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Abstract
We provide a comprehensive analysis of the computational complexity of the outcome determination
problem for the most important aggregation rules proposed in the literature on logic-based judgment
aggregation. Judgment aggregation is a powerful and flexible framework for studying problems of
collective decision making that has attracted interest in a range of disciplines, including Legal Theory,
Philosophy, Economics, Political Science, and Artificial Intelligence. The problem of computing the
outcome for a given list of individual judgments to be aggregated into a single collective judgment is
the most fundamental algorithmic challenge arising in this context. Our analysis applies to several
different variants of the basic framework of judgment aggregation that have been discussed in the
literature, as well as to a new framework that encompasses all existing such frameworks in terms of
expressive power and representational succinctness.

1. Introduction

Judgment aggregation is a powerful framework for modelling a multitude of collective decision
making scenarios (see the recent surveys by List, 2012; Grossi & Pigozzi, 2014; Endriss, 2016).
These scenarios are modelled in terms of an agenda, which consists of a number of propositions
you may either accept or reject. Which combinations of propositions it would be admissible to
accept at the same time can be subject to complex logical constraints. This makes the design—but
also the use—of rules for the aggregation of several individual judgments into a single collective
judgment a challenging undertaking. In this paper we focus on the most fundamental computational
problem arising when we want to use judgment aggregation in practice. Suppose we have elicited the
judgments of several agents regarding the status of the propositions in the agenda. Suppose further
that we have selected a specific rule for aggregating individual judgments in a principled manner
that will respect all relevant constraints. Then we need to ask: What is the status of each of the
propositions in the outcome returned by the rule? This is the outcome determination problem. In this
paper, we provide a detailed analysis of the computational complexity of this problem.

Following the seminalwork of List andPettit (2002), judgment aggregation has attracted the interest
of scholars in a wide variety of disciplines, ranging from Legal Theory, to Philosophy, Economics,
Political Science, and Artificial Intelligence (AI). Indeed, within AI—and more specifically, within
the tradition of the AI literature on belief revision—similar questions have been pondered for some
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time under the heading of belief merging (Baral, Kraus, Minker, & Subrahmanian, 1992; Liberatore
& Schaerf, 1998; Konieczny & Pino-Pérez, 2002; Konieczny, Lang, & Marquis, 2004).1

Example 1.1. To illustrate some of the challenges involved in aggregating individual judgments in a
principled manner, let us consider the following scenario. There is a malfunctioning system that has
four components: c1, c2, c3, c4. Initial investigations lead to the conclusion that either component c1
is faulty, or component c3 is faulty, or that both components c2 and c4 are faulty. Using propositional
variable xi to denote that component ci is functioning correctly, this knowledge can be expressed as a
constraint Γ = ¬x1 ∨ ¬x3 ∨ (¬x2 ∧ ¬x4), or equivalently (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4).
Now a number of technicians are asked to give their opinion about whether each of the four
components are faulty or functioning properly: three of them say {¬x1, x2, x3, x4} (only component c1
is faulty), one says {x1, x2,¬x3,¬x4} (components c3 and c4 are faulty), three say {x1, x2,¬x3, x4}

(only component c3 is faulty), and four say {x1,¬x2, x3,¬x4} (components c2 and c4 are faulty). What
is the most likely explanation for the malfunctioning of the system? If we use the majority rule to
perform aggregation of the technicians’ judgments, then we may run into difficulties:

c1 works c2 works c3 works c4 works

Technicians 1–3 No Yes Yes Yes
Technician 4 Yes Yes No No

Technicians 5–7 Yes Yes No Yes
Technicians 8–11 Yes No Yes No

Majority Yes Yes Yes Yes

Thus, for the specific profile of individual judgments considered here, even though each individual
judgment is consistent, in the sense of satisfying the constraint (¬x1∨¬x2∨¬x3)∧ (¬x1∨¬x3∨¬x4),
the outcome is not: it violates the constraint. In other words, even though the judgment of each
individual technician is in line with the knowledge about the system, the outcome returned by the
majority rule is not. It declares that none of the components are faulty.

Example 1.1, which is a variant of the famous doctrinal paradox (Kornhauser & Sager, 1993),
demonstrates that the majority rule cannot guarantee that the outcome returned will always be
consistent, not even for the fairly simple aggregation scenario we considered here.2 So in practice
we will have to use more sophisticated aggregation rules. If guaranteed consistency of the outcome
is a desideratum we do not want to give up on, any aggregation rule of interest must choose from
the set of all consistent judgments the one that—in some sense—is best reflecting the judgments of
the group as a whole. And indeed, a large number of rules of this kind—all making subtly different
choices when interpreting the notion of “best reflecting the judgments of the group”—have been put
forward in the literature in recent years.

The most fundamental problem of an algorithmic nature arising in the context of judgment
aggregation is the problem of computing the outcome for a given profile of judgments under a

1. We refer to the recent review by Everaere, Konieczny, and Marquis (2017) for a discussion of the differences and
similarities between judgment aggregation and belief merging. To cut a long story short, the main difference is the
notion of an agenda, which is central to judgment aggregation and absent from most work on belief merging.

2. Nehring and Puppe (2007) have provided a precise characterisation of the class of aggregation scenarios that are
sufficiently simple for the majority rule to be guaranteed to always return a consistent outcome. In a nutshell, these are
essentially the aggregation scenarios that can be modelled using only conjunctions of clauses with at most two literals
each (see also Grandi, 2012; Endriss, 2018). Observe that Example 1.1 involves a conjunction of 3-clauses.
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given aggregation rule. In reference to related problems in voting theory (see, e.g., Hemaspaandra,
Hemaspaandra, & Rothe, 1997) and the study of combinatorial auctions (see, e.g., Sandholm, 2002),
in earlier work the task of computing the outcome of a given judgment aggregation rule for a given
input has been called the winner determination problem. But, while in the context of an election
we face the task of determining which of the candidates is the election winner and while in the
context of an auction we face the task of determining which bidder “wins” (obtains) which items, this
terminology arguably is misplaced in the context of judgment aggregation. This is why we propose
to use the term outcome determination problem instead.

Contribution. We provide a comprehensive overview of the computational complexity of the
outcome determination problem in judgment aggregation. Our results cover all judgment aggregation
rules—eleven in total—that have received significant attention in the literature and that meet the
following two criteria. First, they must be generally applicable, i.e., their use should not be restricted
to agendas of a certain type.3 Second, they must guarantee consistency of outcomes for all admissible
inputs, thereby avoiding the paradox we observed in Example 1.1. Our results apply to all important
frameworks for modelling judgment aggregation that have been considered in the literature, starting
with the original framework of List and Pettit (2002), in which the relationships between propositions
in the agenda are encoded by means of the logical form of these propositions, as well as more recent
proposals in which these relationships are modelled explicitly in the form of integrity constraints.
To facilitate our analysis and to obtain the strongest possible results regarding upper complexity
bounds, we also introduce a new framework for judgment aggregation that integrates the features of
all frameworks that have previously been considered in the literature.

Our results robustly place the outcome determination problem beyond NP, yet within the
Polynomial Hierarchy—for all of the eleven rules considered. Still, when considered at a finer level
of inspection, our results reveal interesting and significant variation regarding the exact complexity of
evaluating different aggregation rules and we obtain completeness results for the complexity classes
Θ

p
2, ∆

p
2, Σ

p
2, and Θ

p
3.4 These findings provide important insights into the mechanics of judgment

aggregation and can offer guidance for the development of practical algorithms. In particular, they
indicate what existing tools for combinatorial optimisation, such as Answer Set Programming or SAT
solvers, can potentially be used to implement judgment aggregation solvers (see also Section 5).

Related work. Early work in judgment aggregation focused on the philosophical and practical
relevance of the doctrinal paradox and similar concerns for group decision making (see, e.g.,
Chapman, 1998; Pettit, 2001). Following the work of List and Pettit (2002), who provided a first
formal framework in which to study such questions, most technical results in subsequent years were
of an axiomatic nature and included, in particular, a flurry of impossibility theorems showing that
no aggregation rule can meet certain normative requirements while at the same time guaranteeing
consistency on agendas of some logical richness (see, e.g., Pauly & van Hees, 2006; Gärdenfors,
2006; Dietrich & List, 2007a; Nehring & Puppe, 2007; Dokow & Holzman, 2010). In contrast to
this early focus, several of the more recent contributions to the literature have instead addressed the
design of new aggregation rules that can perform satisfactorily with respect to at least some of these
requirements—we cite many of them when we review judgment aggregation rules in Section 2.3.

The study of the computational complexity of judgment aggregation was initiated by Endriss,
Grandi, and Porello (2012). They suggested to apply the toolbox of complexity theory not only to

3. Part of the literature focusses on specific agendas, e.g., so-called conjunctive agendas (Dietrich & Mongin, 2010).
4. We are going to recall the definitions of these complexity classes in Section 3.
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Judgment aggregation rule F Complexity of the outcome determination problem

Condorcet rule Con Σ
p
2-complete (Theorems 4.1 and 4.2)

Slater rule Sla Θ
p
2-complete (Theorems 4.3 and 4.4)

Kemeny rule Kem Θ
p
2-complete (Theorems 4.5 and 4.6)

MaxHamming rule MaxHam Θ
p
2-complete (Theorems 4.7 and 4.8)

AvgGeo-rule Θ
p
3-complete (Theorems 4.11 and 4.14)

MaxGeo-rule Θ
p
3-complete (Theorems 4.16 and 4.17)

Reversal-scoring rule RevSco Θ
p
2-complete (Theorems 4.18 and 4.19)

Ranked-agenda rule Ran Σ
p
2-complete (Theorems 4.20 and 4.21)

LexiMax-rule ∆
p
2-complete (Theorems 4.22 and 4.23)

Young rule Yng Θ
p
2-complete (Theorems 4.24 and 4.25)

Dodgson rule Dod Θ
p
2-complete (Theorems 4.26 and 4.27)

Table 1: Overview of the complexity results we establish in this paper for the outcome determination
problem in judgment aggregation for different judgment aggregation rules F.

the outcome determination problem, but also to two other problems: deciding whether an agent
can manipulate a rule in her favour and deciding whether a given agenda is safe in the sense of not
admitting a doctrinal paradox. They analysed the complexity of outcome determination for one
specific aggregation rule, the so-called Kemeny rule. In the present paper we provide a unified view
on results we proved since then in a series of conference papers (Lang & Slavkovik, 2014; Endriss &
De Haan, 2015; De Haan & Slavkovik, 2017), while also closing several gaps in our understanding of
the complexity landscape of outcome determination that had still remained.

In closely related work, De Haan (2016) has begun a more fine-grained analysis of outcome
determination complexity using the tools of parameterized complexity. He also demonstrated how
techniques from knowledge compilation and algebraic model counting can be used to identify tractable
special cases that are of interest to specific applications (De Haan, 2018). The kind of complexity
analysis we provide here is arguably a necessary first step for undertaking such work.

While outcome determination is the most fundamental computational problem arising in judgment
aggregation, complexity theory has been fruitfully applied to a number of other such problems as
well, including the aforementioned manipulation and safety problems. The complexity of strategic
manipulation has been analysed in more depth by Baumeister, Erdélyi, Erdélyi, and Rothe (2015),
who also introduced the problem of bribery and its complexity-theoretic analysis into the literature
on judgment aggregation. Baumeister, Erdélyi, Erdélyi, Rothe, and Selker (2020) furthermore
investigated the complexity of a number of control problems, where an adversary is trying to obtain a
more favourable outcome by changing the set of judges in an aggregation problem.

For an overview of complexity results about voting and preference aggregation, we refer to the
Handbook of Computational Social Choice (Brandt, Conitzer, Endriss, Lang, & Procaccia, 2016b,
especially Chapters 3, 4, 5, 6, 7, and 17).

690



The Complexity Landscape of Outcome Determination in Judgment Aggregation

Roadmap. We begin in Section 2 by explaining the different frameworks of judgment aggregation
and the different variants of the outcome determination problem that have been studied in the
literature—as well as the relation between them—and defining the judgment aggregation rules that
we study in this paper. Then, in Section 3, we give an overview of the computational complexity
tools that we use. We present the complexity results that we establish for the outcome determination
problem for judgment aggregation in Section 4—an overview of the complexity results in this paper
can be found in Table 1 on page 690. We conclude in Section 5.

2. The Model

In this section, we first define and compare the different frameworks for modelling judgment
aggregation scenarios we are going to work with, and we then do the same for the different variants
of the outcome determination problem we are going to consider. Finally, we briefly motivate and
define the various judgment aggregation rules for which we are going to analyse the complexity of
outcome determination.

2.1 Judgment Aggregation Frameworks

In the literature, several different judgment aggregation frameworks have been studied. The results in
this paper are applicable to several of them. Next, we describe these different frameworks using one
unified language, and we briefly discuss the relation between the different frameworks. In particular,
we argue that one framework is strictly more general than all the others, and that one framework is
strictly less general than all the others. Therefore, in the remainder of the paper, we will prove upper
bounds on the complexity for the most general variant, and lower bounds on the complexity for the
most restricted variant. Before we can turn to the definition of the setting of judgment aggregation,
we briefly establish some common ground on relevant concepts from propositional logic.

Propositional logic. Let La be a (countably infinite) set of propositional variables (or atoms),
e.g., La = {x1, x2, . . .}. A literal is a propositional variable x (a positive literal) or a negated vari-
able ¬x (a negative literal). Let L` be the set of all literals over La, e.g., L` = {x1,¬x1, x2,¬x2, . . .}.
Propositional formulas are constructed from propositional variables using the Boolean opera-
tors ∧,∨,→, and ¬. Let L f be the set of all propositional formulas over the atoms in La.

A clause is a finite set of literals, not containing a complementary pair x, ¬x, and is interpreted
as the disjunction of these literals. A formula in conjunctive normal form (CNF) is a finite set of
clauses, interpreted as the conjunction of these clauses.

A propositional formula is doubly-negated if it is of the form ¬¬ψ. For every propositional
formula ϕ, we let ∼ϕ denote the complement of ϕ, i.e., ∼ϕ = ¬ϕ if ϕ is not of the form ¬ψ,
and ∼ϕ = ψ if ϕ is of the form ¬ψ. For a propositional formula ϕ, var(ϕ) denotes the set of all
variables occurring in ϕ.

We use the standard notion of (truth) assignments α : var(ϕ) → {0,1} for propositional formulas
and truth of a formula under such an assignment—for more details, we refer to textbooks in logic
(e.g., Van Dalen, 2013). For any formula ϕ and any truth assignment α, we let ϕ[α] denote the
formula obtained from ϕ by instantiating variables x in the domain of α with α(x) and simplifying
the formula accordingly. By a slight abuse of notation, if α is defined on all variables in var(ϕ), we
let ϕ[α] denote the truth value of ϕ under α.
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Judgment aggregation. A judgment aggregation scenario is specified by a tuple (Φ,Γin,Γout, J),
consisting of the following elements. The set Φ is called the agenda, and is a finite set {ϕ1,¬ϕ1, . . . ,

ϕm,¬ϕm}, where each ϕi is a non-negated propositional formula. We call [Φ] = {ϕ1, . . . , ϕm}, the
set of non-negated formulas in Φ, the pre-agenda corresponding to Φ.

Then there are two integrity constraints Γin and Γout, which are both propositional formulas:
the input constraint Γin—that expresses which individual opinions are allowed—and the output
constraint Γout—that expresses which collective opinions are allowed.

Opinions (both individual and collective) are represented by judgment sets J ⊆ Φ, i.e., by subsets
of the agenda. A judgment set J is complete if for each ϕ ∈ [Φ] it holds that either ϕ ∈ J or ¬ϕ ∈ J.
A judgment set J is Γin-consistent if J ∪ {Γin} is a satisfiable set of formulas, and J is Γout-consistent
if J ∪ {Γout} is a satisfiable set of formulas. For judgment sets J representing individual opinions,
we will say that J is consistent if it is Γin-consistent, and for judgment sets J representing collective
opinions, we will say that J is consistent if it is Γout-consistent. We use J(Φ,Γ) to denote all judgment
sets J ⊆ Φ that are complete and Γ-consistent, for Γ ∈ {Γin,Γout}. When Φ and Γ are clear from the
context, then for any set S ⊆ Φ we let ext(S) = { J ∈ J(Φ,Γ) | J ⊇ S } denote the set of all complete
and consistent extensions of S.

Finally, we have a profile J = (J1, . . . , Jn), for some n ∈ N, that consists of a sequence of
individual judgment sets Ji ∈ J(Φ,Γin) representing the judgments of the individual agents. We use
J(Φ,Γin)

+ to denote the set of all such profiles (of any length n ∈ N). By a slight abuse of notation,
we will write Ji ∈ J to express that Ji is one of the individual judgment sets in the profile J . For
each ϕ ∈ Φ, we let N(J, ϕ) = |{ i | ϕ ∈ Ji }| denote the number of judgment sets in the profile J that
contain ϕ.

A judgment aggregation rule is a function F that maps every profile J ∈ J(Φ,Γin)+ of complete
and consistent individual judgment sets to a non-empty set F(J) of collective judgment sets. For the
sake of readability, we only write F(J), even though the outcome of F also depends onΦ and typically
also on Γout (and for certain rules even on Γin). Judgment aggregation rules are defined for profiles with
any number of agents. When a rule F has the property that for every profile J ∈ J(Φ,Γin)

+ it holds
that F(J) ⊆ J(Φ,Γout)—i.e., that every selected collective judgment set is (Γout-)consistent—we
say that F is consistent. We say that F is resolute if it holds that F(J) is a singleton for every
profile J ∈ J(Φ,Γin)

+.

Frameworks. Having defined the general framework of judgment aggregation that we will use
in this paper, we are now ready to identify various restricted variants that have been studied in the
literature—including the most restricted variant that we will use to establish all lower bound results
in this paper. We distinguish between the following frameworks:

(1) The agenda Φ ⊆ L` contains only literals, and Γin = Γout ∈ L f is a formula containing only
variables from var(Φ).

• This framework has been considered by (a.o.) Grandi (2012) andGrandi and Endriss (2013)
under the name of binary aggregation with integrity constraints.

(2) The agendaΦ ⊆ L` contains only literals, and Γin = Γout ∈ L f is an arbitrary constraint, which
may in particular refer to variables that do not occur in the agenda.

• This framework has been considered by (a.o.) Endriss, Grandi, De Haan, and Lang (2016)
and De Haan (2018).
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(3) The agenda Φ ⊆ L f contains arbitrary formulas, and Γin = Γout = > is a trivial constraint.

• This is the classical “formula-based” framework that has been considered by (a.o.) List and
Pettit (2002), Dietrich and List (2007a), Miller and Osherson (2009), Endriss et al. (2012),
and Endriss et al. (2016).

(4) The agenda Φ ⊆ L f contains arbitrary formulas, and Γin = Γout ∈ L f is an arbitrary constraint.

• This framework has been considered by (a.o.) Dietrich and List (2008), Lang and
Slavkovik (2014), Endriss and De Haan (2015), Endriss et al. (2016), and De Haan and
Slavkovik (2017).

(5) The agenda Φ ⊆ L` contains only literals, and Γin,Γout ∈ L f are (possibly distinct) formulas
containing only variables from var(Φ).

• This framework has been considered by Endriss (2018), who refers to Γin as the rationality
constraint and to Γout as the feasibility constraint.

We note that the model of judgment aggregation we have defined in this paper is more general
than any of the five specific frameworks defined above—and indeed more general than any framework
that has previously been considered in the literature. Let us now explicitly add this most general
variant to our list of frameworks:

(6) The agenda Φ ⊆ L f contains arbitrary formulas, and Γin,Γout ∈ L f are arbitrary (possibly
distinct) constraints.

Even though these six frameworks might seem very different, they are closely related to each
other. Endriss et al. (2016) carried out a formal investigation of the relation between variants (1)–(4).
They showed that variants (2)–(4) are in fact polynomial-time translatable to each other—under the
assumption that at least one satisfying truth assignment to the constraint Γin = Γout is given. In other
words, variants (2)–(4) are equivalent in terms of generality. Moreover, they showed that variant (1)
is strictly less general than variants (2)–(4), under the common complexity-theoretic assumption that
the Polynomial Hierarchy is strict. Variant (5) of the framework is more general than variant (1): the
latter can easily be seen to be a special case of variant (5), where Γin = Γout. Variant (6), finally, is
easily seen to be more general than any of the other frameworks: variants (4) and (5) are special
cases of variant (6). In Figure 1, we provide an overview of the relation between the different variants
of the framework in terms of their generality.

In view of these relationships between the different frameworks, in the body of this paper we will
use the restrictions of variant (1) for the lower bounds (hardness results) we establish, and we will use
the general setting of variant (6) to show upper bounds (membership results).

2.2 The Problem of Outcome Determination

Similar to the variety in judgment aggregation frameworks that have been studied in the literature,
also a variety of different formalisations of the computational problem of outcome determination
have been put forward and analysed. Next, we will describe these different formalisations, discuss the
relation between them, and identify (once more) a most general and a most restricted variant that we
will use for the upper and lower bounds, respectively. We will focus mostly on decision problems, and
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(1)

(2)

(3)

(4)(5)

(6)

Figure 1: An overview of judgment aggregation frameworks (1)–(6) in terms of their generality. An
arrow from x to y indicates that variant y is at least as general as x.

only briefly discuss their relationship to search problems. For such decision problems, we distinguish
between credulous and skeptical variants, and consider more and less restricted variants. Fix a
judgment aggregation rule F.

(a) Credulous outcome determination, general variant.

Input: An agenda Φ, constraints Γin and Γout, a profile J ∈ J(Φ,Γin), and
subsets L, L1, . . . , Lu ⊆ Φ of the agenda, for u ≥ 0.
Question: Is there a judgment set J∗ ∈ F(J) such that L ⊆ J∗ and Li * J∗ for
each i ∈ {1, . . . ,u}?

This variant has been considered by Endriss and De Haan (2015), De Haan (2016), and De Haan
and Slavkovik (2017).

A restricted version of this variant, where u = 0, has been considered by Endriss et al. (2012),
Endriss et al. (2016), and De Haan (2018).

(b) Credulous outcome determination, restricted variant.

Input: An agenda Φ, constraints Γin and Γout, a profile J ∈ J(Φ,Γin), and a
formula ϕ∗ ∈ Φ from the agenda.
Question: Is there a judgment set J∗ ∈ F(J) such that ϕ∗ ∈ J∗?

This variant has not been explicitly identified in the literature, but it has been used implicitly to
establish lower bounds—e.g., by Endriss and De Haan (2015), De Haan (2016, 2018), and
De Haan and Slavkovik (2017).

(c) Skeptical outcome determination, restricted variant.
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Input: An agenda Φ, constraints Γin and Γout, a profile J ∈ J(Φ,Γin), and a
formula ϕ∗ ∈ Φ from the agenda.
Question: Is it the case that ϕ∗ ∈ J∗ for all judgment sets J∗ ∈ F(J)?

This variant has been considered by Lang and Slavkovik (2014).

Variant (a) of the decision problem is useful if one is in fact interested in solving a search variant
of the problem—that is, computing one or more judgment sets in the outcome F(J)—as we will
explain in more detail below, after defining search variants of the problem. Variants (b) and (c) are
directed at properties of the entire set of outcomes, rather than at a single judgment set in the outcome:
they ask whether a given formula ϕ∗ is possibly or certainly accepted, respectively, if the ultimate
collective judgment set is selected from the set of outcomes. Thus, variants (b) and (c) are useful if
one is interested in such global properties.5

As pointed out by Lang and Slavkovik (2014), since each judgment aggregation rule F selects a
set of complete judgment sets, it holds for every agenda Φ, every profile J , and every formula ϕ∗ ∈ A
that ϕ∗ ∈ J∗ for all J∗ ∈ F(J) if and only if it is not the case that ∼ϕ∗ ∈ J∗ for some J∗ ∈ F(J).
Therefore, variant (b) is straightforwardly polynomial-time reducible to the co-problem of variant (c),
and vice versa: map any input (Φ,Γin,Γout, J, ϕ∗) to the the input (Φ,Γin,Γout, J,∼ϕ∗). Thus, if the
problem variant (b) is complete for some complexity class K—for some variant of the judgment
aggregation framework and some judgment aggregation rule F—then the problem variant (c) is
complete for coK—for the same variant and rule. In other words, variants (b) and (c) are equivalent
from the perspective of computational complexity (modulo complementation of complexity classes).
Moreover, variant (b) is a restricted case of variant (a): when u = 0 and L = {ϕ∗}, the two problem
variants coincide. Therefore, variant (a) is more general than variant (b).

In the remainder of the paper, we will only consider variants (a) and (b). We will use variant (a)
of the problem to establish upper bounds (membership results) and variant (b) to establish lower
bounds on the complexity (hardness results).

Search Problems. As pointed out by Endriss and De Haan (2015), the computational complexity
obtained for decision problems formalising the task of computing outcomes does not directly lead to
corresponding (tight) results on the computational complexity of the (search) problem of computing
an outcome.6 Next, we consider two search variants of the computational problem of outcome
determination, defined along the lines of the credulous variants (a) and (b) of the decision problem.

(d) Search, general variant.

Input: An agenda Φ, constraints Γin and Γout, a profile J ∈ J(Φ,Γin), and
subsets L, L1, . . . , Lu ⊆ Φ of the agenda, for u ≥ 0.
Output: A judgment set J∗ ∈ F(J) such that L ⊆ J∗ and Li * J∗ for each i ∈
{1, . . . ,u}, if one exists.

5. We note that defining a general, skeptical variant of the outcome determination problem would not be useful: if we are
interested in deciding whether all outcomes include or exclude certain sets of formulas, we can always reduce this to a
series of decision problems on individual formulas (the restricted variant of the problem). The same is not possible for
the credulous variant of the problem, because we cannot be certain that the queries to the restricted variant would
always be answered with respect to the same specific outcome.

6. In the related setting of voting, there are in fact cases where the complexity of search problems and their corresponding
decision problems differs (Hemaspaandra, Hemaspaandra, & Menton, 2020).
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(e) Search, restricted variant.

Input: An agenda Φ, constraints Γin and Γout, a profile J ∈ J(Φ,Γin), and a
formula ϕ∗ ∈ Φ from the agenda.
Output: A judgment set J∗ ∈ F(J) such that ϕ∗ ∈ J∗, if one exists.

We can solve both of these search variants of the problem if we have access to an oracle (or
an efficient algorithm) for the decision variant (a). We can do this by iteratively constructing the
set J∗ and querying whether the partially constructed set J ′ can be extended with some ϕ ∈ Φ by
letting L = J ′ ∪ {ϕ}. This gives us a polynomial-time Turing reduction7 from the variants (d) and (e)
to the decision problem (a). (In fact, we can extend this approach to enumerate different judgment
sets J∗ ∈ F(J) with polynomial delay by using an oracle for the decision problem of variant (a)—this
is what the sets L1, . . . , Lu are useful for.) Variant (b) cannot be similarly used to solve the search
variants (d) or (e). This is because in variant (b) we can only ask about the inclusion of a single
formula in a judgment set in the outcome, and so we cannot iteratively construct the set J∗.

The Turing reducibility from variants (d) and (e) to variant (a) is enough to establish that, if
variant (a) is polynomial-time solvable, then the search problems (d) and (e) are also polynomial-
time solvable. Conversely, it holds that whenever variant (a) is not polynomial-time solvable
unless P = NP—e.g., if variant (a) is NP-hard—then also the search problems (d) and (e) are not
polynomial-time solvable unless P = NP.

However, as it will turn out, for many judgment aggregation rules, the computational complexity
of outcome determination lies at some level in the Polynomial Hierarchy between NP and ∆p

2—e.g.,
completeness for NP, Θp

2, or ∆
p
2.8 When using polynomial-time Turing reductions (rather than

many-to-one reductions9), the classes NP, Θp
2, and ∆

p
2 all coincide. Thus, if we were to rely only on

the Turing reducibility from variants (d) and (e) to variant (a) for establishing the complexity of the
search problem, we would lose some complexity-theoretic insights and distinctions that we establish
by showing, say, Θp

2-completeness.
To preserve these subtle distinctions also for the search problem formalisations, we would need to

prove these results directly for the search problems, using appropriate notions (e.g., classes, reductions,
complete problems)—as has been done by Endriss and De Haan (2015). We will not go into detail
on this in the remainder of this paper. It suffices to note that all proofs we establish in this paper
(both lower and upper bounds) can be extended to the search variants (d) and (e) of the problem of
outcome determination for judgment aggregation.

7. A polynomial-time Turing reduction from problem A to problem B is a polynomial-time algorithm that has access to
an oracle for problem B and that solves problem A. (We consider algorithms with access to an oracle in more detail in
Section 3.)

8. We will define the Polynomial Hierarchy and the complexity classes Θp
2 and ∆p

2 in Section 3.
9. A polynomial-time many-to-one reduction from a decision problem A to a decision problem B is a polynomial-time

algorithm R that, when given an input x for A, computes an input f (x) for B such that x ∈ A if and only if f (x) ∈ B.
This is a special case of a polynomial-time Turing reduction. Given a many-to-one reduction R, we can construct a
polynomial-time Turing reduction R′ as follows: to solve A, for any input x, R′ first computes f (x) and then uses the
oracle to decide if f (x) ∈ B, which is the case if and only if x ∈ A.
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2.3 Judgment Aggregation Rules

Next, we recall the definitions of the most important judgment aggregation rules that have been
considered in the literature. We restrict attention to rules that are (i) consistent and (ii) applicable to
any kind of agenda.10 As to date for several of these rules there is no commonly accepted terminology
to identify them, we are going to reference the mostly widely used names in each such case. For a
more extensive presentation of the landscape of judgment aggregation rules we refer to the taxonomy
published by Lang, Pigozzi, Slavkovik, van der Torre, and Vesic (2017).

To illustrate the judgment aggregation rules, we will use the following running example.

Example 2.1. Consider the judgment aggregation scenario (Φ†,Γ†in,Γ
†
out, J

†), where the agenda Φ† is
based on the pre-agenda [Φ†] = {x1, x2, x3, x4} containing four propositional variables, and the input
and output constraints Γ†in = Γ

†
out = (¬x1∨¬x2∨¬x3)∧ (¬x1∨¬x3∨¬x4) coincide. The profile J† =

(J1, . . . , J11) is given in Figure 2, and consists of the judgment sets J1, J2, J3 = {¬x1, x2, x3, x4},
J4 = {x1, x2,¬x3,¬x4}, J5, J6, J7 = {x1, x2,¬x3, x4}, and J8, J9, J10, J11 = {x1,¬x2, x3,¬x4}. (This is
the same scenario as used in Example 1.1, formalised in the framework of judgment aggregation.)

J† J1–J3 J4 J5–J7 J8–J11

x1 0 1 1 1
x2 1 1 1 0
x3 1 0 0 1
x4 1 0 1 0

Figure 2: The profile J† in the running example that accompanies the description of judgment
aggregation rules in Section 2.3.

As we have seen in the introduction, the majority rule is not consistent. Nevertheless, the notion
of majority support is certainly very appealing, which is why several important rules are defined
in terms of this notion. We define the majoritarian judgment set m(J) associated with a profile
J = (J1, . . . , Jn) of length n as the set of agenda elements supported by a strict majority of agents:

m(J) = { ϕ ∈ Φ | N(J, ϕ) > n
2 }

Several judgment aggregation rules amount to selecting consistent judgment sets that agree with
m(J) as much as possible. For any given profile J , let max(m(J),⊆) denote the set of all consistent
sets S ⊆ m(J) for which there is no consistent S′ ⊆ m(J) with S′ ⊃ S, and let max(m(J),≤) denote
the set of all consistent sets S ⊆ m(J) for which there is no consistent S′ ⊆ m(J) with |S′ | > |S |.

10. The former restriction rules out the popular quota rules (Dietrich & List, 2007b), under which a formula is accepted if
and only if the number of agents supporting that formula exceeds a certain quota. The latter restriction rules out the
popular premise-based rule (Pettit, 2001), which is applicable only when the agenda can be divided into premises and
conclusions, and which accepts those premises that are supported by a majority of the agents and those conclusions
that are logically entailed by the accepted premises. We note that outcome determination is algorithmically trivial for
the quota rules. For the premise-based rule the complexity of outcome determination reduces to the complexity of
determining whether a given conclusion follows from a given set of premises, which is a trivial task for the conjunctive
agendas considered in essentially all of the literature discussing applications of this rule (see, e.g., Dietrich & Mongin,
2010; Hartmann & Sprenger, 2012; Terzopoulou & Endriss, 2018).
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Definition 1 (Condorcet rule). The Condorcet rule Con returns, for any given profile J , exactly
those complete and consistent judgment sets that agree with the majoritarian judgment set of J to a
maximal extent (with respect to set inclusion):

Con(J) = { J ∈ ext(S) | S ∈ max(m(J),⊆) }

For the profile J† in Example 2.1, the Condorcet rule returns Con(J†) = {{x1, x2,¬x3, x4},

{x1,¬x2, x3,¬x4}, {¬x1, x2, x3, x4}}.
We stress that the definition of this rule is parametric in both the agenda Φ and the output

constraint Γout, even if these parameters do not explicitly show up in our simplified notation. By
definition, the Condorcet rule will always return a nonempty subset of J(Φ,Γout). The same is
true for all other aggregation rules to be defined in the sequel. The Condorcet rule is named so
due to its connection to the notion of a Condorcet winner in the context of preference aggregation
(Nehring, Pivato, & Puppe, 2014). It has also been called the maximal subagenda rule (Lang, Pigozzi,
Slavkovik, & van der Torre, 2011) and the max-set rule (Endriss, 2018).

Definition 2 (Slater rule). The Slater rule Sla returns, for any given profile J , exactly those complete
and consistent judgment sets that agree with the majoritarian judgment set of J on a maximal number
of formulas:

Sla(J) = { J ∈ ext(S) | S ∈ max(m(J),≤) }

For the profile J† in Example 2.1, the Slater rule returns the outcome Sla(J†) = {{x1, x2,¬x3, x4},

{¬x1, x2, x3, x4}}.
The name of this rule reflects the fact that it is a direct generalisation of the Slater rule for

preference aggregation (Slater, 1961; Brandt, Brill, & Harrenstein, 2016a). It is also known as
the endpoint rule (Miller & Osherson, 2009), the maxcard subagenda rule (Lang et al., 2011), the
maxcard Condorcet rule (Lang et al., 2017), and the max-num rule (Endriss, 2018).

Rather than trying to maximise agreement with the majoritarian judgment set, we may also try
to maximise agreement with (or minimise distance to) the profile itself. For any two judgment sets
J and J ′ (that each include exactly one of ϕ and ¬ϕ for every ϕ ∈ [Φ]), their Hamming distance
H(J, J ′) is defined as the number of elements of the pre-agenda [Φ] on which they disagree:

H(J, J ′) = |J \ J ′ | = |J ′ \ J |

Definition 3 (Kemeny rule). The Kemeny rule Kem returns, for any given profile J , exactly those
complete and consistent judgment sets that maximise agreement with J and thus minimise the sum of
the Hamming distances to the individual judgments in J:

Kem(J) = argmax
J ∈J(Φ,Γout)

∑
ϕ∈J

N(J, ϕ) = argmin
J ∈J(Φ,Γout)

∑
Ji ∈ J

H(J, Ji)

For the profile J† in Example 2.1, the Kemeny rule returns Kem(J†) = {{x1, x2,¬x3, x4}}. The
winning judgment set {x1, x2,¬x3, x4} has a total Hamming distance of 19 to the profile J . The two
judgment sets that follow are {x1,¬x2, x3,¬x4}—with a total distance of 20—and {¬x1, x2, x3, x4}—
with a total distance of 21.

This rule generalises the Kemeny rule for preference aggregation (Kemeny, 1959; Fischer, Hudry,
& Niedermeier, 2016). It is also known as the distance-based rule (Pigozzi, 2006; Endriss et al.,

698



The Complexity Landscape of Outcome Determination in Judgment Aggregation

2012), the prototype rule (Miller & Osherson, 2009), the median rule (Nehring et al., 2014), the
maximum-weight subagenda rule (Lang et al., 2011), and the max-sum rule (Endriss, 2018).

The Kemeny rule may be interpreted as minimising the average (Hamming) distance to the
individual judgment sets. Alternatively, we may minimise the maximum distance to any of the
individual judgment sets to, in some sense, help the agent that is worst off (Lang et al., 2011).

Definition 4 (MaxHamming rule). The MaxHamming rule MaxHam returns, for any given profile J ,
exactly those complete and consistent judgment sets that minimise the maximum of the Hamming
distance to the individual judgments in J:

MaxHam(J) = argmin
J ∈J(Φ,Γout)

max
Ji ∈ J

H(J, Ji)

For the profile J† in Example 2.1, the MaxHamming rule returns the following set:

MaxHam(J†) = {{x1, x2,¬x3, x4}, {x1, x2,¬x3,¬x4}, {x1,¬x2, x3,¬x4},

{x1,¬x2,¬x3, x4}, {¬x1, x2, x3, x4}, {¬x1, x2, x3,¬x4},

{¬x1, x2,¬x3,¬x4}, {¬x1,¬x2,¬x3, x4}, {¬x1,¬x2,¬x3,¬x4}}

Variants of the MaxHamming rule have been studied in preference aggregation—under the names
maximum rank aggregation (Bachmaier, Brandenburg, Gleißner, & Hofmeier, 2015) andMinMax
rank aggregation (Li & Milenkovic, 2017)—and in approval (committee) elections—under the name
minimax approval voting (Brams, Kilgour, & Sanver, 2007).

The Hamming distance is but one way of measuring the distance between two judgment sets. It
makes the implicit assumption that the most elementary way of changing a judgment set is to “flip”
the judgment on exactly one agenda item. But one could argue that this is not appropriate when
such a flip would render the judgment set inconsistent. An alternative approach, first proposed by
Duddy and Piggins (2012), is to measure distance in terms of elementary changes that each amount
to moving to a minimally different—yet consistent—judgment set. This idea leads to the following
definition. Consider the undirected graph with the set of vertices J(Φ,Γout) in which there is an edge
between vertices J and J ′ if and only if 2J∪J′ ∩ J(Φ,Γout) = {J, J ′}, i.e., if and only if there is no
other complete and consistent judgment set “between” J and J ′ that we could construct by mixing
the elements of these two sets. Call this graph the geodesic graph. Let G be defined as the function
that returns the geodesic distance (the length of the shortest path) between any two vertices in the
geodesic graph.

Definition 5 (Rules based on the geodesic distance). The aggregation rules based on the geodesic
distance G, AvgGeo and MaxGeo, are defined as follows, for any given profile J:

AvgGeo(J) = argmin
J ∈J(Φ,Γout)

∑
Ji ∈ J

G(J, Ji)

MaxGeo(J) = argmin
J ∈J(Φ,Γout)

max
Ji ∈ J

G(J, Ji)

For the profile J† in Example 2.1, the AvgGeo rule returns AvgGeo(J†) = {{x1, x2,¬x3, x4}},
while the MaxGeo rule returns the following outcome:

MaxGeo(J†) = {{x1, x2,¬x3, x4}, {x1, x2,¬x3,¬x4}, {x1,¬x2, x3,¬x4},

{x1,¬x2,¬x3, x4}, {¬x1, x2, x3, x4}, {¬x1, x2, x3,¬x4},

{¬x1, x2,¬x3,¬x4}, {¬x1,¬x2,¬x3, x4}, {¬x1,¬x2,¬x3,¬x4}}
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The geodesic graph for the agenda Φ† and the output constraint Γ†out are shown in Figure 3. The
cumulative geodesic distance from {x1, x2,¬x3, x4} to the judgment sets Ji in the profile J† is 19. All
other judgment sets in J(Φ,Γout) have a larger cumulative geodesic distance to the judgment sets
in J†. The judgment sets in MaxGeo(J†) all have geodesic distance at most three to each judgment
set in J†. Moreover, there exists no judgment set in J(Φ,Γout) that has a geodesic distance of two or
less to each judgment set in J†.

{x1 , x2 ,¬x3 , x4}3 {¬x1 , x2 , x3 , x4}3

{x1 , x2 ,¬x3 ,¬x4}1 {¬x1, x2,¬x3, x4} {x1,¬x2,¬x3, x4} {¬x1, x2, x3,¬x4}{x1 ,¬x2 , x3 ,¬x4}4 {¬x1,¬x2, x3, x4}

{¬x1,¬x2,¬x3, x4}{¬x1,¬x2, x3,¬x4}{¬x1, x2,¬x3,¬x4}{x1,¬x2,¬x3,¬x4}

{¬x1,¬x2,¬x3,¬x4}

Figure 3: The geodesic graph for the agenda Φ† and the output constraint Γ†out from Example 2.1.
The judgment sets from the agenda J† are highlighted in bold, and for each of them the
number of times that they appear in J† is indicated.

Thus, the Kemeny rule is to the MaxHamming rule what AvgGeo is to MaxGeo. Of course,
other distance measures, besides H and G, could be considered as well (Slavkovik & Ågotnes, 2014),
but doing so here would go beyond the scope of the present paper.

Another approach to defining an aggregation rule is to associate every pair of a judgment set Ji
and a formula ϕ with a score that indicates how strongly Ji supports ϕ, and to then return exactly
those complete and consistent judgment sets that maximise the sum of those scores (Dietrich, 2014).
Note that the Kemeny rule is such a scoring rule, namely for the trivial scoring function that assigns
score 1 to (Ji, ϕ) if and only ϕ ∈ Ji (and score 0 otherwise). Besides the Kemeny rule, the most
important representative of the family of scoring rules is the reversal-scoring rule, first proposed
by Dietrich (2014) and defined next. Its interest stems from the fact that it may be interpreted as a
generalisation of the Borda voting rule (Borda, 1781; Zwicker, 2016).

Definition 6 (Reversal-scoring rule). The reversal-scoring rule RevSco is the scoring rule under
which the score a formula receives from an individual judgment set is equal to the number of agenda
items on which judgment has to be inverted before that formula can be rejected:

RevSco(J) = argmax
J ∈J(Φ,Γout)

∑
Ji ∈ J

∑
ϕ∈J

rev(Ji, ϕ), where rev(Ji, ϕ) = min
J′∈J(Φ,Γout)

s.t. ϕ<J′

H(Ji, J ′)

For the profile J† in Example 2.1, the reversal-scoring rule returns the set RevSco(J†) =
{{x1,¬x2,¬x3,¬x4}}. The total reversal score

∑
Ji ∈ J† rev(Ji, x1) for x1 over all Ji in the profile J†

is 8, and the total reversal score
∑

Ji ∈ J† rev(Ji,¬x1) for ¬x1 is 6. In addition,
∑

Ji ∈ J† rev(Ji, x2) = 7,
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∑
Ji ∈ J† rev(Ji,¬x2) = 8,

∑
Ji ∈ J† rev(Ji, x3) = 7,

∑
Ji ∈ J† rev(Ji,¬x3) = 8,

∑
Ji ∈ J† rev(Ji, x4) = 6, and∑

Ji ∈ J† rev(Ji,¬x4) = 9. Since the judgment set {x1,¬x2,¬x3,¬x4} satisfies Γout, and each of the
formulas ϕ in it have a larger total reversal score than their negation, it is the unique judgment set
with highest total reversal score.

For the next definition, we return to the idea that the collective judgment set should agree with
the majoritarian judgment set as much as possible. Suppose we order the agenda items in terms of
the strengths of the majorities that support them (breaking ties in some way). Then we might want
to accept formulas in that order, rejecting a formula with majority support only when accepting it
would render the outcome inconsistent. Let L(Φ) denote the set of all strict linear orders on Φ; we
are going to use such orders to break ties between agenda items with equal support. Furthermore, for
a given set J, profile J , tie-breaking order�, and formula ϕ, define the set of formulas in J that in J
either have more support than ϕ or the same amount of support as ϕ but precede ϕ in�:

J |J�ϕ = { ψ ∈ J | N(J,ψ) > N(J, ϕ) } ∪ { ψ ∈ J | N(J,ψ) = N(J, ϕ) and ψ � ϕ }

Definition 7 (Ranked-agenda rule). The ranked-agenda rule Ran returns, for any given profile J ,
exactly those complete and consistent judgment sets that can be obtained by accepting formulas in an
order that respects the relative strengths of the support they enjoy in J:

Ran(J) =
⋃

�∈L(Φ)

Ran�(J) where

Ran�(J) = { J ∈ J(Φ,Γout) | J |J�ϕ ∪ {ϕ} is Γout-inconsistent for every ϕ ∈ Φ \ J }

For the profile J† in Example 2.1, the ranked-agenda rule returns Ran(J†) = {{x1, x2,¬x3, x4},

{x1,¬x2, x3,¬x4}}. In Example 2.1, the elements of the agenda ordered by support, are x1 (8), x2
and x3 (7), x4 (6), then ¬x4 (5), ¬x2 and ¬x3 (4), and finally ¬x1 (3). If, on the one hand, the priority
relation � is such that x2 � x3, then the computation of Ran(J†) starts with taking x1, then x2,
then x4 (because x3 cannot be added without violating the consistency constraint), and finally ¬x3. If,
on the other hand, the priority relation � is such that x3 � x2, then the computation of Ran(J†)
starts with taking x1, then x3, and then ¬x2 and ¬x4.

Observe that Ran� is itself a (resolute) judgment aggregation rule, parameterised by a fixed
tie-breaking order �. The name of the ranked-agenda rule, first suggested by Lang et al. (2011),
derives from the ranked-pairs rule for preference aggregation (Tideman, 1987). It has also been
called Tideman rule (Endriss & De Haan, 2015) and support-based rule (Porello & Endriss, 2014).

The next rule, proposed both by Nehring and Pivato (2013) and by Everaere, Konieczny, and
Marquis (2014), is a refinement of the ranked-agenda rule. It is based on the following lexicographic
order on judgment sets (determined by a given profile J):

J ′ >J
lex J iff there exists a k ∈ N such that these two conditions hold:

• |{ ϕ ∈ J ′ | N(J, ϕ) ≥ j }| = |{ ϕ ∈ J | N(J, ϕ) ≥ j }| for all j > k

• |{ ϕ ∈ J ′ | N(J, ϕ) ≥ k }| > |{ ϕ ∈ J | N(J, ϕ) ≥ k }|

Definition 8 (LexiMax rule). The LexiMax-rule returns, for any given profile J , exactly those
complete and consistent judgment sets that maximally agree with the majority decisions made in J
regarding the agenda items in a lexicographic sense:

LexiMax(J) = { J ∈ J(Φ,Γout) | J ′ >J
lex J for no J ′ ∈ J(Φ,Γout) }
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For the profile J† in Example 2.1, the LexiMax-rule returns LexiMax(J†) = {{x1, x2,¬x3, x4}}.
Recall that the majoritarian judgment set may not always be consistent. We could try to correct

this by making a small modification to the profile. The rules defined next are based on this idea:
move to a different profile close by for which the majoritarian judgment set is consistent and then
return that set as the outcome of the rule. For the first of these rules the “small modification” to the
profile involves removing some of the agents, while for the second rule it involves swapping some of
the individual judgments on agenda items. Note that the definition of any such rule will be parametric
not only in the agenda Φ and the output constraint Γout but also in the input constraint Γin.

Definition 9 (Rules based on minimal profile modifications). The Young rule Yng and the Dodgson
rule Dod are defined as follows, for any given profile J:

Yng(J) = { J ∈ ext(m(J∗)) | J∗ ∈ argmax
J′∈J(Φ,Γin)

+

s.t. J′⊆ J and
m(J′) is Γout-consistent

|J ′ | }

Dod(J) = { J ∈ ext(m(J∗)) | J∗ ∈ argmin
J′∈J(Φ,Γin)

+

s.t. | J′ |= | J | and
m(J′) is Γout-consistent

∑
i≤ | J |

H(Ji, J ′i ) }

For the profile J† in Example 2.1, the Young rule returns Yng(J†) = {{x1, x2,¬x3, x4},

{x1, x2,¬x3,¬x4}, {x1,¬x2, x3,¬x4}, {x1,¬x2,¬x3,¬x4}}, and the Dodgson rule returns Dod(J†) =
{{x1, x2,¬x3, x4}}.

The Young rule was first introduced by Lang et al. (2011), named so due its similarity to the
rule of the same name familiar from voting theory (Young, 1977; Caragiannis, Hemaspaandra, &
Hemaspaandra, 2016). The Dodgson rule is the most important instance of the “full” distance-
based rules defined by Miller and Osherson (2009). This rule is named after the Dodgson voting
rule (Dodgson, 1876; Caragiannis et al., 2016)—when using an input constraint that expresses linear
orders over a set of candidates and an output constraint that expresses that one candidate is preferred
over all other candidates, we can simulate the Dodgson voting rule using the rule Dod.

A further family of aggregation rules of some interest are the representative-voter rules, which
are rules that always return judgment sets that are part of the support of the input profile, i.e., that are
themselves individual judgment sets submitted by at least one agent (Endriss & Grandi, 2014). The
idea is that an aggregation rule should determine which of the agents is most representative of the
group and then return that agent’s judgment set. The most natural implementations of this idea are
the average-voter rule (returning the individual judgment sets that minimise the average Hamming
distance to the profile), the majority-voter rule (returning the individual judgment sets that minimise
the Hamming distance to the majoritarian judgment set), and the plurality-voter rule (returning the
individual judgment sets occurring most frequently in the profile). Note how the first two of these
rules closely resemble the Kemeny rule and the Slater rule, respectively (with the support of J now
taking the role of J(Φ,Γout)). Any representative-voter rule is consistent by construction as long as
the output constraint is a logical consequence of (or simply equal to) the input constraint. A great
advantage of the representative-voter rules is that they are computationally easy: we simply have
to choose the most representative judgment set found in the input rather than scanning through the
potentially exponentially large set of all consistent judgment sets. While this makes them attractive
for certain applications, this also means that they are of no further interest for this particular paper,
given our focus on questions of computational complexity.
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3. Complexity-Theoretic Preliminaries

In this section, we survey some basic notions from the theory of computational complexity. We
assume that the reader is familiar with the complexity classes P and NP, and with basic notions
such as polynomial-time reductions.11 For more details, we refer to textbooks on computational
complexity theory (see, e.g., Arora & Barak, 2009). We begin by recalling the archetypal NP-complete
problem Sat.

Sat
Instance: A propositional formula ϕ.
Question: Is there a truth assignment that satisfies ϕ?

We briefly revisit some of the classes of the Polynomial Hierarchy (PH) (Meyer & Stockmeyer,
1972; Stockmeyer, 1976; Wrathall, 1976). These classes can be conveniently characterised using
quantified Boolean formulas. A quantified Boolean formula (in prenex form) is a formula of the
form Q1x1Q2x2 . . .Qnxn.ψ, where all xi are propositional variables, each Qi is either an existential
quantifier (∃) or a universal quantifier (∀), and ψ is a (quantifier-free) propositional formula over
the variables x1, . . . , xn. The notion of truth for such formulas is defined in the usual way (see, e.g.,
Kleine Büning & Bubeck, 2009).

The PH contains the complexity class Σp
2, that consists of all decision problems for which there

exists a polynomial-time reduction to the problem QSat2, which is defined as follows. Instances of
the problem QSat2 are quantified Boolean formulas of the form ∃x1 . . . ∃xn∀y1 . . .∀ym.ψ, where ψ
is quantifier-free. The problem is to decide whether the quantified Boolean formula ϕ is true. The
PH also contains the complexity class Πp

2 . The class Π
p
2 consists of all decision problems for which

there exists a polynomial-time reduction to the problem coQSat2, which is complementary to the
problem QSat2.

One can also characterise the class Σp
2 using nondeterministic polynomial-time algorithms with

access to an oracle for a problem in NP—e.g., an oracle for an NP-complete problem. Let R be
a decision problem. A Turing machine M with access to an R-oracle is a Turing machine with a
dedicated oracle tape and dedicated states qquery, qyes and qno. Whenever M is in the state qquery,
it does not proceed according to the transition relation, but instead it transitions into the state qyes
if the oracle tape contains a string x that is a yes-instance for the problem R, i.e., if x ∈ R, and it
transitions into the state qno if x < R. Intuitively, the oracle solves arbitrary instances of R in a single
time step. The class Σp

2 consists of all decision problems that can be solved in polynomial time by a
nondeterministic Turing machine that has access to an R-oracle, for some R ∈ NP.

Two other classes that are contained in the PH are ∆p
2 and Θ

p
2. The complexity class ∆p

2 consists of
all decision problems that can be solved by a polynomial-time deterministic Turing machine that has
access to an R-oracle, for some R ∈ NP. The complexity class Θp

2 consists of all decision problems
that can be solved by a polynomial-time deterministic Turing machine that has access to an R-oracle,
for some R ∈ NP, and that on each input queries this oracle O(log n) times, where n denotes the input
size (Papadimitriou & Zachos, 1982). The class Θp

2 can alternatively be characterised as the set of
all decision problems that can be solved in polynomial time by an algorithm that has access to an
R-oracle, for some R ∈ NP, and that makes all queries to the oracle in parallel—i.e., first all queries

11. From this point on, we will only refer to polynomial-time many-to-one reductions, and we will refer to them simply as
polynomial-time reductions.
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are written, and then the answers to all these queries are given at the same time (Köbler, Schöning, &
Wagner, 1987; Hemachandra, 1989; Buss & Hay, 1991).

The following problem is complete for the class ∆p
2 under polynomial-time reductions (Krentel,

1992). Let ϕ be a (satisfiable) propositional formula with var(ϕ) = {x1, . . . , xn}, and take the
natural order x1 < · · · < xn over these variables. The lexicographically maximal model α of ϕ
is the lexicographically maximal truth assignment that satisfies ϕ—that is, α is the (unique)
truth assignment α : var(ϕ) → {0,1} for which it holds that (1) α satisfies ϕ, and (2) no truth
assignment β : var(ϕ) → {0,1} that precedes α in the lexicographical order satisfies ϕ. A
truth assignment β precedes α in the lexicographical order (w.r.t. x1 < · · · < xn) if there exists
some 1 ≤ k < n such that (i) β(xi) = α(xi) for all 1 ≤ i < k and (ii) β(xk) = 0 and α(xk) = 1.

Lex-Max-Model
Instance: A (satisfiable) propositional formula ϕ and a variable x∗ ∈ var(ϕ).
Question: Is it the case that the lexicographically maximal model of ϕ sets x∗ to true?

The following problem is complete for the class Θp
2 under polynomial-time reductions (Krentel,

1988; Wagner, 1990; Chen & Toda, 1995).

Max-Model
Instance: A satisfiable propositional formula ϕ, and a variable x∗ ∈ var(ϕ).
Question: Is there a model α of ϕ that sets x∗ to true, such that there is no other model
of ϕ that sets more variables in var(ϕ) to true than α?

Additionally, the PH contains the complexity class Θp
3, which consists of all decision problems

that can be solved by a polynomial-time Turing machine with access to an R-oracle, for some R ∈ Σp
2,

that on each input queries this oracle oracle O(log n) times, where n denotes the input size. The
following problem is complete for Θp

3 under polynomial-time reductions (Chen & Toda, 1995).

QSat2-Min-Model
Instance: A true instance ϕ of QSat2, where ϕ = ∃X .∀Y .ψ, and a variable x∗ ∈ X .
Question: Is there a truth assignment α : X → {0,1} that sets x∗ to true and for
which ψ[α] is valid, such that there is no truth assignment β : X → {0,1} that sets more
variables in X to true and for which ψ[β] is valid?

An overview of the relation between the complexity classes that we discussed (and the other
well-known complexity classes coNP and PSPACE) can be found in Figure 4.

4. Results

In this section, we present computational complexity results for the outcome determination problem
in judgment aggregation, for the different judgment aggregation rules and for the different judgment
aggregation frameworks we discussed in Section 2. These results are summarised in Table 1 on
page 690. We give full proofs for all the results that we present. Moreover, for each result we
give a reference to where restricted versions of these results—i.e., for only some variants of the
judgment aggregation framework and for only some of the problem variants—have appeared in the
literature (Lang & Slavkovik, 2014; Endriss & De Haan, 2015; De Haan & Slavkovik, 2017; De Haan,
2018).
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Figure 4: An overview of the computational complexity classes that are relevant for the results in this
paper—and their relation to some other prominent complexity classes. Arrows indicate
inclusion relations.

4.1 Outcome Determination for the Condorcet Rule

We begin by proving membership in Σp
2 for the outcome determination problem for the Condorcet

rule Con.

Theorem 4.1. The outcome determination problem for the Condorcet rule Con is in Σp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. This proof proceeds along the same
lines as a proof given by Lang and Slavkovik (2014, Proposition 1). We describe a nondeterministic
polynomial-time algorithm with access to an NP oracle that solves the problem. The algorithm
guesses a complete judgment set J∗ ⊆ Φ, and guesses a truth assignment α to the variables in Φ and
in Γout. The algorithm then checks that α satisfies Γout and satisfies ϕ for each ϕ ∈ J∗, and that L ⊆ J∗

and Li * J∗ for each i ∈ {1, . . . ,u}. Then, the algorithm uses the NP oracle to check whether there
exists a complete and Γout-consistent judgment set J ′ ⊆ Φ such that J ′ ∩ m(J) ) J∗ ∩ m(J). If there
exists such a judgment set J ′, the algorithm rejects the input; otherwise, it accepts the input. By
definition of the Condorcet rule, the algorithm accepts the input if and only if J∗ ∈ Con(J). �

Next, we prove Σp
2-hardness for the outcome determination problem for the Condorcet rule.12

12. The proof of Theorem 4.2 is not based on the original hardness proof for the outcome determination problem for the
Condorcet rule, that appeared in preliminary work (Lang & Slavkovik, 2014, Proposition 1)—the original proof only
applies to variants (2), (3) and (4) of the framework.
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Theorem 4.2. The outcome determination problem for the Condorcet rule Con is Σp
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We give a reduction from the Σp

2-
complete problem QSat2. Let ϕ = ∃x1 . . . ∃xn∀y1 . . .∀ym.ψ be an instance of QSat2. We construct
an instance (Φ,Γin,Γout, J, ϕ∗) of the outcome determination problem for the Condorcet rule as follows.
We define Φ by letting [Φ] = { zxi , zxi | 1 ≤ i ≤ n } ∪ { zyj , zyj | 1 ≤ j ≤ m } ∪ {w1,w2,w3,u}. We
define Γin = Γout as follows:

Γin = Γout = (w1 ∧ w2 ∧ w3) →(
n∧
i=1

(
zxi ↔ ¬zxi

)
∧

((
u ∧

m∧
j=1

(
¬zyj ∧ ¬zyj

))
∨

(
¬ψ ′ ∧

m∧
j=1

(
zyj ↔ ¬zyj

))))
,

where ψ ′ is obtained from ψ by replacing each variable xi by zxi and replacing each variable yj
by zyj . We define the profile J = (J1, J2, J3) as indicated in Figure 5. Finally, we let ϕ∗ = u.

J J1 J2 J3 m(J)
zx1 1 1 1 1
zx1 1 1 1 1
...

...
...

...
...

zxn 1 1 1 1
zxn 1 1 1 1
zy1 1 1 1 1
zy1 1 1 1 1
...

...
...

...
...

zym 1 1 1 1
zym 1 1 1 1
w1 1 1 0 1
w2 1 0 1 1
w3 0 1 1 1
u 0 0 0 0

Figure 5: Construction of the profile J in the proof of Theorem 4.2.

We show that ϕ is true if and only if there is some J∗ ∈ Con(J) with ϕ∗ ∈ J∗.
(⇒) Suppose that ϕ is true—that is, that there is a truth assignment α : {x1, . . . , xn} → {0,1}

such that for all truth assignments β : {y1, . . . , ym} → {0,1} it holds that α ∪ β satisfies ψ.
Consider the judgment set J∗ = {w1,w2,w3,u} ∪ { zxi | 1 ≤ i ≤ n, α(xi) = 1 } ∪ { zxi | 1 ≤
i ≤ n, α(xi) = 0 } ∪ { ¬zyj ,¬zyj | 1 ≤ j ≤ m }. This set J∗ is Γout-consistent. We show that
there is no Γout-consistent J ′ such that m(J) ∩ J ′ ) m(J) ∩ J∗. To do so, we first observe
that m(J) ∩ J∗ = {w1,w2,w3} ∪ { zxi | 1 ≤ i ≤ n, α(xi) = 1 } ∪ { zxi | 1 ≤ i ≤ n, α(xi) = 0 }.
Suppose, to derive a contradiction, that such a J ′ exists—that is, m(J) ∩ J ′ ) m(J) ∩ J∗. Then
either J ′ contains ¬u, or J ′ contains zyj or zyj for some 1 ≤ j ≤ m. In both cases, because J ′ is
Γout-consistent, we know that J ′ is consistent with ¬ψ ′ ∧

∧m
j=1(zyj ↔ ¬zyj ). Moreover, the set J ′

must agree with J∗ on the issues zxi , zxi . Consider the truth assignment β′ : {y1, . . . , ym} → {0,1}
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that is defined by letting β′(yj) = 1 if and only if zyj ∈ J ′, for each 1 ≤ j ≤ m. Since J ′ is consistent
with ¬ψ ′, we get that α ∪ β′ satisfies ¬ψ. This is a contradiction with our assumption that ψ[α] is a
tautology. Therefore, we can conclude that no such J ′ exists, and thus that J∗ ∈ Con(J).
(⇐) Suppose that there is some J∗ ∈ Con(J)with u = ϕ∗ ∈ J∗. We then know that {w1,w2,w3} ⊆

J∗—if this were not the case, then J∗ \{u}∪{¬u} would be Γout-consistent and would agree with m(J)
on a strict superset of issues (w.r.t. J∗), which would contradict J∗ ∈ Con(J). Then, since J∗ is
Γout-consistent, we know that for each 1 ≤ i ≤ n it holds that |J∗ ∩ {zxi , zxi }| = 1. Moreover, we
know that { ¬zyj ,¬zyj | 1 ≤ j ≤ m } ⊆ J∗—again, if this were not the case, then J∗ \ {u} ∪ {¬u}
would be Γout-consistent and would agree with m(J) on a strict superset of issues (w.r.t. J∗),
which would contradict J∗ ∈ Con(J). Consider the truth assignment α : {x1, . . . , xn} → {0,1}
that is defined by letting α(xi) = 1 if and only if zxi ∈ J∗, for each 1 ≤ i ≤ n. We show
that ψ[α] is a tautology. Suppose, to derive a contradiction, that ψ[α] is not a tautology, that
is, that there exists some β : {y1, . . . , ym} → {0,1} such that α ∪ β falsifies ψ. Consider the
judgment set J ′ = {w1,w2,w3,u} ∪ (J∗ ∩ { zxi ,¬zxi , zxi ,¬zxi | 1 ≤ i ≤ n }) ∪ { zyj | 1 ≤ j ≤
m, β(yj) = 1 } ∪ { zyj | 1 ≤ j ≤ m, β(yj) = 0 }. It holds that m(J) ∩ J ′ ) m(J) ∩ J∗. Moreover,
because α ∪ β satisfies ¬ψ, we get that J ′ is Γout-consistent. This is a contradiction with our
assumption that J∗ ∈ Con(J). Thus, we can conclude that no such β exists, and thus that ψ[α] is a
tautology and that ϕ is true. �

4.2 Outcome Determination for the Slater Rule

We now turn to the membership result for the outcome determination problem for the Slater rule.

Theorem 4.3. The outcome determination problem for the Slater rule Sla is in Θp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. We describe a polynomial-time
algorithm that queries an NP oracle O(log |Φ|) times and that solves the problem. The algorithm
uses oracle queries to check if there exists a complete and Γout-consistent judgment set J that agrees
with m(J) on a given number k of formulas ϕ ∈ Φ. This is a problem in NP, so by picking an
NP-complete problem for the oracle, we can use a single oracle query to solve any instance of the above
problem in polynomial time. The maximal number k of formulas ϕ on which any judgment set J ⊆ Φ
agrees with m(J) is |Φ|. Therefore, we can determine the maximal number kmax of formulas ϕ
on which any complete and Γout-consistent judgment set J ⊆ Φ agrees with m(J) using O(log |Φ|)
oracle queries—by using binary search. Then, after having identified this number kmax, the algorithm
queries the oracle one additional time to determine whether there exists a complete and Γout-consistent
judgment set J∗ that agrees with m(J) on kmax formulas ϕ ∈ Φ such that L ⊆ J∗ and Li * J∗ for
all i ∈ {1, . . . ,u}. Again, since this is a problem in NP, one oracle query suffices to determine this.13
The algorithm outputs “yes” if and only if such a judgment set J∗ exists. This algorithm runs in
polynomial time, queries the NP oracle O(log |Φ|) times, and correctly solves the problem. Therefore,
the problem is in Θp

2. �

To show that outcome determination for the Slater rule is Θp
2-hard, one can use the standard

embedding of voting into judgment aggregation (Dietrich & List, 2007a; Endriss, 2016). Performing

13. We use a single oracle to solve instances of two different NP problems. By picking an NP complete problem R for the
oracle, we know that we can solve any problem in NP with a single oracle call—by using the fact that each problem in
NP can be polynomial-time reduced to R.
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the Slater rule on the result of this embedding corresponds to carrying out the Slater voting rule (Endriss,
2018). As computing the winner of a Slater election is Θp

2-hard (see, e.g., Conitzer, 2006), this
embedding can be used to provide a reduction to show Θp

2-hardness of outcome determination for the
Slater judgment aggregation rule. We give an alternative proof of Θp

2-hardness that is self-contained
and does not rely on work in voting theory.14

Theorem 4.4. The outcome determination problem for the Slater rule Sla is Θp
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b) of
the problem to establish the lower bound on the complexity. We give a reduction from theΘp

2-complete
problem Max-Model. Let (ψ, x∗) be an instance of Max-Model, with var(ψ) = {x1, . . . , xn}.
Without loss of generality, suppose that x∗ = x1. We construct an instance (Φ,Γin,Γout, J, ϕ∗) of the
outcome determination problem for the Slater rule as follows.

We firstly construct the agenda Φ. For each 1 ≤ i ≤ n and each 1 ≤ j ≤ n + 1, we introduce a
fresh propositional variable zi, j . We then let Φ = { xi,¬xi, zi, j,¬zi, j | 1 ≤ i ≤ n,1 ≤ j ≤ n+ 1 }. We
define the constraints Γin = Γout as follows:

Γin = Γout =
∨

1≤i≤n

©­«
∧

1≤ j≤n+1
zi, j

ª®¬ ∨
©­­«ψ ∧

∧
1≤i≤n

1≤ j≤n+1

¬zi, j
ª®®¬ .

We construct the profile J = (J1, . . . , Jn) as indicated in Figure 6. Finally, we let ϕ∗ = x1.

J J1 J2 · · · Jn−1 Jn m(J)
x1 0 1 1 · · · 1 1
x2 1 0 1 · · · 1 1
...

...
. . .

...
...

xn−1 1 · · · 1 0 1 1
xn 1 · · · 1 1 0 1

z1,1 1 0 0 · · · 0 0
z2,1 0 1 0 · · · 0 0
...

...
. . .

...
...

zn−1,1 0 · · · 0 1 0 0
zn,1 0 · · · 0 0 1 0
...

...
...

z1,n+1 1 0 0 · · · 0 0
z2,n+1 0 1 0 · · · 0 0
...

...
. . .

...
...

zn−1,n+1 0 · · · 0 1 0 0
zn,n+1 0 · · · 0 0 1 0

Figure 6: Construction of the profile J in the proof of Theorem 4.4.

14. The proof of Theorem 4.4 is based on a proof that appeared in preliminary work (Endriss & De Haan, 2015).
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The intuition behind this construction is that for an outcome to agree with the majoritarian
judgment set m(J) on as many issues in Φ as possible, it is “cheaper” to do so by satisfying ψ
than

∧
1≤ j≤n+1 zi, j for some 1 ≤ i ≤ n. The former can be done by deviating from m(J) on at most n

issues, whereas the latter requires deviating from m(J) on at least n + 1 > n issues.
We show that there is some J∗ ∈ Sla(J) with ϕ∗ ∈ J∗ if and only if there is a model of ψ that

sets a maximal number of variables in var(ψ) to true and that sets x1 to true.
(⇒) Suppose that there is some J∗ ∈ Sla(J) with ϕ∗ ∈ J∗. Define the truth assignment α :

var(ψ) → {0,1} by letting α(xi) = 1 if and only if xi ∈ J∗. We know that J∗ is Γout-consistent—thus
either (i) it is consistent with

∨
1≤i≤n

∧
1≤ j≤n+1 zi, j or (ii) it is consistent withψ∧

∧
1≤i≤n,1≤ j≤n+1 ¬zi, j .

In case (i), it must disagree with m(J) on at least n+1 issues, and in case (ii), it can disagree with m(J)
on at most n issues. Thus, since J∗ maximises agreement with m(J), we can rule out case (i).
Therefore, we know that α satisfies ψ. Also, we know that α sets x1 to true, because x1 = ϕ

∗ ∈ J∗.
We show that there is no β : var(ψ) → {0,1} that satisfies ψ and that sets more variables in var(ψ)
to true than α. Suppose, to derive a contradiction, that such a β exists. Consider the judgment
set J ′ = { ¬zi, j | 1 ≤ i ≤ n,1 ≤ j ≤ n + 1 } ∪ { ` | 1 ≤ i ≤ n, ` ∈ {xi,¬xi}, β(`) = 1 }. This set J ′ is
Γout-consistent, and agrees with m(J) on strictly more issues than J∗. This is a contradiction with our
assumption that J∗ ∈ Sla(J). Thus, we can conclude that no such β exists. We then know that α sets
a maximal number of variables in var(ψ) to true and sets x1 to true.
(⇐) Suppose that there is a truth assignment α : var(ψ) → {0,1} that satisfies ψ, sets

a maximal number of variables in var(ψ) to true and sets x1 to true. Consider the judgment
set J∗ = { ¬zi, j | 1 ≤ i ≤ n,1 ≤ j ≤ n + 1 } ∪ { ` | 1 ≤ i ≤ n, ` ∈ {xi,¬xi}, α(`) = 1 }. This set J∗

is Γout-consistent. Moreover, it contains ϕ∗ = x1, because α(x1) = 1. We show that J∗ ∈ Sla(J).
Suppose, to derive a contradiction, that there is some complete and Γout-consistent judgment set J ′

that agrees with m(J) on more issues than J∗. Without loss of generality, we can take J ′ so that it
minimizes disagreement with m(J). Since J ′ is Γout-consistent, it holds that either (i) it is consistent
with

∨
1≤i≤n

∧
1≤ j≤n+1 zi, j or (ii) it is consistent with ψ ∧

∧
1≤i≤n,1≤ j≤n+1 ¬zi, j . In case (i), J ′ must

disagree with m(J) on at least n+1 issues, and in case (ii), it can disagree with m(J) on at most n issues.
Then, because J ′ minimizes disagreement with m(J), we can rule out case (i). Therefore, we know
that { ¬zi, j | 1 ≤ i ≤ n,1 ≤ j ≤ n + 1 } ⊆ J ′, and that J ′ ∪ {ψ} is satisfiable. The only way that J ′

can agree with m(J) on more issues than J∗ is for |J ′ ∩ { xi | 1 ≤ i ≤ n }| > |J∗ ∩ { xi | 1 ≤ i ≤ n }|.
Consider the truth assignment β : var(ψ) → {0,1} such that for each 1 ≤ i ≤ n, β(xi) = 1 if and
only if xi ∈ J ′. Then β sets more variables in var(ψ) to true than α. Moreover, since J ′ ∪ {ψ} is
satisfiable, β satisfies ψ. This is a contradiction with our assumption that α sets a maximal number of
variables in var(ψ) to true for any satisfying assignment of ψ. Thus, we can conclude that no such J ′

exists, and thus that J∗ ∈ Sla(J). �

4.3 Outcome Determination for the Kemeny Rule

Next is the membership result for the outcome determination problem for the Kemeny rule Kem.

Theorem 4.5. The outcome determination problem for the Kemeny rule Kem is in Θp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. The proof is similar to the proof of
Theorem 4.3. We describe a polynomial-time algorithm that queries an NP oracle O(log |Φ| + log n)
times and that solves the problem. The algorithm uses oracle queries to check if there exists a
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complete and Γout-consistent judgment set J such that
∑

Ji ∈J H(J, Ji) ≤ k for a given value k. This
is a problem in NP, so by picking an NP-complete problem for the oracle, we can use a single
oracle query to solve any instance of the above problem in polynomial time. The maximum value
of

∑
Ji ∈J H(J, Ji) for any judgment set J ⊆ Φ is at most n · |Φ|, where n is the number of judgment

sets in the profile J . Therefore, we can determine the minimum value kmin of
∑

Ji ∈J H(J, Ji) for
any complete and Γout-consistent judgment set J using O(log |Φ| + log n) oracle queries—by using
binary search. Then, after having identified this number kmin, the algorithm queries the oracle one
additional time to determine whether there exists a complete and Γout-consistent judgment set J∗ such
that

∑
Ji ∈J H(J∗, Ji) = kmin, such that L ⊆ J∗ and such that Li * J∗ for all i ∈ {1, . . . ,u}. Again,

since this is a problem in NP, one oracle query suffices to determine this. The algorithm outputs
“yes” if and only if such a judgment set J∗ exists. This algorithm runs in polynomial time, queries
the NP oracle O(log |Φ| + log n) times, and correctly solves the problem. Therefore, the problem is
in Θp

2. �

Similarly as for the Slater rule, for the following result one can use the standard embedding of
voting into judgment aggregation (Dietrich & List, 2007a; Endriss, 2016). Performing the Kemeny
rule on the result of this embedding corresponds to carrying out the Kemeny voting rule (Endriss,
2018). As computing the winner of a Kemeny election is Θp

2-hard (Hemaspaandra, Spakowski, &
Vogel, 2005), this embedding can be used to provide a reduction to show Θp

2-hardness of outcome
determination for the Kemeny judgment aggregation rule. Also in this case, we give an alternative
proof of Θp

2-hardness that is self-contained and does not rely on work in voting theory.15

Theorem 4.6. The outcome determination problem for the Kemeny rule Kem is Θp
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We give a reduction from the
Θ

p
2-complete problem Max-Model. We use the same reduction as used for the Slater rule in the

proof of Theorem 4.4—that is, for each instance (ψ, x∗) of Max-Model we construct the same
instance (Φ,Γin,Γout, J, ϕ∗) as described in the proof of Theorem 4.4. To see that this reduction also
works correctly for the Kemeny rule, it suffices to see that each issue in the majoritarian judgment
set m(J) is supported by the same number of judgment sets in the profile. Thus, for instances that are
constructed by the reduction, the Slater rule coincides with the Kemeny rule. �

4.4 Outcome Determination for the MaxHamming Rule

We now turn our attention to the membership result for the outcome determination problem for the
MaxHamming rule MaxHam.

Theorem 4.7. The outcome determination problem for the MaxHamming rule MaxHam is in Θp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. The proof is similar to the proofs of
Theorems 4.3 and 4.5. We describe a polynomial-time algorithm that queries an NP oracle O(log |Φ|)
times and that solves the problem. The algorithm uses oracle queries to check if there exists a
complete and Γout-consistent judgment set J such that maxJi ∈J H(J, Ji) ≤ k for a given value k.
This is a problem in NP, so by picking an NP-complete problem for the oracle, we can use a single

15. The proof of Theorem 4.6 is based on a proof that appeared in preliminary work (Endriss & De Haan, 2015).

710



The Complexity Landscape of Outcome Determination in Judgment Aggregation

oracle query to solve any instance of the above problem in polynomial time. The maximum value
of maxJi ∈J H(J, Ji) for any judgment set J ⊆ Φ is at most |Φ|, where n is the number of judgment
sets in the profile J . Therefore, we can determine the minimum value kmin of maxJi ∈J H(J, Ji)
for any complete and Γout-consistent judgment set J using O(log |Φ|) oracle queries—by using
binary search. Then, after having identified this number kmin, the algorithm queries the oracle one
additional time to determine whether there exists a complete and Γout-consistent judgment set J∗ such
that maxJi ∈J H(J∗, Ji) = kmin, such that L ⊆ J∗ and such that Li * J∗ for all i ∈ {1, . . . ,u}. Again,
since this is a problem in NP, one oracle query suffices to determine this. The algorithm outputs “yes”
if and only if such a judgment set J∗ exists. This algorithm runs in polynomial time, queries the NP
oracle O(log |Φ|) times, and correctly solves the problem. Therefore, the problem is in Θp

2. �

We modify the proof of Theorem 4.4 to give us a proof of Θp
2-hardness for the outcome

determination problem for the MaxHamming rule.16

Theorem 4.8. The outcome determination problem for the MaxHamming rule MaxHam is Θp
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We give a reduction from the
Θ

p
2-complete problem Max-Model. We use the same reduction as used for the Slater rule in the

proof of Theorem 4.4—that is, for each instance (ψ, x∗) of Max-Model we construct the same
instance (Φ,Γin,Γout, J, ϕ∗) as described in the proof of Theorem 4.4. We will argue that this reduction
also works correctly for the MaxHamming rule MaxHam.

When considering judgment sets J that are Γout-consistent we can distinguish two cases: either
(i) for some 1 ≤ i ≤ n, J contains zi, j for all 1 ≤ j ≤ u, or (ii) J is consistent with ψ. In case (i),
we know that there is a judgment set Ji in the profile J such that the Hamming distance between J
and Ji is at least 2u. In case (ii), we know that J is consistent with

∧
1≤i≤n,1≤ j≤u ¬zi, j , and thus

that the maximum Hamming distance between J and any judgment set Ji in the profile J is at
most u + n. Because we chose u so that u < n, we know that u + n < 2u. From this, we get that
all J∗ ∈ MaxHam(J) are consistent with ψ.

For any judgment set J that is consistent with ψ it holds that the maximum Hamming distance
between J and any judgment set Ji in the profile J is u + n − b + 1, where b is the maximal number
of variables in var(ψ) that are set to true by any satisfying truth assignment of ψ. Moreover, the
judgment sets J∗ ∈ MaxHam(J) are in one-to-one correspondence with the truth assignments
satisfying ψ that set a maximal number of variables in var(ψ) to true. From this, we get that there
is a J∗ ∈ MaxHam(J) with x1 = ϕ

∗ ∈ J∗ if and only if there is a model of ψ that sets a maximal
number of variables in var(ψ) to true and that sets x1 to true. �

4.5 Outcome Determination for Rules Based on the Geodesic Distance

Next, we show Θp
3-membership for the outcome determination problem for the AvgGeo rule.17 To

establish membership in Θp
3, we use two lemmas.

16. The proof of Theorem 4.8 is not based on hardness proofs for the outcome determination problem for the MaxHamming
rule that appeared in preliminary work (De Haan and Slavkovik, 2017, Theorem 3; De Haan, 2018, Proposition 4). One
of the hardness proofs that appeared in preliminary work (De Haan and Slavkovik, 2017, Theorem 3) does not apply to
variant (1) of the framework. The other (De Haan, 2018, Proposition 4) is aimed at a much more restricted setting and
has a much more involved proof. To avoid an unnecessarily involved proof, we provide a new proof of Theorem 4.8.

17. The proof of Theorem 4.11 is based on the original membership proof for the outcome determination problem for
the AvgGeo rule that appeared in preliminary work (De Haan & Slavkovik, 2017, Lemma 2).
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Lemma 4.9. The following problem is in coNP. Given an agenda Φ, an output constraint Γout, a
profile J , and two judgment sets J, J ′ ∈ J(Φ,Γout), decide if there is an edge from J to J ′ in the
geodesic graph for Φ and Γout.

Proof. We show that the complementary problem is in NP. There is no edge from J to J ′ in the
geodesic graph if and only if there is some complete and Γout-consistent judgment set J ′′ ⊆ Φ such
that for each ϕ ∈ Φ, J ′′ agrees with J or J ′ (or both). We can nondeterministically guess such
a set J ′′, together with a truth assignment witnessing that J ′′ is Γout-consistent, and verifying in
polynomial time that for each ϕ ∈ Φ, J ′′ agrees with at least one of J or J ′. This shows that the
complementary problem is in NP, and thus the problem is in coNP. �

Lemma 4.10. The following problem is in Σp
2. Given an instance (Φ,Γin,Γout, J, L, L1, . . . , Lu) of

variant (a) of the outcome determination problem, and an integer k (given in unary), decide if there
is a judgment set J ∈ J(Φ,Γout) such that L ⊆ J, such that Li * J for each 1 ≤ i ≤ u, and such
that

∑
Ji ∈J G(J, Ji) ≤ k.

Proof. We show this by describing a nondeterministic polynomial-time algorithm that has access to
an NP oracle, and that decides this problem. The algorithm guesses a judgment set J∗ ⊆ Φ and a
truth assignment α : var(Φ) ∪ var(Γout) → {0,1}, and it checks that J∗ is complete that α satisfies
each ϕ ∈ J∗ and Γout. In addition, it checks whether L ⊆ J∗ and Li * J∗ for each 1 ≤ i ≤ u. Moreover,
the algorithm guesses |J | natural numbers 0 ≤ `1, . . . , ` |J | ≤ k such that ` =

∑
1≤i≤ |J | `i ≤ k, and

it guesses a judgment set Ji, j ⊆ Φ and a truth assignment αi, j : var(Φ) ∪ var(Γout) → {0,1} for
each 1 ≤ i ≤ |J | and each 1 ≤ j ≤ `i. The algorithm then verifies (1) whether each judgment
set Ji, j is complete, and (2) whether the assignment αi, j satisfies each ϕ ∈ Ji, j as well as Γout, for
each 1 ≤ i ≤ |J | and 1 ≤ j ≤ `i . Moreover, it verifies (3) whether for each 1 ≤ i ≤ |J | and 0 ≤ j ≤ `i ,
there is an edge from Ji, j to Ji, j+1 in the geodesic graph. It does so by querying an oracle for the
problem in Lemma 4.9 for each edge. We know that condition (3) is satisfied if and only if the
oracle answers “yes” for all queries. Since the problem in Lemma 4.9 is in coNP, we know that an
NP oracle suffices. The algorithm accepts if and only if all conditions (1)–(3) are satisfied. It is
straightforward to verify that

∑
Ji ∈J G(J∗, Ji) ≤ k if and only if there exists some guess that satisfies

conditions (1)–(3). Thus, the problem is in Σp
2. �

Theorem 4.11. The outcome determination problem for the AvgGeo rule is in Θp
3.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. In order to show membership
in Θp

3, we describe how to solve the outcome determination problem for the AvgGeo rule in
polynomial time by querying a Σp

2 oracle at most O(log |J | + log |Φ|) times. We know that the
maximum value of

∑
Ji ∈J G(J, Ji) for any judgment set J is upper bounded by |J | · |Φ|. Therefore,

by using a logarithmic number of queries to an oracle for the problem in Lemma 4.10, we can
determine the minimum value k∗ for

∑
Ji ∈J G(J, Ji) using binary search. Then, with one additional

query to this oracle we can determine whether there exists a judgment set J∗ ∈ J(Φ,Γout) such
that (1)

∑
Ji ∈J G(J, Ji) ≤ k∗, (2) L ⊆ J∗, and (3) Li * J∗ for all 1 ≤ i ≤ u. Thus, the outcome

determination problem for the AvgGeo rule is in Θp
3. �

To show Θp
3-hardness for the outcome determination problem for the AvgGeo rule, we introduce

the following auxiliary problem—which is a variant of QSat2-Min-Model—and show that it is
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Θ
p
3-hard. Let χ = ∃X .∀Y .ψ be a quantified Boolean formula. Moreover, let β0 : Y → {0,1} be the

truth assignment that sets all variables in Y to false, and let β1 : Y → {0,1} be the truth assignment
that sets all variables in Y to true. We say that χ is normal if ψ[β0] and ψ[β1] are both unsatisfiable.
We say that a truth assignment β : Y → {0,1} is normal if β , β0 and β , β1. If χ is normal, we
say that χ is true if there exists a truth assignment α : X → {0,1} such that for all normal truth
assignments β : Y → {0,1} it holds that α ∪ β satisfies ψ.18

QSat2-Min-Model′
Instance: A true instance χ = ∃X .∀Y .ψ of QSat2 that is normal, and a variable x∗ ∈ X .
Question: Is there a truth assignment α : X → {0,1} with the property that
(?) for all normal truth assignments β : Y → {0,1} it holds that α ∪ β satisfies ψ,

such that α sets a minimal number of variables in X to true—among all assignments α′ :
X → {0,1} with property (?)—and such that α sets x∗ to true?

The following example illustrates the problem QSat2-Min-Model′.

Example 4.12. Consider the following two quantified Boolean formulas χ1 and χ2, involving the
sets X = {x1, x2} and Y = {y1, y2} of variables:

χ1 = ∃X .∀Y .ψ1 where ψ1 =
(
(y1 ∧ ¬y2) ∨ (y1 ∧ y2)

)
∧ (x1 ∨ y1) ∧ (x1 ∨ x2)

χ2 = ∃X .∀Y .ψ2 where ψ2 =
(
(y1 ∧ ¬y2) ∨ (¬y1 ∧ y2)

)
∧ (x1 ∨ y1) ∧ (x1 ∨ x2)

The formula χ1 is not normal, because ψ1[β1] is satisfiable. The formula χ2 is normal, because ψ2[β0]

and ψ2[β1] are both unsatisfiable. Moreover, χ2 is true, because the truth assignment α with α(x1) = 1
and α(x2) = 1 has property (?)—that is, α combined with any normal truth assignment β : Y → {0,1}
satisfies ψ2. Therefore, (χ2, x1) and (χ2, x2) are valid instances of the problem QSat2-Min-Model′.

In the case of χ2, there are exactly two truth assignments to the variables in X that have
property (?)—namely α1 and α2, where α1(x1) = α2(x1) = 1, α1(x2) = 0 and α2(x2) = 1. Among
these two, only α1 sets a minimal number of variables in X to true (namely one). Thus, (χ2, x1) is a
yes-instance of the problem QSat2-Min-Model′, and (χ2, x2) is a no-instance.

Lemma 4.13. QSat2-Min-Model′ is Θp
3-hard.

Proof. We show that QSat2-Min-Model′ isΘp
3-hard by giving a reduction from QSat2-Min-Model.

Let (χ, x∗) be an instance of QSat2-Min-Model, where χ = ∃X .∀Y .ψ and x∗ ∈ X . We construct
the following instance (χ′, x) of QSat2-Min-Model′, defined by letting Y ′ = Y ∪ {y0, y

′
0} for fresh

variables y0, y
′
0, and by letting χ

′ = ∃X .∀Y ′.ψ ′, where:

ψ ′ =

(∨
y∈Y′

y

)
∧

(∨
y∈Y′

¬y

)
∧

(
(y0 ↔ ¬y

′
0) → ψ

)
.

It is straightforward to verify that χ′ is normal. Take an arbitrary α : X → {0,1}. We show
that ∀Y .ψ[α] is true if and only if α has property (?) for the instance χ′.

18. In other words, the notion of truth for quantified Boolean formulas ∃X .∀Y .ψ that we call normal is restricted to normal
truth assignments to the variables in Y (and still refers to all truth assignments to the variables in X).
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(⇒) Suppose that ∀Y .ψ[α] is true. We show that α has property (?) for the instance χ′. Take
an arbitrary truth assignment β : Y ′ → {0,1} such that β , β0 and β , β1. Since ∀Y .ψ[α] is true
and Y ′ ⊇ Y , we know that α ∪ β satisfies ψ, and thus that α ∪ β satisfies ψ ′.
(⇐)Conversely, suppose that α has property (?) for the instance χ′. We show that∀Y .ψ[α] is true.

Take an arbitrary truth assignment β : Y → {0,1}. Then consider the truth assignment β′ : Y ′ →
{0,1} such that β′(y0) = 0, β′(y′0) = 1, and β′(y) = β(y) for all y ∈ Y . Since α has property (?) and
since β′ , β0 and β′ , β1, we know that α ∪ β′ satisfies ψ ′. Moreover, since β′ satisfies (y0 ↔ ¬y

′
0),

we know that β′ satisfies ψ[α]. Because β′ agrees with β on all variables in ψ[α], we know that β
satisfies ψ[α]. Since we chose β arbitrarily, we can conclude that ∀Y .ψ[α] is true. �

We are now ready to show Θp
3-hardness of outcome determination for the AvgGeo rule.19

Theorem 4.14. The outcome determination problem for the AvgGeo rule is Θp
3-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We give a polynomial-time
reduction from QSat2-Min-Model′. Take an instance (∃X .∀Y .ψ, x∗) of QSat2-Min-Model′,
where ∃X .∀Y .ψ is a true quantified Boolean formula, where ψ is quantifier-free, where x∗ ∈ X =
{x1, . . . , xn} and Y = {y1, . . . , ym}, and where ∃X .∀Y .ψ is normal. We say that the weight of a truth
assignment ω : X → {0,1} is the number of variables x ∈ X such that ω(x) = 1. We construct an
instance (Φ,Γin,Γout, J, ϕ∗) of the winner determination problem for the AvgGeo rule as follows.

We introduce variables yj ,i and zj ,i for each 1 ≤ j ≤ m and each 1 ≤ i ≤ 4n. We define the
agenda Φ by letting [Φ] = {x1, . . . , xn} ∪ { yj ,i, zj ,i | 1 ≤ j ≤ m,1 ≤ i ≤ 4n }. We then construct the
integrity constraints Γin = Γout as follows:

Γin = Γout =
©­«¬ψ1 ∧

∧
1≤ j≤m
1≤i≤4n

¬yj ,i ∧
©­«
( ∧
1≤ j≤m

ζj

)
→

∧
1≤ j≤m
1≤i≤4n

zj ,i
ª®¬ª®¬ ∨©­«¬ψ2 ∧

∧
1≤ j≤m
1≤i≤4n

¬zj ,i ∧
©­«
( ∧
1≤ j≤m

ζ ′j

)
→

∧
1≤ j≤m
1≤i≤4n

yj ,i
ª®¬ª®¬ ,

where ζj =
∨

1≤i≤4n zj ,i and ζ ′j =
∨

1≤i≤4n yj ,i for each 1 ≤ j ≤ m, where ψ1 is obtained from ψ by
replacing each occurrence of yj ∈ Y with ζj and where ψ2 is obtained from ψ by replacing each
occurrence of yj ∈ Y with ζ ′j . We let J = (J1, J2, J3), where J1 = { ¬xi | 1 ≤ i ≤ n }∪{ yj ,i,¬zj ,i | 1 ≤
j ≤ m,1 ≤ i ≤ 4n }, where J2 = { ¬xi | 1 ≤ i ≤ n } ∪ { zj ,i,¬yj ,i | 1 ≤ j ≤ m,1 ≤ i ≤ 4n }, and
where J3 = { ¬ϕ | ϕ ∈ [Φ] }. It is straightforward to verify that J1, J2 and J3 are Γin-consistent.
Finally, we let ϕ∗ = x∗.

In the remainder of the proof, we will show that the judgment sets in AvgGeo(J) are in
correspondence with the truth assignments ω : X → {0,1} with property (?) of minimal weight.
Take any truth assignment ω : X → {0,1}. Consider the following judgment set:

Jω = { xi | 1 ≤ i ≤ n,ω(xi) = 1 } ∪ { ¬xi | 1 ≤ i ≤ n,ω(xi) = 0 } ∪
{ ¬yj ,i, zj ,i | 1 ≤ j ≤ m,1 ≤ i ≤ 4n }.

19. The proof of Theorem 4.14 is not based on the original hardness proof for the outcome determination problem for
the AvgGeo rule that appeared in preliminary work (De Haan & Slavkovik, 2017, Theorem 4)—the original proof only
applies to variants (2), (3) and (4) of the framework.
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For each ω : X → {0,1} of weight w that has property (?), it holds that G(Jω, J3) = w

and G(Jω, J1) = G(Jω, J2) = w + 1, because there is no Γout-consistent judgment set between Jω

and Jω1 or Jω2 in the geodesic graph, where:

Jω1 = { xi | 1 ≤ i ≤ n,ω(xi) = 1 } ∪ { ¬xi | 1 ≤ i ≤ n,ω(xi) = 0 } ∪
{ yj ,i,¬zj ,i | 1 ≤ j ≤ m,1 ≤ i ≤ 4n }, and

Jω2 = { xi | 1 ≤ i ≤ n,ω(xi) = 1 } ∪ { ¬xi | 1 ≤ i ≤ n,ω(xi) = 0 } ∪
{ ¬yj ,i, zj ,i | 1 ≤ j ≤ m,1 ≤ i ≤ 4n }.

Then the judgment sets Jω for truth assignments ω : X → {0,1} with property (?) of minimal
weight w0 have cumulative geodesic distance 3w0 + 2 to the profile J .

In order to show that there are no Γout-consistent judgment sets J with smaller cumulative
geodesic distance to the profile J , we argue that every path in the geodesic graph from J1 to J2 that
does not go through any judgment set Jω—where ω is a truth assignment that has property (?)—has
length at least 4n. This is the case because (i) this path has to go through some judgment set J ′

with { ¬yj ,i, zj ,i | 1 ≤ j ≤ m,1 ≤ i ≤ n } ⊆ J ′, (ii) there is some Γout-consistent J ′′ between J ′

and J1 that includes { yj ,i | 1 ≤ i ≤ n } for some yj , and (iii) the distance from J ′′ to J ′ is at least 4n.
We may assume without loss of generality that n > 2, and thus that 4n > 3w0 + 2.

Because for every ω : X → {0,1}, the judgment set Jω is Γout-consistent, we know that any path
from J1 to J2 must go through Jω for some ω : X → {0,1}. Moreover, for each path from J1 to J2 it
holds that the closest judgment set on this path to J3 is a set of the form Jω, for some ω. Therefore,
we know that any judgment set that minimizes the cumulative distance to the profile J = (J1, J2, J3)

is of the form Jω for some ω : X → {0,1} that has property (?). Moreover, the cumulative distance
to such a set Jω is 3w + 2, where w is the weight of ω. Thus, AvgGeo(J) consists of the judgment
sets Jω for all those ω with property (?) of minimal weight.

This means that there is a judgment set J∗ ∈ AvgGeo(J) with x∗ = ϕ∗ ∈ J∗ if and only if there is
a truth assignment α : X → {0,1} with property (?) that sets a minimal number of variables in X
and that sets x∗ to true. �

The membership proof for the outcome determination problem for the MaxGeo rule is similar to
the proof of the membership result for the AvgGeo rule (Theorem 4.11). To establish membership
in Θp

3, we use an additional lemma.

Lemma 4.15. The following problem is in Σp
2. Given an instance (Φ,Γin,Γout, J, L, L1, . . . , Lu) of

variant (a) of the outcome determination problem, and an integer k (given in unary), decide if there
is a judgment set J ∈ J(Φ,Γout) such that L ⊆ J, such that Li * J for each 1 ≤ i ≤ u, and such
that maxJi ∈J G(J, Ji) ≤ k.

Proof. We show this by describing a nondeterministic polynomial-time algorithm that has access to
an NP oracle, and that decides this problem. The algorithm guesses a judgment set J∗ ⊆ Φ and a
truth assignment α : var(Φ) ∪ var(Γout) → {0,1}, and it checks that J∗ is complete that α satisfies
each ϕ ∈ J∗ and Γout. In addition, it checks whether L ⊆ J∗ and Li * J∗ for each 1 ≤ i ≤ u. Moreover,
the algorithm guesses |J | natural numbers 0 ≤ `1, . . . , ` |J | ≤ k such that ` = max1≤i≤ |J | `i ≤ k,
and it guesses a judgment set Ji, j ⊆ Φ and a truth assignment αi, j : var(Φ) ∪ var(Γout) → {0,1}
for each 1 ≤ i ≤ |J | and each 1 ≤ j ≤ `i. The algorithm then verifies (1) whether each judgment
set Ji, j is complete, and (2) whether the assignment αi, j satisfies each ϕ ∈ Ji, j as well as Γout, for
each 1 ≤ i ≤ |J | and 1 ≤ j ≤ `i . Moreover, it verifies (3) whether for each 1 ≤ i ≤ |J | and 0 ≤ j ≤ `i ,
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there is an edge from Ji, j to Ji, j+1 in the geodesic graph. It does so by querying an oracle for the
problem in Lemma 4.9 for each edge. We know that condition (3) is satisfied if and only if the
oracle answers “yes” for all queries. Since the problem in Lemma 4.9 is in coNP, we know that
an NP oracle suffices. The algorithm accepts if and only if all conditions (1)–(3) are satisfied. It
is straightforward to verify that maxJi ∈J G(J∗, Ji) ≤ k if and only if there exists some guess that
satisfies conditions (1)–(3). Thus, the problem is in Σp

2. �

Theorem 4.16. The outcome determination problem for the MaxGeo rule is in Θp
3.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. This proof is entirely similar to
the proof of Theorem 4.11. In order to show membership in Θp

3, we describe how to solve the
outcome determination problem for the MaxGeo rule in polynomial time by querying a Σp

2 oracle
at most O(log |Φ|) times. We know that the maximum value of maxJi ∈J G(J, Ji) for any judgment
set J is upper bounded by |Φ|. Therefore, by using a logarithmic number of queries to an oracle for
the problem in Lemma 4.15, we can determine the minimum value k∗ for maxJi ∈J G(J, Ji) using
binary search. Then, with one additional query to this oracle we can determine whether there exists a
judgment set J∗ ∈ J(Φ,Γout) such that (1) maxJi ∈J G(J, Ji) ≤ k∗, (2) L ⊆ J∗, and (3) Li * J∗ for
all 1 ≤ i ≤ u. Thus, the outcome determination problem for the MaxGeo rule is in Θp

3. �

We show Θp
3-hardness for the outcome determination problem for the MaxGeo rule similarly to

the hardness proof for the AvgGeo rule (Theorem 4.14).

Theorem 4.17. The outcome determination problem for the MaxGeo rule is Θp
3-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We use the same reduction as
used for the AvgGeo rule in the proof of Theorem 4.14—that is, for each instance (∃X .∀Y .ψ, x∗) of
QSat2-Min-Model′ we construct the same instance (Φ,Γin,Γout, J, ϕ∗) as described in the proof of
Theorem 4.14.

We argue that this reduction also works correctly for the MaxGeo rule. For any ω : X → {0,1}
with weight w that has property (?), it holds that maxJi ∈J G(Jω, Ji) = w + 1. For any ω : X → {0,1}
with weight w that does not have property (?), it holds that maxJi ∈J G(Jω, Ji) > w0 + 1, where w0 is
the minimal weight of any truth assignment ω′ : X → {0,1} that has property (?). Similarly, for
any Γout-consistent judgment set J that does not coincide with Jω for any ω : X → {0,1}, it holds
that maxJi ∈J G(Jω, Ji) > w0 + 1. From this, we can conclude that for the constructed profile J it
holds that MaxGeo(J) = AvgGeo(J), and thus that the reduction is correct. �

4.6 Outcome Determination for the Reversal-Scoring Rule

Next, we show Θp
2-membership for the outcome determination problem for the reversal-scoring

rule RevSco.

Theorem 4.18. The outcome determination problem for the reversal-scoring rule RevSco is in Θp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a) of
the problem to establish the upper bound on the complexity. We describe a polynomial-time algorithm
that queries an NP oracle O(log |Φ|+ log n) times and that solves the problem. Roughly, the algorithm
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does the following. It first computes the maximum total reversal score for any J∗ ∈ J(Φ,Γout)—that
is, the maximum value of REV(J, J∗) =

∑
Ji ∈ J , ϕ∈J∗ rev(Ji, ϕ) for some J∗ ∈ J(Φ,Γout). Then,

using this maximum value, the algorithm checks whether there exists some J∗ ∈ J(Φ,Γout) such
that (i) REV(J, J∗) reaches the maximum value, such that (ii) L ⊆ J∗ and such that (iii) Li * J∗ for
all i ∈ {1, . . . ,u}.

The algorithm proceeds to find the maximum value of REV(J, J∗) in two phases. In the first
phase, it queries the NP oracle to determine the following value:

k0 =
∑
Ji ∈ J

∑
ϕ∈Φ

rev(Ji, ϕ).

To do so, the algorithm uses oracle queries to checkwhether there exist judgment sets J•i,ϕ ∈ J(Φ,Γout),
for each Ji ∈ J and each ϕ ∈ Φ, such that

∑
Ji ∈ J , ϕ∈Φ H(Ji, J•i,ϕ) ≤ k for a given value k. This

is a problem in NP, so by picking an NP-complete problem for the oracle, we can use a single
oracle query to solve any instance of the above problem in polynomial time. The maximum value
of

∑
Ji ∈ J , ϕ∈Φ H(Ji, J•i,ϕ) is at most |Φ|2 · n, where n is the number of judgment sets in the profile J .

Therefore, we can determine the minimum value k0 of
∑

Ji ∈ J , ϕ∈Φ H(Ji, J•i,ϕ) using O(log |Φ| + log n)
oracle queries—by using binary search.

Then, in the second phase, the algorithm queries the NP oracle to determine the following value:

kmax = max
J∗∈J(Φ,Γout)

REV(J, J∗) where REV(J, J∗) =
∑
Ji ∈ J

∑
ϕ∈J∗

rev(Ji, ϕ).

To do so, the algorithm uses oracle queries to checkwhether there exists a judgment set J∗ ∈ J(Φ,Γout)
such that REV(J, J∗) ≥ k for a given value k. When the value of k0 is known, this is a problem
in NP. To solve the problem, one can guess judgment sets J•i,ϕ ∈ J(Φ,Γout), for each Ji ∈ J and
each ϕ ∈ Φ, and verify that the sets J•i,ϕ correspond to the value for k0. If this check succeeds, the
value of rev(Ji, ϕ) is equal to H(Ji, J•i,ϕ), for each Ji ∈ J and each ϕ ∈ Φ. Then, one can guess a
judgment set J∗ ∈ J(Φ,Γout) and use the sets J•i,ϕ to verify that REV(J, J∗) ≥ k in polynomial time.
Thus, by picking an NP-complete problem for the oracle, we can use a single oracle query to solve
any instance of the above problem in polynomial time. The maximum value of REV(J, J∗) is at
most |Φ|2 · n, where n is the number of judgment sets in the profile J . Therefore, we can determine
the maximum value kmax of REV(J, J∗) using O(log |Φ| + log n) oracle queries—by using binary
search.

Then, after having identified the maximum value kmax of REV(J, J∗) for any J∗ ∈ J(Φ,Γout),
the algorithm queries the oracle one additional time to determine whether there exists a complete and
Γout-consistent judgment set J∗ such that REV(J, J∗) = kmax, such that L ⊆ J∗ and such that Li * J∗

for all i ∈ {1, . . . ,u}. Again, since this is a problem in NP, one oracle query suffices to determine
this. The algorithm outputs “yes” if and only if such a judgment set J∗ exists. This algorithm runs in
polynomial time, queries the NP oracle O(log |Φ| + log n) times, and correctly solves the problem.
Therefore, the problem is in Θp

2. �

We modify the proof of Theorem 4.4 to give us a proof of Θp
2-hardness for the outcome

determination problem for the reversal scoring rule.20

20. The proof of Theorem 4.19 is not based on the original hardness proof for the outcome determination problem for the
reversal scoring rule that appeared in preliminary work (De Haan & Slavkovik, 2017, Theorem 2). We find that a proof
that is based on a modification of the proof of Theorem 4.4 is easier to follow.
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Theorem 4.19. The outcome determination problem for the reversal-scoring rule RevSco isΘp
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We give a reduction from the
Θ

p
2-complete problem Max-Model. To do so, we will modify the reduction used in the proof of

Theorem 4.4. Let (ψ, x∗) be an instance of Max-Model, with var(ψ) = {x1, . . . , xn}. Without loss
of generality, suppose that x∗ = x1. Moreover, without loss of generality, suppose that the satisfying
assignment of ψ that sets the maximal number of variables in var(ψ) to true sets at least 1

2 n and
at most 3

4 n variables in var(ψ) to true. We can ensure this property by (conjunctively) adding an
appropriate number of fresh unit literals to ψ.

We construct an instance (Φ,Γin,Γout, J, ϕ∗) of the outcome determination problem for the reversal
scoring rule by following the construction in the proof of Theorem 4.4, with one modification: to
make the analysis easier, we use u = n (rather than u = n + 1).

We argue that RevSco(J) is in one-to-one correspondence with the set of truth assignments
satisfying ψ that set a maximal number of variables in var(ψ) to true. To do so, we analyse the
value of σ(ϕ) =

∑
Ji ∈J rev(Ji, ϕ), for each ϕ ∈ Φ. For each 1 ≤ i ≤ n, it holds that σ(xi) = n − 1

and σ(¬xi) = 1. Moreover, for each 1 ≤ i ≤ n and each 1 ≤ j ≤ u, it holds that σ(zi, j) = n − b − 1
and σ(¬zi, j) = n − 1, where b is the maximal number of variables in var(ψ) that are set to
true by any truth assignment satisfying ψ. The majoritarian judgment set m(J) maximizes the
value of

∑
ϕ∈Φ σ(ϕ), but it does not satisfy Γout. To achieve Γout-consistency, while deviating as

little as possible from m(J), judgment sets can either (i) satisfy ψ or (ii) satisfy
∧

1≤ j≤u zi, j for
some 1 ≤ i ≤ n. The optimal total reversal score of a judgment set J that satisfies ψ (and agrees
with m(J) on

∧
1≤i≤n,1≤ j≤u ¬zi, j) is S1 = n + bn − 2b + nu(n − 1). The optimal total reversal score

of a judgment set J that satisfies
∧

1≤ j≤u zi, j for some 1 ≤ i ≤ n (and agrees with m(J) on all other
issues) is S2 = n(n − 1) + u(n − b − 1) + u(n − 1)2. By our assumption that n/2 ≤ b ≤ 3n/4, and
by our choice that u = n, we get that S1 ≥ n3 − n2

/2 − 3n/2 and S2 ≤ n3 − n2
/2 − n. This means

that for n ≥ 1 we get that S1 ≥ S2, and thus the judgment sets J∗ with optimal total reversal score
satisfy ψ by setting a maximal number of variables in var(ψ) to true. Therefore, we get that there is
some J∗ ∈ RevSco(J) with x1 = ϕ

∗ ∈ J∗ if and only there is a satisfying truth assignment for ψ that
satisfies x1 and that sets a maximal number in var(ψ) to true. �

4.7 Outcome Determination for the Ranked-Agenda and the LexiMax Rule

We show Σp
2-membership for the outcome determination problem for the ranked-agenda rule Ran.

Theorem 4.20. The outcome determination problem for the ranked-agenda rule Ran is in Σp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. We describe a nondeterministic
polynomial-time algorithm with access to an NP oracle that solves the problem. The algorithm
guesses a complete judgment set J∗ ⊆ Φ, and guesses a truth assignment α to the variables in Φ
and in Γout. The algorithm then checks that α satisfies Γout and satisfies ϕ for each ϕ ∈ J∗, and
the algorithm checks that L ⊆ J∗ and Li * J∗ for each i ∈ {1, . . . ,u}. Moreover, the algorithm
guesses a tie-breaking order � ∈ L(Φ). Then, for each ϕ ∈ Φ \ J∗, the algorithm constructs the
set (J∗)|J�ϕ—this can be done in polynomial time, given J∗ and�. The algorithm then uses the NP
oracle to determine that (J∗)|J�ϕ ∪ {ϕ} is Γout-inconsistent for each ϕ ∈ Φ \ J∗. This is a problem in
coNP, so by picking an NP-complete problem for the oracle, we can use a single oracle query to solve
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any instance of the above problem in polynomial time. The algorithm accepts the input if and only if
the sets (J∗)|J�ϕ ∪ {ϕ} for all ϕ ∈ Φ \ J∗ are Γout-inconsistent. By definition of the ranked-agenda
rule, the algorithm accepts the input if and only if J∗ ∈ Ran(J). �

Next, we prove Σp
2-hardness for the outcome determination problem for the ranked agenda

rule Ran.21

Theorem 4.21. The outcome determination problem for the ranked-agenda rule Ran is Σp
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We give a reduction from the Σp

2-
complete problem QSat2. Let ϕ = ∃x1 . . . ∃xn∀y1 . . .∀ym.ψ be an instance of QSat2. We construct
an instance (Φ,Γin,Γout, J, ϕ∗) of the outcome determination problem for the ranked-agenda rule as
follows. WedefineΦ by letting [Φ] = { zxi , zxi | 1 ≤ i ≤ n }∪{ zyj , zyj | 1 ≤ j ≤ m }∪{w1, . . . ,w9,u}.
We define Γin = Γout as follows:

Γin = Γout =
9∨
i=1

wi ∨

(
n∧
i=1
(zxi ↔ ¬zxi ) ∧

m∧
j=1
(zyj ↔ ¬zyj ) ∧ (u→ ¬ψ

′)

)
,

where ψ ′ is obtained from ψ by replacing each variable xi by zxi and replacing each variable yj
by zyj . We define the profile J = (J1, . . . , J9) as indicated in Figure 7. Finally, we let ϕ∗ = ¬u.

We have that {¬w1, . . . ,¬w9} ⊆ J∗ for every J∗ ∈ Ran(J): the formulas ¬wi , for 1 ≤ i ≤ 9, have
the highest support N(J,¬wi) = 8 in the profile, and {¬w1, . . . ,¬w9} is consistent with Γout. Therefore,
each J∗ ∈ Ran(J) must be consistent with

∧n
i=1(zxi ↔ ¬zxi ) ∧

∧m
j=1(zyj ↔ ¬zyj ) ∧ (u→ ψ ′).

We show that ϕ is true if and only if there is some J∗ ∈ Ran(J) with ϕ∗ ∈ J∗.
(⇒) Suppose that ϕ is true—that is, that there exists some truth assignment α : {x1, . . . , xn} →

{0,1} such that ψ[α] is a validity. Consider the judgment set J∗ = { ¬w1, . . . ,¬w9,¬u} ∪
{ zxi ,¬zxi | 1 ≤ i ≤ n, α(xi) = 1 } ∪ { zxi ,¬zxi | 1 ≤ i ≤ n, α(xi) = 0 }{ zyj ,¬zyj | 1 ≤ j ≤ m }.
We argue that J∗ ∈ Ran(J). We go over the formulas ϕ ∈ Φ in order of their support in the
profile. The formulas ¬w1, . . . ,¬w9 are consistent with Γout. The formulas zx1, . . . , zxn, zx1, . . . , zxn
all have equal support, and Γout requires that for each 1 ≤ i ≤ n there is exactly one of zxi
and zxi in each judgment set. Since ψ[α] is a validity, and Γout entails (u → ¬ψ ′), it holds
that J∗ ∩ { zxi ,¬zxi , zxi ,¬zxi | 1 ≤ i ≤ n } ∪ {u} is Γout-inconsistent. Finally, including zyj for
each 1 ≤ j ≤ m satisfies Γout, and ensures that no formula zyj can be added while keeping
Γout-consistency. From this, we get that J∗ ∈ Ran(J)—and we know that ϕ∗ = ¬u ∈ J∗.
(⇐) Suppose that there is some J∗ ∈ Ran(J) with ϕ∗ = ¬u ∈ J∗. We show that ϕ is

true. We know that {¬w1, . . . ,¬w9} ⊆ J∗. Since J∗ is Γout-consistent, we know that J∗ must be
consistent with

∧
1≤i≤n(zxi ↔ ¬zxi ). Because the formulas zxi , zxi have the next highest support

in the profile J , we know that |J∗ ∩ {zxi , zxi }| = 1 for each 1 ≤ i ≤ n. Consider the truth
assignment α : {x1, . . . , xn} → {0,1} that is defined by letting α(xi) = 1 if and only if zxi ∈ J∗, for
each 1 ≤ i ≤ n. We show that ψ[α] is a validity. Suppose, to derive a contradiction that ¬ψ[α]
is satisfiable—that is, that there is a truth assignment β : {y1, . . . , ym} → {0,1} such that α ∪ β

21. The proof of Theorem 4.21 is based on a proof appearing in preliminary work (Endriss &DeHaan, 2015, Proposition 16).
It is not based on the original hardness proof for the outcome determination problem for the ranked agenda rule
that also appeared in preliminary work (Lang & Slavkovik, 2014, Proposition 3)—this latter proof only applies to
variants (2), (3) and (4) of the framework.
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J J1 J2 J3 J4 J5 J6 J7 J8 J9 N(J, ϕ) N(J,¬ϕ)
zx1 0 0 1 1 1 1 1 1 1 7 2
zx1 0 0 1 1 1 1 1 1 1 7 2
...

...
...

...
...

...
...

...
...

...
...

...

zxn 0 0 1 1 1 1 1 1 1 7 2
zxn 0 0 1 1 1 1 1 1 1 7 2
u 0 0 0 1 1 1 1 1 1 6 3

zy1 0 0 0 0 1 1 1 1 1 5 4
zy1 0 0 0 0 1 1 1 1 1 5 4
...

...
...

...
...

...
...

...
...

...
...

...

zym 0 0 0 0 1 1 1 1 1 5 4
zym 0 0 0 0 1 1 1 1 1 5 4
w1 1 0 0 0 0 0 0 0 0 1 8
w2 0 1 0 0 0 0 0 0 0 1 8
w3 0 0 1 0 0 0 0 0 0 1 8
w4 0 0 0 1 0 0 0 0 0 1 8
w5 0 0 0 0 1 0 0 0 0 1 8
w6 0 0 0 0 0 1 0 0 0 1 8
w7 0 0 0 0 0 0 1 0 0 1 8
w8 0 0 0 0 0 0 0 1 0 1 8
w9 0 0 0 0 0 0 0 0 1 1 8

Figure 7: Construction of the profile J in the proof of Theorem 4.21.

falsifies ψ. Then we get that the set {w1, . . . ,w9} ∪ (J∗ ∩ { zxi ,¬zxi , zxi ,¬zxi | 1 ≤ i ≤ n }) ∪ {u} is
Γout-consistent. Since u is the formula in Φ with the next highest support, we get a contradiction
with the fact that ¬u ∈ J∗. Thus, we can conclude that no such β exists, and therefore that ψ[α] is a
validity. Thus, ϕ is true. �

We show that the outcome determination problem for the LexiMax-rule is in ∆p
2.

Theorem 4.22. The outcome determination problem for the LexiMax-rule is in ∆p
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a) of
the problem to establish the upper bound on the complexity. We describe a (deterministic) polynomial-
time algorithm with access to an NP oracle that solves the problem. The algorithm uses oracle queries
to decide, for a given sequence (`m, . . . , `m−k) of natural numbers, whether there exists a judgment
set J ∈ J(Φ,Γout) such that for each 0 ≤ i ≤ k it holds that |{ ϕ ∈ J | N(J, ϕ) ≥ `m−i }| = `m−i.
This is a problem in NP, so by picking an NP-complete problem for the oracle, we can use a single
oracle query to solve any instance of the above problem in polynomial time. The algorithm iteratively
computes the sequences `∗ = (`∗m, . . . , `∗m−k)—for increasing 0 ≤ k < m—such that the oracle returns
“yes” for `∗, and there is no sequence ` ′ = (`′m, . . . , `′m−k) with `

′
m−k′

> `∗
m−k′

for some 0 ≤ k ′ ≤ k
and `′

m−k′′
= `∗

m−k′′
for all 0 ≤ k ′ ≤ k ′′ such that the oracle returns “yes” for ` ′. For k = 0, we can

find the value of `∗m by querying the oracle several times—using sequences (`′∗m). Then, for k > 1, we
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have already identified (`∗m, . . . , `∗m−k+1). We can then find the value of `∗
m−k

by querying the oracle
several times—using sequences (`∗m, . . . , `∗m−k+1, `

′
m−k
) for different values of `′

m−k
.

After having identified (`∗m, . . . , `∗1), we can solve the problem by using another query to the
NP oracle. We use the oracle to check whether there exists a judgment set J∗ ∈ J(Φ,Γout)
such that L ⊆ J∗ and Lj * J∗ for each 1 ≤ j ≤ u, such that for each 0 ≤ i < m it holds
that |{ ϕ ∈ J | N(J, ϕ) ≥ `m−i }| = `∗m−i. This is a problem in NP, so by picking an NP-complete
problem for the oracle, we can use a single oracle query to solve this problem in polynomial time.
The oracle returns “yes” to this last query if and only if there exists a judgment set J∗ ∈ LexiMax(J)
such that L ⊆ J∗ and Lj * J∗ for each 1 ≤ j ≤ u. Thus, by returning the answer to the last oracle
query, this algorithm solves the problem in polynomial time with access to an NP oracle. This
concludes our proof that the problem is in ∆p

2. �

We complement the above membership proof with a ∆p
2-hardness proof for the outcome determi-

nation problem for the LexiMax-rule.

Theorem 4.23. The outcome determination problem for the LexiMax-rule is ∆p
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b) of
the problem to establish the lower bound on the complexity. We give a polynomial-time reduction from
the ∆p

2-complete problem Lex-Max-Model. Let (ψ, x∗) be an instance of Lex-Max-Model, where ψ
is a satisfiable formula with var(ψ) = {x1, . . . , xn} and the variables are ordered x1 < · · · < xn. We
construct an instance (Φ,Γin,Γout, J, ϕ∗) of the outcome determination problem for the LexiMax-
rule as follows. We let Φ = { xi,¬xi | 1 ≤ i ≤ n } ∪ { yj,¬yj | 1 ≤ j ≤ 2n + 3 }. We
let Γin = Γout = ψ ∨

∨
1≤ j≤2n+3 yj . We construct J = (J1, . . . , J2n+3) as described in Figure 8. Finally,

we let ϕ∗ = x∗.

J J1 · · · Jn+1 Jn+2 Jn+3 Jn+4 · · · J2n−1 J2n J2n+1 J2n+2 J2n+3 N(J, ϕ)
x1 1 · · · 1 1 1 1 · · · 1 1 1 0 0 2n + 1
x2 1 · · · 1 1 1 1 · · · 1 1 0 0 0 2n
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
xn−1 1 · · · 1 1 1 0 · · · 0 0 0 0 0 n + 3
xn 1 · · · 1 1 0 0 · · · 0 0 0 0 0 n + 2
y1 1 0 0 · · · · · · 0 1
y2 0 1 0 · · · · · · 0 1
y3 0 0 1 · · · · · · 0 1
...

...
. . .

... 1
...

...
. . .

... 1
y2n+1 0 · · · 1 0 0 1
y2n+2 0 · · · 0 1 0 1
y2n+3 0 · · · 0 0 1 1

Figure 8: Construction of the profile J in the proof of Theorem 4.23.

We show that LexiMax(J) = {J∗} with J∗ = { ¬yj | 1 ≤ j ≤ 2n + 3 } ∪ { ` | 1 ≤ i ≤ n, ` ∈
{xi,¬xi}, α(`) = 1 }, where α is the lexicographically maximal model of ψ. The formulas in Φ
with highest support in J are the formulas ¬yj—these are supported by 2n + 2 judgment sets in J .
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Because Γout ∧
∧

1≤ j≤2n+3 ¬yj is satisfiable, we get that ¬yj ∈ J∗ for each 1 ≤ j ≤ 2n + 3. The
formulas x1, . . . , xn have support 2n + 1, . . . ,n + 2, respectively, and all other formulas have support
less than n + 2. Therefore, J∗ will agree with α on the formulas in {xi,¬xi | 1 ≤ i ≤ n}. From this it
follows that x∗ ∈ J∗ if and only if w is set to true in α. �

4.8 Outcome Determination for Rules based on Minimal Profile Modifications

We now turn our attention to showing Θp
2-membership for the outcome determination problem for the

Young rule Yng.

Theorem 4.24. The outcome determination problem for the Young rule Yng is in Θp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. The proof is similar to the proofs
of Theorems 4.3, 4.5 and 4.7. We describe a polynomial-time algorithm that queries an NP
oracle O(log |J |) times and that solves the problem. The algorithm uses oracle queries to check
if there exists a subprofile J ′ ⊆ J containing at most a given number k of judgment sets such
that m(J ′) is Γout-consistent. This is a problem in NP, so by picking an NP-complete problem for the
oracle, we can use a single oracle query to solve any instance of the above problem in polynomial
time. The maximum size |J ′ | of any such subprofile J ′ is |J |. Therefore, we can determine the
maximum value kmax of |J ′ | for any J ′ ⊆ J such that m(J ′) is Γout-consistent using O(log |J |) oracle
queries—by using binary search. Then, after having identified this number kmax, the algorithm
queries the oracle one additional time to determine whether there exists a subprofile J ′ ⊆ J such
that |J ′ | = kmax, such that m(J ′) = J∗ is Γout-consistent, such that L ⊆ J∗ and such that Li * J∗ for
all i ∈ {1, . . . ,u}. Again, since this is a problem in NP, one oracle query suffices to determine this.
The algorithm outputs “yes” if and only if such a subprofile J ′ ⊆ J exists. This algorithm runs in
polynomial time, queries the NP oracle O(log |J |) times, and correctly solves the problem. Therefore,
the problem is in Θp

2. �

Next, we prove Θp
2-hardness for the outcome determination problem for the Young rule Yng. To

do this, one can use the standard embedding of voting into judgment aggregation (Dietrich & List,
2007a; Endriss, 2016). Performing the Young rule on the result of this embedding corresponds to
carrying out the Young voting rule. As computing the winner of a Young election is Θp

2-hard (Rothe,
Spakowski, & Vogel, 2003), this embedding can be used to show Θp

2-hardness of variant (a) of the
outcome determination for the Young judgment aggregation rule. It is not straightforward to modify
this reduction so that it works also for variant (b) of the outcome determination problem. We give an
alternative proof of Θp

2-hardness that is self-contained, and that works for variant (b) of the outcome
determination problem.22

Theorem 4.25. The outcome determination problem for the Young rule Yng is Θp
2-hard.

Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b) of
the problem to establish the lower bound on the complexity. We give a reduction from theΘp

2-complete
problem Max-Model. Let (ψ, x∗) be an instance of Max-Model, with var(ψ) = {x1, . . . , xn}.
Moreover, without loss of generality, we may assume that the truth assignment that sets all variables
to false does not satisfy ψ and that the truth assignment that sets all variables to true also does not

22. The proof of Theorem 4.25 is based on a proof appearing in preliminary work (Endriss & De Haan, 2015, Proposition 9).
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satisfy ψ. We construct an instance (Φ,Γin,Γout, J, ϕ∗) of the outcome determination problem for
the Young rule Yng as follows. We let Φ = { xi,¬xi | 1 ≤ i ≤ n } ∪ { yj,¬yj | 1 ≤ j ≤ 2n + 1 }.
We let Γin = Γout = ψ ∨

∨
1≤ j≤2n+1 yj . We construct J = (J1, . . . , J2n+1) as described in Figure 9.

Finally, we let ϕ∗ = x∗.

J J1 · · · Jn+1 Jn+2 Jn+3 Jn+4 · · · J2n−1 J2n J2n+1

x1 1 · · · 1 1 0 0 · · · 0 0 0
x2 1 · · · 1 0 1 0 · · · 0 0 0
x3 1 · · · 1 0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

xn−2 1 · · · 1 0 0 0 · · · 1 0 0
xn−1 1 · · · 1 0 0 0 · · · 0 1 0
xn 1 · · · 1 0 0 0 · · · 0 0 1
y1 1 0 0 · · · · · · 0
y2 0 1 0 · · · · · · 0
y3 0 0 1 · · · · · · 0
...

...
. . .

...
...

...
. . .

...
y2n−1 0 · · · 1 0 0
y2n 0 · · · 0 1 0
y2n+1 0 · · · 0 0 1

Figure 9: Construction of the profile J in the proof of Theorem 4.25.

Intuitively, there are two ways to satisfy Γout: satisfy ψ or satisfy yj for some 1 ≤ j ≤ 2n + 1.
To get that yj ∈ m(J ′) for some 1 ≤ j ≤ 2n + 1, one needs to delete 2n judgment sets from J to
obtain J ′. We know that there exists a satisfying truth assignment α for ψ that sets at least one variable
among x1, . . . , xn to true. Therefore, we can obtain some J ′ such that m(J ′) is Γout-consistent, by
deleting at most 2n − 2 judgment sets from J : for each 1 ≤ i ≤ n such that α(xi) = 0, we delete Ji
and Jn+i+1. Thus, we know that all judgment sets J∗ ∈ Yng(J) are consistent with ψ.

We show that there is some J∗ ∈ Yng(J) with ϕ∗ ∈ J∗ if and only if there is a model of ψ that
sets a maximal number of variables in var(ψ) to true and that sets x∗ to true.
(⇒) Suppose that there is some J∗ ∈ Yng(J) with ϕ∗ ∈ J∗. We know that J∗ must be consistent

with ψ. Consider the truth assignment α : var(ψ) → {0,1} that is defined by letting α(xi) = 1 if
and only if xi ∈ J∗, for each 1 ≤ i ≤ n. Then α satisfies ψ and sets x∗ to true. We show that there
is no β that satisfies ψ and that sets more variables in var(ψ) to true than α. Suppose, to derive
a contradiction, that such a β does exist. Then consider the profile J ′ that is obtained from J by
deleting Ji and Jn+i+1 for each 1 ≤ i ≤ n such that β(xi) = 0. Because β satisfies ψ and sets more
variables in var(ψ) to true than α, we get that m(J ′) is Γout-consistent and that J ′ contains more
judgment sets than any subprofile J ′′ of J for which m(J ′′) = J∗. This is a contradiction with our
assumption that J∗ ∈ Yng(J). Thus, we can conclude that no such β exists, and thus that α sets a
maximal number of variables in var(ψ) to true (for any truth assignment satisfying ψ).
(⇐) Suppose that there is a satisfying truth assignment α : var(ψ) → {0,1} for ψ that sets a

maximal number of variables in var(ψ) to true and that sets x∗ to true. Then consider the profile J ′

obtained from J by by deleting Ji and Jn+i+1 for each 1 ≤ i ≤ n such that α(xi) = 0. Then J∗ = m(J ′)
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is Γout-consistent, because it is consistent with ψ. Because α sets x∗ to true, we get that ϕ∗ ∈ J∗. We
show that J∗ ∈ Yng(J). Suppose, to derive a contradiction, that there is a subprofile J ′′ of J that
can be obtained by deleting a smaller number of judgment sets (than the number of judgment sets
needed to obtain J ′) such that m(J ′′) is Γout-consistent. Without loss of generality, we can take J ′′

to be the largest subprofile of J with this property. Since m(J ′′) is Γout-consistent, we know that
either (i) m(J ′′) satisfies ψ, or (ii) m(J ′′) satisfies yj for some 1 ≤ j ≤ 2n + 1. In case (ii), we know
that at least 2n judgment sets need to be deleted from J to obtain J ′′. In case (i), we know that at
most 2n − 2 judgment sets need to be deleted from J to obtain J ′′. Therefore, since J ′′ is the largest
subprofile of J such that m(J ′′) is Γout-consistent, we know that m(J ′′) is consistent with ψ.

Consider the truth assignment β : var(ψ) → {0,1} that is defined by letting β(xi) = 1 if and
only if xi ∈ m(J ′′), for each 1 ≤ i ≤ n. Because J ′′ is obtained from J by deleting fewer judgment
sets than the number of sets that are deleted to obtain J ′, we know that β sets more variables
in var(ψ) to true than α. Also, because J ′′ is consistent with ψ, we know that β satisfies ψ. This
is a contradiction with our assumption that α sets a maximal number of variables in var(ψ) to
true (for any satisfying assignment of ψ). Thus, we can conclude that no such J ′′ exists, and thus
that J∗ = m(J ′) ∈ Yng(J). �

Next, we establish Θp
2-membership for the outcome determination problem for the Dodgson

rule Dod.

Theorem 4.26. The outcome determination problem for the Dodgson rule Dod is in Θp
2.

Proof. As described in Sections 2.1 and 2.2, we will use variant (6) of the framework and variant (a)
of the problem to establish the upper bound on the complexity. The proof is similar to the proofs
of Theorems 4.3, 4.5, 4.7, and 4.24. We describe a polynomial-time algorithm that queries an NP
oracle O(log |Φ| + log |J |) times and that solves the problem. The algorithm uses oracle queries
to check if there exists a profile J ′ = (J ′1, . . . , J

′
n) ∈ J(Φ,Γin)

n, where n = |J |, such that m(J ′) is
Γout-consistent and such that

∑
i≤ |J | H(Ji, J ′i ) ≤ k for a given value k. This is a problem in NP, so by

picking an NP-complete problem for the oracle, we can use a single oracle query to solve any instance
of the above problem in polynomial time. The maximum value of

∑
i≤ |J | H(Ji, J ′i ) for any profile J

′ of
size |J | is at most |Φ| · |J |. Therefore, we can determine the minimum value kmin of

∑
i≤ |J | H(Ji, J ′i )

for any J ′ = (J ′1, . . . , J
′
n) such that m(J ′) is Γout-consistent using O(log |Φ| + log |J |) oracle queries—

by using binary search. Then, after having identified this number kmin, the algorithm queries
the oracle one additional time to determine whether there exists a profile J ′ = (J ′1, . . . , J

′
n) such

that
∑

i≤ |J | H(Ji, J ′i ) = kmin, such that m(J ′) = J∗ is Γout-consistent, such that L ⊆ J∗ and such
that Li * J∗ for all i ∈ {1, . . . ,u}. Again, since this is a problem in NP, one oracle query suffices to
determine this. The algorithm outputs “yes” if and only if such a profile J ′ exists. This algorithm
runs in polynomial time, queries the NP oracle O(log |Φ| + log |J |) times, and correctly solves the
problem. Therefore, the problem is in Θp

2. �

Finally, we modify the proof of Theorem 4.4 to obtain a proof of Θp
2-hardness for the outcome

determination problem for the Dodgson rule.23

Theorem 4.27. The outcome determination problem for the Dodgson rule Dod is Θp
2-hard.

23. The proof of Theorem 4.27 is not based on the original hardness proof for the outcome determination problem for the
Dodgson rule that appeared in preliminary work (Lang & Slavkovik, 2014, Proposition 5). This is because the original
hardness proof does not apply to variant (1) of the framework.
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Proof. As described in Sections 2.1 and 2.2, we will use variant (1) of the framework and variant (b)
of the problem to establish the lower bound on the complexity. We give a reduction from the
Θ

p
2-complete problem Max-Model. We will use the reduction used in the proof of Theorem 4.4.

Let (ψ, x∗) be an instance of Max-Model, with var(ψ) = {x1, . . . , xn}. Without loss of generality,
suppose that x∗ = x1. Moreover, without loss of generality, suppose that n is odd. We construct an
instance (Φ,Γin,Γout, J, ϕ∗) of the outcome determination problem for the reversal scoring rule by
following the construction in the proof of Theorem 4.4.

To see that this reduction is correct, we observe that judgment sets J∗ satisfying ψ (and agreeing
with m(J) on

∧
1≤i≤n,1≤ j≤u ¬zi, j) can be obtained as majoritarian judgment set m(J ′) by changing the

profile on (n− b)(n− 1)/2 issues, where b is the maximal number of variables in var(ψ) that are set to
true by any truth assignment satisfying ψ. To obtain a profile J ′ such that m(J ′) satisfies

∧
1≤ j≤u zi, j

for some 1 ≤ i ≤ n, one needs to make u(n − 1)/2 on individual issues. Since u > n − b, we know
that Dod(J) are in one-to-one correspondence with the set of truth assignments satisfying ψ that set
a maximal number of variables in var(ψ) to true. Therefore, we get that there is some J∗ ∈ Dod(J)
with x1 = ϕ

∗ ∈ J∗ if and only there is a satisfying truth assignment for ψ that satisfies x1 and that sets
a maximal number in var(ψ) to true. �

5. Conclusion

We have provided a complete picture of the computational complexity of the outcome determination
problem for all eleven judgment aggregation rules that (i) have received significant attention in the
literature, (ii) are applicable for any agenda, and (iii) guarantee the consistency of outcomes. For
each of these rules the outcome determination problem is complete for either Θp

2, ∆
p
2, Σ

p
2, or Θ

p
3. Our

results hold for all important judgment aggregation frameworks considered in the literature.
For several of the judgment aggregation rules that have a clear counterpart in preference

aggregation, our results are in line with complexity results for computing aggregated preferences
(or computing the top-ranked candidates in the aggregated preferences). For example, aggregating
preferences using theKemeny, Slater, Young, orDodgson rule isΘp

2-complete (see, e.g., Hemaspaandra
et al., 2005; Conitzer, 2006; Rothe et al., 2003; Hemaspaandra et al., 1997)—which mirrors our Θp

2-
completeness results for the judgment aggregation versions of these rules. Similarly, theMaxHamming
judgment aggregation rule has parallels to the minimax approval procedure for committee elections
(Brams et al., 2007), and our Θp

2-completeness result that for the MaxHamming judgment aggregation
rule is in line with complexity results for the minimax approval rule (LeGrand, Markakis, & Mehta,
2007; De Haan, 2018). But for other preference aggregation rules, the complexity of computing the
outcome of the analogous judgment aggregation rule has a higher computational complexity. For
example, the ranked-pairs voting rule is polynomial-time computable (see, e.g., Fischer et al., 2016),
which is not in line with our Σp

2-completeness result for the analogous ranked-agenda judgment
aggregation rule.

Our results provide useful insights for the development of practical algorithmic approaches to
computing the outcome in a given judgment aggregation scenario. For example, the complexity
results we established in this paper indicate that we cannot avoid exponential running times in
the worst case when developing algorithms that work for the fully general setting of judgment
aggregation—at least not under the widely believed assumption that P , NP. Our results also
indicate that automated reasoning tools aimed at higher levels of the Polynomial Hierarchy might
provide a fruitful approach for developing practical algorithms. Research along these lines has
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been initiated very recently, encoding the outcome determination problem for various judgment
aggregation rules into the automated reasoning framework of Answer Set Programming (De Haan
& Slavkovik, 2019). Our results indicate the amount of expressiveness that is needed in such
automated reasoning languages for computing the outcome of judgment aggregation scenarios. For
example, Θp

3-completeness indicates that the full expressivity of disjunctive answer set programming
with optimisation is required, whereas Θp

2-completeness indicates that (non-disjunctive) answer set
programming with optimisation suffices (see, e.g., Brewka & Eiter, 1999; Buccafurri, Leone, & Rullo,
2000). More generally, for judgment aggregation rules for which the outcome determination problem
is Θp

2-complete or ∆p
2-complete, one can use optimisation or so-called incremental variants of solving

algorithms for NP problems—e.g., propositional satisfiability (SAT), integer programming (IP),
constraint programming (CP), satisfiability-modulo-theories (SMT)—whereas for rules for which
outcome determination is Σp

2-complete or Θp
3-complete, one can only encode the problem into harder

problems (in polynomial time)—e.g., disjunctive answer set programming, or quantified Boolean
satisfiability (QBF-SAT).

Future research should include studying the computational complexity of the outcome determi-
nation problem for different judgment aggregation rules in more detail. The results in this paper
are worst-case results for the setting where the propositional logic formulas involved can be any
arbitrary formulas. In many cases where the framework of judgment aggregation is applied to model
a particular aggregation scenario, the logic formulas involved (and other parameters of the scenario)
are likely to exhibit some structure. Therefore, it will be useful to study what the exact contribution of
these problem parameters is for the computational complexity of the problem. Such an investigation
has been initiated in recent work for a handful of judgment aggregation rules (De Haan, 2016,
2018)—both using the classical theory of computational complexity and the more fine-grained theory
of parameterized complexity—but many questions remain.
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