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ABSTRACT

Given the preferences of several agents over a set of alternatives,
there may be competing views on which of the alternatives would
be the “best” compromise. We propose a formal model, grounded
in social choice theory, for providing a justification for a given
choice in the context of a given corpus of basic normative princi-
ples (so-called axioms) on which to base any possible step-by-step
explanation for why a given target outcome has been or should be
selected in a given situation. Thus, our notion of justification has
both an explanatory and a normative component. We also develop
an algorithm for computing such justifications that exploits the
analogy between the notion of explanation and the concept of min-
imal unsatisfiable subset used in constraint programming. Finally,
we report on an application of a proof-of-concept implementation
of our approach to run an experimental study of the explanatory
power of several axioms proposed in the social choice literature.
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1 INTRODUCTION

Imagine a group of people who try to take a collective decision.
They each have their own subjective preferences over the set of
alternatives available to them and they will need to settle on the
selection of just one of these alternatives. Given such a profile of
individual preferences and any particular target alternative, we
may ask: Can we justify selecting this alternative under this profile?
Such a justification should explain (in a manner that hopefully
everyone can understand) how making this particular selection is
a necessary logical consequence of a number of basic normative
principles (that hopefully everyone can accept). In this paper we
develop a model, grounded in the axiomatic method of social choice
theory [1], for making this idea formally precise. We also develop
an algorithm, using techniques from constraint programming [27],
to automatically search for justifications.

The notion of justification we develop has both an explana-
tory and a normative component. Indeed, the latter is important,

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

because—in order for a justification to be accepted by the agents
(or an outside observer)—it must use arguments that refer to soci-
etal norms on which everyone can agree. In social choice theory,
such norms are encoded in the form of so-called axioms. These are
properties of voting rules, i.e., of rules for selecting an outcome
given a profile of preferences, that have some normative appeal
and that can be given a precise mathematical definition [1].1 In
our model, a justification thus must be grounded in a normative
basis that contains relevant axioms. Given the individual prefer-
ences of the agents and a target outcome, presenting a normative
basis containing axioms for which no voting rule can be found that
would elect a different outcome then constitutes a justification for
why the target outcome should be chosen. This justification can be
refined by also providing a step-by-step explanation for how the
selection of the target outcome follows from concrete instances of
the axioms in the normative basis. Thus:

Justification = Normative Principles + Explanation

Let us note in passing that this view is in line with Langley’s take on
Explainable AI, who writes that “[a]n intelligent system exhibits jus-
tified agency if it follows society’s norms and explains its activities
in those terms” [17].

But in what sort of situation would we want to compute a justi-
fication for a collective decision? Consider the following examples.

Example 1. A professional society has instructed a small com-
mittee to oversee the election of its new president. The statutes
of the society prescribe the use of voting rule F for this purpose.
However—as the members of our committee are only too keenly
aware—most delegates were not involved in the decision to adopt
this particular rule and some indeed view the use of a voting rule
the mechanics of which they do not fully comprehend with active
suspicion. For the sake of accountability and transparency, our com-
mittee decides to publish all ballots received (in anonymised form),
so that anyone who wants to can verify that the published election
outcome really is the correct one. But they would like to do more.
So they decide to also make available a justification of the outcome
in terms of fundamental normative principles they hope everyone
will agree with. These principles could be the axioms character-
ising F , but they could also include other axioms—possibly more
convincing ones—that happen to be able to explain this specific
outcome for this specific collection of ballots as well. △

Example 2. A group of colleagues are working together to for-
mulate a new business strategy for the company that employs them.

1Examples include the famous principles attributed to Pareto (about not choosing a
dominated alternative) and Condorcet (about respecting the wishes of the majority
when they are unambiguous), but also more basic principles such as the anonymity
axiom, postulating equal treatment of all voters.
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This process involves taking a series of decisions on which they
may initially hold diverging views. They consider voting too crude
a method to resolve such disagreements and instead hope to arrive
at unanimous decisions after a period of deliberation. During their
discussion, they every now and then conduct a straw poll to get
a clearer idea of what the most promising proposals are at that
point in time. After each poll, they check which proposals could
possibly be justified from the preferences elicited using appealing
normative principles. Initially, they will typically find that more
than one proposal could be justified somehow, due to the number of
principles they are considering when building justifications. They
then take these findings—including the appeal of any specific set
of axioms required to justify a specific proposal—into account as
they proceed with their deliberations. △

Example 3. The faculty members of a newly established univer-
sity research centre need to agree on a method for taking important
policy decisions in the years ahead. They have been somewhat dis-
heartened by their colleague, a well-known social choice theorist,
who was unable to recommend a specific voting rule and instead
got side-tracked into a lecture about the multitude of impossibility
results marring the field. As no voting rule has all the properties our
faculty members care about, they eventually agree on a method of
decision making “from first principles”: they rank the axioms they
can think of in terms of their normative appeal and then, whenever
a decision needs to be taken, they check for each possible outcome
which subset of axioms (i.e., which normative basis) might justify
that outcome and then choose the outcome justified by the “best”
such set. In this context, setA is better than set B if the worst axiom
in A is better than the worst axiom in B (and if they are the same,
we look at the second-worst axiom, and so forth). △

Thus, we may use justifications to defend a decision already taken
(Example 1), to support a group intent on arriving at a good decision
through deliberation (Example 2), or to serve as a stand-in when
no specific voting rule seems acceptable (Example 3).

Finding a justification—an explanation grounded in a suitable
normative basis—is a computationally demanding task. To make it
practically feasible, we exploit an analogy between the notions of
(i ) explanation for an observed inconsistency and (ii ) the notion of
minimal unsatisfiable subset of constraints familiar from the field
of constraint programming [20]. This allows us to build on the
enormous progress in solving intricate combinatorial optimisation
problems using constraint programming made by the AI and OR
research communities in recent years [22].

Related work. Even though the design of algorithms for generat-
ing justifications for election outcomes presents itself as a natural
challenge for the field of computational social choice [6], to date
there has been precious little research on this topic. The most
closely related work to ours is that of Cailloux and Endriss [7],
who outline a research agenda for using tools from AI to enable
computer-supported deliberation between users regarding the ins
and outs of different voting rules. In this context, they also provide
an algorithm for justifying an election outcome in the specific case
where that outcome coincides with the outcome under the Borda
rule—using a normative basis that includes a corpus of axioms char-
acterising the Borda rule [29]. In contrast, our approach is general
and—in principle—can be applied to any corpus of axioms.

Very recently, Procaccia [26] also argued in favour of using ax-
ioms to explain election outcomes for concrete profiles of prefer-
ences encountered by people—as opposed to the traditional use of
axioms as a means for motivating the design of a voting rule appli-
cable to every conceivable profile. In the context of multi-criteria
decision making (which is closely related to voting), Belahcene et al.
[3] seek to justify decisions by showing that (and how) they can
be derived in a noncompensatory sorting model by instantiating
the parameters of that model. While this notion of justification is
different from the one Cailloux and Endriss [7] and we adopt, there
are certain parallels in terms of methodology, as Belahcene et al.
also employ tools from combinatorial optimisation, namely SAT
solvers, to operationalise their approach. In other related work,
Kirsten and Cailloux [16] develop a method, grounded in bounded
model checking, for automatically generating a counterexample for
the claim that a given voting rule satisfies a given axiom.

As we use constraint programming to operationalise our defini-
tion of the justification of an election outcome, in methodological
terms our workmay be seen as part of the recent trend of using tools
from automated reasoning (as long studied in AI) in computational
social choice. This includes in particular a strand of work—recently
reviewed by Geist and Peters [11]—on using SAT solvers to auto-
matically prove (so-called “base cases” of) impossibility theorems in
social choice theory. Somewhat further afield, it also includes work
on using bounded model checking to semi-automatically verify the
formal correctness of concrete implementations of various voting
rules [2]. While constraint programming has been mentioned as
an alternative to SAT solving to prove impossibility theorems by
Tang and Lin [28], it otherwise has remained largely unexplored in
computational social choice to date.

Contribution. Our contribution is threefold. First, we develop a
definition of the notion of justification of a collective decision in
terms of (i ) a normative basis of socially adequate axioms and
(ii ) an explanation, consisting of a minimal set of instances of
those axioms that force the collective decision in question to be
adopted. Second, we operationalise our definition as an algorithm
by showing how to encode the problem of generating a justification
as a constraint network and by proving that any such problem can
be mapped to the well-understood problem of computing a minimal
unsatisfiable subset of a constraint network. We also report on a
proof-of-concept implementation of our algorithm. Third, we put
our implementation to practical use and conduct an experimental
study of the explanatory power of several of the standard axioms
proposed in the social choice literature.

Paper outline.We present our model of justifications in Section 2
and our approach to automatically search for such justifications in
Section 3. We then report on our study of the explanatory power
of axioms in Section 4 and conclude with a brief discussion of
directions for future work in Section 5.

2 JUSTIFYING COLLECTIVE DECISIONS

In this section we develop our proposal for a notion of justification
for a collective decision taken on the basis of the declared prefer-
ences of several agents. We start by recalling a number of relevant
concepts from the theory of voting [31].
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2.1 Voting Theory

Let X , with |X | = m, be a finite set of alternatives and let L (X )
denote the set of all strict linear orders on X . We use elements ≻
of L (X ) to model the preferences of individual agents. Let N ∗, with
|N ∗ | = n, be a finite set of agents (the universe). A profile ≻N for an
electorate N ⊆ N ∗ declaring preferences is a function associating
every agent i ∈ N with a preference ≻i in L (X ). By a slight abuse
of notation, we use L (X )+ to denote the set

⋃
N ∈2N ∗ \{∅} L (X )N

of all possible profiles—for all nonempty electorates.
A voting rule is a function F : L (X )+ → 2X \{∅}, mapping any

given profile to a nonempty subset of X , the election winners for
that profile. Note that this definition accounts for the fact that most
voting rules used in practice are irresolute, meaning that they will
sometimes return a set of alternatives tied for winning the election.
Examples for well-known voting rules include the plurality rule,
the Borda rule, the Kemeny rule, and others [5].

Social choice theorists have put forward numerous normative
principles, so-called axioms, that—ideally—a good voting rule should
satisfy. Some of them, such as strategyproofness, are known to be
particularly hard to satisfy [31], but others are less demanding.
In this paper we will work with seven of them to illustrate our
approach. They all apply to all nonempty electorates N ,N ′ ⊆ N ∗:
• Anonymity (ano). If profile ≻′N can be obtained from ≻N by
permuting the set of agents, then F (≻N ) = F (≻′N ).
• Neutrality (neu). If profile ≻′N can be obtained from profile
≻N by permuting the occurrences of the alternatives within
all of ≻N ’s preferences, then F (≻′N ) can be obtained from
F (≻N ) by performing the same kind of permutation.
• Pareto Principle (par). If all agents voting agree that x ≻ y,
then y should not win: y < F (≻N ) if {i | x ≻i y} = N .
• Condorcet Principle (con). If, for all y , x∗, a majority ranks
x∗ above y, then only x∗ should win: F (≻N ) = {x∗} if we
have |{i | x∗ ≻i y}| > |N | / 2 for all y ∈ X \ {x∗}.
• Reinforcement (rei). If the intersection of the winning sets for
two disjoint electorates is nonempty, then that intersection
shouldwinwhen they all vote: F (≻N∪N ′ ) = F (≻N )∩F (≻N ′ )
if N ∩ N ′ = ∅ and F (≻N ) ∩ F (≻N ′ ) , ∅.2

• Cancellation (can). In case of a perfect tie on all pairwise
comparisons, all alternatives should win: F (≻N ) = X in case
|{i | x ≻i y}| = |{i | y ≻i x }| for all x ,y ∈ X .
• Faithfulness (fai). If only a single agent votes, then her top
alternative should be the unique winner.

We can express axioms such as these in a suitable formal language.
For example, Grandi and Endriss [12] have shown how to do so in
first-order logic, and later on we will do the same using a constraint
modelling language. Whatever the language chosen, the interpreta-
tion of an axiom A, which we denote by I(A), is always a subset of
the set of all voting rules:

I(A) ⊆ L (X )+ → 2X \{∅}

Thus, F ∈ I(A) is the case if and only if the voting rule F is a rule
that satisfies the axiom A. Similarly, for any given set of axioms A,

2We note that this variant of the reinforcement axiom, which applies only to electorates
N , N ′ ⊆ N ∗ , is subtly weaker than the classical formulation due to Young [29]. We
are going to comment on this issue in more detail in Section 4.3.

we use I(A) to denote the set of voting rules that satisfy all the
axioms in A, i.e., I(A) =

⋂
A∈A I(A).

Importantly, while our axioms encode reasonable requirements
when considered in isolation, it is well known that no single voting
rule satisfies all of them. In particular, the Condorcet Principle and
(classical) reinforcement are in direct conflict with each other [30].

2.2 Justifications

Suppose we want to justify an election outcome X ∗ for a given
profile ≻N ∗ (in which everyone voted) to a particular audience.
Rather than referring to any specific voting rule F , we would like
to explain why all (and only) the alternatives in X ∗ should win
by referring only to normative principles (axioms) this audience
considers adequate for this purpose.

Example 4. Consider the following profile:
Agent 1: a ≻1 b ≻1 c
Agent 2: b ≻2 a ≻2 c

We can justify the claim that {a,b} should win by first invoking the
Pareto Principle to exclude c as a viable winner (because all agents
rank a above c) and then use anonymity and neutrality to argue that
either both or none of a and b must win. The claim then follows
from the fact that the set of election winners cannot be empty. △

Note that in this example we have not really used the full power
of the Pareto Principle, which applies to all alternatives x ,y ∈
X and profiles ≻N with {i | x ≻i y} = N ⊆ N ∗. Rather, we
have only invoked a specific instance of the axiom, for the specific
alternatives a and c and one specific profile. While it is intuitively
clear what “being an instance of” means in the context of axioms,
a formal definition of this concept would only be possible relative
to a concrete formal language for encoding axioms. As we want
to develop an approach that is general and can be applied to any
such language, we side-step the issue of providing a definition and
instead simply stipulate three requirements:

(i ) Every instance A′ of an axiom Amust itself be an axiom.
(ii ) The interpretation of an axiom is always equal to the inter-

section of the interpretations of all its instances. Thus, if A′
is an instance of A, then we must have I(A′) ⊇ I(A).

(iii ) The number of instances of any given axiom A is finite.
We write A′ ◁A to denote the fact that axiom A′ is an instance of
axiom A. Similarly, we writeA ′ ◁A for two sets of axioms if every
A′ ∈ A ′ is an instance of some A ∈ A.

We are now ready to state the central definition of this paper:

Definition 1 (Justification). Let A be a corpus of axioms for
voting rules F : L (X )+ → 2X \{∅}, let ≻N ∗ be a profile, and let
X ∗ ⊆ X be a set of alternatives. Then we say that a pair ⟨An,Ae⟩

of sets of axioms is a justification (with the normative basis An

and the explanation Ae) for the set X ∗ winning the election under
profile ≻N ∗ if and only if the following conditions are satisfied:

(i ) Explanatoriness. Ae (but none of its proper subsets) can
explain the desired outcome: F (≻N ∗ ) = X ∗ for every voting
rule F ∈ I(Ae), but for every set A ⊂ Ae we have F (≻N ∗ ) ,
X ∗ for some voting rule F ∈ I(A).

(ii ) Relevance. The explanation Ae is an instance of the norma-
tive basis An: Ae ◁An.
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(iii ) Adequacy. All axioms in the normative basis An belong to
the corpus A of axioms provided: An ⊆ A.

(iv ) Nontriviality. There exists at least one voting rule that satis-
fies all axioms in the normative basis: I(An) , ∅.

We may think of the axioms in A, including in particular those
in An, as reflecting the norms that (we might expect that) our
audience subscribes to. The axioms in Ae are instantiations of
those general normative principles to specific profiles, agents, and
alternatives that can be used to explain how those principles justify
the desired election outcome.

We call a justification ⟨An,Ae⟩ minimal if its normative basis
cannot be reduced without violating the relevance condition, i.e., if
Ae ◁A does not hold for any A ⊂ An.

Observe that, for a given profile and outcome, we may find two
different justifications, grounded in different normative bases. Thus,
our approach adequately reflects the natural phenomenon that there
sometimes will be more than one way to justify a decision. This is
an important feature in the context of application scenarios such
as the one described in Example 1: our committee may want to
select the (subjectively) most convincing justification from amongst
several contenders, or they may even choose to publish two or more
alternative justifications for the same outcome, so as to have a better
chance of convincing everyone in their audience.

Now, for a given profile, we may also find one justification for
outcome X ∗ and another justification for Y ∗. Often this is entirely
unproblematic. Indeed, this is one of the strengths of our approach:
different axioms can justify different outcomes for the same profile,
just as different voting rules sometimes elect different winners. This
is a feature we require for the application sketched in Example 2
regarding the group of colleagues using the ability to generate
justifications for alternative proposals to support their deliberations
aimed at identifying a high-quality decision. However, we would
not want to be able to justify contradictory outcomes from the same
normative basis. The following result shows that this indeed cannot
happen, essentially thanks to the condition of nontriviality.

Theorem 1 (Coherent Justifications). It is impossible to jus-
tify two different election outcomes for the same profile using justifi-
cations that are grounded in the same normative basis.

Proof. Let X ∗,Y ∗ ⊆ X be sets of alternatives, ≻N ∗ ∈ L (X )+ a
profile, and An, Ae

1 , and A
e
2 sets of axioms such that ⟨An,Ae

1⟩
justifies X ∗ being selected under ≻N ∗ and ⟨An,Ae

2⟩ justifies Y
∗

being selected under ≻N ∗ . We need to show that assumingX ∗ , Y ∗
leads to a contradiction.

From the requirement that both justifications must satisfy the
condition of explanatoriness, we can infer:

I(Ae
1 ) ⊆ {F : L (X )+ → 2X \{∅} | F (≻N ∗ ) = X ∗}

I(Ae
2 ) ⊆ {F : L (X )+ → 2X \{∅} | F (≻N ∗ ) = Y ∗}

Recall that A′ ◁A implies I(A′) ⊇ I(A). Due to the relevance condi-
tion for ⟨An,Ae

1⟩, we have thatA
e
1 ◁A

n. Hence, for everyA′ ∈ Ae
1

there exists anA ∈ An withA′ ◁A and thus I(A′) ⊇ I(A). It follows
that I(An) ⊆ I(Ae

1 ). We can use analogous reasoning for the pair
⟨Ae

2 ,A
n⟩, and thus obtain the following inclusion:

I(An) ⊆ I(Ae
1 ) ∩ I(A

e
2 )

Putting everything together, we obtain:

I(An) ⊆ {F : L (X )+ → 2X \{∅} | F (≻N ∗ ) = X ∗} ∩

{F : L (X )+ → 2X \{∅} | F (≻N ∗ ) = Y ∗}

The intersection on the right is empty, unless X ∗ = Y ∗. But the set
on the left-hand side being empty would be in direct contradiction
with the condition of nontriviality, so we are done. □

It is easy to adapt this proof to obtain a stronger variant of Theo-
rem 1 that states that it is impossible to justify two different election
outcomes for the same profile grounded in two normative bases
An

1 and An
2 with An

1 ⊆ A
n
2 .

Observe how Theorem 1 enables the kind of application envis-
aged in Example 3. If we have a manner of strictly ranking all
possible normative bases (say, in view of the level of convincing-
ness of its axioms), then for a given profile we can go through all
normative bases, from best to worst, and for each basis try whether
there is some outcome it can justify. By Theorem 1, we will never
encounter a situation in which the best normative basis allowing
us to justify some outcome will recommend two competing out-
comes. Thus, provided we have at least one normative basis that
fully characterises a voting rule (and thus will be able to generate a
justification for some outcome for every possible profile), we can
use this approach in lieu of a voting rule.

3 AUTOMATED SEARCH FOR JUSTIFICATIONS

Now that we have defined a notion of justification in abstract terms,
we want to search for and find such justifications in practice. To
this end, in this section we show how to translate the problem of
finding a justification into a constraint satisfaction problem.3

3.1 Constraint Networks

Constraint programming is a collection of techniques for solving
large combinatorial problems [27]. To be able to apply these tech-
niques, we need to specify our problem in the form of a constraint
network [4], which is a triple N = ⟨V,D,C⟩ such that:

• V = (V1, . . . ,Vℓ ) is a sequence of variables.
• D = D1 × · · · × Dℓ is an associated finite combinatorial
domain (i.e., Vi takes values from the finite set Di ).
• C is a finite set of constraints.

Using a suitable formal language, each C ∈ C refers to some of
the variables in V and specifies which combinations of values
for these variables are allowed. Whatever the language used, the
interpretation of a constraintC , which we denote by I(C ), is always
a subset of the domain: I(C ) ⊆ D.

Example 5. IfV = (x ,y, z) andD = {0, 1}3, then the constraint
“x , y”, involving only two of the three variables, is interpreted as
I(x ,y)= {(0, 1, _), (1, 0, _)}= {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}. △

3In principle, everything we do in this paper using constraint programming can
also be achieved using SAT solving techniques, or—after a slight modification of
the model—other techniques used to solve complex combinatorial problems, such as
integer programming. But constraint programming has some practical advantages, as
it encodes information more compactly and in a more readable form than SAT.
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Assigning each variable Vi to a value vi ∈ Di gives rise to a tuple
(v1, . . . ,vℓ ). Such an assignment satisfies a constraintC if it is an el-
ement of I(C ); otherwise it violatesC . A solution to a constraint satis-
faction problem expressed in the form of a networkN = ⟨V,D,C⟩
then is an assignment that satisfies all of the constraints in C. N is
called unsatisfiable if it does not have any solutions.

Suppose N = ⟨V,D,C⟩ is an unsatisfiable constraint network.
Then a set C∗ ⊆ C is called a minimal unsatisfiable subset (MUS)
of (the set of constraints of) N if and only if (i ) the network N ∗ =
⟨V,D,C∗⟩ is unsatisfiable, yet (ii ) for every subset C′ ⊂ C∗ the
corresponding network N ′ = ⟨V,D,C′⟩ is satisfiable.

3.2 Encoding Justification Problems

Now suppose we want to justify the outcome X ∗ ⊆ X for a given
profile ≻N ∗ using axioms from a corpus A. Let us call this a justifi-
cation problem ⟨≻N ∗ ,X ∗,A⟩. We approach this task by defining, in
Definition 2, a constraint network N = ⟨V,D,C⟩, with variables
corresponding to profiles, each variable ranging over the domain
of all possible outcomes, and constraints encoding axioms.

How many variables do we need? Recall that n = |N ∗ | and
m = |X |. So the number of profiles involving only (some of the)
agents in N ∗ (and all alternatives in X ) is ℓn,m =

∑n
k=1

(n
k

)
m!k . Let

p be a function that assigns to each profile a unique number between
1 and ℓn,m . Then fixV = (V1, . . . ,Vℓn,m ) andD = D1×· · ·×Dℓn,m

with Di = 2X \{∅} for every profile index i ≤ ℓn,m . Variable Vi
taking value X ′ is intended to represent the fact that exactly the
alternatives in X ′ win the election under the unique profile ≻N ′
with i = p (≻N ′ ). The set C of constraints includes one constraint
for every instance of every axiom in A.

Example 6. Let X = {a,b, c}. There are 6 + 6 + 36 = 48 possible
profiles involving agents from N ∗ = {1, 2}:

1
a
b
c
1

1
a
c
b
2

· · ·

· · ·

1
c
b
a
6

2
a
b
c
7

2
a
c
b
8

· · ·

· · ·

2
c
b
a
12

1 2
a a
b b
c c
13

1 2
a a
b c
c b
14

· · ·

· · ·

1 2
c c
b b
a a
48

Thus, in profile 1 only agent 1 is participating in the election and
she reports a ≻1 b ≻1 c , and so forth. One of the many instances of
the reinforcement axiom is this constraint:

(V1 ∩V8 , ∅) → (V14 = V1 ∩V8)

It expresses that, if the intersection of the outcomes chosen for
profiles 1 and 8 is not empty, then in profile 14 (which under the
above enumeration is the concatenation of profiles 1 and 8), we
must elect that very intersection. Thus, for instance, if V1 = {a,b}
andV8 = {a, c}, thenV14 = {a}. For comparison, one of the instances
of the faithfulness axiom is the very simple constraint V12 = {c}. △

We stress that the entire construction presented here can be carried
out using any constraint modelling languageL that is able to encode
the axioms in A and that comes with a well-defined notion of
instance. Table 1 provides an example for how to encode axioms in
the widely-used constraint modelling language MiniZinc [25].

Suppose we have fixed a specific language L for encoding axioms
(such asMiniZinc). Then, for any setA of axioms, we denote with
CA the set of constraints corresponding to the instances of the

axioms in A. Thus, the set C will include all of CA. The set C also
includes one further constraint, the goal constraint, which expresses
that the outcome should not be equal to X ∗:

CGoal : Vi , X ∗ for i = p (≻N ∗ )

This is useful, because whenever adding CGoal to a satisfiable con-
straint network makes that network unsatisfiable, then that means
that the constraints in that network force X ∗ to win under pro-
file ≻N ∗ . Let us summarise the encoding we have just described:

Definition 2 (Encoding Justification Problems). For any
corpus A of axioms for voting rules F : L (X )+ → 2X \{∅}, con-
straint modelling language L able to express the axioms in A, profile
≻N ∗ , and set X ∗ ⊆ X of alternatives, we say that a constraint net-
workN = ⟨V,D,C⟩ is an encoding of the justification problem
⟨≻N ∗ ,X

∗,A⟩ in L if and only if N has the following components:
• V = (V1, . . . ,Vℓn,m ) for n = |N ∗ | andm = |X |
• D = D1 × · · · × Dℓn,m with Di = 2X \{∅} for all i ≤ ℓn,m
• C = CA ∪ {CGoal }

3.3 Minimal Unsatisfiable Subsets

Suppose we have constructed the network N = ⟨V,D,C⟩ to
encode—in some constraint modelling language L—the justification
problem ⟨≻N ∗ ,X ∗,A⟩, and suppose further that N turns out to
be unsatisfiable. Then this means that satisfying the axioms in A,
while also selecting an outcome different from X ∗ for profile ≻N ∗ ,
is impossible. Understanding where this impossibility originates
from exactly will allow us to justify why X ∗ should (according to
some axioms in A) be chosen as the outcome in profile ≻N ∗ .

Explaining the unsatisfiability of a constraint network is a well-
studied problem [19, 20]: by computing an MUS for the network we
can pinpoint a specific reason for its unsatisfiability. The following
theorem formalises the idea that finding a justification essentially
boils down to computing an MUS.

Theorem 2 (Correctness). Given a justification problem P =
⟨≻N ∗ ,X

∗,A⟩ and a constraint modelling language L for A, let N =
⟨V,D,C⟩ be an encoding of P in L. Then a pair ⟨An,Ae⟩ of sets of
axioms expressible in this language L is a justification forX ∗ winning
in profile ≻N ∗ if and only if the following conditions are satisfied:

(i ) The set C∗ = CAe ∪ {CGoal } is an MUS of N .
(ii ) An is such that both An ⊆ A and Ae ◁An hold.
(iii ) The constraint network Nn = ⟨V,D,CAn ⟩ is satisfiable.

Before turning to the proof of Theorem 2, let us first explain its
practical significance. The three conditions in Theorem 2 outline an
algorithm for computing justifications (and the theorem establishes
the correctness of this algorithm):

(1) Construct N = ⟨V,D,C⟩ according to Definition 2.
In doing so, for each constraint C ∈ CA keep a record of
which axiom A ∈ A has given rise to the generation of C .

(2) Check whether N is satisfiable. If it is, stop and announce
that justifying the desired outcome X ∗ is impossible.
Otherwise, repeat the steps below until either a justification
has been found or there is no further MUS to explore:

(2a) Compute a (new) MUS C∗ of the network N such that
CGoal ∈ C

∗. Define Ae as the set of axiom instances cor-
responding to C∗ \ {CGoal }.
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1 constraint :: "Reinforcement"

2 forall( e in 1.. nbElectorates where card(electorates[e]) > 1,

3 p in assocProfiles[e],

4 e1 in 1.. nbElectorates where electorates[e1] ⊂ electorates[e],

5 p1 in assocProfiles[e1] where restrictedTo(e1, p, p1),

6 e2 in 1.. nbElectorates where electorates[e2] = electorates[e] \ electorates[e1],

7 p2 in assocProfiles[e2] where restrictedTo(e2, p, p2) )

8 ( F[p1] ∩ F[p2] != {} -> F[p] = (F[p1] ∩ F[p2]) );

Table 1: Encoding reinforcement in MiniZinc, with set-theoretic notation instead of basic MiniZinc constructs for better

readability. The array electorates stores all possible electorates and assocProfiles stores the profiles for each electorate.

(2b) DefineAn as the set of those axioms in A that have given
rise to the axiom instances in Ae.

(2c ) Check whether sub-network Nn= ⟨V,D,CAn ⟩ is satisfi-
able. If it is, stop and return the justification ⟨An,Ae⟩.

If no justification has been found, stop and announce that
justifying the desired outcome X ∗ is impossible.

Of course, solving a justification problem is a highly complex task.
But we stress that all computationally demanding steps in our algo-
rithm (namely checking satisfiability of a constraint network and
computing an MUS) can be relegated to state-of-the-art constraint
solvers for these generic problems.

Example 7. Consider the following profile ≻N ∗ , which has also
been discussed by Cailloux and Endriss [7]:

Agent 1: a ≻1 b ≻1 c
Agent 2: a ≻2 b ≻2 c
Agent 3: c ≻3 b ≻3 a

Suppose we want to justify the outcome X ∗ = {a} (rather than,
say, {b}, which also would not be unreasonable) using a corpus
A including faithfulness, cancellation, and reinforcement.
The goal constraint is Vp (≻N ∗ ) , {a}.

One MUS found by our algorithm includes Vp ([≻1]) = {a}, an
instance of faithfulness. It says that in the subprofile of just
agent 1, the set {a} must win. It also includes Vp ([≻2,≻3]) = {a,b, c},
an instance of cancellation, and this instance of reinforcement:
[
Vp ([≻1])∩Vp ([≻2,≻3]) ,∅

]
→

[
Vp (≻N ∗ ) =Vp ([≻1])∩Vp ([≻2,≻3])

]

And indeed, together these three axiom instances constitute an
explanation for the desired outcome, with the corresponding axioms
serving as the normative basis. △

Let us now prove our theorem.

Proof of Theorem 2. Let P = ⟨≻N ∗ ,X ∗,A⟩ be a justification
problem, L a constraint modelling language that can express all
axioms in A, and N = ⟨V,D,C⟩ an encoding of P in L. Consider
any pair ⟨An,Ae⟩ of sets of axioms expressible in L and define
C∗ = CAe ∪ {CGoal } and Nn = ⟨V,D,CAn ⟩.
(⇐) Assume conditions (i )–(iii ) in the statement of the theorem
are satisfied. We need to show that ⟨An,Ae⟩ is a justification for
P (in the sense of Definition 1).

First, let us verify the explanatoriness requirement. Indeed, as
C∗ is unsatisfiable there can be no voting rule F ∈ I(Ae) with

F (≻N ∗ ) , X ∗; and as every proper subset of C∗ is satisfiable—
including every such subset that includes CGoal—no proper subset
of Ae is sufficiently strong to enforce the same restriction.

Furthermore, relevance and adequacy of the normative basisAn

follow immediately from condition (ii ).
Finally, we need to check that the normative basis An is non-

trivial. By condition (iii ), we have that Nn, induced by An, is a
satisfiable constraint network. Thus, there exists at least one voting
rule that satisfies all the axioms in An.

(⇒) Now assume that ⟨An,Ae⟩ is a justification for P. We need
to check that conditions (i )–(iii ) hold.

Condition (ii ) follows immediately from the adequacy and rele-
vance of ⟨An,Ae⟩. Condition (iii ) follows from the nontriviality
of the normative basis An.

It remains to check condition (i ), i.e., to show that C∗ is an MUS
ofN . This follows from the explanatoriness ofAe: As F (≻N ∗ ) = X ∗

for all F ∈ I(Ae), adding the goal constraint to CAe indeed must
result in an unsatisfiable set of constraints. The requirement of no
proper subset of Ae being able to explain the outcome essentially
corresponds to C∗ being minimal. We only need to check that the
special subset CAe of C∗ is not unsatisfiable. But this clearly cannot
be the case, as then CAn would be unsatisfiable as well, which is a
possibility we have excluded already. □

We stress that justifications computed by our algorithm need not
be minimal. If Ae = {A′1,A

′
2}, then our algorithm might return

An = {A1,A2} in case A′1 ◁A1, A′1 ◁A2, and A′2 ◁A2, even though
An = {A2} would also be sufficient.

In case no two axioms in A have overlapping sets of instances,
this problem cannot occur and our algorithm is guaranteed to al-
ways return a minimal justification (if one exists). Related to this
point, Theorem 2 in fact establishes the correctness of an entire
family of algorithms (of which the one sketched earlier is a represen-
tative): replacing step (2b) by any other procedure for computing a
set An ⊆ A with Ae ◁An also works. Thus, even if some axioms
share some axiom instances, we can refine our algorithm to ensure
that ⟨An,Ae⟩ is minimal. Note that this requires a search over
all subsets of A, which is exponential in |A|. For small corpora
of axioms (such as the corpus of seven axioms considered in this
paper) this is relatively unproblematic in practice.

3.4 Proof-of-Concept Implementation

We have implemented our algorithm in Java, encoding axioms
in MiniZinc, which has high expressivity and can be used with
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several solvers. Our implementation uses Gecode [10] to check
satisfiability and FindMUS [18] for MUS computation.

Using this proof-of-concept implementation, we are able to find
justifications for moderately-sized problems. For example, finding
all minimal justifications for a given target outcome and profile
with three agents and three alternatives (using any of our seven
axioms) takes between 5 and 30 minutes on a machine equipped
with an AMD Ryzen 5 2600 processor cadenced as 3.4 GHz and
16GB of memory. The worst-case scenarios are those for which no
justification exists.While this is too slow for deployment in a system
users can interact with directly, these results nevertheless show
the feasibility of our approach and suggest that further algorithmic
improvements will make building such a system feasible in the
not-too-distant future. As we are going to see next, already now we
can use our implementation to run interesting experiments offline.

4 THE EXPLANATORY POWER OF AXIOMS

In this section we present the results of an experiment we carried
out to analyse the explanatory power of axioms. While this experi-
ment is restricted to small scenarios with three agents and three
alternatives, it still provides interesting insights into the usefulness
of different axioms in the context of finding justifications.

We shall assume the reader is familiar with the Borda rule, the
plurality rule, and Condorcet winners [31].

4.1 Experimental Setup

We restrict attention to scenarios with three agents and three al-
ternatives. For each of the (3!)3 = 216 possible profiles ≻N ∗ and
each of the 23 − 1 = 7 possible outcomes X ∗, we want to check
whether (and how) X ∗ can be justified for ≻N ∗ . As our corpus A of
axioms we use the seven axioms defined in Section 2.1. We stress
that our variant of reinforcement is subtly weaker than its classi-
cal formulation, because we require all electorates involved to be
subsets of N ∗ = {1, 2, 3}. Thus, we are not permitted to refer to a
hypothetical profile involving agents outside of N ∗ when justifying
a target outcome for a profile in L (X )N

∗

.
Interestingly, contrary to what onemight expect given the impos-

sibility result of Young and Levenglick [30] recalled in Section 2.1,
every normative basis we can build from A is nontrivial for this
setting. For example, Black’s rule (elect the Condorcet winner when-
ever it exists, otherwise use Borda) satisfies all seven axioms (for
n = 3 and m = 3), even though it violates the classical formula-
tion of reinforcement. Therefore, in practice we were able to skip
step (2c ) of our algorithm for the experiments reported here. To
ensure all (and only) minimal justifications were computed, we
used the refinement of our algorithm sketched earlier, in which we
explicitly search over all subsets of A.

At this point one caveat is in order. Due to the proof-of-concept
nature of our system, we were not able to derive all of the results
reported here in a fully automated fashion. In particular, the notion
of instance used by the MiniZinc compiler does not fully match
the theoretical notion best suited to our problem. For this reason,
in some cases we required manual post-processing when analysing
our experimental results.

Observe that for n = 3 and m = 3 every profile either has a
Condorcet winner (204 profiles) or is an instance of the classical

Classes Profiles Axioms in An |Ae |

2 24 {par} 2 + 1
{rei, fai} 5

3 90 {rei, fai, can} 3
{rei, par, can} 4 + 1

2 54 {ano,neu, rei, par} 6 + 2

Table 2: Justifications for electing the Condorcet winner not

using the Condorcet Principle (out of 204 relevant profiles).

Condorcet Paradox (12 profiles), in which each of the three alter-
natives occurs exactly once in each of the three positions in an
individual preference ordering. The profile (a ≻1 b ≻1 c, b ≻2
c ≻2 a, c ≻3 a ≻3 b) is one such profile. Finally, note that, due
to symmetries within the space of all profiles, it is sufficient to
only run our experiment on a small subset of the set of all 216
profiles. For example, any justification for outcome {a} in profile
(a ≻1 b ≻1 c, a ≻2 b ≻2 c, c ≻3 b ≻3 a) can be translated into a
justification for {b} in profile (b ≻1 a≻1 c, c ≻2 a≻2b, b ≻3 a≻3 c ),
given that the latter profile is the result of swapping alternatives a
and b as well as agents 2 and 3 in the former profile.4 We can group
the 216 profiles into 10 classes of such “permutation-equivalent”
profiles and we have run our system on one representative of each
of these classes to obtain the results reported in the sequel.5

4.2 Justifying a Unique Winner

We first consider justifications of a unique winner (rather than a
set of tied winners). For the 12 paradox-profiles, all belonging to
the same equivalence class, our system is unable to justify any
unique-winner outcome. Upon reflection, this is exactly what we
should expect and want to happen: these are perfectly “symmetric”
profiles in which no alternative has any special role. Therefore, no
combination of normative principles of any kind of philosophical
appeal should ever allow us to justify a unique winner.

Next, we turn to the remaining 204 profiles, each of which has a
Condorcet winner. Of course, for each such profile our system can
easily justify the Condorcet winner as the unique winner using the
normative basis {condorcet} and an explanation of size 1.

Although short and simple, some may find this an unsatisfactory
solution. First, the Condorcet Principle has been criticised in the
literature for sometimes leading to unconvincing outcomes—albeit
only for larger profiles than we consider here [9]. Second, arguably
condorcet encodes a rather complex philosophical argument and
is maybe better interpreted as a family of voting rules rather than
a fundamental normative principle. Therefore, we may also be
interested in alternative justifications of the Condorcet winner
that do not rely on condorcet. Indeed, short justifications are not
necessarily better than longer ones.

Using the remaining six axioms, our system is able to derive
justifications of the Condorcet winner as the unique winner for 168
of our 204 profiles. No further justification was found for the 36

4We stress that this is possible independently of whether or not we are interested in
justifications that involve either the anonymity or the neutrality axiom.
5These 10 classes are known as the anonymous and neutral equivalence classes of
preference profiles [15] and have been studied in the context of efficiently generating
distributions of profiles from the impartial anonymous and neutral culture [8].
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leftover profiles, taken from two equivalence classes. These results
are summarised in Table 2. Here “+k” in the specification of |Ae |
indicates that the explanation involves k appeals to the “axiom”
that the set of winners must be nonempty (as in Example 4). The
first 24 cases are profiles in which all three agents agree on the
top alternative. We can then use either pareto twice to exclude
the other two alternative, or we can use faithfulness to establish
the obvious winners for the three singleton-profiles and then use
reinforcement twice.6 Then there are 90 profiles that are similar
to the one of Example 7 (with two agents reporting “cancelling”
preferences and the third agent thus determining the winner), lead-
ing to similar justifications. The remaining 54 cases are all variants
of the following example.

Example 8. Consider the following profile:

Agent 1: a ≻1 b ≻1 c
Agent 2: a ≻2 c ≻2 b
Agent 3: b ≻3 a ≻3 c

Using pareto, anonymity, and neutrality, we can justify {a,b}
as the winning outcome for subprofile (≻1,≻3) as in Example 4. A
further application of pareto on (≻2), followed by reinforcement,
then yields a as the overall winner. △

Finally, we note that for all of the 204 profiles with a Condorcet
winner we were unable to justify any other unique winner. Indeed,
inspection of typical such profiles suggests that both other alter-
natives are “obviously bad” choices. For example, for the profile
(a ≻1 b ≻1 c, b ≻2 a ≻2 c, c ≻3 a ≻3 b), with Condorcet winner a, it
seems impossible to come up with any convincing argument for
why b or c should win.

4.3 Justifying Multiple Winners

As we have seen, it is not always possible to justify the election of
a unique winner. This is related to the fact that most reasonable
voting rules are not resolute and may return multiple tied winners.
When using our system to try and justify (non-singleton) sets of
winners, we found that (i ) we can justify a three-way tie in the case
of the 12 paradox-profiles using anonymity and neutrality, and
(ii ) we cannot justify any non-singleton outcome for any of the
other 204 profiles.

The first of these findings is unsurprising and exactly what we
should expect to observe. Indeed, the fact that any voting rule that
is anonymous and neutral must declare a three-way tie on this
kind of paradox-profile is well-known and essentially an instance
of an impossibility theorem regarding resolute voting rules that are
anonymous and neutral due to Moulin [24].

But what about our second finding? One may feel that for some
profiles returning a pair of winners seems reasonable.

Example 9. Consider the following profile:

Agent 1: a ≻1 b ≻1 c
Agent 2: a ≻2 b ≻2 c
Agent 3: b ≻3 c ≻3 a

6Observe that pareto implies faithfulness, so any justification involving the latter
can always be rewritten as a justification using the former instead. This does not render
faithfulness redundant. Indeed, a justification relying on faithfulness rather than
the more presumptuous pareto might be preferable to some audiences.

Here, a is the Condorcet winner, but the Borda rule will return
{a,b}, as both alternatives receive 4 points. △

There are 18 such profiles (one complete equivalence class) onwhich
the Borda rule disagrees with the Condorcet Principle. By a seminal
result due to Young [29], the Borda rule is uniquely characterised
by the axioms of neutrality, reinforcement, faithfulness, and
cancellation. Therefore, one might expect that our system should
be able to justify the Borda outcome for these 18 profiles. Remark-
ably, this intuition turns out to be wrong. This is due to the fact
that Young’s definition of reinforcement is subtly stronger than
ours. Our axiom does not allow us to refer to hypothetical profiles
with additional agents—a restriction we consider reasonable in the
context of providing explanations to human users. If we were to
drop this restriction, then it would be possible to derive a justifi-
cation (albeit a justification of very limited intuitive appeal). The
trick consists in inspecting several (much) larger profiles to show
that not ruling out certain undesired outcomes for the target profile
would lead to contradictory conclusions at the level of these larger
profiles. This kind of construction is also used in the alternative
proof of Young’s result given by Hansson and Sahlquist [13].

In a similar vain, one may feel that for some profiles with a Con-
dorcet winner we should return a three-way tie. For example, for
(a≻1b ≻1 c, b ≻2a≻2 c, c ≻3a≻3b), the plurality rule would declare
such a tie. But our corpus of axioms is not sufficiently rich to charac-
terise the plurality rule and thus to provide such a justification [21].
This would require adding further axioms to A.

Finally, we stress that our results, particularly onmultiple-winner
justification, of course are specific to scenarios withn = 3 andm = 3
and may not directly generalise to larger scenarios.

5 CONCLUSION

We have put forward a formalisation of the notion of justification of
a collective decision based on the reported preferences of a group of
decision makers, we have outlined a number of application scenar-
ios where this notion plays a central role, and we have presented
an algorithm for computing such justifications. Our framework
opens up new opportunities for computational social choice and
ties in with the recent surge of (renewed) interest in Explainable AI
[17, 23]. As our experimental study of the explanatory power of
axioms demonstrates, our framework can also offer a novel per-
spective on some of the axioms studied in social choice theory.

We see plenty of exciting directions for future work on this topic.
For example, it would be very interesting to let people rate the
convincingness of alternative justifications and use the insights
thus gained to guide the search for “good” justifications, by building
on work on preferred explanations in constraint programming [14].
Another important direction for future work relates to improving
the efficiency of our approach. While defining what constitutes
a justification is language-independent, searching for one is not
and some languages might be better suited than others. A rigorous
analysis of the computational complexity of the problem of finding
justifications should provide insight into the best way to follow
towards practical feasibility. Some variants of the problem—such as
searching for a specific type of justification—might also be easier
to solve than others. The insights thus gained may serve as a basis
for the design of tailor-made algorithms and heuristics.
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