construction are
presented on the minimal model introduced in the previous section 2.2.4.
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2.3 Markov State Model

2.3.1 Validate Markovian Process

Markov processes were introduced in section 2.2.2. An existing process is not
bound to fulfill the Markov property so one has to check if it is met using the
Chapman-Kolmogorov equation 2.29. We focus on Markov state models of NESS,
so the time-dependence on Markovian transition probabilities is dropped. A con-
stant time-step length of each Markovian jump called lagtime τ is assumed. The
time-independent Chapman-Kolmogorov equation becomes

W (yi|yj, nτ) =

∫
dy1

∫
dy2...

∫
dytW (y1|yi, τ)W (y2|y1, τ)...W (yj|yt, τ) (2.44)

for t time steps and the transition probabilities depend on the lagtime. The state
space of an MSM is discretised so we denote W (yi|yj, τ) = pij(τ) as the jump
probability from state i to j within time τ . This quantity is estimated from
simulation by choosing a lagtime τ and recording all jumps in a count matrix
cij(τ). The transition matrix is estimated by

pij(τ) =
cij(τ)∑
k cik

. (2.45)

In practice, it is cumbersome to check the Chapman-Kolmogorov equation for each
element of the matrix pij(τ) so Prinz et al. [62] suggested to expand the irreducible
transition probability matrix p̂(τ) in its eigenvalue decomposition

p̂Φk = λkΦk. (2.46)

The time evolution of the probability distribution can then be described by

P (t) =
∑
k

akΦk exp (− ln(λk)t) , (2.47)

where ak are constants that are determined by the initial state of the system. If the
dynamics of the system fulfil detailed balance (i.e. the system is in equilibrium),
the eigenvalues and eigenvectors are real and one can construct a hierarchy starting
with the slowest process λ0 = 1 > λ1 > ... > 0. Typically, the slow dynamical
processes are of interested and the fast processes with small λ are cut off from the
expansion. The characteristic timescales are identified from equation 2.47 by ti =
−τ

lnλi
and are calculated for different lagtimes. Figure 2.2 shows an example of the

slowest timescales for varying lagtimes for 60 microstates. The region where ti < τ
is forbidden because an observed timescale cannot be smaller than the minimal
time-resolution of the Markov process. The timescales reach a plateau for lagtime
greater than 0.002 T , indicating that the Chapman-Kolmogorov equation 2.29 is
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valid in this region: An MSM at a timescale τ0 is expected to describe the dynamics
for t > τ0 , so it should agree with an MSM parameterised at a lagtime τ1 > τ0

describing the same dynamics [63]. The timescale analysis is merely a tool to
choose a lagtime for further analysis. A test of consistency of the eigenvectors is
needed for full conformation of Markovianity. It is suggested to identify metastable
states and compare detailed relaxation probabilities from the MSM to the error-
analysed trajectory data. We start by defining the probability distribution of
starting in a metastable state A by

ωAi =

{
πi∑

j∈A πj
i ∈ A

0 i /∈ A.
(2.48)

The probability of the measured trajectory data to remain in state A after time
mτ is then

Ltr(A,mτ) =
∑
i∈A

ωAi

∑
j∈A cij(mτ)∑
j cij(mτ)

, (2.49)

with the corresponding error

ε(A,mτ) =

√
m
Ltr(A,mτ)− (Ltr(A,mτ))2∑

i∈A
∑

j cij(mτ)
. (2.50)

If the MSM dynamics follows the Markovian relation

p̂(mτ) ≈ [p̂(τ)]m , (2.51)

the result of iterating the MSM

LMSM(A, τ) =
∑
i∈A

[
(ωAi )>[p̂(τ)]m

]
i

(2.52)

should lie within the errorbars of the trajectory analysis by Ltr(A,mτ) with error
ε(A,mτ) . The method is shown on the 1D model in figure 2.3 for full conformation
that the model defined by space discretisation and lagtime τ is Markovian for the
slowest processes.

The eigenvalue decomposition allows detailed analysis of an MSM by isolating
each process and showing detailed probability fluxes involved via the correspond-
ing eigenvector. The described methods rely on the transition probability matrix
being reversible, where the eigenvalue decomposition is real-valued. In NESS this
condition is not met and the eigenvalues may become complex. A timescale separa-
tion with a hierarchy to delete fast processes with small real part of the eigenvalues
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Figure 2.2: The slowest two timescales involved in the 1D system, depending on the
lagtime τ of the MSM. A lagtime of 0.002 T is chosen for the following
analysis.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10−3 10−2 10−1 100

0.6

0.7

0.8

0.9

10−3 10−2 10−1 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10−3 10−2 10−1 100

t/T

State A

τ = 0.0005T
t/T

State B

τ = 0.002T
t/T

State C

τ = 0.01T

Figure 2.3: Chapman-Kolmogorov test for the metastable states A,B,C . The re-
laxation processes of the MSM at lagtime τ = 0.0005 T , 0.002 T , 0.01 T
agree well within the error of trajectory analysis shown by the grey
shadow.
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is not possible [64]. A similarly powerful tool for analysis of NESS is not known
yet, however the Schur-decomposition might be a good candidate for timescale
separation [65]. In this thesis, a reference equilibrium system is used to choose
a lagtime for all driven systems using the same potential surface. First-passage-
time-distributions (FPTD) (see section 2.3.3) characterising the transition time
distribution between two metastable states are used for analysis of the processes
involved.

2.3.2 Identifying metastable states

Depending on the number and definition of microstates physical interpretation of
MSMs can become difficult. The resulting fine-grained transition matrix does hold
all information, but we are only interested in the previously unknown long-term
dynamics. The already coarse-grained dynamics can be further coarse-grained to
its relevant states. The aim is to combine dynamically well-connected microstates
to a macrostate while keeping the timescale of the transitions constant. An often
applied method in the field of molecular simulation is the PCCA+ [66], an expan-
sion to the earlier introduced PCCA [67]. We will shortly explain the workflow of
PCCA and point out the addition made by PCCA+.

By examination of the expansion of P (t) in equation 2.47, one understands that
the processes with λi < 1 vanish with time and only the stationary distribution
Ψ0 with λ0 = 1 remains. The eigenvalue shows how fast the process annihilates in
time, the corresponding eigenvector describes the corresponding probability flow.
This is shown in figure 2.4 for the 1D toymodel. The metastable states are already
identified by A, B and C. The probability flows from states where Ψi is positive to
the negative region or vice versa, depending on what is needed to reach the steady
state. The first eigenvector exchanges probability between metastable state A and
C, the second between B and A, C equally, so the two flows cover all transition
that one would intuitively expect from the system.

PCCA makes use of the eigenvector by a hierarchical approach, starting with the
eigenvector corresponding to the slowest process. The positive region of Ψ1 is
defined as one metastable state and the negative region as another. It continues
using the second slowest eigenvector and applies it in the same manner to the
metastable state, where it is most active. It proceeds in such a way that the
number of metastable states is defined by the number eigenvectors taken into
account. This approach is error prone due to large inactive regions where Ψi ≈ 0,
that are randomly assigned to one or another metastable state. PCCA+ corrects
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Figure 2.4: (a) Probability distribution for the equilibrium system with metastable
states identified by PCCA+. (b) First and second eigenvector Ψi rep-
resenting the probability flow during relaxation process.

for this mistake by assuming all eigenvectors at the same time and assigning a
membership probability M for each microstate and each metastable state. A
microstate between A and B would end up with membership of M(A) ≈ 50 %,
M(B) ≈ 50 % and M(C) ≈ 0 % due to its positioning as a transition state and
should not belong to any metastable state. The states indicated in figure 2.4a each
have membership > 95% for a state.

PCCA+ assigns metastable states that may not coincide with the maxima of a
probability distribution as demonstrated for state A and C. It is focused on
making the metastable states dynamically connected, crisp and well separated
while keeping the transition timescales between the metastable states constant.
To apply the algorithm, the number of metastable states has to be chosen before
running PCCA+. Another drawback is that it relies on the property that the
eigenvalue expansion in equation 2.47 is real, which only holds for equilibrium
system. Similar to the Markovianity check, the metastable states are determined
once for the equilibrium system and assumed to be valid for the driven system too.
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2.3.3 First-Passage-Time Distribution

First passage-times distributions (FPTD) are widely used to characterise processes
in biology, chemistry and physics and are often associated with a free energy barrier
a system has to overcome. The FPTD contains detailed transition information by
collecting numerous realisations of a process. In experiment and simulation of rare
events, the mean of the distribution is given due to limited observed process real-
isations [68]. Given an MSM with identified metastable states (see section 2.3.2)
the FPTD between all metastable states can be calculated. The collection of ini-
tial states is denoted by I, of final states by F . For the purpose of calculating the
FPTD [69] from I to F the MSM is modified such that all final microstates f ∈ F
become a sink, i.e. all jumps out of the metastable state have probability 0 and
staying in the state has probability 1

p̃fj = 0 ∀j 6= f, ∀f ∈ F
p̃ff = 1 ∀f ∈ F .

(2.53)

An initial state is defined, where full probability is in one microstate i ∈ I of the
starting metastable state

ρ
(0)
i = 1 i ∈ I
ρ

(0)
j = 0 ∀j 6= i.

(2.54)

The probability distributions is iterated with the modified Markov model p̃ until
full probability is trapped in the sink. The superscript of (t) denotes the number
of iterations performed.

ρ(t+1) = p̃ρ(t). (2.55)

The first-passage probability p FPT(t) at step t is then the probability flow in the
sink

p FPT(i→ F, t) =
∑
l∈F

ρ
(t)
l − ρ

(t−1)
l . (2.56)

This calculation is repeated for all initial microstates i ∈ I. The full FPTD is
then calculated by weighting each distribution with the weight wi of a trajectory
starting in each initial microstate

wi =

∑
k/∈I πkpki∑

i∈I
(∑

k/∈I πkpki
) , (2.57)

where π is the stationary probability distribution of a NESS. This expression adds
up all probability flow to the initial state I by

∑
k/∈I πkpki and normalises the

probability of flowing into macrostate I. Note that this expression does not use
the modified MSM. The full FPT can then be expressed by

24



2.3 Markov State Model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.002 0.004 0.006 0.008 0.01

M
F
P
T
/
T

τ/T

A→ B
A→ C
B → A
B → C
C → A
C → B

Figure 2.5: MFPT depending on the lagtime τ for all six observed processes. The
model is designed such that groups of two processes overlap. The
MFPT increases linearly with lagtime for all processes after a short
period of faster growth.

p FPT(I → F, t) =
∑
i∈I

wip FPT(i→ F, t). (2.58)

Knowing the FPTD, all moments of the distribution can be calculated by

M
(n)
I→F =

∑
t

pFPT(I → F, t)tn. (2.59)

In particular we will make use of the quantities

µI→F = M
(1)
I→F mean

σI→F =

√
M

(2)
I→F − µ2

I→F standard deviation

κI→F =
M

(3)
I→F − 3µI→Fσ

2
I→F − µ3

I→F
σ3
I→F

standardised skewness,

(2.60)

where the standardised skewness is defined by the expectation value of
(
t−µ
σ

)3
. The

mean first-passage time (MFPT) was shown to be of special interested because it
contains information about the transition rate between two states by the Hill
relation [70]

kI→F =
1

µI→F
. (2.61)
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Figure 2.6: FPTD of process from metastable state B to A at different lagtimes.
The distributions are normalised such that they can be compared de-
spite different resolution. The distributions do not cover each other,
as one would expect from a perfectly Markovian process.

Similar to the timescale analysis and the Chapman-Kolmogorov test, the FPTD
should not depend on the lagtime in the region of Markovianity. As shown in
figure 2.5, this statement does not hold for the given system. The MFPT changes
similar to the timescales in figure 2.2 up to a lagtime of ≈ 0.002 T but it continues
to grow linearly after this point. The reason for this non-Markovian behaviour
is shown in the detailed FPTD in figure 2.6. The increasing lagtime summarises
processes that are shorter than τ but still contribute to the overall MFPT as a
single jump and details on the process are lost. The distribution is distorted to
slower processes and the MFPT grows. To avoid this problem, the lagtimes should
be chosen according to the criterions on Markovianity but as short as possible to
keep details on the dynamics. The observed non-Markovianity is detected because
the first-passage time is an even stronger test of Markovianity than the test per-
formed in section 2.3.1. It analyses transitions between two metastable states and
not just the exit from one. The presented exit test is used because it benefits from
small error by making use of larger sample sizes. Many trajectories remain in the
metastable state for a while. The error increases with time when the amount of
trajectories remaining in the basin is small. The error for the FPTD is always
large because it requires many incidents of the same transition time and a sta-
tistical analysis becomes cumbersome. Irrespective of the discussion of statistical
applicability, the non-Markovianity of MFPT raises the question if it is a good
quantity for comparison of simulation, MSM and experiment
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3 Jaynes Maximum Caliber

Edwin Thompson Jaynes discussed the question of the possibility of macroscopic
prediction from microscopic information of a system [33]. He based his work on
the earlier theory of Boltzmann’s statistical mechanics [71]. Boltzmann stated that
the entropy is the crucial key to connect microscopic and macroscopic phenomena
— and that the lack of understanding a macroscopic phenomena might be caused
by ignoring the effect of the entropy. Boltzmann connected the two worlds by the
simple identity S = kB lnW , where the left-hand side is the macroscopic prop-
erty entropy, known from equilibrium thermodynamics, and the right-hand side
counts the number of microscopic configurations. The argumentation transformed
time-dependent trajectories to a collection of microstates and thus ergodicity was
demanded.

Gibbs introduced the idea of probabilities of a microstate i in an entropic system
in the form of S = −kB

∑
i pi ln pi. He changed the point of view by the intro-

duction of ensembles with certain thermodynamic characteristics, like constant
temperature or pressure. The ensembles allow us to observe a number of identical
non-interacting systems with the same macroscopic parameters instead the time-
evolution of a single system. The axiom of equal a priori probabilities becomes
necessary. It states that all known states have the same probability without fur-
ther knowledge of the system to connect the independent system, i.e. pi = 1

W
.

The Gibbs formulation of the entropy reduces to Boltzmann’s formula

S = −kB

W∑
i

pi ln pi

= −kB

W∑
i

1

W
ln

1

W

= kB lnW,

(3.1)

meaning that Boltzmann’s equation holds for no additional thermodynamic infor-
mation. In the Gibbs formulation, the entropy decreases if information are given,
resulting in probabilities of microstates that differ from one another. He shows how
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3 Jaynes Maximum Caliber

Technical Point 3.1 Maxwell’s Demon

A B

Maxwell proposed a gedankenexperiment
that seemingly opposes the second law of
thermodynamics. He assumed two boxes A
and B that are filled with particles and only
connected by a door that can be opened
and closed. Assuming the existence of a all-
knowing conscious — the demon — it could
open the door whenever a fast particle passes
from box A to B and close it otherwise. In
the other direction, it could

open the door whenever a slow particle wants to pass from box B to A and close
it otherwise. The door operates frictionless. The box A would cool down and B
would heat up — opposing the second law of thermodynamics which demands
that two objects in contact evolve to an equilibrium with both objects at the
same temperature [72].

It is believed that the laws of thermodynamics are not violated, but it follows that
a source of the missing entropy production, to fulfil δS ≥ 0, is missing. The source
is found in the demon itself, which interacts with the system by measurement
and by storing data. The measurement can be ruled out because it was shown to
be possible by a reversible process [73]. A solution identified by Bennett states
that the demon eventually runs out of data storage and has to delete gathered
information [74]. Laundauer showed that deleting one bit increases the entropy
by Sbit = kB ln 2 [75]. The gedankenexperiment of Maxwell’s Demon provides us
with a way to think of the connection of information and physical entropy.

to introduce statistical ensembles (see section 2.1.2) in equilibrium by maximising
the entropy with respect to certain constraints [7]. He claims that a statistical
system is observed in a state where it has the most microscopic realisations avail-
able while satisfying macroscopic constraints. Other states may agree with these
constraints but are entropically suppressed and are thus negligible.

Shannon introduced the information-theoretic entropy for a probability distribu-
tion given by S =

∑
i pi log2 pi, only differing from the Gibbs entropy by the factor

of kB ln 2 [76]. The Gibbs entropy can be seen as the amount of Shannon entropy
required to define the microscopic state of a system. The reverse consequence —
that the possession of microscopic information must have thermodynamic conse-
quences — was formulated in the form of the famous Maxwell Demon [77] (see
technical point 3.1 ). Jaynes accepted the similarity of information and thermody-
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namic entropy without proof and proposed to generalise the Gibbs algorithm from
thermodynamic systems to all probabilistic systems. In a first step, he formulated
this idea for equilibrium systems [78], later he extended it to time-depending off-
equilibrium systems [33]. His idea is to move from a physical deductive theory
for thermodynamics to an inferent theory: A deductive theory predicts what will
happen, whereas the inference theory proposes the most likely probability distri-
bution based on given data and information. He also argues from a practical way
that most real systems are too complex for a deductive proof with definite predic-
tions. Most important is the correct identification of macroscopic parameters that
reduce the information entropy to a significant distribution of microstates. From
the remaining probability distributions that fulfill the constraints, the one with the
highest entropy (or least information) is chosen to be as non-committal as possi-
ble with regard to unknown information. Insignificant information on the other
hand will barely change the outcome compared to the prior information. This
information-theoretic argumentation allows to drop the assumption of equal a pri-
ori probabilities and ergodicity. The first assumption is now a product of the theory
in case when no information are available: The entropy function −kB

∑W
i pi ln pi

has a global maximum for equal probabilities p1 = p2 = · · · = pW . The second as-
sumption of ergodicity was initially introduced to describe equilibrium systems by
their microstates instead of time-dependent trajectories. The shift from a physical
theory to an information theory makes this assumption obsolete. We may apply
the theory to any kind of probabilistic systems including fields in physics, biology,
economics and more.

Later, Shore and Johnson changed the point of view on the maximum entropy
assumption once more: They showed that the entropy function by Shannon is the
only function that fulfils logical requirements of inference, as it will be shown in the
following section 3.1. It proves that the argument of maximising the uncertainty of
Jaynes is not needed anymore. The maximum uncertainty is a necessary criterion
for a consistent inference method.

Depending on the situation of the inference task, one might use any of the given
interpretation by Gibbs, Jaynes or by Shore and Johnson. The Gibbsian point of
view is motivated by physics and provides a good basis for the interpretation of
equilibrium statistical physics. Jayne’s method allows an interpretation of all fields
beyond equilibrium physics, whereas Shore’s and Johnson’s addition to the theory
base it on a solid logical ground but is less applicable for a physical interpreta-
tion. This thesis uses the name Maximum Caliber for historical reasons, although
other mathematicians and physicists than Jaynes contributed to understanding
the method.

29



3 Jaynes Maximum Caliber

3.1 Requirement for uncertainty measures and
inference methods

There are numerous functions that may be considered as a measure for uncertainty.
This thesis focuses on the relative entropy as defined by Kullback and Leibler∫
X

dX P (X) ln P (X)
Q(X)

, where Q(X) represents the assumed distribution called prior

in Bayesian statistics. P (X) is the probability distribution assigned based on the
data and constraints, called posterior [79]. It fulfils the axioms an uncertainty
measure should meet as formulated by Hobson [80] as an extension to Shannon’s
axioms [76]. The extension was necessary to include known data that was not
considered by the entropy definition of Jaynes. The uncertainty measure is denoted
by S(P (X)|Q(X)), where the probability of outcome X = (x1, x2, ..., xN) is P (X),
assuming prior Q(X). An uncertainty measure should fulfil the following axioms:

• 1. S(P (X)|Q(X)) is continuous in P (X) and Q(X).

• 2. S(P (X)|Q(X)) does not depend on how the outcome x1, x2, ..., xN are
labeled.

• 3. S(P (X)|Q(X)) = 0 if P (X) = Q(X)

• 4. When Q(X) = (n−1
0 , n−1

0 , ..., n−1
0 ) and P (X) = (n−1, n−1, ..., n−1, 0, ..., 0)

(n ≤ n0) then S(P (X)|Q(X)) is an increasing function of integer n0 and
decreasing function of n.

• 5. If Y denotes additional states and P (X, Y ) and Q(X, Y ) denote the
joint probabilities, then the uncertainty of the composite system should be
expressed as

S(P (X, Y )|Q(X, Y )) = S(P (X)|Q(X)) +
∑
i

P (xi)S(P (Y |xi)|Q(Y |xi))

(3.2)

The first three axioms are reasonable, only defining a continuous function with
a minimum whenever P (X) equals Q(X), meaning no new information are given
and the ordering of learning new variables does not matter. The forth axiom
states that uncertainty decreases if states can be deleted and increases if states are
introduced. The last axiom defines the extension of correlated systems, where the
uncertainty should grow with additional states yi consistent with the conditional
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3.2 Reweighting in Equilibrium

probability p(y1, ..., yM |xi). The Kullback-Leibler entropy in the form of

S(P (X)|Q(X)) =

∫
dX P (X) ln

P (X)

Q(X)
(3.3)

is the unique functional form for an uncertainty measure fulfilling above axioms.
The negative Kullback-Leibler divergence (or relative entropy) reduces to the Shan-
non entropy if the prior is equi-distributed [76]. Hobson shows that the Kullback-
Leibler divergence has a unique minimum for Q(X) = P (X) and it is convex in the
sense of probability mass functions. To apply Jaynes theory, we will use a prior to
include data on the system and constraints in the form of Lagrangian multipliers
to infer physical information. The result of this inferring process should follow
some axioms too, as formulated and proven for the Kullback-Leibler divergence by
Shore and Johnson [81]:

• Uniqueness: The result should be unique.

• Invariance: The result is independent of the choice of the coordinate system.

• System Independence: Independent information about independent systems
can be inferred separately in terms of different densities or together in terms
of joint densities.

• Subset Independence: Independent subsets of system states can be treated
in terms of a separate conditional density or in terms of the full density.

All axioms together lead to the Kullback-Leibler divergence as the unique con-
sistent candidate for inferring information on a set of data. We showed before
that it is also a function for uncertainty measurement, supporting Jaynes intu-
itive interpretation of choosing the system of highest uncertainty under defined
constraints.

The assumptions made above do not require equilibrium of any kind. We will
continue to show how the Maximum Caliber with an equilibrium assumption is
used to derive ensembles in statistical mechanics and continue by generalizing to
off-equilibrium steady states.

3.2 Reweighting in Equilibrium

The following derivation shows how Jaynes principle is used to recover data reweight-
ing (see section 2.1.2), a method that was first described by Swendsen and Fer-
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3 Jaynes Maximum Caliber

renberg and is frequently used for simulation [82]. According to Gibbs statistical
ensembles, a canonical ensemble (or NV T ensemble) is defined by a closed system
of constant volume, that does not allow particle exchange with its surrounding
and is connected to an infinitely large reservoir with constant temperature and
can exchange energy with it. Applying Jaynes theory, we infer the macroscopic
average energy of the system. It is assumed that microscopic data is available from
previous measurements in form of q(x), where x is a microstate with Energy E(x).
Considering the information, the Caliber is denoted by

Cequ = −
∫

dx p(x) ln

(
p(x)

q(x)

)
− ζ

(∫
dx p(x)− 1

)
−β
(∫

dx p(x)E(x)− 〈E〉
)
,

(3.4)

where ζ and β denote Lagrangian multipliers and the probability distribution p(x)

is normalised to 1. Functional maximisation
δCequ
δp(x)

= 0 yields

p(x) = q(x) exp (−1− ζ − βE(x)) . (3.5)

Enforcing normalisation to 1 gives an expression for the corresponding Lagrangian
multiplier ζ. One finds an expression for the new probability distribution that
depends on β

p(x) =
q(x) exp (−βE(x))∫
dxq(x) exp (−βE(x))

. (3.6)

This is the reweighting formula for reference data q(x) to p(x) based on a change in
the average energy. From equilibrium statistical mechanics (see section 2.1.2) we
know that the Lagrangian multiplier β can be identified with the inverse tempera-
ture 1

kBT
that controls the average energy in a canonical ensemble. The reweighting

procedure connects the probability distributions at different temperatures. It can
be understood by assuming that the reference data was sampled from a canon-

ical ensemble at temperature T ′, i.e. q(x) = exp
(
−E(x)
kBT ′

)
. Plugging this into

equation 3.6 shows that

p(x) =
exp

[(
− 1
kBT
− 1

kBT ′

)
E(x)

]
∫

dx exp
[(
− 1
kBT
− 1

kBT ′

)
E(x)

] (3.8)

is the probability distribution at a a new temperature T ′′ = 1
1
T ′+

1
T

. We conclude

that the chosen temperature T , or the Lagrangian multiplier β, in the reweighting
procedure is the change in temperature from the reference data. Making use of the
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3.2 Reweighting in Equilibrium

Technical Point 3.2 Interacting Self-Avoiding Walk

The self-avoiding walk (SAW) was introduced by Paul
Flory to model chain-like polymers [83]. The polymer
is mapped on a grid where each site represents one
monomer. An already occupied site cannot be

occupied by another monomer to model the self-excluding interaction. An interac-
tion between close-by monomers is introduced by an attractive potential between
monomers on neighbouring sites. For nb bonds of strength J one finds the energy

E = −Jnb. (3.7)

The model can be constructed on different grids, however their effects on the
system vanish in the thermodynamic limit [84]. The SAW was studied in various
dimension, with different interaction range or close to surfaces and has become
one of the most-studied models in polymer physics [85].

density of states Ω(E) the reweighting equation 3.6 recovers the known relation

p(E) =
Ω(E) exp

[(
− 1
kBT ′′

)
E
]

∫
dE Ω(E) exp

[(
− 1
kBT ′′

)
E
] . (3.9)

Here we assume that the density of states is fully known. However, since we only
have access to the reference data q(x) the density of states is only estimated over
a sampled region by

Ω(E) ≈
∫

dx δ(E(x)− E) exp

(
E(x)

kBT

)
. (3.10)

This sampling issue is illustrated in figure 3.1 on simulation data of 3 different
temperatures of the interacting self-avoiding walk (see technical point 3.2). The
reference energy histogram q(E) sampled at 8 J

kB
is reweighted to the histograms

p(E) at the temperatures 4 J
kB

and 5 J
kB

. The result is compared to simulation

data at the target temperature. The reweighting to 5 J
kB

shows good results. The
deviations are due to statistical noise of the simulation data. Reweighting to
temperature 4 J

kB
, on the other hand, shows a large deviation compared to the

target histogram. The issue is that states below −80J are not sampled by the
reference simulation and the estimation of the density of states is flawed in this
region. The reweighting procedure relies on data and produces wrong results if
these are unavailable. Furthermore, one does not know initially what states have
to be sampled to reweight to a certain temperature. A careless use of the method
can result in large errors in the analysis.
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Figure 3.1: The energy distribution of the interacting self-avoiding walk of length
100 on 3-dimensional cubic lattice at three temperatures. Temperature
reweighting is applied to the data from a simulation at T = 8 J

kB
to

recover the other two distributions.

The reweighting example discussed above is applied with respect to energy in a
canonical ensemble. However, the theory allows to define and reweight within any
kind of ensemble. In this sense, one might constrain the number of particle N
in a system and extend the reweighting to grandcanonical ensembles using Jaynes
Maximum Caliber. One might as well think of defining a new ensemble by radius of
gyration Rg, which is used as an order parameter for the collapse transition of this
model. The reweighting procedure works if the experiment or simulation producing
reference data is set up such that the correct ensemble is sampled. In particular
one would have to introduce a new thermostat, imitating these fluctuations on
Rg. Such an ensemble is model-dependent and thus not used commonly. On the
other hand it illustrates the number of options one has to define ensembles beyond
the commonly used ones. This freedom in choosing controlling parameters will be
handy when entering ensembles of NESS.

3.3 Reweighting in Off-Equilibrium

The Maximum Caliber Principle of Jaynes is shown to be a powerful tool —
both for the definition of known and unknown statistical ensembles and for the
reweighting of existing data to fit new constraints. The previous section focused on
the case that the system is in equilibrium. In the sense of the thermodynamic laws,
it means that the change of entropy on average is zero. The entropy of the system,
defined in equilibrium statistical mechanics, is a state function Ssys, determined by
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3.3 Reweighting in Off-Equilibrium

the density of states. Considering internal dynamics, the system might increase
its entropy dSsys by a bit by borrowing heat from a thermal bath. This is the
system entropy production on the state function Ssys. If the system returns to its
initial state, it releases the same amount of entropy to the heat bath. The system
is considered in equilibrium with its heat bath, if the medium entropy production
dSmed along this process in the heat bath is zero too. In this case, the total entropy
production

∮
dStot along any circular trajectory is

∮
dSmed+

∮
dSsys = 0. It implies

that the change of entropy in the system
∫

dSsys along any trajectory only depends
on the starting and endpoint, so that the process is path-independent.

Equilibrium is a strict condition on the full system and is not always fulfilled.
For instance, an outside observer may accelerate particles in one direction and
thus performing work on the system. The additional energy may remain in the
system or dissipate via a reservoir. In any case, there will be an increase of
entropy in the bath or the system and presumably a reduction of the observer’s
entropy. In a similar picture, the system might be connected to two reservoirs of
different temperature accelerating and slowing down the dynamics of the system,
respectively. For instance, when entropy is increased by transferring heat from
the hot reservoir to the system in kinetic energy of particles, the heat is unlikely
to be transferred back. There is a possibility of back transferring for trajectories
with much lower probabilities than the forward process (see in section 2.2). These
systems are examples of off-equilibrium where

∮
dS > 0, on average. The amount

of entropy produced is path-dependent, i.e., it depends on the internal dynamics of
the system. This system cannot be defined by the entropy because it is a function
on the current state of the system alone. Entropy productions are defined including
the interaction with the reservoir and describe the change of the system along a
single trajectory.

The Caliber for equilibrium systems in the previous section was defined for mi-
crostates because path-dependencies can be dropped for the description of the
thermodynamic state. Trying to define the Caliber for off-equilibrium processes,
we have to use microtrajectories Γ because these define the thermodynamic state
now, as discussed above. A microtrajectory consists of a time series of microstates
of the system. In accordance with Jaynes generalised view on entropy maximisa-
tion to all existing statistical systems, we may sum over all microtrajectories in
the system for a relative path entropy:

Ctra =

trajectories∑
Γ

pΓ ln
pΓ

qΓ

. (3.11)

The task of the maximum Caliber is now to find the best possible distribution
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3 Jaynes Maximum Caliber

of microtrajectories in accordance to the yet to be defined constraints. Some
questions are raised:

• The phase space is defined over all possible trajectories. How can one assign
a probability to each microtrajectory?

• Microtrajectories are time-consuming to sample. Increasing the trajectories’
length generates a unreasonably large number of trajectories to consider.
Can one limit the number of trajectories to a computational accessible level?

• Off-equilibrium systems are physically different to equilibrium systems and
need new constraints. The canonical ensemble constraint cannot be used
anymore because energy is a state function and cannot be uniquely defined
for trajectories. What constraints apply for off-equilibrium?

• The density of states is a fundamental invariant measure for equilibrium
statistical mechanics. Is there a similar quantity for trajectories?

All these questions will be discussed in the following for the case of a non-equilibrium
steady state (see section 2.2.3). These are a special case of off-equilibrium because
heat is supplied to the system from an unlimited reservoir and withdrawn at the
same rate. The system will eventually settle in a state with a constant total en-
tropy production dStot > 0 but the system does not undergo changes; it is in a
steady state with dSsys = 0. The entropy is produced purely by the reservoir
driving the system and the reservoir withdrawing heat from the system. This re-
sults in system trajectories weights that are time-independent, as the system itself
does not undergo changes. At the same time, the total system produces entropy,
keeping the phenomena of non-equilibrium.

The question of assigning probabilities to a diverging number of trajectories is
addressed via Markov state modeling as discussed in section 2.3. The probability
of observing a trajectory Γ is replaced by a Markovian discretised trajectory of the
form pΓ ≈

∑
{i0,i1,···,iT } πi0pi0i1 · · · piT−1iT , where πit is the probability to be in state

it at time point t and pitit+1 is the conditional probability to jump from state it to
it+1 from time-point t to t+ 1. The prior qΓ is similarly approximated with initial
distribution ρit and transition probability qitit+1 . We find the Markovian form of
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equation 3.11:

CMarkov =
∑

{i0,i1,···,iT }

πi0

(
T−1∏
k

pikik+1

)(
ln
πi0
ρi0

+
T−1∑
l

ln
pilil+1

qi1il+1

)

=
∑

{i0,i1,···,iT }

πi0

(
T−1∏
k

pikik+1

)
ln
πi0
ρi0

+
T−1∑
l

∑
{i0,i1,···,iT }

πi0

(
T−1∏
k

pikik+1

)
ln
pilil+1

qi1il+1

=
∑
i0

πi0 ln
πi0
ρi0

+
T−1∑
l

∑
{i0,i1,···,iT }

πi0

(
T−1∏
k

pikik+1

)
ln
pilil+1

qi1il+1

=
∑
i0

πi0 ln
πi0
ρi0

+
T−1∑
l

∑
{il,il+1}

πilpilil+1
ln
pilil+1

qilil+1

=
∑
i

πi ln
πi
ρi

+ T
∑
i,j

πipij ln
pij
qij

≈ T
∑
i,j

πipij ln
pij
qij
.

(3.12)

The first line represents the Caliber when the Markovian description is plugged in
and trajectories are assumed to be time dependent. The brackets are multiplied
and the order of the sums of the second term is interchanged. The third line uses
the probability conservation

∑
ik
pik−1ik = 1 starting with the last sum over iT

until only the sum over i0 remains. A similar trick is applied in the next step
on the second term, only now the first sum is solved over i0 and global balance∑

ik
πikpikik+1

= πik+1
is used iteratively. The assumption of global balance is

that the system’s probability distribution does not change in time and is in a
NESS. The fifth line relabels the indices because the explicit time-dependence is
not needed for NESS. The approximation assumes T being large, meaning that the
input trajectory should be long in order to forget the initial state. The remaining
T is just an arbitrarily large factor and is ignored for the maximisation process.
The trajectories consist of contribution from the stationary distribution π and
the transition probabilities pij so the maximisation has to be performed over both
quantities.
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3.3.1 Theory of Constraints

Having convinced ourselves that the Maximum Caliber is indeed a general tool
for data inference, we advance to the question of how to constrain the Caliber
for off-equilibrium processes. Unfortunately it is not yet known what quantities
control the outcome of a non-equilibrium experiment and thus a general theory
has not been found yet [86]. However, the Maximum Caliber provides a perfect
testing ground to investigate certain assumptions and control their outcome by
simulation or experiment. The constraints can be distinguished in groups with
certain properties:

• intensive / extensive constraints

• symmetric / asymmetric constraints with respect to heat exchange with the
reservoir under time reversal and space inversion

• local / global constraints

We start by discussing extensive quantities, growing proportional to the system
size. It was shown that extensive quantities are sufficiently constrained by their
first order [34]: An extensive quantity in systems A and B adds up when bringing
both systems together, e.g. the Energy 〈E〉tot = 〈E〉A + 〈E〉B. This means that
fluctuations are allowed but are subdominant and higher orders are negligible.
Constraining these quantities in higher order is not necessary. Intensive quantities
on the other hand can be constrained on higher orders to improve the result of
inference. We wish to avoid higher order constraints because they suffer from
larger statistical error.

Jack and Evans showed that constraints symmetric under time reversal (T) and
space inversion (P) induce undesired symmetries in the system [87]. These sym-
metries imply that heat exchange with the reservoir averages to 0 in the implied
ensemble. It follows that the system is in equilibrium with its reservoir and sym-
metric constraints cannot form NESS-ensembles. Figure 3.2 illustrates how the
mechanical flow 〈J〉 and heat exchange with a reservoir ∆Q transform respec-
tively: Both, the mechanical flow and the heat transfer picks up a minus under
time reversal, but only the mechanical flow is negative under space inversion too.
The heat flow is unaffected by space inversion; the heat ∆Q is an asymmetric and
the mechanical flow 〈J〉 is a symmetric constraint. The symmetry of the flux under
PT-transform passes onto the resulting distribution of trajectories when enforced
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3.3 Reweighting in Off-Equilibrium

Figure 3.2: Illustration of observable mechanical flux in the system 〈J〉 and heat
exchange with a reservoir ∆Q under time reversal (T) and space inver-
sion (P). The mechanical flux is symmetric under PT-transformation,
the heat exchange is anti-symmetric.

in the Maximum Caliber

CJ =

∫
dΓ p[Γ] ln

(
p[Γ]

q[Γ]

)
− ζ

(∫
dΓ p[Γ]− 1

)
− ν

(∫
dΓ p[Γ]J [Γ]− 〈J〉

)
,

(3.13)
resulting in the distribution

p[Γ] =
q[Γ]

Z(ν)
exp (−νJ [Γ]) , (3.14)

where Z(ν) =
∫

dΓq[Γ] exp (−νJ [Γ]), so one can conclude

p[PTΓ] =
q[PTΓ]

Z(ν)
exp (−νJ [PTΓ])

=
q[PTΓ]

Z(ν)
exp (−νJ [Γ])

(3.15)

The symmetry is exploited when calculating the average heat exchanged with the
reservoir in the target ensemble by

〈∆Q〉 =

∫
dΓp[Γ]∆Q[Γ]

=
1

2

∫
dΓ

∆Q[Γ]

Z(ν)
exp (−νJ [Γ]) (q[Γ]− q[PTΓ])

= 0 if q[Γ] = q[PTΓ].

(3.16)

Note that q[PTΓ] = q[Γ] is only valid if the reference data fulfils detailed bal-
ance, i.e. in equilibrium. The last statement shows that no heat in the final
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system can be dissipated in case the reference data is equilibrated, i.e. we cannot
draw off-equilibrium information from equilibrium data. A trajectory ensemble
created with evenly distributed q[Γ] does not interchange heat either. Jack and
Evans conclude that the chosen constraint is insufficient to describe off-equilibrium
states [87]. A Caliber with only symmetric constraints can be discarded for off-
equilibrium. However, the Caliber combined with asymmetric constraints and
possibly symmetric constraints can dissipate heat [88].

Lastly, we will distinguish between local and global constraints. Quantities may
be constrained on the whole system, like energy or mechanical flow in the previous
example. There are attempts to constrain the system on a smaller level, e.g. in
detailed balance [20, 89]. There is no a priori statement one can make about global
or local constraints. Global constraint are easier to infer because they are less prone
to fluctuation and use one constraint per quantity, whereas local constraints use
many constraints. On the other hand, path dependence of off-equilibrium processes
suggests that local constraints are more promising. For a dissipating system, it
does matter where and when heat is transferred to or from the reservoir. Whereas
the time point does not matter for NESS, the position does. The following section
shows examples of local and global constraints on the Maximum Caliber.

3.3.2 Application of Constraints

The previous discussion gives an idea of how to choose constraints: In the best
case, one chooses an extensive quantity to avoid errors due to missing higher-order
constraints. At least one asymmetric constraint is needed to break PT-symmetry.
A candidate that fulfils both conditions is the entropy production or, similarly, the
heat dissipated in the full system. Similar to the picture of a canonical ensemble,
we think of the system being connected to a reservoir. The reservoir for a NESS has
two tasks: One is to provide the system with heat to maintain its state away from
equilibrium. The other is to withdraw the same amount of heat from the system,
the system itself does not dissipate any heat. This type of reservoir is modelled
by constraining the amount of heat flow to or from the system. Fluctuations are
allowed because the average of the heat flows is constraint. An open question is
whether a global heat reservoir is modelled for the whole system or if the heat
reservoir acts local depending on the state of the system.

The assumption of constraining global and local energy productions is tested on
the minimal model introduced in section 2.2.4. Furthermore, the system is con-
strained to the global balance condition in the last case. The constraints are
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3.3 Reweighting in Off-Equilibrium

tested by simulating two systems, one in equilibrium and one under external driv-
ing. The dynamics and statics are reweighted into each other. Static information
are presented by the stationary distribution profile, dynamic information by the
first passage-time distribution (FPTD) between the metastable states of the sys-
tem. If static and dynamic information are recovered, the chosen constraints are
considered sufficient for the simplified system.

Global Entropy Production

Global entropy production for a Markovian system can be described by 〈∆S〉 =∑
i,j πipij ln ∆Sij, where ∆Sij is the local entropy production when going from state

i to state j. This quantity is discussed in section 2.2.4 along with the model, where
the start and endpoint are the middle of the microstates respectively. The global
entropy production 〈∆S〉 is given by the target state that we want to reweight to.
Enforcing the single global reservoir on the Caliber gives

C∆S = −
∑
i,j

πipij ln
pij
qij

+
∑
i

πiµi

(∑
j

pij − 1

)
+ ζ

∑
i

(πi − 1)

+ α

(∑
i,j

πipij ln ∆Sij − 〈∆S〉

)
.

(3.17)

Note that the Lagrangian multiplier µi was rescaled by a factor πi without loss
of generality. With the requested maximisation ∂C∆S

∂πi
= 0 and ∂C∆S

∂pij
= 0 ∀i, j one

finds
0 = −

∑
k

pik ln
pik
qik

+ ζ + α
∑
k

pik∆Sik ∀i

0 = −πi ln
pij
qij
− πi + πiµi + απi∆Sij ∀i, j.

(3.18)

The second equation can be solved for

pij = qij exp (−1 + µi + α∆Sij) , (3.19)

which is plugged into the first equation resulting in

µi − 1 = ζ, (3.20)

giving the final equation

pij = qij exp (−1 + ζ + α∆Sij) . (3.21)
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Figure 3.3: Comparing (a) the stationary distribution ps and (b) the FPTD p FPT

for the process B → C of the equilibrium system (f = 0 ε/L) and
driven system (f = 9 ε/L). The reweighting procedure tests the global
entropy production of the target system as a defining system constraint.

The constraint on the global entropy production is not explicitly enforced and the
Lagrangian multiplier α remains unsolved. ζ is a normalisation constant enforcing∑

i πi = 1. The Lagrangian multiplier α takes a similar role as the β in the canon-
ical ensemble. The β is identified with the inverse temperature by comparison to
thermodynamics and allows us physical intuition on its role. An easy interpreta-
tion of α is not given here and the value in the reference simulation is unknown.
It is determined by numerical variation of α to cancel the deviation between the
reweighted total entropy production and the total entropy production of the tar-
get system, as determined by the reference simulation. This will satisfy the last
constraint of 〈∆S〉 on the Caliber. Figure 3.3 shows that the reweighting fails
for both the static and dynamic properties. We will turn to enforce the entropy
productions on a local level.

Local Entropy Production

Enforcing the local entropy production requires a Lagrangian multiplier at each
transition. Determining a value for each transition means to couple the same
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3.3 Reweighting in Off-Equilibrium

reservoir at a different strength. The Caliber is defined by

C∆Sij
= −

∑
i,j

πipij ln
pij
qij

+
∑
i

µiπi

(∑
j

pij − 1

)
+ ζ

∑
i

(πi − 1)

+
∑
i,j

πiαij

(
ln
pij
pji
−∆Sij

)
,

(3.22)

using the local entropy production relating the forward and backward jumping
probability (see section 2.2.3). The Lagrangian multiplier αij and µi were rescaled
by πi. The maximisation with respect to the transition probabilities gives

0 = −πi ln
(
pij
qji

)
− πi + πiµi + πi

αij
pij
− πj

αji
pij
. (3.23)

Solving for pij with πi 6= 0

pij = qij exp

(
−1 + µi +

γij
pij

)
, (3.24)

where γij = αij − πj
πi
αji is used. Enforcing the local entropy productions explicitly

by ∆Sij = ln
pij
pji

and after some algebra one finds

γij
pij

= wij
(
∆Sij −∆Sqij − µi + µj

)
, (3.25)

where the definitions wij = 1/
(

1 +
πipij
πjpji

)
)

and ∆Sqij = ln
qij
qji

have been used. This

expression is plugged into equation 3.24 and using wij + wji = 1 we find

pij = qij exp
(
−1 + wjiµi + wijµj + wij(∆Sij −∆Sqij)

)
(3.26)

The Caliber maximisation with respect to the stationary distribution gives

0 =−
∑
k

pik ln

(
pik
qik

)
+ µi

∑
k

pik − µi + ζ

+
∑
k

αik

(
ln

(
pik
pki

)
−∆Sik

)
.

(3.27)

By plugging in equation 3.24 and making use of the constraints, one finds a relation
between the γij and µi:

µi = 1 + ζ +
∑
k

γik. (3.28)
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Figure 3.4: Comparing (a) the stationary distribution ps and (b) the FPTD p FPT

for the process B → C of the equilibrium system (f = 0 ε/L) and
driven system (f = 9 ε/L). The reweighting procedure tests local en-
tropy productions of the target system as a defining system constraint.

Defining ci =
∑

k γik and plugging µi into equation 3.26 results in the final equation

pij = qij exp
(
ζ + wjici + wijcj + wij(∆Sij −∆Sqij)

)
. (3.29)

The constraint of conserved transition probabilities
∑

k pik = 1 gives

1 =
∑
k

qik exp (ζ + wkici + wikck + wik(∆Sik −∆Sqik)) . (3.30)

This equation can be solved for c by numerical iteration, discussed in the follow-
ing section 3.3.4. The result of enforcing local entropy productions is shown in
figure 3.4. The stationary distribution is reproduced correctly by the reweighting
procedure, showing a significant improvement compared to the global constraint.
The dynamics are not reproduced correctly, indicating that the current model of
a reservoir providing heat locally is not sufficient.

Local Entropy Production and Global Balance

The previous constraints define the interaction on every transition with the reser-
voir but the influence of local changes on the whole system are not modelled. We
add global balance πi =

∑
k πkpki ∀i as a condition for NESS (see section 2.2.3)
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3.3 Reweighting in Off-Equilibrium

to the list of constraints. It connects a single state on the left-hand side of the
equation to all other states of the global system on the right-hand side. Further-
more, it builds a connection between stationary and dynamic probabilities that
were previously maximised without specific coupling. The full Caliber is given by

C = −
∑
i,j

πipij ln
pij
qij

+
∑
i

µiπi

(∑
j

pij − 1

)
+ ζ(

∑
i

πi − 1)

+
∑
j

πjνj

(∑
i

πipij − πj

)
+
∑
ij

πiαij

(
ln

(
pij
pji

)
−∆Sij

)
.

(3.31)

The maximisation is performed equivalently to the derivation without global bal-
ance, just with additional Lagrangian multiplier νi. The maximisation with respect
to transition probabilities equivalent to equation 3.24 becomes

pij = qij exp

(
−1 + µi + νj +

γij
pij

)
. (3.32)

The maximisation of the Caliber with respect to the stationary distribution shows

0 =−
∑
k

pik ln

(
pik
qik

)
+ µi

∑
k

pik − µi

+ ζ +
∑
k

νkpik − νi +
∑
k

αik

(
ln

(
pik
pki

)
−∆Sik

)
.

(3.33)

By making use of the constraint
∑

k pik = 1 and equation 3.32 one finds a relation
between the Lagrangian multipliers γij = αij − πj

πi
αji, µi and νi:

µi + νi = 1 + ζ +
∑
k

γik (3.34)

Making use of equation 3.32 to enforce the local entropy productions ∆Sij = ln
pij
pji

,

where ∆Sqij = ln
qij
qji

denotes the reference entropy production and the definition

wij = 1/
(

1 +
πipij
πjpji

)
)

is used again

γij
pij

= wij
(
∆Sij −∆Sqij − µi + µj − νj + νi

)
. (3.35)

Plugging this result into equation 3.32 gives

pij = qij exp
(
−1 + wjiµi + wijµj + wjiνj + wijνi + wij(∆Sij −∆Sqij)

)
. (3.36)
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Figure 3.5: (a) the transition probabilities for the driven system (f = 9 ε/L). (b)
the deviation from detailed balance in the form log10

πipij
πjpji

. The black

regions around 0 indicate that detailed balance holds approximately,
red regions indicate violation of detailed balance. The matrix is anti-
symmetric by definition.

Enforcing the constraint
∑

k pik = 1 results in a set of N equations, where N is
the number of microstates. Combined with equations 3.34 there is a set of 2N
non-linear equation to be solved. In order to do that, we approximate that the
deviation from detailed balance is small. Mathematically we assume that

πipij
πjpji

≈ 1,

resulting in wij ≈ 1
2
. The approximation close to detailed balance is applied for a

single Markovian jump — a trajectory consists of many jumps and can grow large
entropy productions despite the approximation. Figure 3.5 illustrates that this is
a reasonable approximation for the important transitions where pij is large. Using
the approximation on equation 3.36 gives

pij = qij exp

(
1

2

(
−2 + µi + νj + µj + νi + ∆Sij −∆Sqij

))
. (3.37)

Using the result of equation 3.34 and the definition ci =
∑

k γik shows

pij =qij exp

(
ζ +

1

2

(
ci + cj + ∆Sij −∆Sqij

))
=
√
qijqji exp

(
ζ +

1

2
(ci + cj + ∆Sij)

)
.

(3.38)

This shows that we have two options for the input parameters: The reweighting
depends either on the total entropy production of the target system or the differ-
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Figure 3.6: Comparing (a) the stationary distribution ps and (b) the FPTD p FPT

for the process B → C of the equilibrium system (f = 0 ε/L) and
driven system (f = 9 ε/L). The reweighting procedure with local
entropy production of the target system and global balance recovers
dynamics and statics well.

ence in local entropy production of target and reference system. The unknowns c
are calculated by enforcing the relation

∑
j pij = 1

1 =
∑
j

qij exp

(
ζ +

1

2

(
ci + cj + ∆Sij −∆Sqij

))
, (3.39)

being a non-linear system of equations that can be solved numerically. It will be
shown in section 3.3.4 that this set of equations in convex and has a unique solution,
independent of initial conditions on the solving algorithm. ζ is a Lagrangian
multiplier that can be set to 0 because the corresponding constraint

∑
k πk = 1

is implicitly met by the rowwise normalisation of the transition matrix and its
enforced relation to the stationary distribution by global balance πi =

∑
k πkpki.

The results of the reweighting procedure,using the approximated solution is given
in figure 3.6. Both quantities are estimated correctly reweighted from equilibrium
to off-equilibrium and vice versa, indicating that the combination of local entropy
production and global balance as constraint apply for this system.

The outcome of the Caliber maximisation without global balance in equation 3.29
is equivalent to the final equation 3.38 when the same approximation wij ≈ 1

2
is

applied. It can thus not be argued that the global balance condition is indeed
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essential for the reweighting process, but we can argue that local entropy produc-
tions alone are not sufficient. It is possible that another constraint, which could
not be identified, leads to equation 3.38 without approximation. A possible can-
didate is a reservoir not connected to the transition, but to the single states of the
system. An indicator are the responsible N2 Lagrangian multipliers αij not being
calculated in the maximisation because they are reduced to the N parameters ci.
It follows that only the strength of coupling to each state is calculated separately.

We will stick to to the given equation for this thesis because it produces excellent,
fast and unique results for different systems. The presented set of non-linear equa-
tions without approximation may not have a unique solution and is too complex
for fast application. The enforced constraints on the entropy production hold true
with a relative error less than 10−9, indicating the approximation applies for the
given system. This test can be run for every system the algorithm is applied to.
However, a full solution in agreement with the approximated form would prove
that global balance is essential for reweighting. It would also give mathematical
ground to apply the reweighting procedure to systems under stronger driving.

3.3.3 Invariant Measure

Reweighting suggests that there is an underlying quantity that is the same for all
systems. For Equilibrium systems, it is the density of states. Once it is known
one can construct the system at any thermodynamic point, because the quantity
is independent of the ensemble and the microstate weigthing of the ensembles is
known. For the current reweighting scheme, we expect an underlying invariant
too. It does not have to be completely independent of thermodynamics, only of
the quantities that are altered by reweighting. The temperature for instance is
constant for all systems.

Starting with the reweighting formulae in equation 3.38, the product of forward
and backward transition is denoted by

pijpji = qijqji exp(ci + cj + 2ζ), (3.40)

where the symmetry of local entropy production is used to cancel ∆Sij = −∆Sji.
Similarly, we may reweight the other way round from qij to pij with another set
of constants c̃:

qijqji = pijpji exp
(
c̃i + c̃j + 2ζ̃

)
. (3.41)

Combing both equation 3.40 and 3.41 results in:

− c̃i − c̃j − 2ζ̃ = ci + cj + 2ζ. (3.42)
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Using this result to plug into equation 3.40, the expression

I2
ij = pijpji exp

(
c̃i + c̃j

2
+ ζ̃

)
= qijqji exp

(
ci + cj

2
+ ζ

)
(3.43)

is invariant under reweighting. It is constant under different driving of the system.
Note that Iij is defined up to a constant ζ. This quantity and its physical meaning
will be discussed in detail in section 6.1.

3.3.4 Numerical Maximisation

For an exact solution of the set of 2N equations

0 =
N∑
k

qik exp (−1 + wikµk + wkiµi + wikνi + wkiνk + wik(∆Sik −∆Sqik))

0 = −µi − νi + 1 + ζ +
N∑
k

pikwik (∆Sik −∆Sqik − µi + µk − νk + νi)

(3.44)

has to be solved for the Lagrangian multiplier vectors µ and ν. The Kullback-
Leibler divergence alone is a convex function, but constraining to the non-linear
local entropy production introduced non-convexity. It is not a priori known if there
is a unique solution of the equations. Finding an analytic solution failed, so we
solve it by numerical methods.

The analytic solution expanded wij = 1/
(

1 +
πipij
πjpji

)
)

around detailed balance. It

will be shown in the following that the resulting set of equations becomes convex
and possible solutions for higher order expansion will be suggested.

0th Order Expansion

The system of equations 3.39 resulting from the 0th order expansion are rewritten
by the definitions Φi = exp(ci/2) and Aij = qij exp

(
ζ + 1

2

(
∆Sij −∆Sqij

))
. The

equations 3.39 become

Φi =
1∑

k AikΦk

. (3.45)

We define this function as fi = Φi and show that it is convex by calculating the
Hessian

∂2f

∂Φm∂Φn

=
2AimAin

(
∑

k AikΦk)
3 . (3.46)
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Noting that Φi ≥ 0 and Aij ≥ 0, the Hessian is positive definite and the function

is convex. This means that a random starting point for Φ
(0)
i > 0 can be chosen to

find a numerical solution to this problem. We found that the least squared method
with the implementation in pythons library scipy.optimize.least_squares [90]
and Φi ≥ 0 bounded below gives the most robust result.

Full Solution

We briefly show why the approximated solution is used throughout the thesis by
attempting to solve the exact set of equation. The methods are applied to the
testing system with 30 microstates by reweighting equilibrium data to itself. We
tried different numerical methods provided by scipy including:

• Root finder (scipy.optimize.fsolve [91], scipy.optimize.least_squares [90])

• Function minimiser (scipy.optimize.minimize(method="L-BFGS-B") [92])

• Basinhopping (scipy.optimize.basinhopping [93])

The root finding method uses the equations 3.44 directly and solves the set of
equations self-consistently until a root is found, similar to the self-iteration. The
other two methods need an error function E =

∑N
i gifi for numerical minimisa-

tion, where fi represents one equation in 3.44 and gi weights each function. All
methods need an initial point to start the algorithm. As discussed earlier, the
functions are non-convex and may have more than one minimum. The basinhop-
ping algorithm attempts to solve this problem by using random displacements
of parameters followed by error-function minimisation. The algorithm combines
multiple minimisations but is not guaranteed to find the global minimum. The
prospect is better because the method becomes less dependent on its initial value
for long runtime.

The parameters wij depend on the stationary distribution π of the target system.
We use the stationary algorithm of the 0th-order approximation to estimate π
as it shows excellent agreement with the values known from simulation for the
testing system. In a general application, one could add the linear dependence∑

k πkpik = πi to the list of equations but this is set aside for now. Applying
the algorithm to the original set of equations we find that the variables tend to
diverge. This problem is solved by the transformation

ui = µi − νi
vi = µi + νi

(3.47)
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Figure 3.7: Deviation of constraints solving the full set of equations 3.48. “Norm”
refers to the first set of equation, “stationary” to the second.

resulting in the new set of equations

0 =
∑
k

qik exp

(
−1 +

1

2
(vi + vk + ui − uk) + wik (−ui + uk + ∆Sik −∆Sqik)

)
0 = 1 + ζ − vi +

∑
k

pikwik (∆Sik −∆Sqik − ui + uk) .

(3.48)
Comparing these equations to the approximated solution using wij ≈ 1

2
in equa-

tion 3.39 shows that v takes the role of c, and u are the new set of constants. This
provides a starting point for the iteration at v = c, u = 0 and ζ = 0. Note that
this choice does satisfy the first set of equations 3.48 for reweighting in equilibrium
(i.e. wij = 1

2
) but not the second set of equations.

The transformation solves the problem of diverging variables but reveals that the
algorithms are unable to find a solution that fulfils all constraints. The root-finding
methods fail to converge. The minimisation methods reveal that most constraints
are fulfilled but there are large local errors as shown in figure 3.7. The location of
these errors can be changed by reassigning weighting factors gi of the error function
E . The basinhopping algorithm can find solutions with lower error but non with
error vanishing for a complete solution.

Since finding a full solution is burdensome, we attempt to find solutions for higher
order expansions. Expanding w(x) where x =

πipij
πjpji

around 1 for the higher orders
gives

w(x) ≈ 1

2
− x

4
+
x3

48
+ h.o.. (3.49)

The same initial values as for the attempt of full solution v = c, u = 0 and ζ = 0
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3 Jaynes Maximum Caliber

are chosen. The idea is based on solving the system approximately for the 1st-order
approximation, use the output for an initial guess on the 3rd order approximation
and continue until a full solution is found. In practice this attempt suffers from
local errors like the full solution.

The above discussion indicates that a full solution is difficult to find or not existent.
In either case, the solution given by the 0th order expansion shows excellent results
and will be used throughout the paper. Finding a full solution is nevertheless
desirable. If the full solution can be shown to be exact in the sense of reweighting
data, it indicates that the global balance condition completes the set of constraint
for a NESS.
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4 Reweighting Dynamics in full
Conformational Space

This chapter focuses on testing the reweighting scheme introduced in section 3.3
on minimal models where the full conformational space is known. We have seen
in chapter 3 that the chosen set of constraints apply for a test model. We extend
this testing by variation of of potentials, dimension and magnitude of local and
global forces. The models consist of a single particle so entropic effects due to
many-body interactions are absent. This provides a minimal testing ground for the
reweighting method based on the Maximum Caliber. At first, an equilibrium model
with changing potential surface is test for the special case of equilibrium systems.
The second systems extends to non-equilibrium steady states (NESS) by a global
external force with periodic boundary conditions, introduced in section 2.2.4. The
third system is inspired by a laser model and pushes the system in a NESS by
applying non-conservative forces locally [94]. The last model adds one dimension
and tests the global driving on a 2-dimensional single particle.

The systems are simulated using molecular dynamics for 10 different driving forces
and a Markov State Model (MSM) is constructed. One system is reweighted
continuously to other thermodynamic state points and checked if dynamical and
static information from simulation are recovered correctly. The static information
is tested using the stationary distribution, the dynamical information is tested
using the first-passage-time distribution (FPTD) between metastable states (see
section 2.3.3). Selected processes are compared by full FPTD, because comparison
of all FPTD with each other is cumbersome. The systems are compared by the
first three moments of the FPTD and the metastable state occupation probabilities
Π. The reweighting test is considered successful if all information is recovered
correctly.

The presented results for all models except the 2D model were published in [95].
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4 Reweighting Dynamics in full Conformational Space

4.1 Single Particle in 1D Potential Well

0

0.03

0.06

0.09

0.12

0.2 0.4 0.6 0.8 1

−4
−2
0

2

4
A

B
C

(b)

(a)

(c)

0

0.005

0.01

0.015

0.02

0.025

0.03

1 10 100 1000

(b)

(a)

(c)

p
s

x /L

U
/
ε

p
F
P
T

t/τ

Reweight: U2 → U1
Reweight: U1 → U2

Simulation: U1
Simulation: U2

Figure 4.1: (a) Potential, (b) stationary distribution and (c) FPTD of the process
C → B. The lines in (b,c) represent the results from simulating the
system potentials, the dots are the results from reweighting the systems
into each other. A, B, C mark the metastable states. The system
without tilting is represented blue, the system with tilting in red.

The reweighting procedure is designed for general NESS. We will test it on the
special case of an equilibrium model first. The potential shown in figure 4.1 is a
1D potential of a type presented in section 2.2.4 with diverging boundaries and
three potential wells. The applied force in positive direction can be described
by an additional potential Uext(x) = −fx that tilts the existing potential. The
diverging boundaries prevent the system to enter a NESS and restrict the system
to equilibrium. Equilibrium is a case of a NESS without entropy production on
average and the dynamics are governed by detailed balance. It ensures that the
heat dissipated moving a particle between two points in space does not depend on
the chosen trajectory. The MSM was constructed with a lagtime 0.004 T and 60
microstates.

The static and dynamic properties for the system without potential tilt and with
maximum tilting at f = 9 ε

L are shown in figure 4.1. The presented FPTD from
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4.1 Single Particle in 1D Potential Well

state C to B slows down significantly with increasing tilting. Transition times
above 50 τ are rare in the reference system and become likely in the new potential.
The reweighting procedure recovers this detailed view on the dynamics. Previously
unknown trajectories are captured by the reweighting correctly.

Figure 4.2 presents the first three moments and the occupation probability of the
metastable states. The potential is constructed such that two processes have the
same FPTD in equilibrium: A→ B and C → B going from left and right inwards
to the central potential, their inverse processes going outwards from the central
potential and processes A → C and C → A. The latter processes crossing the
whole system via state B and can be seen as a combination of two processes. The
additional force breaks the symmetry and speeds up the processes in the direction
of the force, while inverse processes are slowed down. The standard deviation
(STD) of the distributions show the same behavior as the mean first-passage time
(MFPT). A larger mean allows larger variation. The skewness is stable at ≈ 2,
except for the process A → B. This process is increasingly fast, such that it is
described by processes of time-length of the lagtime τ , as shown in figure 4.1c.
The fast processes cannot be described in all detail anymore, resulting in a tilting
of the distribution and an increasing skewness. Smaller lagtime of the MSM would
shift this effect to higher driving forces.

Reweighting continuously from the equilibrium system shows the precision of the
method over the range of driving forces. Furthermore, the driven states between
the simulated ones can be explored without additional simulation. It is concluded
that the reweighting method recovers static and dynamic properties from reweight-
ing for the special case of equilibrium systems. We will turn to the general class
of all NESS in the next section.
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Figure 4.2: (a − c) The first three moments of the FPTD for all six processes
between metastable states in figure 4.1a under varying tilting of the
potential. (d) The occupation probability of each metastable state.
The dots represent the value measured from simulation. The line is
the equilibrium system continuously reweighted.
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4.2 Single Particle in 1D under Global Driving
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Figure 4.3: (a) Potential and external force (b) stationary distribution and (c)
FPTD of the process C → B. The lines in (b,c) represent the results
from simulating a single particle in the potential without (blue) and
with (red) external force. The dots are the results from reweighting
the systems into each other. A, B, C mark the metastable states.

A single particle in 1D periodic-boundary potential is driven in one direction by an
external force. Since the particle has a preferred direction to move the dynamics
do not fulfil detailed balance. The external force cannot be described by a poten-
tial. The heat dissipated to move the particle between two space-points becomes
path-dependent. In particular, the heat dissipated depends on weather the par-
ticle moving between two points in space along a trajectory with or against the
external force. The present model is a minimal example to describe a NESS. The
reweighting scheme will be shown to capture the path-dependence of the dynamics
correctly.

The corresponding MSM describing the dynamics is constructed from simulation
data in detail in section 2.3 with a lagtime τ = 0.002 T and 60 microstates. The
reference potential surface with non-conservative forces is shown in figure 4.3a.
The diverging potential at the boundaries of the equilibrium system in the previ-
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equilibrium system at f = 0 is a bimodal distribution, indicating two
sets of trajectories for that trajectory. The two peaks merge to one as
driving increases. One set of trajectories is suppressed by the driving.

ous section 4.1 was replaced by a potential barrier of height 5 ε. The stationary
distribution and a FPTD for a chosen process without driving and a system driven
by 9 ε

L are shown in figure 4.3b,c. The systems are reweighted into each other. The
simulation and reweighting data match precisely for the stationary distribution and
the FPTD from state C to B.

The potential shown in figure 4.3a represents the equilibrium system without driv-
ing force. The direction of the force is marked in red and applied over the whole
system with equal strength. The first three moments of the FPTD for all involved
slow processes and the stationary distribution of metastable states is shown in fig-
ure 4.5. The processes A→ B and B → C are aligned with the external force and
become faster. The process C → A shows abnormal behaviour by slowing down
first and speeding up at force > 4 ε

L . For the reference system, the connection via
state B is spatially longer but more probable than the direct connection over the
large barrier. Both sets of trajectories are presented by two peaks in the FPTD
in figure 4.4. This weighting of path changes under driving until the jump over
the large barrier between the states becomes more probable for increasing driving.
At this point, the process speeds up with increasing force. The process B → A
opposing the external force slows down first. After the jump over the barrier be-
tween state A and C becomes more probable, the transition B → A benefits from
using new transition trajectories via state C and increases speed. The transition
C → B slows down against the force. We can expect that the trend changes for
larger forces too. The STD show a similar behaviour as the MFPT as seen for
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4.2 Single Particle in 1D under Global Driving

the previous system. The skewness is more variable, but stays in a range of ≈ 2.
The skewness of transition A → B increases due to its strong increase in short-
term processes, as described for the previous system in section 4.1. The increase
is less than for the previous system, because a lower lagtime for the MSM was
chosen. The occupation probability changes over driving such that state B be-
comes higher populated than state C for driving > 4 ε

L . This population inversion
is an off-equilibrium effect where population of high energy states is larger than
the population of low energy states [86]. It cannot exist in equilibrium because
populations follow Boltzmann statistics.

The current minimal system shows complex non-equilibrium behaviour by intro-
ducing path-dependence. This path-dependence of transition breaks the monotonous
increase/decrease in MFPT under driving from the equilibrium system by promot-
ing one collection path over another. This is not possible in equilibrium systems.
Additionally population inversion is achieved by breaking detailed balance: A
probability flow from one state of the system is allowed without a symmetric
back-flow, irrespective of the stationary distribution. Global balance makes sure
that the probability flows away in other direction so probability flow is conserved.

The presented method shows perfect results for the case of NESS. We will continue
by testing the boundaries of the driving and the effect of local driving on the
reweighting procedure.
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Figure 4.5: (a-c) The first three moments of the FPTD for all six processes between
metastable states in figure 4.3a under varying external force f . (d) The
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value measured from simulation. The line is the equilibrium system
continuously reweighted.
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Figure 4.6: (a) Sketch of a 4-state laser model. The electron are pumped from state
A to state B, marked by the red arrow. The blue arrows represent re-
laxation transition. The transition C → D relaxes under emission of a
photon. (b) Translation of laser model to a continuous potential sur-
face. The excitation is represented by a Gaussian force in the direction
of the potential barrier.

This model is inspired by a laser model with 4 states. A laser is in a far-off-
equilibrium steady state and shows population inversion where high energy electron
states are more populated than low energy states [96]. Relaxing electrons from the
high energy state to a low energy state emits photons. The steady state is driven
by an external force pumping electron to higher energetic states. The laser starts
emitting monochromatic light when the higher energy states are more populated
than the lower states.

An electron in figure 4.6 starting in state A is pushed to the highest energetic state
B by external driving. Typically, the energy is provided by optical illumination
and photon absorption, chemical reactions or electronic discharge [96]. In this
simplified model, the driving is represented by a Gaussian shaped force irrespective
of the source. From the highest state, it relaxes fast to a state C with slightly
lower energy under emission of heat in form of vibrations to surrounding atoms.
This state is used to depopulate state B, so it can be repopulated quickly by the
pumping. The electron relaxes from state C to D by emitting a photon. In practice
the emission may happen by spontaneous or stimulated emission. The relaxation
from state D to A is fast under the emission of vibrational energy to surrounding

61



4 Reweighting Dynamics in full Conformational Space

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1
10−18

10−15

10−15

10−12

10−9

10−9

10−6

10−3

1 10 100 1000 10000

(b)(a)

p
s

x /L

Simulation: f = 0 ε/L
Simulation: f = 200 ε/L

p
F
P
T

t/τ

Reweight: f = 200 ε/L → f = 0 ε/L
Reweight: f = 0 ε/L → f = 200 ε/L
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A → B. The lines in (a,b) represent the results from simulating a
single particle in the potential without (blue) and with (red) external
force. The dots are the results from reweighting the systems into each
other.

atoms like the transition B → C. The depopulation of state D will promote the
desired transition C → D. Direct transitions between non-neighbouring states like
B → D are forbidden by the selection rules of quantum mechanics. All described
transition may occur the other way round by random fluctuations. The pumping
will promote the described path and suppress the inverse path. Without this
pumping, the forward and backward transition becomes equally likely, i.e. the
system fulfils detailed balance and Boltzmann statistics apply. The flow in cycles
is essential for a NESS. That means a 3-state laser model can be constructed by
deleting supporting states B or D and it can show population inversion too. A 2-
state laser would automatically fulfil detailed balance and cannot show population
inversion.

The model is not designed to be an accurate presentation for a laser. The helium-
neon-laser for example uses 3 states of the helium and 6 states of the neon gas [97].
The number of states, the barriers and energy levels are chosen purely phenomeno-
logical. The transition states are modelled by a steep potential slope and the
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4.3 Single Particle in 1D under Local Driving

classical Langevin equation does not represent quantum mechanical transitions.
There is only a single particle in the system, i.e. the electron is non-interacting.
The model is designed to achieve a complete population inversion, where the equi-
librium occupation order is inverted for all four states. It shows that the equilib-
rium and driven states share less dynamics than in the previous 1D system. The
reweighting procedure requires reliable reference data, so this model is challenges
it by the absence of common dynamics. Furthermore, the reweighting procedure
is challenged by external forces that act locally.

The MSM was constructed with 64 microstates and a lagtime of 0.002 T . The
equilibrium system and a system driven at peak force 200 ε

L is compared in fig-
ure 4.7. It should be noted that the peak force is 20 times larger than external
forces used in previous systems. The stationary distribution is recreated well by
the reweighting procedure. There is a small artifact at the peak of the external
force for the reweighted driven system. The FPTD is shown for the pumped tran-
sition from A to B. The short-time processes are more probable by a factor of
10 for the pumped process compared to the equilibrium process. The equilibrium
system shows transition over the whole spectrum from 10 to 10000 Markovian
steps. The reweighting procedure recovers the FPTD for both systems although
transition times differs by a factor of 10.

The comparison for different driving forces by the first three moments of the FPTD
and the metastable state population is shown in figure 4.8. The analysis shows
the pumping and emission transition and their corresponding inverse transition.
Note the logarithmic scale in MFPT and STD to capture the large differences in
timescales of the observed systems. The MFPT of the pumping transition A→ B
speeds up drastically as desired. The inverse transition opposing the pumping
is affected much less and the mean increases slowly. The duration of the desired
relaxation transition C → D is unaffected by the pumping. However, the transition
is happening more frequently because state C is much higher populated than in
equilibrium. The inverse relaxation D → C speeds up with the pumping caused by
the cyclic motion via A and B, not by a direct jump. Again, the STD follows the
behaviour of the mean, also in magnitude. The skewness does not show any new
behaviour, the skewness of transition A → B is increasing when approaching low
MFPT. The stationary distribution shows the first population inversion of state
B and C for f > 70 ε/L. The populations are globally inverted for f > 170 ε/L.

Simulation and reweighting from equilibrium agree well, but some deviation can
be seen for increased driving. Major deviations occur in the MFPT and the skew-
ness of the NESS of transition A → B for driving f > 150ε/L. The MFPT is
underestimated due to the defect in stationary distribution shown in figure 4.7a.
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4 Reweighting Dynamics in full Conformational Space

This deviation can be an effect of the discretisation of state. The localised Gaus-
sian force is continuous in simulation and discretised in the reweighting procedure,
where it spreads out over just a few microstates in the MSM. The local error
does not effect other transitions. The reweighting procedure can capture localised
forces but the microstates should be chosen fine so the discretised description of
the forces is sufficient. Most of the deviations occur when the driving is very large
compared to previous driving forces. The large deviation in skewness is connected
to the same effect for very low MFPT described for the previous systems. The
method relies on sufficient data from the reference simulation. The underlying
dynamics of both processes are so different that deviations can occur because the
reference sampling is noisy, similar to the effect of missing reference data in equi-
librium reweighting (see section 3.2). Furthermore, the MSM was constructed for
the reference system. The dynamics of the driven system are much faster and the
lagtime can be too large to describe the system properly. Considering these effects,
deviations for heavy driving are in an acceptable range.

We achieved the desired total population inversion as a limitation test for the
reweighting procedure. It shows that far-off equilibrium phenomena are captured
by the reweighting, despite the approximation close to detailed balance for a single
jump. The construction of long trajectories from single transitions marginalises
the error. The effect of local forces was tested in depth. The model demonstrates
that local entropy productions are essential for NESS, a global constraints would
not be able to capture the local driving in this model.
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Figure 4.8: (a-c) The first three moments of chosen FPTD between metastable
states in figure 4.7 under varying external force f . The transition are
the pumping transition A → B and the emission transition C → D
with both inverse transitions. (d) The occupation probability of each
metastable state. Full population inversion for driving f > 170ε/L.
The dots represent the value measured from simulation. The line is
the equilibrium system continuously reweighted.
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4 Reweighting Dynamics in full Conformational Space

4.4 Single Particle in 2D under Global Driving

The non-interacting particle is suspended in a 2D potential to introduce a second
degree of freedom that has to be recovered correctly. The configuration space
increases quadratically and challenges the reweighting method by a large number
of microstates.

The potential consists of three Gaussian potential wells of varying depth, shown in
figure 4.9a. All boundaries are periodic and the external force is applied along the
x-direction. The microstates consists of 30x10 squares of equal size, the lagtime
was chosen at 0.02 T . The potential minima were chosen at 3 ε, 5 ε ,and 7 ε, located
on a line in the middle of the y-axis. The STD of the Gaussian is 0.02L in both
directions.

A detailed view on the stationary distribution is given in figure 4.9c. The simulated
system at 9 ε

L and the reweighted system agree in probability distribution at first
sight. Figure 4.9b adds the probabilities distribution for (i) a y-value along the
middle of the system, (ii) one at boundary of the system and (iii) one in the middle
of these two, comparing the simulated and reweighted stationary distribution. The
probability density around the minima decreases with driving and more states
surrounding the minima are occupied. Within the basins, the distribution is tilted
in the direction of the force. Turning to the result of reweighting, the logarithmic
scale reveals a deviation when reweighting from equilibrium to the driven system.
The error is smaller reweighting vice versa. The occupation probabilities between
the basins are estimated too low and in the minima too high. This error was
not identified for the 1D-systems and it is more pronounced in the driven than
in the equilibrium system. Turning to figure 4.9d the FPTD of the transition
C → B peaks at faster processes for the driven system because the transition
via A becomes more prominent. The equilibrium transitions occur at a broader
probability peaking between 10 τ − 30 τ . A small deviation between simulation
and reweighting can be seen at the peak of the driven distribution. The process
speeds up by a factor of 10.

The first three moments of the six slowest FPTD and the metastable state oc-
cupation probability is shown in figure 4.10. The MFPT becomes faster for all
processes under driving. Only the processes C → B and B → A slow down for
small driving before speeding up. Similar to the 1D system in section 4.2, this can
be explained by an initial slowing down by the particles taking the direct path
against the force. For larger driving the spatially longer paths along the external
force become more prominent and increase speed of the process. Compared to
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Figure 4.9: (a) The potential surface with the metastable states marked A, B, C.
(b) Stationary distribution under driving from simulation and from
reweighting. (c) Detailed view on the stationary distribution in equi-
librium and driven with 9 ε

L on states with y = 0.05L, 0.25L, 0.45L.
The lines are the results from simulation, the dots from reweigthing
into each other. (d) FPTD of the process C → B. The lines represent
the results from simulating a single particle in the potential without
(blue) and with (red) external force. The dots are the results from
reweighting the systems into each other.
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4 Reweighting Dynamics in full Conformational Space
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Figure 4.10: (a-c) The first three moments of the FPTD for all six processes be-
tween metastable states in figure 4.9a under varying external force
f . (d) The occupation probability of each metastable state. The
dots represent the value measured from simulation. The line is the
equilibrium system continuously reweighted.
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4.4 Single Particle in 2D under Global Driving
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Figure 4.11: FPTD of transition A → B simulated at 3 different driving forces.
Increased driving promotes short-time processes and suppresses slow
processes. For f = 9 ε

L a second peak appears at ≈ 30 τ , showing new
long-term processes.

the 1D system under global driving, this phenomena comes into effect for much
lower driving although the potential barriers are larger. A possible reason is the
bypassing of the intermediate state because the potential barriers are small close to
the y-boundaries. The increase in occupation probability in y-direction supports
this argument, because more trajectories pass by these states. Again, the STD
shows the same trend as the MFPT. The skewness levels ≈ 2 again. The process
A → B shows abnormal behaviour in skewness by increasing until 4 ε

L and then
decreasing again. The skewness of process A → C on the other hand becomes
smaller than than for the other processes, indicating a tilting of the distribution
to the right. Both effects can be explained with another set of slower processes
entering the system for increasing driving: The potential in A is a too weak obsta-
cle for the particle flowing by. There is an increasing probability that they simply
bypass the metastable state lying in the minimum of the potential and produce
trajectories longer than the system size. The effect is shown in figure 4.11 where
increased driving results in an increase of short-time processes in A → B on the
left-hand-side of the distribution. Further driving produces a second small peak on
the right-hand-side, showing the long-time processes bypassing A. The decrease in
MFPT is slowing down and the skewness decreases by this effect. The bypassing
can only occur for a 2D system. The metastable state occupation in figure 4.10 of
state C decreases and occupation of state A and B stay approximately the same.
The depopulation of the highest probability state was seen in the 1D system too.
The other states do not increase in population because the probability generally
spreads out from the potentials minima. A broader definition of metastable states
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4 Reweighting Dynamics in full Conformational Space

would capture this in an increase of occupation probability with increasing driv-
ing. The reweighting procedure has problems capturing the true magnitude of C
as discussed earlier in the detailed view on the stationary distribution in figure 4.9.

The reweighting technique shows excellent results for this model too. We can see
some deviation, e.g. for the peak of the FPTD in figure 4.9d or the occupation
probability between the basins in figure 4.9b. Both effects only take place when
reweighting over a broad range of driving. The additional degree of freedom re-
quires a larger number of microstates and defines a challenge for the reweighting
procedure and gives insight in its possible limitations. In particular we find that
states away from the basins are not recovered correctly by the reweighting. The
sources of deviation for all systems will be discussed in detail in the next chapter.

4.5 Discussion

The previous sections applied the reweighting scheme to a number of different
systems, all being single particles in different external potentials under varying
driving forces. The potential surface and the external forces can be varied locally
once an MSM for a reference system is created. The gathered information can be
reweighted to any other system, as long as it is similar to the reference system.
This section discusses the precision and limitation of this method.

The method needs two sets of input data: Any reference data in form of an MSM
and the local entropy production of the target system. The latter can be in-
cluded by the total entropy production ∆Sij from state i to j or by the difference
in entropy production of reference and target system ∆Sij − ∆Sqij as shown in
equation 3.38. Any system can be chosen for a reference, indicating that there is
an underlying invariance in the reference systems, as it was introduced in equa-
tion 3.3.3. This consequences of the invariant is further discussed in section 6.1.

The method relies on sampling transition probabilities of a system sufficiently.
The underlying simulated trajectories give a more detailed picture but are broken
into pieces of local transitions. Sampling the transition probabilities is a much
easier task than sampling complete trajectories. As a result trajectories that do
not exist in the reference system are constructed by the MSM of the reweighted
system. This can be seen in the FPTD for all systems (see figure 4.1, 4.3 , 4.7,
4.9). The underlying MSM allows us to construct trajectories that are important
in the target system. This is a fundamental difference to the Ferrenberg-Swendsen
reweighting for equilibrium introduced in section 3.2: The method fails if states
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4.5 Discussion

required in the target system are not sufficiently sampled in the reference system.
Translated to dynamics, it means that the important transition probabilities of
the target system have to be sampled sufficiently in the reference system. The
complete trajectories do not need to overlap because they can be constructed
afterwards. The locality of the entropy productions is key for the system to work
because each part of the trajectory is reweighted individually to constitute the
local nature of non-equilibrium processes. The global balance condition account
for the interaction of all microtransition.

The MFPT and the STD of the FPTDs show similar trend and magnitude for all
systems. Exponential distribution have the property σ = µ. The large tails of
the FPTDs decay exponentially and dominate the variance of the system. The
observed values for mean and STD become similar for our systems but not equal
because they deviate from exponential distributions for short time processes.

4.5.1 Sources of Error

The FPTD shows small deviations from its expected distribution with increasing
reweighting distance. This deviation is largest in the peaks of the FPTD distri-
bution and for the stationary distribution of the 2D system in figure 4.10. Error
analysis was performed on different systems to exclude sampling issues. Other
sources of the deviation are possible and are discussed in the following:

• The approximation was used in the deviation of the reweighting formula

• Insufficient constraints in the Maximum Caliber

• Chosen microstates and lagtime of reference MSM might be unsuitable for
target system

• Limitation for large fluctuations

The necessity of the approximation was discussed in detail in section 3.3.4. The
exact set of equations emerging from the Caliber cannot be solved numerically.
Furthermore the full set of equation may have more than one solution and it
cannot be guaranteed to find the correct one. The approximation solves this issue
by having a singular solution and fulfilling the constraints of the Caliber. The
significance of this error cannot be determined without an available full solution.

Constraining the Caliber according to the local entropy production is based on how

71



4 Reweighting Dynamics in full Conformational Space

Technical Point 4.1 The Kramers Model
The Kramers model [98] describes non-dissipative
dynamics of molecular reactions by a 1-
dimensional potential U(x) coupled to a head-
bath at temperature T with coupling constant γ.
It estimates the rate of a transitioning over a bar-
rier by

k =
kBT

γ

(∫ xu

x0

exp

(
U(x)

kBT

)∫ x2

x1

exp

(
−U(x)

kBT

))−1

The first integral is over the transition region, the second integral captures the
starting potential or the initial probability distribution. Kramers showed how the
transition rate depends on the form and the height of the potential. It requires
that the equilibration time τe in one basin is much smaller than the transition
times τt � τe. To be consistent we have to assume that kBT � ∆U .

the system interacts with its environment. Global balance is introduced to model
the internal connection of the states. Success of the method is based on the quality
of the constraints. It cannot be excluded that other effects play a major role. If
other effects exist they are minor for the given systems. If new constraints can be
identified it can be included in the Caliber in form of Lagrangian multipliers. For
now we assume the set of constraint to be complete.

Another source of error is based on the construction of the Markov State Model.
The microstates are chosen equi-sized and independent of data so all models can
be represented by it. The lagtime on the other hand is chosen based on a method
requiring equilibrium data (see section 2.3). The method fails for NESS, so the
lagtime of the reference equilibrium system is assumed to be valid for the target
system too. When reweighting over large distances this assumption might be
flawed. An indicator is the MFPT that changes considerably e.g. for the laser
system. This suggests a change in timescale and the lagtime of the target MSM
might be chosen inconsistent with the Markovian assumption. The user has to
reweight MSMs constructed at different lagtimes to check for deviations based on
this issue.

The method is limited to systems where fluctuations are not stronger than the
potential surface. Tests showed that potential barriers of ∆U < kBT are not
captured well by the reweighting method. The random fluctuation takes over
the system-dependent local entropy productions. The barrier crossing dynamics
are governed by the local potentials and captured well (see technical point 4.1).
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4.5 Discussion

The diffusion dynamics governed by symmetric fluctuations on the other hand
are not well captured. This effect can be seen in the 2D system in figure 4.10
where trajectories bypass some potential minima for heavy driving. The potential
barrier close to the boundary in y-direction is often smaller than kinetic energy
from fluctuations. Once these states show larger population, the error becomes
more pronounced. The presented errors for heavy driving might emerge from this
limitation of the method.

The mentioned sources of errors are oftentimes difficult to check. However, this
chapter shows that the errors are minimal compared to the range of the reweight-
ing method. Even increasing/decreasing the speed of processes by the order of 10
is captured with minor deviation. A full error analysis on the construction of the
MSM or developing a maximisation algorithm for the full solution of the Caliber
can be useful for future investigation. The presented data proves the concept of
Caliber maximisation under constraining global balance and local entropy produc-
tion by reweighting MSM between NESS. The proposed combination of constraints
form a functional ensemble for NESS at different temperatures, different potentials
and various strength and form of driving.
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5 Reweighting Dynamics by
Collective Variables

Complex systems consist of many particles giving rise to pair and higher order
interactions. The large number of interactions is burdensome to analyse and dis-
play for interpretation. One typically reduces the high-dimensional space to a few
low-dimensional variables describing the slowest dynamical processes of the sys-
tem. This reduction implies that the remaining coordinates average out on faster
timescales or have no effect on the process of interest. The system is reduced
to the chosen aspects and is not under full investigation. Examples are the de-
scription of a magnet by its magnetisation whilst ignoring the influence of local
dipole fluctuations [99] or the crystallisation of particles described by the closest
radial environment of each crystallising particle [100]. Fast and local processes are
integrated out when deciding on a set of collective variables. This is compatible
with Markov State Model (MSM) construction because here, fast processes are
neglected too. However, the mesoscopic descriptors or collective variables(CV) are
chosen system-specific and the choice limits the view on the system: The crystalli-
sation described by the local environment of the particles holds detailed view on
the crystalline phase but limited information on the liquid phase [100]. Further-
more, a poor choice of CVs can hide important processes and free energy barriers
or cause an inaccurate estimation of implied timescales [29, 101, 102]. Dimension-
ality reduction and choice of an advantageous set of collective variables is a widely
discussed research field on its own and is applied to describe complex systems in
chemistry, biology, physics and more [103].

MSM requires the use of CVs to be computationally accessible. State of the art
use 102−103 microstates [104], resulting in 104−106 possible transitions that have
to be sampled. A construction on the full conformational space requires a larger
number of transitions that would exceed computational boundaries and we use
collective variables to bypass these limitation. This chapter tests the reweighting
procedure on systems described by collective variables to extend its scope to a
larger group of systems. The reweighting method is first applied to a particle in
a 2D-potential described by a 1-dimensional collective variable. The second test
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5 Reweighting Dynamics by Collective Variables

system is a coarse-grained tetraalanine peptide being described by CV and showing
many-body interactions.

The reweighting procedure can be applied without adjustment. The collective
variables hide the full local entropy productions, but the relative local entropy
productions

∆Sij −∆Sqij =
∆U(xj)−∆U(xi) + (xj − xi)∆f

kBT
(5.1)

is sufficient for reweighting. Here, ∆U(x) is the change in potential and ∆f is the
change in force of reference and target system. The new potentials or forces are
defined for the CVs coordinate x, unlike in the previous chapter for the conforma-
tional coordinates. We only need to know the change in local entropy productions
∆Sij −∆Sqij due to driving from theoretical prediction. Since the forces and po-
tentials are aligned with the CVs we can calculate them. The total local entropy
productions ∆Sij are not known from theory anymore. The total values are sam-
pled by the reference simulation itself.

5.1 Single Particle in Collective Variable Space

As a first testing ground we choose the 2D system from section 4.4 and integrate
out the y−dimension orthogonal to the driving force, shown in figure 5.1a,b. This
will imitate the reduction to a collective variable on the testing ground of the
well-understood minimal system. A MSM is constructed on the reduced space.

The 2-dimensional system is reduced by integrating along the y−axis of the system.
A mean force and mean potential is calculated by

〈F(x)〉 =

∫
dyF2D(x, y)π(x, y)

〈U(x)〉 =

∫
dy U2D(x, y)π(x, y).

(5.2)

Note that the definition of the mean potential is only valid for the equilibrium
system and a potential cannot be defined off-equilibrium. The position of the
metastable states are determined from the x-coordinate of the 2D system to com-
pare the dynamics of full and reduced system. The dimensional reduced data are
collected during runtime of the full systems simulation. A MSM is constructed
with the same lagtime τ = 0.02 T and the same 30 equi-sized microstates in x-
direction.
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5.1 Single Particle in Collective Variable Space
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Figure 5.1: (a) The 2D potential with the three metastable states indicated by
squares. Integrating out the y−dimension gives (b) the mean potential
of the equilibrium system. The grey area represents the new metastable
states A,B,C. The area of the metastable state is effectively increased.
(d) The stationary distribution of the reduced system and (c) FPTD of
the process C → B. The lines in (c,d) represent the results from sim-
ulating a single particle without (blue) and with (red) external force.
The dots are the results from reweighting the systems into each other.
The orange and light-blue dashed lines show the same process for the
underlying 2D process with dots representing the reweighted FPTD.
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5 Reweighting Dynamics by Collective Variables

Figure 5.1c and d compares the first-passage time distribution (FPTD) and the
stationary distribution of the reduced system in equilibrium and under driving of
9 ε
L when reweighting the systems into each other. The FPTD of the 2D system

in full conformational space is shown for comparison. Small deviations are seen
in the FPTD, however, they are of the same magnitude and position as the refer-
ence 2D system. The reweighting for short processes of 1− 5 τ are overestimated,
whereas the peak is underestimated in both cases. The tail for longer processes is
reweighted correctly. According to the results shown in figure 5.1d, the station-
ary distribution is recreated by the reweighting procedure. We deduce that the
reweighting works well, even though system’s details are lost by the used collec-
tive variables. An impairing effect on the reweighting cannot be observed for this
system. The mentioned deviations are based on deviations on the reweighting in
the underlying 2D-system in full conformational space.

Figure 5.2 shows continuous reweighting from the equilibrium system for the first
three moments of the FPTD between metastable states and the occupation prob-
ability Π of each metastable state. Additionally, the reweighting from the under-
lying 2D system is shown by dashed lines. First, we focus on comparing results
of the 2D system and its reduced system. The mean first-passage time (MFPT)
is responding to external driving the same in both systems. The processes along
the driving force speeds up immediately. The processes opposing the driving slow
down at first, before the spatially longer path along the external force becomes
more probable and the process speeds up too. For all processes the 2D process
is slower than the coarse-grained process. This effect of accelerated dynamics
is known from coarse-graining different materials [105–108]. It originates in the
disappearance of roughness in the free energy surfaces, resulting in a decrease of
effective friction and increase of effective mobility. For our simplified model, this
effect reduces the effective potential barriers, leading to the acceleration of the
coarse-grained process. The response of full and reduced processes under driving
remains qualitatively the same although mobility was not preserved.

The standard deviation (STD) of the FPTD of the reduced system is lower com-
pared to the 2D system. This agrees with the observation that MFPT and STD
behave similarly. The skewness of both systems agree. A deviation of the full
and reduced system is seen in the inset of the skewness for process A → B. The
initial increase in skewness was seen for different systems in chapter 4 based on
low discretisation of the FPTD for fast processes. The following drop of skewness
was unique for the 2D system and is explained by emergence of another peak of
slow processes in the FPTD. This class of processes was identified with trajectories
bypassing the metastable state due to heavy driving. This effect of bypassing a
metastable state cannot occur in the 1-dimensional description. Figure 5.3 shows

78



5.1 Single Particle in Collective Variable Space

100
200
300
400
500
600

(a)

(b)

(c)

(d)

100

200

300

400

500

600

(a)

(b)

(c)

(d)

1.7
1.9
2.1
2.3
2.5
2.7

(a)

(b)

(c)

(d)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 1 2 3 4 5 6 7 8 9

(a)

(b)

(c)

(d)

2
5
8

(a)

(b)

(c)

(d)

M
F
P
T
µ
/
τ

A→ B
B → A

A→ C
C → A

B → C
C → B

S
T
D
σ
/
τ

sk
ew

n
es
s
κ

o
cc
u
p
a
ti
o
n

Π

f /(ε/L)

A B C

Figure 5.2: (a-c) The first three moments of the FPTD for all six processes be-
tween metastable states defined in figure 5.1b under varying external
force f . (d) The occupation probability of each metastable state. The
dots represent the value measured from simulation. The line is the
equilibrium system continuously reweighted. The dashed lines are the
processes of the underlying processes in 2D space.
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Figure 5.3: First-passage time distribution of transition A→ B simulated at three
different driving forces. Increased driving promotes short-time pro-
cesses and suppresses slow processes. The continuous lines show the
FPTD for the reduced system, the dashed lines for the underlying 2D
system.

that the FPTD of the reduced system under driving does not show a second peak.
The decrease around 6 ε

L of the skewness is based on a symmetrising effect on the
FPTD of stronger driving. The deviation in skewness of the 2D system and the
reduced system is thus based on loss of information of dynamics in y-direction
when describing the dynamics by collective variables.

The occupation probability of the metastable states is considerably larger for the
reduced system. The metastable states in the 2D system are smaller because
they do not span the whole y-direction. The reduction to the x-axis enlarges the
metastable states effectively and the occupation probability increases. The trend
of decreasing occupation in C and increasing occupation A and B is the same for
both systems.

In the following, we will discuss to the deviation between simulation of the re-
duced system and its reweighted properties. The largest deviation can be seen
for the process A→ B, although it is comparable to the deviation of the 2D sys-
tem for this process shown in figure 4.10. The same observation is made for the
deviation in occupation probability of state C. The error of the reweighting are
much smaller for the other processes. In general the deviations are all of the same
shape and relative quantity as for the underlying 2D process. We conclude that
the use of collective variables of the system did not affect the reweighting process.
Hence, it can be applied to the same extend as the reweighting on configurational
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5.2 Tetraalanine

space. Deviations of the reweighting are adopted from the underlying errors in
configurational reweighting and were discussed in section 4.5.1.

From the Maximum Caliber point of view the choice of coordinates does not make
a difference. It chooses the system with the most uncertainty, given the prior
information and the constraints given — irrespective of the coordinates. The
critical assumptions is made by the CVs: We assume other processes to average
out on faster timescales along the process. Here, it means that the fluctuations in
y-direction average out along the ensemble of trajectories between two basins. It
is a reasonable simplification for the present 2D-system, but can be hard to justify
for complex systems with other processes involved and more complex CVs. A good
choice of CVs is a problem of current research by itself [103]. Here, we also have
to make sure that the CVs are reasonable for both, the reference and the target
system.

5.2 Tetraalanine

The following system represents a coarse-grained tetraalanine peptide consisting
of four beads. This model is the first non-artificial material and challenges the
reweighting procedure by many-body interactions. External global forces are ap-
plied along the CVs to alter the dynamics. These forces may represent an optical
tweezer controlling atom distances. The CVs and the forces applied to the system
are chosen by the user. The current forces are chosen to test the effectiveness of
the reweighting procedure for conservative and non-conservative forces.

Tetraalanine is a peptide consisting of 44 amino acids and 52 atoms. Each amino
acid is coarse-grained to one bead centered at the backbone of the peptide. The
coarse-grained force field constructed by Rudzinski and Noid [109] for the molecule
solvated in water consists of 3 pair potentials along the backbone, 2 bending in-
teractions between 3 subsequent beards, a dihedral angle ϕ between all 4 beads
and interaction between the first and the last bead R14. The bending interactions
are defined by the angle formed between the lines of the first two and last two
beads. The dihedral angle is defined by the angle between the planes formed by
the first three and last three beads. The MSM is constructed using the end-to-
end distance R14 and the dihedral angle ϕ as CVs (see figure 5.4), following the
example of Bereau and Rudzinski [110]. The system will be driven with constant
force along both CVs in both directions. The unperturbed system is called the
reference system.
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5 Reweighting Dynamics by Collective Variables

)

Figure 5.4: Atomistic and coarse-grained representation of tetraalanine. Atoms
are shown as rods, where turquoise, white, blue, and red represent
C, H, N, and O, respectively. The transparent beads show the coarse-
grained representation of the system. The end-to-end distance R14 and
the dihedral angle ϕ are defined for the coarse-grained system.
Reprinted figure with permission from Tristan Bereau and Joseph F. Rudzinski , Accurate Structure-Based
Coarse Graining Leads to Consistent Barrier-Crossing Dynamics, 121(25):256002, 2018 Copyright 2018 by the
American Physical Society. DOI: https://doi.org/10.1103/PhysRevLett.121.256002
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Figure 5.5: a) Free energy surface of tetraalanine of the reference system. The
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5.2 Tetraalanine

The free energy surface of the reference system is shown in figure 5.5a. Three basins
were identified using PCCA+ as introduced in section 2.3.2. They represent the
helical states H, extended state E and one intermediate state I. Note that the
direction of driving makes a difference, because the free energy surface lacks the
symmetry of the previous systems. The driving along R14 can be translated to
an additional interaction potential. Systems driven by a force along are still in
equilibrium and can be analysed via the eigenvalue decomposition of the transition
matrix. Driving along the periodic dihedral angle ϕ will push the system in a non-
equilibrium steady state (NESS) that can be analysed using FPTD.

The lagtime analysis is performed in figure 5.5b for the reference system and one
system driven along R14. We choose a lagtime of 200 fs to capture the two slowest
processes of both systems. The second process is captured by the MSM and is
unaffected by the additional forces applied. We expect it to be remain unaffected
by larger forces and such it will stay in timescales captured by the MSM. The MSM
was constructed with 15 microstates over the range [−π,+π] in ϕ-direction and 15
microstates in the range [0.45 nm, 1.15 nm] in R14-direction. Two additional sets of
microstates were added to collect end-to-end distances outside this range. Energies
are given in ε = kJ

mol
and the system was simulated at temperature T = 2.479 ε

kB
.

5.2.1 Modifying End-to-end Potential

An optical tweezer uses optical traps to confine beads of a single molecule in
harmonic potentials [111]. We may predict the outcome of such an experiment
by applying harmonic potentials of varying strength between the first and the
last bead and calculate the effects on statics and dynamics on tetraalanine by
reweighting from the undisturbed system. The forces applied are conservative,
hence we show an example of reweighting along CVs between equilibrium systems.

At first we have a detailed look at the eigenvectors in figure 5.6 for the system
at reference and for driving along R14 in negative direction with f = −9 ε

nm
.

The unperturbed system’s stationary distribution shows highest probability at a
state with ≈ 0.9 nm end-to-end distance and dihedral angle ϕ ≈ −0.8π. This is
associated with an extended state. The second minimum can be seen for ϕ ≈ 0.3π
and R14 ≈ 0.5nm, which is associated with a helical state. A third smaller basin
is found at an intermediate state ≈ 0.9 nm and an dihedral angle of 0.6π. The
slowest process describes the transition between the highly populated extended
state and the helical and less populated intermediate state over the large barriers
around 0 π or 1π. This second slowest process describes a transition for π > 0
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Figure 5.6: The first row shows the stationary distribution, the second row the first
eigenvector and the third row the second eigenvector of three systems.
The system in the first column is the non-perturbed reference system,
in the second column the perturbed system at f = −9 ε

nm
and in the

third row the reweighted system from reference.
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5.2 Tetraalanine

on the right-hand side of the large barrier in the middle, between the helical state
and the intermediate state.

Focusing on the effect of the driving, here, the driving forces the ends together and
effectively pushes the stationary distribution to the folded state. Therefore, the
basin of the helical states is more populated than without driving. As shown by
the first eigenvector, the slowest process changes and the polymer folds directly in
the helical state. The intermediate state at 0.6π is less important for this process
when the additional force is applied. The timescale indicates that the folding
occurs faster. The second slowest process is the transition on the right-hand side
of the centered barrier and remains unaffected by the driving. We note that
reweighting to the driven system from the reference system recovers this detailed
view on the slowest process correctly.

Figure 5.7 shows the first three moments of the FPTD between the metastable
states as defined in figure 5.5a. The metastable states as defined by PCCA+
do not coincide with the states highlighted for the eigenvectors. State H can be
associated with helical states, located to the right of the free-energy barrier at
ϕ ≈ 0.15 π. State I is an intermediate state at ϕ ≈ 0.4 π. The global basin at
extended state is not covered by the choice of PCCA+ because it is dynamically
unstable. Nevertheless, we call the state identified below extended state E. Tran-
sition from H or E to the intermediate state I slow down for attracting end-beads
(negative forces) and speed up for repulsive end-beads (positive forces). The in-
verse happens for the processes from E or I to folded state H. Attractive end-beads
increase the speed of these processes, driving to elongated states reduces it. H is
the more stable configuration for negative driving because the end-beads can be
close together. Transitions to extended state E are comparatively unaffected by
the driving. Looking at figure 5.7d, the stationary distribution shows an increase in
population of intermediates state I under repulsive end-beads. The extended state
allows the end beads to be far apart and, therefore, it becomes more populated
than state H or E. The intermediate state I and extended state E change linearly
in probability with changing end-to-end attraction, the state H exponentially. The
STD behaves proportional to the MFPT. The STD shows minor changes under
driving but does not show peculiar effects as seen for previous systems. The com-
parison is extended by the first two timescales of the system. The fast timescale
depends strongly on the driving, the second timescale is unaffected as we have pre-
viously observed in the lagtime analysis. The systems analysed are in equilibrium
and the dynamics are governed by accustomed detailed balance, so effects based
on path-dependence are not expected.

The reweighting method works well for the tetraalanine system driven by a con-
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Figure 5.7: (a-c) The first three moments of the FPTD for all six processes between
metastable states defined in figure 5.5 under varying external force
f . (d) The occupation probability of each metastable state. (e) The
timescale of the two slowest processes covered by the MSM. The dots
represent the value measured from simulation. The line is the reference
system continuously reweighted.
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5.2 Tetraalanine

stant conservative force. Deviations are increasing for larger forces. This is based
on high populations of regions with large and small end-to-end-distance, that are
poorly sampled in the reference system. It is concluded that dynamics can be
reweighted along the CV even if complex interactions of many bodies are involved.
This is based on the CVs chosen for the system give a reasonable representation
for the dynamics of the system. The Maximum Caliber chooses the most uncer-
tain system based on the information it gets. If the CVs chosen to describe the
dynamics were insufficient, the Maximum Caliber would rely on insufficient data
and produce wrong results. On the other hand, using information on the full
conformational space would certainly include irrelevant information for the chosen
constraints. The Caliber would select highest uncertainty for these information.
If the constraints were chosen correctly, this does not influence the result on the
processes we are interested in. Well-chosen CVs delete information that the Cal-
iber would ignore anyway, but we do not have to sample such information in the
first place. In fact, the Maximum Caliber can be applied to choose CVs [112, 113].
The second input for the Caliber, the change in local entropy productions, can
be estimate correctly because the driving is along a CV. Model-specific details on
the trajectories — like the density of trajectories or their local fluctuations — are
contained in the reference data. The new forces in CV space have to be applied
to each of them irrespective of such details.

5.2.2 Driving along Dihedral Angle

We will now turn to a driving along the dihedral angle. This is a circular motion
with periodic boundary conditions giving rise to a NESS. While this force is arti-
ficial for the tetraalanine, such circular forces appear in molecular rotary motors.
The rotation is driven by ATP-synthesis giving rise to a unidirectional motion of
the molecule [114].

The system is driven along the dihedral angle in both directions. Figure 5.8 gives
a detailed look at the system driven with f = 0.8 ε

rad . We note that the unfolded
states are more populated than before and states to the right of the barrier are less
populated. The FPTD distribution from helical states H to the extended state E
is shown and captured by the reweighting procedure. Deviations can be seen for
short processes of length 1τ .

Turning to figure 5.9 shows the driving along ϕ in both directions. The dynamics of
the system are largely dominated by its large centered free-energy barrier. Driving
in positive direction, the processes H → E and I→E become faster as they are
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data from simulation, the dots are from reweighting the systems into
each other.

connected along the periodic boundary. The process I→H slows down as it runs
opposite to the force. On the other hand H →I slows down, despite the fact that
it runs along the external force. The trajectories bypass the state I under driving
more frequently. The transitions I →H and E →H are not correctly recovered
for larger driving by the reweighting. As expected, the dynamics slow down for
simulation and reweighting for low forces. The simulation shows that the curve
eventually reaches a maximum since the large barrier is crossed more frequently.
The reweighting procedure has problems capturing this effect correctly although
it worked well for the single particle models. The STD follows the behaviour
of the mean again and the skewness indicates that the reweighting works well
for |f |< 1 ε

rad . Driving in negative direction the effect on dynamics is inverted.
Processes aligned with the force speed up, whereas opposing processes are slowing
down. The process H→I does not follow this trend because it is accelerating too.
The trajectories normally bypassing the state are now pushed into occupying the
state. This is indicated by the increasing population of intermediate state I under
negative driving and depopulation under driving positive driving. The helical state
population shows the same behaviour; the extended state shows inverse behaviour.
The populations are recovered well by the reweighting, despite the deviations in
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Figure 5.10: Transition matrices, starting at the state marked by the green dot.
The transition matrices left (a,c) show the reference systems, the right
(b,d) show a system driven by 1.4 ε

rad . The red line represents the
discontinuity in local entropy productions, starting from the marked
initial state. All states shaded green are connected to the starting
state by trajectory going left, all states shaded blue are connected by
a trajectory going right.

the dynamics.

The reason for the described outlier lies in the local entropy productions. The
correct choice is determined by the external force and the set of paths connecting
every pair of microstates with each other. This connection of two microstates was
straightforward to find for the previous system because they were separated by
three or more barriers, as discussed in section 2.2.4. It was simple to determine
if the collection of paths were directed with or against external forces. Such path
dependence cannot occur for driving in R14-direction in the previous section, be-
cause the origin of a path can be determined without periodic boundaries. This
model on the other hand is driven to a NESS with periodic boundaries and shows
only one major barrier along the dihedral angle. Choosing the correct local en-
tropy production is more challenging here. For every jump in the Markov Model
we have to decide if the underlying trajectory is aligned or directed against the
external force. One approach to determine this is to analyse the trajectories as
will be shown in section 6.2. Often one can deduce these information from the
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transition matrix as demonstrated in figure 5.10a for the reference system. All
states to the right (blue shaded) of the starting point are expected to emerge from
trajectories in positive ϕ-direction, all states to the left (green shaded) in nega-
tive ϕ-direction, taking periodic boundaries into account. In between these sets
of trajectories is an area where no transition occurs. The lagtime of the MSM
was chosen to be small such that these transitions do no take place, otherwise we
were not able to tell whether the transitions occurred via a path going to the left
or the right. This empty space acts as a dividing line between the two sets of
trajectories, marked by the red dashed line. The connection between the states
in the transition matrix indicate where to define the discontinuity in local entropy
productions. Figure 5.10b shows the transition matrix with driving of f = 1.4 ε

rad
from the same starting point as before. The transition probabilities change by the
driving but the spatially long transition are still forbidden. We are able to tell if
the transition took a path in negative or in positive φ-direction. This is essential
for the reweighting algorithm to work. For easier understanding it helps to have a
look at the starting point of the transition matrix left to the large central barrier
in ϕ-direction for the same systems in figure 5.10c,d. The space can be separated
in transition in positive and negative φ-direction for the reference system, marked
by the blue and green area. For the driven system however, we cannot decide if the
Markovian jumps occur from hopping over the barrier or following a path around
the periodic boundary. It might be that the microstates are connected by both
sets of path. This makes it impossible to calculate the change in local entropy
productions. Only if the set of paths are well-separated this is easily possible, as
demonstrated for the first starting point. This is the source of the deviation seen
in figure 5.9 for heavy driving.

We deduce that the reweighting along the dihedral angle will be limited for the
present system. The set of paths connecting two microstates should consist of
similar trajectories for reference and target systems. The current system consisting
of a single large barrier makes this difficult. Unfortunately, one cannot predict
whether the aforementioned conditions are met. The small gaps between the
groups of trajectories in Figure 5.10a,b are a warning signal. Models with three or
more barriers, as constructed as a toy model, are less susceptible for this problem.
A particle crossing a barrier is expected to take the short path over one barrier and
is unlikely to hop over two barrier within one lagtime. We may suspect that this
problem occurs more frequently in small model systems with only few particles
and less complex free energy surfaces.

A possible way of solving this problem is by shortening the lagtime of the MSM.
Shorter lagtimes result in shorter trajectories and shorter jumps. The reweighting
procedure could be applied in a wider range. Unfortunately, figure 5.5 shows that
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smaller lagtimes show non-Markovian dynamics. At the same time, increasing the
number of microstates does not allow us to decrease the lagtime. Other choices
made to construct the MSM are the CVs and the microstates. We may select
a different second CV when reweighting along the first. Such choices have great
impact on the system and solve the problem of missing free energy barriers. The
microstates in the present model are discretised in equal size along the CVs. Ad-
vanced clustering techniques like k-means [115] or k-medoids [116] help to define
more complex sets of microstates that would allow to reduce the lagtime. Both,
the selected CVs and the way of clustering the CV influence how dynamics are
described by the MSM. We noted that the connection of two microstates should
be described by a unique bundle of paths. This means that the CVs and its sep-
aration in microstates should be chosen to reflect underlying kinetic distances of
the system. The same requirement for reweighting of dynamics in equilibrium was
noted by Voelz et al. [20].

We conclude that the reweighting procedure works for complex many-body-systems
described by CVs. We show how the reweighting can be applied for conservative or
non-conservative forces along the chosen CVs similarly. These forces might emerge
from optical tweezers, molecular motors, mechanical dragging or any other type of
disturbance. The reweighting is based on the combination of Maximum Caliber,
information on reference data and local entropy productions on the target system.
The CVs challenged the procedure by reducing the amount of information to a
few variables. We have discussed for the driving along the end-to-end distance
in section 5.2.1 that the Maximum Caliber works irrespective of the coordinate
system, provided the CVs contain the important information on the process of
interest. In this section we have seen how the result is flawed based on inadequate
constraints, whereas the underlying data is sufficient. Here, the physical choice of
constraints is expected to be correct, but the constraints are flawed from a MSM
construction point of view.
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The described method was developed and constructed to reweight dynamical data
in form of Markov State Models (MSM) between non-equilibrium steady states
(NESS). The procedure in its current form is based on ideas from stochastic ther-
modynamics, coarse-graining of trajectories by MSMs and the Maximum Caliber.
We want to discuss in this chapter how these ideas can be expanded in other
applications than reweighting simulated data.

The defined ensembles and the parallels to equilibrium statistical mechanics raise
the question if we can push this analogy further. In particular we will discuss if
there is an invariant measure similar to the density of states (see section 2.1.1)
that depends on the interaction of the system but not on thermodynamic vari-
ables. Other questions raised are the role of partition functions and the relation
to thermodynamic variables based on derivatives. These relations in connection
to the Maximum Caliber were discussed by Dill et al. [34] for trajectory ensembles
under global constraints. Equilibrium statistical ensembles were also expanded to
quantum mechanical systems. In combination with the discrete nature of MSMs,
it can be beneficial to analyse such systems in the context of the presented en-
sembles. The laser system in section 4.3 is such an example. It was approximated
classically because simulation of quantum mechanical systems is beyond the scope
of this thesis.

The definition of the NESS ensembles is based on local entropy productions be-
tween discretised states. We will examine how this discretisation of dynamics is
related to the underlying continuous trajectories. This will open up another way
of estimating local entropy productions by trajectory averaging over an ensemble
of single trajectories.
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6.1 Invariant Quantity

An invariant has the property of not changing under a set of transformations.
The density of states is one example under change of the Boltzmann measure
(see section 3.2). It is defined by the number of microscopic states depending
on chosen variables like energy and possibly other variables (see section 2.1.1).
Once we have shown that systems are recovered under a certain transformation,
we expect an underlying invariant measure. For the set of transformations used
here, the dynamical invariant was identified in section 3.3.3 by

I2
ij = qijqji exp

(
ci + cj

2
+ ζ

)
(6.1)

and is presented for the minimal 1D system (see section 2.2.4) in figure 6.1. Know-
ing the invariant of a system, one can construct any ensemble in NESS that we
are interested in. The reweighting formula becomes

pij = Iij exp

(
1

2
(ζ̃ + ∆Sij) +

1

4
(c̃i + c̃j)

)
, (6.2)

where c̃ is determined by enforcing
∑

k pik = 1 and applying the numerical solver
used for the reweighting formula (see section 3.3.4). We want to understand the
physical meaning of this quantity and show the technical use of it in enhanced
sampling methods.

At first intuition the dynamical invariant is the density or number of trajectories
connecting two microstates within lagtime τ , equivalent to the density of states.
However, this quantity is difficult to grasp because time and length of trajectories
have unknown relation without further information. We need thermodynamic
properties like the diffusion coefficient D = Tµ, defined by the Einstein relation
via temperature T multiplied with the mobility µ. For an ensemble of free diffusive
single particles starting at position X = 0 and time t0 = 0 with diffusion coefficient
D, the probability distribution at time t is given by the solution to the Fokker-
Planck equation [51]:

P (X, t) =
1√

4πDt
exp

(
− X2

4Dt

)
. (6.3)

The probability distribution is interpretable as the density of trajectories of length
t in free diffusion. The assumption still holds for an invariant of NESS because
a generalised diffusion coefficient was shown to depend on an effective tempera-
ture [117]. In any case, the invariant of the test 1D system in NESS in figure 6.1
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Figure 6.1: The invariant of the 1D system. The potential surface is presented to
indicate the positions of the maxima.

does not agree with the expected invariant. In fact it shows marks that originate
from the potential and peak on top of the potential barrier and on the sides of
the potential wells. The middle region of the potential wells show a lower invari-
ant than its sides. This shows that the invariant depends on the temperature as
expected but also on the potential surface. We believe that this dependence origi-
nates from the approximation used by the reweighting. A free diffusion invariant is
expected for the full solution. An invariant for the full solution can be calculated
if a numerical solution to the reweighting formula is found.

Nevertheless, the approximated invariant holds some information. We note from
the definition that the matrix is symmetric. All information about dissipative ef-
fects are given by the local entropy productions. The invariant on the other hand
contains information about symmetric local fluctuations, or non-dissipative effect.
These contributions were distinguished by Maes [86] showing that symmetric and
asymmetric contributions to the dynamics are decoupled in equilibrium and cou-
pled in off-equilibrium. The symmetric or frenetic contribution can be defined by
Aij =

√
pijpji such that pij = Aij exp (∆Sij/2). The frenetic contribution changes

with driving as predicted by Maes. The reweighting method uses information
on dissipative dynamics but recovers these frenetic contributions correctly. We
conclude that the invariant contains the necessary symmetric information. Ac-
cordingly we interpret the invariant as the non-dissipative local fluctuations of the
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system.

This point of view explains why the reweighting scheme does not apply to temperature-
reweighting. The chosen constraints infer information about dissipative effects.
The changes in the system under variation of temperature are in the non-dissipative
part of the dynamics so it lies outside the scope of the presented method. It re-
quires a different set of constraints that is unknown to us.

The invariant is not completely understood, but it can be of computational purpose
since it can be sampled from different simulations. This is the underlying idea
of equilibrium enhanced sampling methods like multicanonical simulation [13],
replica exchange [14] or metadynamics[15]. The general idea is to tweak the system
such that regions of interest are sampled more frequently. This can be done by
increasing the temperature to sample high-energy states more frequently or adding
artificial potentials to push or attract the system in a certain direction. The
changes do not have to be of physical nature and are removed from the system
after taking advantage of better sampling conditions. All gathered information is
collected in the invariant as long as the corresponding relations are known from
a reweighting formula. These relations are for example based on the Boltzmann
factor for the equilibrium ensembles or, here, the given reweighting relations for
NESS. The reweighting procedure can be combined with such sampling methods.
This is a step to reach experimentally important timescales that are inaccessible
by the limitation of computational power [118].

6.2 Trajectory Analysis

MSMs are a coarse view on the dynamics of a system. The reweighting procedure
acts on the MSM by enforcing the local entropy productions. We want to analyse
how the single trajectories relate to the local entropy productions. The trajectory
space allows us a detailed view on the system and one can judge if the microstate
of the MSM and the assumptions for the analytic solution (see section 2.2.4) are
chosen correctly. The analytic solution ignores effects of fluctuations on the entropy
production, the trajectory analysis takes them into account. Furthermore, the
analytic solution for the entropy production only works when the new forces are
applied along the collective variables (CV) chosen for the MSM. A trajectory
analysis allows us to calculate entropy productions for forces depending on other
system variables.

MSMs are sampled by counting all trajectories that start in a given microstate i
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Figure 6.2: Two example trajectories from simulation of the 2D system between
two microstates. The dashed boxes show the microstates, the solid
boxes show the core of the microstates. A trajectory is counted when
it starts and finishes in a core-state.

and finish in another microstate j. The transition probabilities are defined by a
trajectory ensemble average (see section 2.2) connecting two microstates

〈χi(x0)χj(xT )〉 =

∫ ∫
dx0 d[x(t)] p[x(t)|x0]p(x0)χi(x0)χj(xT ), (6.4)

where χi(x) is 1 if x is in state i and 0 else, x0 is the initial point of the tra-
jectory x(t) and xT the final point. Similarly we use this to calculate the local
entropy production from trajectory space

〈∆S〉ij = 〈χi(x0)χj(xT )〉

=

∫ ∫
dx0 d[x(t)] p[x(t)|x0]p(x0)χi(x0)χj(xT )∆S[x(t)],

(6.5)

where ∆S[x(t)] is the entropy production of a trajectory that is calculated by

∆S[x(t)] ≈ 1

2T

∑
d

t=T∑
t=1

(
x

(d)
t − x

(d)
t−1

) (
F (d)(xt) + F (d)(xt−1)

)
(6.6)

in discrete form, discussed in section 2.2.4. The relevant trajectories are chosen
as illustrated in figure 6.2. The dashed lines represent a microstate, the box in
the middle is the core state. A trajectory starts in a core state and terminates
when the final core state is reached. The center state ensures that fluctuations
on the boundaries are not taken into account. A maximum length of trajectory
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Figure 6.3: Distribution of entropy productions for (a) the single particle in 1D
potential and (b) single particle in 2D potential for chosen transitions.
The average of the distribution is shown by a black dashed line, the
analytic solution is shown by a solid yellow line.

is set for computational efficiency. This does not influence the distributions of
the entropy productions, shown for chosen transitions on the 1D and 2D model in
figure 6.3. The average of the distribution is shown by the dashed black line, the
solid yellow line represents the average as calculated from the analytic model. The
two values agree well, indicating that the analytic approximation works well on the
coarse-grained level. Larger distances reduce the number of available trajectories
and produce more noise. The full difference of analytic and measured value is
shown in figure 6.4 for the 1D system and locally for the 2D system. We consider
the trajectory analysis to be exact, because it takes all information into account
and is sufficiently sampled for the given systems. The absolute deviations are
small compared to the absolute entropy productions in the range [−10 ε

K
, 10 ε

K
].

Yet the 1D systems shows a pattern: When a trajectory start or ends in a state
dominated by large local forces the deviation of the analytic solution is larger but
still in an acceptable range. The deviation might originate from a non-symmetric
distribution of entropy productions. This indicates that the fluctuations do not
cancel each other out and the analytic assumption is flawed.

A third way to estimate the entropy production is to use the transition probabilities
of the MSM by ln ∆Sij =

pij
pji

. This method agrees with the others but suffers
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Figure 6.4: Deviation of local entropy production between analytic solution and
averaging over simulated trajectories for (a) a single particle on a 1D
potential surface and (b) a single particle on a 2D potential surface for
a starting point at (0.55,0.35), marked by the green dot.

from sampling issues for larger distances and needs longer simulation times to
gather sufficient data, so it is not of further interest. The analytic method gives a
good estimate and can thus be used for estimation of entropy productions without
additional data used. The trajectory method can estimate the entropy production
well but samples the whole distribution. It gathers more information than needed
for the reweighting and requires simulation of the target system.

The trajectory analysis is useful when one wants to reweight along forces not
described by the CVs of the MSM. The analytic method can only be used when the
forces are defined on the same CV. Otherwise sampling the trajectories of the target
system is the only way to estimate the target system for reweighting. One can
sample the system at different thermodynamic states and gather the information
at any of these states afterwards. Continuous reweighting is not possible in this
case. The second use is testing for double peaks in the distribution of entropy
productions. It indicates that two microstates are connected by more than one set
of pathways. The MSM should be changed to resolve these pathways by a different
choice of microstates. Otherwise the MSM is not able to distinguish all pathways
and it would cause errors in the reweighting procedure.
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6.3 Off-Equilibrium Reweighting in Literature

Reweighting of dynamical data in and out of equilibrium has attracted some at-
tention lately. Previous works were focused on reweighting dynamical ensembles
of equilibrium systems, for instance using a Maximum Likelihood approach [119]
or a Maximum Caliber approach [20]. It was shown how information can be drawn
from non-equilibrium ensembles and combined at equilibrium [21]. Here, we focus
on the three works focussing on the problem for reweighting off-equilibrium dy-
namics. We want to discuss the assumptions of these methods and compare them
to our presented method.

Two methods relying on the Girsanov transformation [27, 120] reweight each tra-
jectory in conformational coordinates from the reference data individually. The
first work by Warren and Allen relies on long trajectories and is tested successfully
on a birth-death process in NESS. The authors point out two practical problems
of the method: First they note that long trajectories are needed for unbiased
reweighting and the length is set by the unknown target system. Second, the dis-
tribution of trajectory weights becomes broader with increasing trajectory length.
These problems of long trajectories were avoided by Donati and Keller by employ-
ing short trajectories with Markov State Models. The method requires full data of
the trajectories in conformational space and the random numbers generated dur-
ing the simulation for the Langevin thermostat. Storing all this information would
require large computational effort. In practice the lagtime of the MSM and the
target state is defined before running the reference simulation and the trajectories
are reweighted on runtime. It is shown that the equilibrium MSM of a hexapeptide
can be recovered. The method is combined with metadynamics [121] for efficient
sampling of dynamics and construction of MSM. The reweighting method is in the-
ory applicable for off-equilibrium MSMs, albeit it was not shown yet. In contrast,
our method relying on the Maximum Caliber is applied a posteriori on an MSM.
The target system can be chosen freely after the simulation data is gathered. The
two methods mentioned above rely on reweighting every trajectory individually,
forcing them to reweight during simulation runtime. Furthermore our method
requires minimal computational effort by only solving a set of non-linear convex
equations. The problem of long trajectories discussed by Warren and Allen was
addressed by Markov State Modeling for both, the method of Donati and Keller
and our method.

Another new reweighting method applicable for NESS by Zuckermann et al. [28]
was published by submission of this thesis. A number of short Markov-like trajec-
tories are collected from a reference simulation. The target system for reweighting
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is defined by its stationary distribution. The weights of the reference trajectories
are updated individually until they recover the target probability distribution and
are stationary. This algorithm can be extended to NESS by adding wells and sinks
of probability at chosen positions. In this case the trajectories have to be arranged
such that the probability is transported from well to sink while meeting the re-
quirements on the stationary distribution. We refer to the paper for details of the
algorithm. The method uses space discretisation like our method but does not
require Markovianity unlike our method and the Girsanov reweighting. The tra-
jectories are treated in their continuous form, similar to the Girsanov reweighting.
This method was not yet tested on NESS systems.

The sparse number of works on reweighting dynamics off-equilibrium shows that it
is a new problem. Most of the methods are only expected to work in off-equilibrium
but are not tested yet. The presented methods rely on different theoretical bases
and assumptions and operate on different spaces (long or short trajectories, MSM).
We hope to see continuous work on this problem in the future.
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7 Summary

The present thesis adds a new option for the sparse field of non-equilibrium steady
states (NESS) reweighting of dynamics. It is built on the basis of Jaynes Maxi-
mum Caliber, an ensemble description of NESS by global balance an local entropy
productions, dynamical information drawn from stochastic thermodynamics and
coarse-grained dynamics by a Markovian assumption. The Maximum Caliber ap-
proach was chosen as it is a powerful tool for non-equilibrium processes. It was
shown how reweighting relations between equilibrium ensembles emerge from the
Caliber and we extended this idea to NESS. In fact the Caliber is under great
discussion and its boundaries in the field of non-equilibrium physics are not yet
determined [39].

We discussed how global or symmetric constraints describe the system inade-
quately. An equilibrium system can successfully be described by global constraints
because its state is controlled globally, for instance by temperature or pressure.
For a NESS on the other hand, the locality plays a major role: A system driven at
its boundaries behaves differently from a system driven globally. The local entropy
productions model these local effects and the amount of heat inserted to or with-
drawn to or from the system. A global balance condition is added as a necessary
condition for a NESS. It demands that the summed probability flows to a single
state equals the probability of being in that state. This relates the dynamics to
the statics of the system and ensures both to be time-independent, as required
for a NESS. Furthermore, including antisymmetric constraints are essential for the
description of dissipative systems [88]. We have shown that the combinations of
these assumptions allow us to reweight between any NESS, including equilibrium
systems.

This choice of constraints showed the existence of a symmetric invariant that con-
tains information about the non-dissipative dynamics of the system. This quantity
helps us to get a deeper understanding of NESS processes and the reweighting pro-
cedure itself. It contains the non-dissipative contribution to the dynamics that are
drawn from the reference data. We hope for deeper insight on the invariant and its
relation to non-dissipative dynamics with an available full solution to the Maxi-
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mum Caliber maximisation. From a technical point of view, sampling the invariant
can be used to extend to an advanced sampling method for dynamics. Several sys-
tems can be computed at different thermodynamic states. For instance, artificial
forces of varying strength can be added for improved sampling of a transition. All
data can be combined in the invariant, possibly by weighting the data according to
the local quality of sampling, similar to weighted-histogram analysis method [16].

The dynamics drawn form stochastic thermodynamics are described by Markov
State Models (MSM) to control the enormous trajectory space of complex systems
and perform the reweighting as efficiently as possible. A Maximum Caliber for-
mulation on the trajectory space is possible but requires more sampled data and
more computational resources due to the larger operating space. The Markovian
assumption divides trajectories in small pieces and bundles them to a set of tra-
jectories between two microstates. New trajectories are constructed from these
pieces, possibly trajectories that are not existent in the reference simulation. In
exchange for this reduction of space to sample, the MSM requires some knowledge
of the system, for instance the collective variables (CV) have to be chosen appropri-
ately to describe the dynamics of the slow processes. We recommend to discretise
microstates fine enough to describe possible transitions between microstates by
a spatially non-forking set of pathways. A trajectory analysis on the reference
data reveals if the microstates are chosen sufficiently small by showing unimodal
distributions.

The Maximum Caliber approach was shown to apply to both, systems in full
conformational space and systems described by CVs. The reweighting procedure
works equally well because the maximisation only adjusts data that is significant
for the chosen set of constraints. The entropy maximisation selects the distribution
with the largest amount of uncertainty, so information that is not used in terms
of constraints remain unchanged. Information significant to the constraints are
adjusted, but the Calibers principle chooses the posterior to be as noncommittal
as possible. Applying the Caliber to the full conformational space implies using
data that is not needed to calculate local entropy productions. This data remains
the same because no new information in form of constraints is provided and the
Caliber maximisation produces the same answer. This property is used to find
unknown collective variables for a system [112, 113].

The reweighting procedure in the presented form is designed to reweight with
respect to forces along the CVs of the MSMs. Force-reweighting requires the
underlying free energy barriers to be larger than the thermal fluctuations, i.e.
kBT < ∆U and temperature reweighting is not possible. Both types are dom-
inated by changing the non-dissipative dynamics, requiring a symmetric set of
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constraints. It would be of interest to identify these constraints and determine the
relation to the anti-symmetric constraints used in this thesis. This would open up
the reweighting procedure to temperature reweighting by symmetric constraints
and to temperature gradients that should be described by a mix of symmetric and
antisymmetric constraints or with no symmetry. Reweighting methods in gen-
eral are limited by the quality of the reference data since one does not know at
what thermodynamic state the data are insufficient [120]. Yet, we showed on sev-
eral systems that reweighting works over a broad range of local and global forces.
Our reweighting is applied to spatially short trajectories transitioning between mi-
crostates by use of the Markovian assumption. We benefit from short trajectories
being easy to sample and more likely to be of importance in the target system,
unlike long trajectories.

The small number of methods available as of now demonstrates the difficulties one
is facing when dealing with off-equilibrium systems. Yet, the thesis showed that
the Maximum Caliber is a powerful tool for understanding and analysing such
systems. The presented models are small compared to complex systems exploiting
the full range of computational resources available today. The thesis should be
seen as a proof of concept for reweighting dynamics in NESS. Current MSMs are
built for systems ranging from peptides to proteins, RNA and DNA [122] and the
formulation in MSMs is expected to scale the reweighting method to such complex
systems.

The method has a wide variety of possible application. We explained how it offers a
way to perform enhanced sampling for dynamics of complex systems in NESS, e.g.
molecular motors [25] or biological switches [26]. This allows to sample dynamics
of more complex system without constraining the system to equilibrium. One
might also use it to change details of an existing model: How does the dynamics
change if an interaction is chosen differently? This provides information to improve
coarse-grained models that do not show desired dynamic properties. A comparable
reweighting approach for coarse-graining systems was introduced by Shell et al.,
based on reference all-atomistic data [123]. Furthermore, we discussed how the
outcome of experiments like optical tweezers, mechanical dragging or activating a
molecular rotary motor can be predicted. More applications on dynamical data
from experiments are possible, the method only requires reference data on relevant
CVs and a description of the forces or potentials applied.
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Samenvatting

Dit proefschrift voegt een nieuwe element toe aan het bijzondere vakgebied van
non-equilibrium steady states (NESS) reweighting van de dynamica. Het is gebaseerd
op het principe van Jaynes’ ’Maximum Caliber’ (MC), een ensemble beschrijving
van NESS door middel van globale balans en lokale entropie producties, dynamis-
che informatie afkomstig van stochastische thermodynamica en grofkorrelige dy-
namica volgens een Markov aanname. De MC benadering is gekozen omdat het
een krachtig instrument is voor niet-evenwichtsprocessen. Er werd aangetoond hoe
herweging van relaties tussen evenwichtsensembles uit MC voortkomt en dit idee
hebben we uitgebreid naar NESS. MC is een actueel onderwerp van discussie, en
de grenzen van de zijn toepassingen op gebied van de niet-evenwichtsfysica zijn
nog niet bepaald [39].

We hebben beschreven hoe globale of symmetrische beperkingen het systeem onvol-
doende karakteriseert. Een evenwichtssysteem kan met succes worden beschreven
door globale beperkingen omdat de toestand ervan globaal wordt gecontroleerd,
bijvoorbeeld door temperatuur of druk. Voor een NESS daarentegen speelt de
locatie een grote rol: Een systeem dat aan zijn grenzen wordt gedreven, gedraagt
zich anders dan een systeem dat globaal wordt aangedreven. De lokale entropiepro-
ducties modelleren deze lokale effecten en de hoeveelheid warmte die aan het sys-
teem wordt toegevoegd of eraan wordt onttrokken. Een globale balansvoorwaarde
wordt toegevoegd als noodzakelijke conditie voor een NESS. Het vereist dat de
geaccumuleerde waarschijnlijkheid die naar een enkele toestand stroomt gelijk is
aan de waarschijnlijkheid om in die toestand te zijn. Dit relateert de dynamica
aan de statische eigenschappen van het systeem en zorgt ervoor dat beide tijd-
sonafhankelijk zijn, zoals vereist voor een NESS. Hiernaast is het betrekken van
antisymmetrische beperkingen essentieel voor de beschrijving van dissipatieve sys-
temen [88]. We hebben aangetoond dat de combinaties van deze aannames ons in
staat stelt om te herwegen tussen alle NESS’en, inclusief evenwichtssystemen.

Deze keuze van beperkingen toonde het bestaan aan van een symmetrische invari-
ant die informatie bevat over de niet-dissipatieve dynamica van het systeem. Dit
helpt ons om betere inzichten te verkrijgen in de NESS-processen en de herweg-
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ingsprocedure zelf. Het bevat de niet-dissipatieve bijdrage aan de dynamica die
wordt ontleend aan de referentiedata. We hopen op een beter begrip van de invari-
ant en zijn relatie tot de niet-dissipatieve dynamica met een beschikbare volledige
oplossing voor de MC-maximalisatie. Vanuit een technisch oogpunt kan het be-
monsteren van de invariant worden gebruikt om de aanpak uit te breiden naar
een geavanceerde bemonsteringsmethode voor de dynamica. Verschillende sys-
temen kunnen worden berekend bij verschillende thermodynamische toestanden.
Zo kunnen bijvoorbeeld kunstmatige krachten van verschillende sterkte worden
toegevoegd voor een betere bemonstering van een overgang. Alle data kan worden
gecombineerd in de invariant, mogelijk door het wegen van de data volgens de
lokale kwaliteit van de bemonstering, vergelijkbaar met de weighted histogram-
analyse methode [16].

De dynamica verkregen uit stochastische thermodynamica wordt beschreven door
Markov State Models (MSM) om de enorme trajectruimte van complexe systemen
te controleren en de herweging zo efficiënt mogelijk uit te voeren. Een MC formu-
lering op de trajectruimte is mogelijk, maar vereist meer bemonsterde gegevens
en meer rekenkracht door de grotere werkruimte. De Markov aanname verdeelt
trajecten in kleine delen en bundelt ze tot een set van trajecten tussen twee mi-
crotoestanden. Uit deze delen worden nieuwe trajecten geconstrueerd, mogelijk
trajecten die niet bestaan in de referentiesimulatie. In ruil voor deze verkleining
van de te bemonsterde ruimte, vereist de MSM enige kennis van het systeem, bi-
jvoorbeeld de collectieve variabelen (CV) die op de juiste manier gekozen moeten
worden om de dynamica van de langzame processen te beschrijven. Wij raden aan
om microtoestanden fijn genoeg te discretiseren om mogelijke overgangen tussen
microstaten te beschrijven met een ruimtelijk niet-splitsende set van paden. Een
trajectanalyse van de referentiegegevens laat zien of de microstaten voldoende klein
gekozen zijn door unimodale verdelingen te tonen.

De MC benadering bleek van toepassing te zijn zowel op systemen in de volledige
conforme ruimte als op systemen die door CV’s worden beschreven. De herweg-
ingsprocedure werkt even goed omdat de maximalisatie alleen gegevens aanpast
die significant zijn voor de gekozen set van beperkingen. De entropiemaximal-
isatie selecteert de verdeling met de grootste onzekerheid, zodat informatie die
niet wordt gebruikt in termen van beperkingen ongewijzigd blijft. Informatie die
significant is voor de beperkingen wordt aangepast, maar het MC principe kiest
de posterior om zo vrijblijvend mogelijk te zijn. Het toepassen van MC op de
volledige conformatieruimte impliceert het gebruik van gegevens die niet nodig
zijn om lokale entropieproducties te berekenen. Deze gegevens blijven hetzelfde
omdat er geen nieuwe informatie in de vorm van beperkingen wordt verstrekt en de
MC-maximalisatie hetzelfde antwoord oplevert. Deze eigenschap wordt gebruikt
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om onbekende collectieve variabelen te vinden voor een systeem [112, 113].

De herwegingsprocedure die hier gepresenteerd wordt is bedoeld om de krachten
langs de CV’s van de MSM’s te herwegen. Voor de herweging van de krachten
is het nodig dat de onderliggende vrije energiebarrières groter zijn dan de ther-
mische fluctuaties, d.w.z. kBT < ∆U en temperatuurherweging is niet mogelijk.
Beide types worden gedomineerd door het veranderen van de niet-dissipatieve dy-
namica, wat een symmetrische set van beperkingen vereist. Het zou interessant
zijn om deze beperkingen te identificeren en de relatie te bepalen met de anti-
symmetrische beperkingen die in dit proefschrift worden gebruikt. Dit zou de
herwegingsprocedure openstellen voor temperatuurherweging door symmetrische
beperkingen en voor temperatuurgradiënten die beschreven zouden moeten worden
door een mix van symmetrische en antisymmetrische beperkingen of zonder sym-
metrie. Herwegingsmethoden in het algemeen worden beperkt door de kwaliteit
van de referentiedata omdat men niet weet in welke thermodynamische toestand
de data onvoldoende zijn [120]. Toch hebben we voor verschillende systemen laten
zien dat herweging werkt op een breed scala aan lokale en globale krachten. Onze
herweging wordt toegepast op ruimtelijk korte trajectovergangen tussen microtoe-
standen door gebruik te maken van de Markov aanname. We profiteren van het
feit dat korte trajecten gemakkelijk te bemonsteren zijn en dat ze, in tegenstelling
tot lange trajecten, eerder van belang zijn in het doelsysteem.

Het kleine aantal methoden dat nu beschikbaar is, toont aan met welke problemen
men te maken heeft bij niet-evenwichtssystemen. Toch toonde het proefschrift
aan dat MC een krachtig instrument is om dergelijke systemen te begrijpen en te
analyseren. De gebruikte modellen zijn klein in vergelijking met complexe syste-
men die gebruik maken van het volledige scala aan rekenfaciliteiten dat vandaag de
dag beschikbaar is. Het proefschrift moet worden gezien als een proof of concept
voor het herwegen van de dynamica in NESS. De huidige MSM’s zijn gebouwd
voor systemen variërend van peptiden tot eiwitten, RNA en DNA. De formulering
in MSM’s zal naar verwachting de herwegingsmethode opschalen naar dergelijke
complexe systemen [122].

De methode heeft een grote verscheidenheid aan mogelijke toepassingen. We
hebben uitgelegd hoe het een manier biedt om verbeterde bemonstering uit te vo-
eren voor de dynamica van complexe systemen in NESS, bijvoorbeeld moleculaire
motoren [25] of biologische schakelaars [26]. Dit maakt het mogelijk om de dynam-
ica van complexere systemen te bemonsteren zonder het systeem te beperken tot
de evenwichtstoestand. Men kan het ook gebruiken om details van een bestaand
model te veranderen: hoe verandert de dynamica als een interactie anders wordt
gekozen? Dit levert informatie op om grofkorrelige modellen te verbeteren die
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niet de gewenste dynamische eigenschappen vertonen. Een vergelijkbare herweg-
ing voor grofkorrelige systemen is gëıntroduceerd door Shell et al., gebaseerd op
referentie all-atomistische gegevens [123]. Verder hebben we besproken hoe de
uitkomst van experimenten zoals optische pincetten, mechanisch slepen of het ac-
tiveren van een moleculaire draaimotor kan worden voorspeld. Meer toepassingen
met dynamische data uit experimenten zijn mogelijk, de methode vereist alleen
referentiedata op relevante CV’s en een beschrijving van de toegepaste krachten
of potentialen.
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