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a b s t r a c t

The Borda rule, originally defined on profiles of individual preferences modelled as linear orders over
the set of alternatives, is one of the most important voting rules. But voting rules often need to be used
on preferences of a different format as well, such as top-truncated orders, where agents rank just their
most preferred alternatives. What is the right generalisation of the Borda rule to such richer models
of preference? Several suggestions have been made in the literature, typically considering specific
contexts where the rule is to be applied. In this work, taking an axiomatic perspective, we conduct a
principled analysis of the different options for defining the Borda rule on top-truncated preferences.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Borda rule, introduced by Jean-Charles de Borda in 1784
or profiles of ballots that are linear orders over a set of al-
ernatives, is a very well-established voting rule. Borda’s rule
s very intuitive when the agents submit a linear order over

alternatives: it prescribes that, for each voter, m − 1 points
re to be given to her top alternative, m − 2 points to her
econd-to-top alternative, and so forth, with 0 points given to
he alternative ranked last. The alternatives with the largest sum
f points across all voters are then announced the winners of
he election. But not every voter can be expected to always rank
ll alternatives she may be presented with. For example, in an
lection with hundreds of candidates belonging to many different
arties, voters may be able to fully rank only a subset of those
andidates, possibly those that come from parties to which the
oters are sympathetic and have paid more attention. So, what
s the right generalisation of the Borda rule to richer models of
reference, beyond linear orders?
In this paper we address this question for domains of prefer-

nces that are top-truncated. A preference is called top-truncated
f it consists of a linear order over a subset of all given alter-
atives, with the implicit assumption that all non-ranked al-
ernatives are inferior to all ranked alternatives. Top-truncated
references provide a sensible model for many real-world appli-
ations. From choosing the members of a parliament to selecting
avourite movies to add to a watch-list, an agent is likely to
ecognise her most preferred alternatives more easily, and be

∗ Corresponding author.
E-mail address: z.terzopoulou@uva.nl (Z. Terzopoulou).
ttps://doi.org/10.1016/j.jmateco.2020.11.001
304-4068/© 2021 The Authors. Published by Elsevier B.V. This is an open access art
willing to put effort into ranking them. On the other hand, it is
safe to assume that a voter, when overloaded with an abundance
of options, will leave her least preferred alternatives unranked
in order to escape some mental burden—this can be interpreted
either as the voter being indifferent between these alternatives
or as not having compared them at all.

Some suggestions regarding appropriate generalisations of the
Borda rule for top-truncated preferences have already been made
in the literature. All of them are reasonable at first sight, but
heavily depend on the interpretation of the preference domain,
and of the rule, we have in mind. For instance, given a preference
with k ranked alternatives out of a total of m alternatives overall,
should the points assigned to the unranked alternatives at the
bottom be m−k−1 (as if they all were ranked at level k+1 from
the top), or should the points be 0 (as if all unranked alternatives
were ranked at the very lowest level m)? Dummett (1997), Saari
(2008), Baumeister et al. (2012), Cullinan et al. (2014), Cara-
giannis et al. (2015), and Terzopoulou and Endriss (2019) have
presented their own versions of the Borda rule (some of which
coincide), for several variants of domains of preorders.1 Emerson
(2013) has informally discussed the advantages and disadvan-
tages of different such generalisations of the Borda rule, con-
centrating on issues related to strategic behaviour. Nonetheless,
no systematic analysis has been conducted so far regarding the
various versions of the Borda rule for top-truncated preferences
that appear in the literature to date. In this paper we attempt
to close this gap, by identifying axioms (both established and
original ones) that characterise each specific rule of interest.

1 A preorder is a reflexive and transitive binary relation.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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learly, within the model of top-truncated preferences, agents
till have the freedom to rank all alternatives and submit a profile
f linear orders—in such a case, we simply apply the traditional
orda rule.
Our axioms provide a principled way of understanding not

nly the differences, but also the similarities of the suggested
eneralisations of the Borda rule. On the one hand, we see that
ll these rules exhibit an analogous structure, which locates them
ithin a class of positional scoring rules that conform to a ‘‘Borda
tyle’’. We call this class the Borda class. The axiomatic character-
sation of the Borda class is based on the original characterisation
f the Borda rule for domains of linear orders by Young (1974).
n his characterisation, Young used the following four axioms:
eutrality, reinforcement, faithfulness, and cancellation, with the
ast being the most critical one for the identification of the Borda
ule. Analogously, essential for the characterisation of the Borda
lass is our axiom of top-cancellation. Top-cancellation extends
oung’s cancellation axiom to top-truncated orders, by requiring
hat the voting rule should not distinguish between alternatives
hat are strictly ranked by all agents and tie in pairwise compar-
sons. On the other hand, each specific rule within the Borda class
atisfies distinctive properties, which are brought to the surface
hen expressed formally as axioms. For instance, we show that
y enforcing Young’s original cancellation axiom within the Borda
lass, we can specify the rule that assigns to each non-ranked
lternative in a top-truncated order the average of the Borda
cores that this alternative could be assigned with if the given
op-truncated order were to be extended to a linear order—this is
method that Ackerman et al. (2013) call bucket averaging.2 Two
dditional rules in the Borda class are obtained when we impose
wo axioms that are reminiscent of monotonicity conditions.

Although our work is tightly connected to the characterisation
f the Borda rule by Young (1974), other characterisations of the
orda rule in the same formal setting have also been produced
y Farkas and Nitzan (1979) and by Saari (1990). The former have
sed the axiom of Pareto stability based on a notion of relative
nanimity, while the latter has employed weaker versions of
oung’s axioms and has incorporated the axiom of anonymity as
ell. We also note that aggregation processes based on the Borda
cores, together with their corresponding axiomatic properties,
ave received much attention in several settings beyond voting as
ell. Nitzan and Rubinstein (1981) have characterised the Borda
ule as a social welfare function (i.e., a function that outputs social
ankings instead of winning alternatives). Duddy et al. (2016)
nd Brandl and Peters (2019) have focused on aggregation mech-
nisms that produce collective dichotomous preferences and are
nspired by Borda’s form of scoring. Lastly, Dietrich (2014) has
ntroduced a judgment aggregation rule that reduces to Borda’s
oting rule when applied to the appropriate domain.
The remainder of this paper is organised as follows. Section 2

ntroduces our basic voting model, together with our notation
nd terminology. Section 3 reviews the relevant definitions of
revious literature for rules that generalise the Borda rule to
op-truncated preferences. It also builds important technical con-
ections between these rules. Section 4 contains our main results,
amely the axiomatic characterisations of three specific rules that
xtend Borda’s rule to top-truncated domains, together with the
haracterisation of the larger class to which all these rules belong.
ection 5 concludes.

2 This result is also in line with the work of Cullinan et al. (2014), who have
haracterised this specific version of the Borda rule for domains of partial orders,
elying on the four classical axioms of Young.
32
Fig. 1. Types of top-truncated preferences in two domains: D1 and D2 .

. The model

We have a finite set of alternatives A with #A = m ≥ 3 and a
et of potential (infinite, but countably many) agents N, denoting
ll agents that may ever participate in an election. Then, in every
oncrete election, a finite group of agents N ⊂ N express their
references over the set of alternatives A. Such a preference ≿ can
n general take the form of any preorder on A. We write D for a
omain of preferences over A (for example, D may be the set of
ll preorders, or a subset of those).
Given two alternatives a, b ∈ A, we write a∼b when a ≿ b and
≿ a, and a ≻ b when a ≿ b and it is not the case that b ≿ a.
hen a∼b, then a and b are said to be indistinguishable. When
≻ b (or a ≿ b), then a is said to be strongly (or weakly) preferred
o b. When none of the above holds, then a and b are said to be
ncomparable. For a preference ≿ and two alternatives a, b ∈ A, we
write ≿(ab) for the new preference that is identical to ≿ except for
having the positions of a and b switched.

Let us denote by ≿i the individual preference of agent i. We
are particularly interested in top-truncated preferences. A pref-
erence ≿ is top-truncated if it strictly ranks a subset A′

⊆ A of
the alternatives and requires that all other alternatives are less
desirable than those in A′. Note that every agent i is allowed to
rank a subset of the alternatives that is possibly different in size
from the relevant sets ranked by her peers, and agents may also
rank subsets of alternatives with an empty intersection.

In this paper we specifically consider two domains of top-
truncated preferences, D1 and D2. In each of our two domains, all
preferences take the same form, which is one of those depicted
in Fig. 1 (where transitive arrows are omitted for simplicity). In
Fig. 1 an arrow captures the fact that the alternative appearing
in the position that the arrow starts from is strictly preferred to
the alternative in the position that the arrow ends in. Specifically,
D1 contains top-truncated preferences where k alternatives are
ranked, for any 0 ≤ k ≤ m, and the alternatives that are not
ranked are indistinguishable from each other; D2 also contains
top-truncated preferences where k alternatives are ranked, for
any 0 ≤ k ≤ m, but the alternatives that are not ranked
are incomparable to each other. Note that both D1 and D2 are
restricted domains of preorders.

A top-truncated preference ≿ consists of two parts: the top
part and the bottom part. Let us define TOPsets(≿) as the collection
of all subsets A′

⊆ A that contain strictly ordered alternatives
in ≿ that are superior, according to ≿, to all alternatives not in A′.
Formally,

TOPsets(≿) = {A′
⊆ A |(i) x ≻ z for all x ∈ A′, z ∈ A \ A′ and

(ii) x ≻ y or y ≻ x for all x, y ∈ A′
}.
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Fig. 2. The top alternatives of each single preference are in red. From left to right, these are the sets {a1 , a2 , a3}, {a1 , . . . , a5}, and {a1 , a2}, respectively. The TOPsets(≿)
of the leftmost preference ≿ are {{a1}, {a1 , a2}, {a1 , a2 , a3}}, and similarly for the other preferences. The intersection of these sets is then the set {a1 , a2}, which includes
the top alternatives of the whole profile.
Fig. 3. Possible domination-based scores for defining the Borda rule on preorders.
a

Then, TOP(≿) is the unique largest set in TOPsets(≿), and for the
set of bottom alternatives, we write BOT (≿) = A \ TOP(≿).

Next, given a group of agents N of size #N = n, we suppose
without loss of generality that N = {1, . . . , n}. Now a profile of
preferences for the group N can be captured by a vector ≿= (≿1
, . . . , ≿n) ∈ Dn. Given such a profile ≿, we denote by ≿−i the new
profile where all agents besides i submit the same preferences as
in ≿. Given a profile ≿′

= (≿n+1, . . . , ≿n+ℏ) ∈ Dℏ with ℏ ≥ 1, that
concerns a disjoint set of voters than those of ≿, we write

(≿,≿′) = (≿1, . . . , ≿n, ≿n+1, . . . , ≿n+ℏ) ∈ Dn+ℏ.

The set of top alternatives in a profile ≿ includes those alterna-
tives that are on top for all agents. That is, TOP(≿) is defined as
the unique largest set in

⋂
i∈N TOPsets(≿i) if that intersection is

non-empty; otherwise, TOP(≿) is the empty set. We also define
BOT (≿) as the set A \ TOP(≿), but note that this definition is
intuitively meaningful (in the sense of characterising a set of
‘‘bottom alternatives’’) only when TOP(≿) ̸= ∅. See Fig. 2 for an
example with m = 5 and n = 3.

Given a domain of preferences D over the set of alternatives A,
a voting rule is a function that maps every possible preference
profile (for any group of agents N ⊂ N) to a nonempty subset of
the alternatives, which is the set of (tied) winners. A positional
scoring rule Fs is a voting rule associated with some positional
scoring function s. Here a scoring function s : A × D → R
maps every alternative a ∈ A in a preference ≿∈ D to a score,
which is a real number that we denote by s≿(a). Moreover, a
scoring function s is positional if, for all permutations 𝜎: A → A,
all preferences ≿ ∈ D, and all alternatives x ∈ A, it holds that
s≿(x) = s𝜎(≿)(𝜎(x)), where 𝜎(≿) = {(𝜎(x), 𝜎(y)) | x ≿ y}. Intu-
itively, a positional scoring function assigns scores to positions in a
graph, rather than to specific alternatives in specific preferences.
Finally, the corresponding rule Fs is defined as follows: for every
profile ≿= (≿1, . . . , ≿n),

Fs(≿) = argmax
x∈A

∑
i∈N

s≿i (x).

In words, a positional scoring rule selects as winning alternatives
those with the largest score over all individual preferences. We
will often also use the abbreviation s (a) =

∑
s (a).
≿ i∈N ≿i s

33
3. Generalising the Borda rule

The Borda rule is commonly defined on domains of linear
orders in one of two ways. First, as a positional scoring rule with
score-vector (m − 1,m − 2, . . . , 0), where the first position in the
vector corresponds to the score assigned to the top alternative
in a linear order, the second position to the second-to-top alter-
native, and so forth, until the last position in the vector that is
associated with the score of the bottom alternative. A second way
of defining the Borda rule is in terms of the weighted majority
graph, where the winning alternatives are those that maximise
the following function3:

B(a) =

∑
y∈A

#{i ∈ N | a ≻i y} − #{i ∈ N | y ≻i a}.

=

∑
i∈N

∑
y∈A

1a≻iy − 1y≻ia.

We can think of B(a), the symmetric Borda score of a, as B(a) =∑
i∈N Bi(a) with Bi(a) =

∑
y∈A 1a≻iy−1y≻ia

.
It seems sensible to presuppose that any interesting generali-

sation of the Borda rule will also be defined in terms of a scoring
function B with B(x) =

∑
i∈N Bi(x) for some scoring functions Bi

that each only makes reference to the preference of one agent i.
In Fig. 3 we present some options for how one could define such
a function on general domains of preorders—all of them reduce
to the standard Borda rule when we restrict ourselves to profiles
of linear orders. Note also that any positive affine transformation
of a function Bi(x) induces the same rule as Bi(x) itself.

When indistinguishability is not materialised in a domain,
definition (b) coincides with definition (c); when incomparability
is not materialised, definition (c) coincides with definition (d).

Specifically regarding top-truncated preferences, some gen-
eralisations of the Borda rule have already been discussed in
previous work. These all follow the definition of a positional
scoring rule in terms of score-vectors. Note that for domains of
top-truncated preferences we actually need m − 1 such vectors,

3 The definition of the Borda rule based on the weighted majority graph can
lso be considered a definition of a positional scoring rule on linear orders, with
core-vector (m,m − 2, . . . ,−m).
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orda rules for domains of top-truncated preferences.
Scores Domains

D1 D2

(a) symmetric Averaged Averaged
(b) domination Pessimistic Pessimistic
(c) weak domination Optimistic Pessimistic
(d) non-domination Optimistic Optimistic

one for each possible number of the top alternatives in a pref-
erence (when this number is 0, all alternatives will always be
assigned the same score, by the definition of positional scoring
functions). Now, the last m − k positions in a vector corre-
spond to the scores associated with the bottom alternatives in
a top-truncated preference with k top alternatives. Note that all
bottom alternatives must have the same score, by the definition
of positional scoring functions. Generally, given a top-truncated
preference ≿ with #TOP(≿) = k ≤ m − 1, we will write sj for
the score of the alternative ranked in the jth position within the
top part of ≿ and sk+1 for the score of all alternatives in the
bottom part of ≿. These are the versions of the Borda rule for
top-truncated preferences that can be found in the literature:

• Pessimistic Borda4 (Baumeister et al., 2012):

(m − 1,m − 2, . . . ,m − k, 0, . . . , 0), for all 1 ≤ k ≤ m.

• Optimistic Borda5 (Saari, 2008; Baumeister et al., 2012):

(m − 1,m − 2, . . . ,m − k,m − k − 1, . . . ,m − k − 1), for all
1 ≤ k ≤ m.

• Averaged Borda (Dummett, 1997):

(m − 1,m − 2, . . . ,m − k,
m − k − 1

2
, . . . ,

m − k − 1
2

), for all

1 ≤ k ≤ m.

We have reviewed two different – yet equally natural – direc-
tions one could follow to generalise the Borda rule on preorders
(and specifically on truncated preferences). We will next see
that defining the Borda rule using a domination-based score or
a scoring vector can lead to exactly the same outcome. What
plays a crucial role here is the particular domain we consider.
Specifically, by combining domination-based scores with differ-
ent domains, we obtain already existing rules (consult Table 1).6
The observations included in Table 1 are quite straightforward,
except perhaps for the one concerning the averaged Borda rule
and the symmetric Borda scores, made explicit in Proposition 1.7

Proposition 1. The averaged Borda rule for top-truncated prefer-
ences (on D1 or D2) is the positional scoring rule with a correspond-
ing scoring function based on the symmetric Borda scores.

Proof. Take the symmetric Borda scores of the alternatives in an
arbitrary top-truncated preference. Divide all these scores by 2

4 This rule can also be found as truncated Borda (Ackerman et al., 2013).
5 This rule is also referred to as modified Borda (Caragiannis et al., 2015).
6 In our earlier work (Terzopoulou and Endriss, 2019) we defined yet another
eneralisation of the Borda rule, called shortsighted Borda, which is based on
he scoring vector (m − 1,m − 2, . . . ,m − k,m − k, . . . ,m − k). Note that this
ule cannot be obtained through domination-based scores, for these particular
omains. Indeed, shortsighted Borda is better suited to domains where the
nranked alternatives are taken to be incomparable (rather than inferior) to
he ranked alternatives.
7 Proposition 1 also holds for larger preference domains, like the one of weak
rders, as discussed for instance by Duddy et al. (2016).
34
Fig. 4. A rule in the Borda class on the domain D1 , for sk+1 < m − k.

Fig. 5. A profile where the pessimistic, the optimistic, and the average Borda
rule output different sets of winners: {b}, {a, c}, and {a, b}, respectively.

and add to all of them the positive constant m
2 . The scores we

btain are those of the averaged Borda rule. Since the new scores
re obtained through an affine transformation of the old ones, the
wo corresponding rules are equivalent. □

he pessimistic, the optimistic, and the averaged Borda rules, all
elong to a wider class of natural generalisations of the classical
orda rule for top-truncated preferences, to which we will refer
s the Borda class. Formally, a voting rule on domains of top-

truncated preferences is in the Borda class if it is induced by some
positional scoring function that gives rise to the scoring vectors

(m − 1,m − 2, . . . ,m − k, sk+1, . . . , sk+1),

for some number sk+1 < m − k, and for 1 ≤ k ≤ m (see Fig. 4 for
an illustration). A further reasonable choice for sk+1 would be that
it is any number between 0 and m−k−1. In fact, the pessimistic,
the optimistic, and the averaged Borda rules also belong to this
smaller class.

Note also that the three aforementioned rules produce differ-
ent outcomes even for very simple profiles. Fig. 5 provides an
example with three agents and four alternatives.

4. Axiomatic characterisations

In this section we introduce the axiomatic properties that
characterise the rules in the Borda class and we discuss how
these relate to the properties in the classical axiomatisation of
the Borda rule for domains of linear orders by Young (1974).
We then provide axiomatic characterisations of the three specific
generalisations of the Borda rule for top-truncated preferences
we reviewed in Section 3: the optimistic, the pessimistic, and the
averaged Borda rule.

Our analysis will proceed in steps, each of which will concern a
smaller class of rules than the previous one: First, we are going to
see an axiomatic characterisation of all positional scoring rules for
top-truncated preferences. Then, we are going to add some new
axioms to that characterisation and obtain all positional scoring
rules in the Borda class. Finally, by considering a few further
axioms, we will be able to restrict attention to our specific rules
of interest within the Borda class.
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Smith (1973) and Young (1975) initiated the axiomatic anal-
ysis of positional scoring rules for the special case of profiles of
linear orders. Two decades later, Myerson (1995) generalised the
previous results to profiles of ballots that could take any form
over the set of alternatives. Recently, Kruger and Terzopoulou
(2020) provided an analogous characterisation of positional scor-
ing rules for acyclic preferences without indistinguishability (but
it is not hard to see that their relevant proofs go through for our
domains of top-truncated preferences as well). The axioms shared
by all these characterisations for positional scoring rules (here
stated for domains of top-truncated preferences) are anonymity,
eutrality, reinforcement, and continuity.
Anonymity requires that the outcome of the aggregation

should not depend on the names of the agents but only on the
preferences they contribute to a given profile; neutrality says that
all alternatives should be treated symmetrically; reinforcement
prescribes that if two groups unite and vote together, then the
alternatives that win should be the alternatives that would win
for both elections if each group were to vote separately (unless
there are no such alternatives); finally, continuity states that a
sufficiently large number of agents should be able to change the
outcome in accordance with their preference. Let us now define
what it means for a rule F to satisfy each of these four axioms.

• Anonymity: For any permutation 𝜎 : N → N , it is the case
that F (≿1, . . . , ≿n) = F (≿𝜎(1), . . . , ≿𝜎(n)).

• Neutrality: For any permutation 𝜎 : A → A, it is the
case that F (≿1, . . . , ≿n) = F (𝜎(≿1), . . . , 𝜎(≿n)), where 𝜎(≿) =

{(𝜎(x), 𝜎(y)) | x ≿ y}.
• Reinforcement: For any two profiles ≿,≿′ with F (≿)∩F (≿′) ̸=

∅, it is the case that F (≿,≿′) = F (≿) ∩ F (≿′).
• Continuity: For any two profiles ≿ and ≿′, there exists a

natural number K such that, for every natural number k that
is greater than K , it is the case that F (≿, . . . ,≿  

k

,≿′) ⊆ F (≿).

heorem 1 is an easy adaptation of the result of Kruger and
erzopoulou (2020), mentioned above.

heorem 1. A voting rule for top-truncated preferences (on D1
r D2) is a positional scoring rule if and only if it satisfies anonymity,
eutrality, reinforcement, and continuity.

lthough positional scoring rules are nicely defined for top-
runcated preferences, they are not the only natural rules for
hese domains. For instance, consider a majority-based rule that
elects as winners those alternatives that are considered superior
o the largest number of other alternatives by a strict majority
f agents, which may be regarded as a generalisation of the well-
nown Copeland rule (Zwicker, 2016). Then, suppose we have the
ollowing profile with three agents:

a

b

d

c e

c

a

b

d e

b

c

a

d e

In the above profile the winning set is {a, b, c}, since for each of
hese alternatives there exist two agents that rank it higher than
xactly three other alternatives.
It is not hard to see that the reinforcement axiom is violated

y this rule: add to the given profile the single-agent profile
onsisting of the complete preference a ≻ b ≻ c ≻ d ≻ e, where
35
ur rule would output alternative a as the unique winner. In the
ombined profile, reinforcement demands that a is again the only
inner. But a and b are both considered superior to three other

alternatives by a strict majority of agents and thus must both win.

4.1. Characterising the Borda class

We are now going to provide two distinct characterisations of
the Borda class of rules in our top-truncated preference domains.
Recall that the Borda class only includes positional scoring rules
for which it is the case that, if a is strongly preferred to b
(i.e., a ≻ b), then the score of a is larger than the score of b in ≿
(i.e., s≿(a) > s≿(b)). This is formally imposed by a monotonicity
roperty, intuitively prescribing that moving an alternative to a
‘higher’’ position in a preference is beneficial to that alternative.
ormally, we can define monotonicity of a rule F as follows.

• Monotonicity: Consider any preference ≿i within any pro-
file ≿ and two alternatives a, b such that a ≻i b. If b ∈ F (≿),
then F (≿−i, ≿

(ab)
i ) = {b}.

emma 1 makes the link between monotonicity of a positional
coring rule Fs and the scoring function s defining that rule
recise. Note also that this statement (here only described for the
wo top-trncated domains) holds for wider preference domains as
ell, like any kind of preorders.

emma 1. A positional scoring rule Fs for top-truncated preferences
on either D1 or D2) satisfies monotonicity if and only if

≿(a) > s≿(b) whenever a ≻ b.

roof. Monotonicity is satisfied by any positional scoring rule
or which the required condition on the scores holds. Note that
y flipping the positions of a and b in ≿, the score of b increases,
he score of a decreases, and all other scores remain the same (by
efinition of the positional scoring rule). Thus, if b was among the
inners before the flipping, then afterwards it will be the unique
inner with the highest score.
For the other direction, given a preference ≿ and alternatives

, b with a ≻ b, we construct a profile ≿ where a and b are
amongst the winners under Fs, with arbitrarily large score:

Consider a preference ≿∗ and two positions in ≿∗ such that
the score of an alternative in the first position is at least as
large as the score of an alternative in the second position, which
is at least as large as the score of the alternatives in all other
positions. Then, consider a preference ≿′ where a takes the first
position in ≿∗ while b takes the second position in ≿∗, and a
preference ≿′′ where b takes the first position in ≿∗ while a takes
the second position in ≿∗. With sufficiently many (and equally
many) copies of these preferences, we ensure that we have a
profile ≿∗ where a and b win with arbitrarily large score. Define
the profile ≿= (≿∗, ≿, ≿(ab)) and call i the agent that submits the
preference ≿ in ≿. Then, for alternative b to be the unique winner
in the profile (≿−i, ≿(ab)), the required condition on the scores
must be satisfied. □

Our first characterisation theorem is in line with the charac-
terisation of the Borda rule by Young (1974), who – informally
speaking – identified the Borda rule as the unique scoring rule
that satisfies a cancellation property. In this paper, we examine
an axiom that is similar in flavour to Young’s cancellation, but
applies specifically to domains of top-truncated preferences. Top-
cancellation concerns preference profiles ≿ with TOP(≿) ̸= ∅.
In such profiles, if the preferences of the agents between the
top alternatives ‘‘cancel’’ each other, then no alternative can be
considered better than the others in the top set, and hence all
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lternatives in that set should be treated the same by the voting
ule. Note that for domains of linear orders (that are special do-
ains of top-truncated preferences), the top-cancellation axiom

educes to the standard cancellation axiom of Young.

• Top-cancellation: Consider any profile ≿ with TOP(≿) ̸= ∅. If
for all alternatives x, y ∈ TOP(≿) with x ̸= y it holds that

#{i ∈ N | x ≻i y} = #{i ∈ N | y ≻i x},

then TOP(≿) ⊆ F (≿) or TOP(≿) ∩ F (≿) = ∅.

Note that top-cancellation allows for the case where no top
alternative of a profile belongs to the winning set (i.e., where
TOP(≿)∩F (≿) = ∅). Indeed, top-cancellation is a weak axiom, only
ensuring that all top alternatives will be treated symmetrically
when appropriate conditions hold—that these alternatives should
also be among the winners is a separate intuitive requirement,
which we will later take care of with the axiom of monotonicity.

Theorem 2. A voting rule for top-truncated preferences (on ei-
ther D1 or D2) is in the Borda class if and only if it satisfies
anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-cancellation.

Proof. That all rules in the Borda class satisfy these properties
is easy to see. For the other direction, we know that a voting
rule F that satisfies anonymity, neutrality, reinforcement, and
continuity must be a positional scoring rule by Theorem 1. Let us
call this rule Fs. Moreover, Fs, satisfying neutrality, reinforcement,
monotonicity, and top-cancellation, when restricted to profiles
of preferences that are linear orders, must reduce to the Borda
rule (Young, 1974).8

Now, consider an arbitrary top-truncated preference ≿ (that is
not a linear order), and a linear order L that extends ≿′ (i.e., ≿′

⊂ L),
where ≿′ is the same as ≿ besides having its top alternatives
placed in the reverse order. Fig. 6 presents an illustration for
the domain D1, where TOP(≿) = {a1, . . . , am−k} and BOT (≿) =

{am−k+1, . . . , am}. Construct the profile ≿= (≿, L). Observe that
TOP(≿) = TOP(≿) = TOP(L). From monotonicity and Lemma 1,
we get Fs(≿) ⊆ TOP(≿), while top-cancellation entails that TOP(≿
) ⊆ F (≿) or TOP(≿) ∩ F (≿) = ∅. Thus, Fs(≿) = TOP(≿).

We know that the scores of the alternatives in L will be Borda-
like. Moreover, the scores of all alternatives in TOP(≿) have to be
the same. So, we have that

s1 + m − k = s2 + m − k + 1 = · · · = sk−1 + m − 2 = sk + m − 1.

Equivalently,

s≿(a1) = s≿(a2) + 1 = s≿(a3) + 2 = · · · = s≿(ak) + k − 1.

We conclude that Fs is in the Borda class. □

Theorem 2 – together with the characterisation of positional
scoring rules of Theorem 1 – implies the following corollary.

Corollary 1. A positional scoring rule for top-truncated preferences
(on either D1 or D2) is in the Borda class if and only if it satisfies
monotonicity and top-cancellation.

An immediate question that arises is whether the axioms ap-
pearing in Theorem 2 are all necessary for the characterisation
result, i.e., whether they are independent. We know from the
characterisation of positional scoring rules that anonymity, neu-
trality, reinforcement, and continuity are independent, and it is

8 More specifically, Young’s axiomatisation of the Borda rule relies on a
aithfulness axiom, demanding that in any single-agent profile the winning
lternative is the one on the top of that agent’s preference. Straightforwardly,
ll monotonic positional scoring rules satisfy this property.
36
Fig. 6. A top-truncated preference ≿ and a linearisation L of it with the order
of its top alternatives reversed. We have that s≿(a1) = s1 , . . . , s≿(ak) = sk ,
s≿(ak+1) = · · · = s≿(am) = sk+1 and sL(ak) = m − 1, . . . , sL(a1) = m − k,
L(ak+1) = m − k − 1, . . . , sL(am) = 0.

asy to see that monotonicity does not break this fact. Adding
op-cancellation also preserves independence between these ax-
oms. Proposition 2 states exactly this, and a proof for the most
nteresting case (i.e., that top-cancellation, together with the rest
f our relevant axioms, does not imply anonymity) is provided.
ote that this is a rather unexpected result, since – as we will
ee later too – in the original proof of Young (1974) the analogous
ancellation axiom (in combination with the other axioms) ends
p implying anonymity.

roposition 2. The axioms of anonymity, neutrality, reinforce-
ent, continuity, monotonicity, and top-cancellation are logically

ndependent on domains of top-truncated preferences (D1 and D2).

roof. Let us show the most interesting case, that there exists a
oting rule on top-truncated preferences that satisfies neutrality,
einforcement, continuity, monotonicity, and top-cancellation,
ut violates anonymity (analogous counterexamples can be easily
ound for all other combinations of our axioms as well).

Consider the voting rule F on top-truncated preferences that
orks just like the optimistic Borda rule, but with a small excep-
ion: when agent 1 reports a preference ≿∗ that identifies some
lternative a ∈ A (whichever that a is) as the unique top one
that is, a preference ≿∗

= {(a, x) | x ∈ A \ {a}}), then agent 1 gets
assigned double the weight of the other agents (i.e., the scores
associated with her preference are twice the standard scores of
the optimistic Borda rule). Obviously, this rule is not anonymous.

Neutrality is satisfied by F because the definition of the rule
oes not distinguish between the names of the alternatives.
onotonicity is also satisfied, because it is always better for an
lternative to appear in a higher position in a preference relation.
ontinuity holds too, since by adding a sufficiently large number
f copies of the same profile ≿′ to a given profile ≿, we can
rbitrarily increase the Borda scores of the alternatives that win
n ≿′, and thus obtain the result prescribed by the axiom. To
ee that top-cancellation is satisfied as well, note that for any
rofile ≿ with TOP(≿) ̸= ∅, if the preference ≿∗ defined above
for some given alternative a) appears in ≿, it must be the case
hat TOP(≿) = {a}, and thus F (≿) = {a} (which means that top-
ancellation is vacuously satisfied). Otherwise, F functions as the
tandard optimistic Borda rule, and hence top-cancellation holds.
inally, it is also easy to see that F satisfies reinforcement: for all
rofiles ≿ and ≿′ and for any alternative a ∈ A, we have that the
core that a receives by the rule F in the joint profile (≿,≿′) will
lways be the sum of the scores that a receives in ≿ and in ≿′. □
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ur second characterisation of the Borda class relies on a re-
ult of Fishburn and Gehrlein (1976) for domains of linear or-
ers (based on a proof sketch by Smith, 1973), namely that
he Borda rule is the only positional scoring rule for which the
ondorcet loser (CL) of a profile is never the winner (let us
all this property CL-consistency). We remind the reader that
he Condorcet loser of a preference profile is an alternative that
oses in pairwise comparisons to all other alternatives, where
‘losing’’ means that a majority of agents considers that alter-
ative inferior to the one it is compared to. Let us extend this
undamental principle for profiles of linear preferences to profiles
f top-truncated preferences by stipulating no alternative that is
Condorcet loser relative to the top part of a profile should be
mongst the winners.9

• Top-CL-consistency: Consider any profile ≿ with TOP(≿) ̸= ∅.
For any b ∈ TOP(≿) such that for all x ∈ TOP(≿) \ {b},

#{i ∈ N | x ≻i b} > #{i ∈ N | b ≻i x},

it is the case that b ̸∈ F (≿).

Theorem 3. A voting rule for top-truncated preferences (on ei-
ther D1 or D2) is in the Borda class if and only if it satisfies
anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-CL-consistency.

Proof. The proof uses an analogous argument to that of Smith
(1973). □

Theorem 3, together with the characterisation of positional scor-
ing rules for top-truncated preferences (Theorem 1), implies the
following corollary.

Corollary 2. A positional scoring rule for top-truncated preferences
(on either D1 or D2) is in the Borda class if and only if it satisfies
monotonicity and top-CL-consistency.

At this point we also need to examine whether the axioms of
Theorem 3 are independent. For example, can we find a positional
scoring rule for top-truncated preferences that satisfies top-CL-
consistency but is not monotonic? Proposition 3 answers this
question in the affirmative.

Proposition 3. The axioms of anonymity, neutrality, reinforce-
ment, continuity, monotonicity, and top-CL-consistency are logically
independent on domains of top-truncated preferences (D1 and D2).

Proof. We will show that there exists a positional scoring rule
(satisfying anonymity, neutrality, reinforcement, and continuity)
for top-truncated preferences that satisfies top-CL-consistency
but violates monotonicity. Showing independence for the remain-
ing sets of axioms can be done in an analogous manner.

Consider the positional scoring rule for which, for an any given
top-truncated preference ≿, the Borda-like scores are assigned
to the alternatives in TOP(≿), and score m + 1 is assigned to
the alternatives in BOT (≿). Clearly, this rule is not monotonic,
but top-CL-consistency holds: no Condorcet loser within the top
alternatives of a profile can ever win (either because an alter-
native that Pareto dominates it wins, or because some bottom
alternative wins instead). □

9 Observe that this axiom does not require that alternatives in the bottom
art of a profile must be barred from winning as well (but this of course would
e enforced by imposing monotonicity).
37
Intuitively, top-CL-consistency is the axiom ensuring that the
scores of the top alternatives in an agent’s top-truncated prefer-
ence will be distributed in a linear manner, as required for rules
in the Borda class. Note that classical CL-consistency – although
applicable to domains of top-truncated preferences as well – is
not appropriate for our purposes. In particular, not all rules in
the Borda class satisfy CL-consistency.10 For example, consider
the pessimistic Borda rule, and a profile with nine agents and
four alternatives such that: four agents rank alternative a on top
nd every other alternative directly below, and the remaining
ive agents have preferences as follows: b ≻1 c ≻1 d ≻1 a,

≻2 c ≻2 d ≻2 a, c ≻3 d ≻3 b ≻3 a, d ≻4 b ≻4 c ≻4 a,
≻5 c ≻5 b ≻5 a. Alternative a is the Condorcet loser of this

profile, but it will be the winner according to the pessimistic
Borda rule (it will receive 12 points, while all other alternatives
will only get 10 points).

To sum up, the axioms of top-cancellation and of top-CL-
consistency (together with monotonicity) are the ones that dis-
tinguish rules in the Borda class from all other positional scoring
rules. Interestingly, these two axioms only bite for profiles of top-
truncated preferences with a non-empty set of top alternatives.
On the one hand, such profiles are rare in general. On the other
hand, every preference can appear in some profile of that form.
The key idea behind our proofs is that the rules with which
we work are positional scoring rules. So, the score assigned to
an alternative a in a given preference ≿ will be fixed, and can
be deduced by applying the relevant axioms in profiles with a
non-empty set of top alternatives that ≿ is part of.

4.2. Characterising specific rules in the Borda class

After having characterised the Borda class via a number of
normative axiomatic properties, in the remainder of this section
we proceed with identifying those properties that characterise
each one of our specific rules of interest, within the Borda class.

We observe that the pessimistic Borda rule is the only rule in
the Borda class for which the scores of the bottom alternatives
in the top-truncated preferences do not depend on how many of
these alternatives there are. Loosely speaking, this translates into
the following slogan:

The number of alternatives with which some alternative a
shares the bottom position does not affect a’s performance.

The axiom of bot-indifference formally captures this idea:

• Bot-indifference: Consider any two profiles ≿ and ≿′
= (≿−i

, ≿′

i) for some agent i such that the preference ≿′

i is obtained
from the preference ≿i by having one of the bottom alter-
natives of ≿i, say alternative a, moved to the last position of
the ranked alternatives in the top part. If a ̸∈ F (≿′), then for
any b ∈ BOT (≿i) \ {a} it is the case that

b ∈ F (≿) if and only if b ∈ F (≿′).

Thus, by moving a we create two profiles in which the number
of alternatives that b shares a bottom position with changes, and
we stipulate that this should not affect whether or not b will
be amongst the winners (at least not in case a is not winning
in the second profile, the one where it intuitively is put in a
better position). Now, as suggested by our earlier observation,
bot-indifference characterises the pessimistic Borda rule:

Theorem 4. The only voting rule for top-truncated preferences (on
either D1 or D2) that satisfies anonymity, neutrality, reinforcement,
continuity, monotonicity, top-cancellation (or top-CL-consistency),
and bot-indifference is the pessimistic Borda rule.

10 We are grateful to an anonymous reviewer of the JME for this observation.
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roof. We can easily verify that the pessimistic Borda rule satis-
ies all relevant axioms. For the other direction, suppose that we
ave a rule Fs, with corresponding scoring function s, in the Borda
lass (satisfying anonymity, neutrality, reinforcement, continuity,
onotonicity, top-cancellation and top-CL-consistency) for which
ot-indifference holds. Take two arbitrary preferences ≿ and ≿′

uch that ≿′ is obtained from ≿ by having one of the bottom
lternatives of ≿, namely alternative a, moved to the last position
f the ranked alternatives above. We will show that s≿(b) = s≿′ (b)
or any alternative b ∈ BOT (≿) \ {a}. Note that in the special case
here ≿′ is a linear order, we know that b is the lowest alternative

n ≿′, and s≿′ (b) = 0. Thus, our proof ensures that the bottom
lternatives of all preferences ≿ will be assigned score 0, meaning
hat Fs must be the pessimistic Borda rule.

Take the alternatives b ∈ BOT (≿) \ {a}, c ∈ TOP(≿) and
onstruct a profile ≿∗ where b and c are the winners. That is:

F (≿∗) = {b, c}.

he profile ≿∗ can be easily constructed by taking equally many
opies of two preferences, one with b followed by c making up
he top part and one with c followed by b making up the top
art (and the remaining alternatives making up the bottom part
n both cases). By using sufficiently many copies, we can take the
ifference in score between b and c on the one hand and the
ext-best alternative on the other to be arbitrarily large.
Then consider the following profiles:

≿= (≿∗, ≿, ≿(bc)) and ≿′
= (≿∗, ≿′, ≿(bc)),

where F (≿) = {b, c} and F (≿′) ⊆ {b, c}. So a ̸∈ F (≿′), and
′
= (≿−i, ≿

′

i), with ≿i=≿ and ≿′

i=≿′. Hence, we have that

s≿(b) = s≿(c) = s≿′ (c).

But b ∈ F (≿) implies that b ∈ F (≿′) by bot-indifference. It must
then be the case that s≿′ (b) ≥ s≿′ (c) = s≿(b). So, it holds that
s≿−i (b)+ s≿′ (b) ≥ s≿−i (b)+ s≿(b). We conclude that s≿′ (b) ≥ s≿(b).
Proving the inverse inequality in a symmetric manner, we have
that s≿′ (b) = s≿(b). □

We obtain an immediate corollary:

Corollary 3. The only voting rule for top-truncated preferences (on
either D1 or D2) in the Borda class that satisfies bot-indifference is
the pessimistic Borda rule.

We next define a new axiomatic property, building on the basic
idea that if the dominance relationships between different win-
ning alternatives remain unaltered, then no tie between these
alternatives can be broken. In words, dom-power suggests that
a winning alternative a can only break a tie between itself and
a different winning alternative b by having its support against b
strictly increased.

Note that the optimistic Borda rule is the only rule in the
Borda class for which, in any top-truncated preference, the score
of the last ranked alternative on top remains the same if that
alternative ‘‘moves’’ to the bottom instead. The axiom ensuring
this is precisely dom-power.

• Dom-power: Consider any two profiles ≿ and ≿′
= (≿−i, ≿

′

i)
such that the preference ≿′

i is obtained from the prefer-
ence ≿i by having one of the bottom alternatives of ≿i moved
to the last position of the ranked alternatives in the top part.
Then, for any a ∈ TOP(≿i), it is the case that

a ∈ F (≿) if and only if a ∈ F (≿′).

Theorem 5. The only voting rule for top-truncated preferences (on
either D1 or D2) that satisfies anonymity, neutrality, reinforcement,
continuity, monotonicity, top-cancellation (or top-CL-consistency),
and dom-power is the optimistic Borda rule.
38
Proof. We can easily verify that the optimistic Borda rule satisfies
all relevant axioms. For the other direction, suppose that we have
a rule Fs in the Borda class, induced by a suitable scoring func-
tion s (and satisfying anonymity, neutrality, reinforcement, conti-
nuity, monotonicity, top-cancellation and top-CL-consistency) for
which dom-power holds. Take two arbitrary preferences ≿ and ≿′

such that ≿′ is obtained from the preference ≿ by having one
of the bottom alternatives of ≿, namely alternative b, moved to
the last position amongst the ranked alternatives above. We will
show that s≿(b) = s≿′ (b), meaning that F must be the optimistic
Borda rule.

Take an alternative a ∈ TOP(≿) and construct a profile ≿∗,
where a and b are the only winners:

F (≿∗) = {a, b}.

The profile ≿∗ can be easily constructed by taking equally many
copies of two preferences, one with a followed by b making up
the top part and one with b followed by a making up the top
part (and the remaining alternatives making up the bottom part
in both cases). By using sufficiently many copies, we can take the
difference in score between a and b on the one hand and the
next-best alternative on the other to be arbitrarily large.

Then consider the following profiles:

≿= (≿∗, ≿, ≿(ab)) and ≿′
= (≿∗, ≿′, ≿(ab)),

where it holds that F (≿) = {a, b}, F (≿′) ⊆ {a, b}, ≿i=≿, ≿′

i=≿′, and
≿′

= (≿−i, ≿
′

i). So, we have that

s≿(b) = s≿(a) = s≿′ (a).

In addition, since a ∈ F (≿), dom-power implies that a ∈ F (≿′),
which means that the score of a in the profile ≿′ must be at least
as high as the score of b. We hence have that

s≿(b) = s≿′ (a) ≥ s≿′ (b).

But we know that s≿(b) = s≿−i (b) + s≿(b) and s≿′ (b) = s≿−i (b) +

s≿′ (b), with which we can deduce that s≿(b) ≥ s≿′ (b). The case
with the inverse inequality can be proven symmetrically, and we
conclude that s≿(b) = s≿′ (b). □

Corollary 4. The only voting rule for top-truncated preferences (on
either D1 or D2) in the Borda class that satisfies dom-power is the
optimistic Borda rule.

After realising that both the axioms of bot-indifference and of
dom-power take the form of monotonicity-like properties, we
easily see that they are independent of all other axioms in the
characterisation of the Borda class.

We continue with the averaged Borda rule, which we are going
to link to the property of full-cancellation. This axiom, in the spirit
of top-cancellation, prescribes the equal status of all alternatives
as far as the outcome of the aggregation process is concerned, and
applies in cases where for all pairs of alternatives a, b the same
number of agents prefers a to b and b to a.

• Full-cancellation: Consider any profile ≿. If for all x, y ∈ A it
is the case that

#{i ∈ N | x ≻i y} = #{i ∈ N | y ≻i x},

then F (≿) = A.

Full-cancellation reduces to the standard cancellation axiom for
the special case of profiles of linear orders, and is in general log-
ically independent of top-cancellation. Interestingly, when com-
bined with other axioms that appear in the characterisation of the
Borda class, full-cancellation becomes very strong:
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Fig. 7. The construction of the profiles appearing in the proof of Theorem 6, for m = 5 and k = 2.
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emma 2. Neutrality, reinforcement, monotonicity, and full-
ancellation together imply anonymity, continuity, top-cancellation,
nd top-CL-consistency.

roof. First, it is easy to see that monotonicity (together with
eutrality) implies that in every single-agent profile, that agent’s
op alternative is going to be the unique winner, which is the
roperty of faithfulness. Then, in a similar manner to the one
hat Hansson and Sahlquist (1976) used to prove that neutrality,
einforcement, faithfulness and (full-)cancellation characterise
he Borda rule on domains of linear orders, we can show that
hese axioms characterise the rule represented by the symmetric
orda scores on top-truncated preferences, and therefore imply
rule that is in the Borda class, satisfying anonymity, continuity,
op-cancellation, and top-CL-consistency. □

sing Lemma 2, we obtain a proof for the characterisation of the
veraged Borda rule on top-truncated preferences (in Theorem 6)
hat explicitly hinges on the effect of full-cancellation within the
orda class. Although Theorem 6 could also be proven without
ny reference to the Borda class,11 our proof sheds light on the
articular way in which the averaged Borda rule differs from
he other two rules in the Borda class (the optimistic and the
essimistic one), by taking advantage of structurally analogous
roof techniques.

heorem 6. The only voting rule for top-truncated preferences (on
ither D1 or D2) that satisfies neutrality, reinforcement, monotonic-
ty, and full-cancellation is the averaged Borda rule.

roof. After recalling that the averaged Borda rule on top-
runcated preferences corresponds to the symmetric way of defin-
ng domination scores, it is not hard to see that this rule satisfies
ull-cancellation (and the other axioms of the statement).

11 The fact that the characterisation of the rule represented by the symmetric
orda scores (i.e., the averaged Borda rule on top-truncated preferences) works
or other domains of preorders, as well as for linear orders, is also mentioned
n informal comments by Young (1974) and by Hansson and Sahlquist (1976).
39
For the other direction, take a rule that satisfies all the re-
quired axioms. By Lemma 2, we know that this rule also satisfies
anonymity, continuity, top-cancellation, and top-CL-consistency,
and hence is in the Borda class. Take such a rule Fs. Consider an
rbitrary top-truncated preference ≿ with #TOP(≿) = k, with 1 ≤

≤ m−2 (otherwise the proof is trivial). Let ≿ be the profile that
onsists of k copies of that preference ≿, and let ≿′ be the profile
hat consists of k copies of the preference that reverses the order
f the alternatives in TOP(≿) and keeps the bottom alternatives
n ≿ unaltered. Then, we construct two profiles L and L′ of linear
rders such that TOP(L) = TOP(L′) = BOT (≿). Profile L consists
f k preferences, all having the alternatives on top ranked in
he same order (any arbitrary one); Profile L′ also consists of
preferences, with the alternatives on top ranked in the same
rder, reversed from the one of L. Moreover, in both L and L′,
very alternative on the bottom takes up each of the k positions
xactly once. Fig. 7 provides an example of this construction, for
= 5 and k = 2, in the top-truncated preference domain D1.
Consider the profile ≿′′, where full-cancellation applies:

≿′′
= (≿,≿′, L, L′).

uppose that TOP(≿) = {a1, . . . , ak} ⊆ A and BOT (≿) = {ak+1, . . . ,
m} ⊆ A. By construction, we have that

s≿′′ (a1) = · · · = s≿′′ (ak) = (m − 1 + m − k)k +
k(k − 1)

2
2,

and

s≿′′ (ak+1) = · · · = s≿′′ (am) = 2ksk+1 + (m − 1 + k)k.

But by full-cancellation we must have that Fs(≿′′) = A, so all
alternatives must have the same score. This means that

(m−1+m−k)+(k−1) = 2sk+(m−1+k) ⇔ sk+1 =
m − k − 1

2
.

We conclude that Fs is the averaged Borda rule. □

heorem 6 and Lemma 2 imply the following corollary:

orollary 5. The only voting rule for top-truncated preferences (on
ither D1 or D2) in the Borda class that satisfies full-cancellation is
he averaged Borda rule.
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Fig. 8. Borda rules for top-truncated preferences and the axioms that characterise them. The axioms next to an arrow indicate those properties that are required in
rder to obtain a specific class of rules, or a specific rule, within a larger class.
. Conclusion

We have provided a complete axiomatic analysis of various
eneralisations of the famous Borda rule previously been dis-
ussed in the literature on top-truncated preferences. The three
ost prominent such rules are the optimistic, the pessimistic, and

he averaged Borda rule, which differ on the scores they assign
o the bottom alternatives in a top-truncated order. Our axioms
larify the different contexts for which these rules are relevant,
nd the requirements they implicitly impose on the treatment of
he alternatives not ranked by an agent. Fig. 8 provides a graphical
ummary of our characterisation results.
Of course, this paper has not closed all gaps in our understand-

ng regarding suitable generalisations of the classical Borda rule to
icher domains of preferences. But by focusing on top-truncated
references, we have not only derived a better comprehension of
domain of immediate practical significance but we have also
btained valuable intuitions that could potentially apply to more
eneral domains of preorders as well. Moreover, our work may
pen up the way for similar investigations with respect to other
opular voting rules on domains that go beyond the classical
ne of linear orders. For instance, do appropriate generalisations
f the Kemeny rule come with corresponding desirable axioms
hat can naturally differentiate between them? Questions of this
ature would be intriguing to investigate in future work.
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