
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Demand Forecasting in the Presence of Privileged Information

Ariannezhad, M.; Schelter, S.; de Rijke, M.
DOI
10.1007/978-3-030-65742-0_4
Publication date
2020
Document Version
Author accepted manuscript
Published in
Advanced Analytics and Learning on Temporal Data

Link to publication

Citation for published version (APA):
Ariannezhad, M., Schelter, S., & de Rijke, M. (2020). Demand Forecasting in the Presence of
Privileged Information. In V. Lemaire, S. Malinowski, A. Bagnall, T. Guyet, R. Tavenard, & G.
Ifrim (Eds.), Advanced Analytics and Learning on Temporal Data: 5th ECML PKDD
Workshop, AALTD 2020, Ghent, Belgium, September 18, 2020 : revised selected papers (pp.
46-62). (Lecture Notes in Computer Science; Vol. 12588), (Lecture Notes in Artificial
Intelligence). Springer. https://doi.org/10.1007/978-3-030-65742-0_4

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.1007/978-3-030-65742-0_4
https://dare.uva.nl/personal/pure/en/publications/demand-forecasting-in-the-presence-of-privileged-information(6e7697cf-9c6e-42d0-8c0e-28f6b5215f3e).html
https://doi.org/10.1007/978-3-030-65742-0_4

Demand Forecasting in the Presence of
Privileged Information

Mozhdeh Ariannezhad1, Sebastian Schelter2,3, and Maarten de Rijke2,3

1 AIRLab, University of Amsterdam
2 University of Amsterdam

3 Ahold Delhaize
{m.ariannezhad, s.schelter, m.derijke}@uva.nl

Abstract. Predicting the amount of sales in the future is a fundamen-
tal problem in the replenishment process of retail companies. Models for
forecasting the demand of an item typically rely on influential features
and historical sales of the item. However, the values of some influential
features (to which we refer as non-plannable features) are only known
during model training (for the past), and not for the future at prediction
time. Examples of such features include sales in other channels, such as
other stores in chain supermarkets. Existing forecasting methods ignore
such non-plannable features or wrongly assume that they are also known
at prediction time. We identify non-plannable features as privileged in-
formation, i.e., information that is available at training time but not at
prediction time, and design a neural network to leverage this source of
data accordingly. We present a dual branch neural network architecture
that incorporates non-plannable features at training time, with a first
branch to embed the historical information, and a second branch, the
privileged information (PI) branch, to predict demand based on privi-
leged information. Next, we leverage a single branch network at predic-
tion time, which applies a simulation component to mimic the behavior
of the PI branch, whose inputs are not available at prediction time. We
evaluate our approach on two real-world forecasting datasets, and find
that it outperforms state-of-the-art competitors in terms of mean abso-
lute error and symmetric mean absolute percentage error metrics. We
further provide visualizations and conduct experiments to validate the
contribution of different components in our proposed architecture.

1 Introduction

Demand forecasting aims to predict future sales and has the potential to signif-
icantly improve supply chain management. An accurate forecast prevents over-
stocking and reduces costs, waste, and losses. At the same time, it also avoids
understocking and thereby helps to prevent unfulfilled orders and unsatisfied
customers [7, 29]. In practice, demand forecasting is modeled as a time series
forecasting (TSF) problem, where the goal is to predict future sales volumes
based on historical sales and influential features [5]. Following the success of
deep neural networks in sequence-to-sequence tasks such as machine transla-
tion [28], recent work has studied the effectiveness of neural networks for TSF
in general [16, 21, 23], and demand forecasting in particular [8, 11, 20].

2 M. Ariannezhad et al.

We divide influential features into two categories, based on their availability
at the time of forecast. Plannable features are known for the past and the future;
examples are time-dependent features such as calendar events, or static features
such as product characteristics. Non-plannable features are time-dependent and
only known for the past, e.g., sales in other stores. Many neural-based approaches
use an encoder-decoder structure to map the history of a time series to its future.
A common strategy when treating influential features is to feed their historical
values to the encoder, either alongside the historical sales data [11], or to a
different layer that is responsible for encoding them [8]. The decoder then either
uses their future values to produce the forecast [11, 31], or assumes that they
are unknown [8]. Neither of these schemes is ideal for non-plannable features.
Using future values of influential features in the decoding stage makes sense
for plannable features, but the approach is not applicable for non-plannable
features. A model trained in that way is not applicable in a real world setting
as the non-plannable features are not known at prediction time. Simply ignoring
non-plannable features – both at training and prediction time – is not optimal
either as they carry important information that should be leveraged at the time
of training the model.

In this paper, we therefore propose an indirect approach to model the effects
of non-plannable features, and treat them as privileged information [18], i.e.,
information that is available at the time of training the model but not at predic-
tion time (Section 3.1). We introduce a neural network architecture to capture
the effect of these features at training time, and use this effect to produce a
forecast at prediction time (Section 3.2). To this end, we propose two different
network architectures for training and prediction. At the time of training, the
network has two different branches. The first branch is responsible for modeling
the effect of historical sales and plannable features, while the second branch uses
non-plannable features as input to produce a forecast based on them. At pre-
diction time, the second branch is not available, and is replaced by a simulation
network, which is trained to mimic its behavior (Section 3.3).

Our experimental evaluation demonstrate that the proposed model outper-
forms state-of-the-art baselines on several datasets in terms of mean absolute
error and symmetric mean absolute percentage error. Our experiments show
that the proposed network is not only able to learn from non-plannable features
at training time, but can also embed this type of information for use at prediction
time.

We summarize the contributions of our research as follows:
– We categorize the influential features for demand forecasting into two cate-

gories, based on their availability for the time of forecast. We propose to treat
the non-plannable features as privileged information (Section 3.1).

– We design a novel neural network architecture that is able to leverage privi-
leged information. To this end, we propose to use two different networks for
training and prediction time, where the network at prediction time simulates
the effect of the unknown privileged information (Section 3.2).

Demand Forecasting in the Presence of Privileged Information 3

– We conduct extensive experiments on two publicly available datasets. Our ex-
perimental results show that our approach outperforms state-of-the-art base-
lines for demand forecasting in the majority of cases in terms of mean absolute
error and symmetric mean absolute percentage error metrics (Section 5).

2 Related Work

Time series forecasting. Prior work on time series forecasting (TSF) mostly
focuses on linear approaches [22], such as Auto-Regressive Integrated Moving
Average (ARIMA) model [6], with a solid underlying theory and relatively few
parameters. However, linear methods cannot model non-linear temporal depen-
dencies and complex relationships between different dimensions of a time series.
Recently, neural network-based approaches have found their way into TSF. The
most dominant type of network used are recurrent neural networks (RNNs) and
long short-term memory networks (LSTMs) [2, 4, 21, 23, 25]. Convolutional neu-
ral networks (CNNs) are also considered in the literature [14, 24], and some work
studies networks with both recurrent and convolutional components [16, 32].

For the task of demand forecasting, state-of-the-art approaches mostly em-
ploy neural-based models. TADA [8] uses different LSTM layers to model dif-
ferent kinds of influential features, and the multimodal-attention model pro-
posed in [11] uses a bidirectional LSTM with an attention mechanism to better
capture latent patterns in historical data. To incorporate the impact of substi-
tutable products with respect to the target product, DSF [20] uses a sequence-
to-sequence structure with gated recurrent units.

Our focus is on modeling non-plannable features. In previous work, non-
plannable features are either treated as plannable, i.e., with the unrealistic as-
sumption that their future values are known at prediction time, or are only used
as historical data. None of these approaches is able to incorporate non-plannable
features in a realistic manner. In contrast, we propose a neural architecture, that
(1) is capable of modeling non-plannable features, and (2) has different compo-
nents for historical sales and influential features, which are usually treated in
the same way in previous work.

Learning under privileged information. The learning under privileged in-
formation (LUPI) framework was originally proposed for support vector ma-
chines [30]. The idea was again popularized in [18], where it was unified with
knowledge distillation for neural networks. Most of the work done in this area
is in the field of computer vision [9, 12, 17], with teacher-student networks as
the dominant approach. Teacher-student networks are mostly based on distill-
ing knowledge from a ‘teacher’ network to a ‘student’ network at training time
through the loss function, which makes sense for classification problems [18],
where class probabilities produced by the teacher network are treated as ‘soft
targets’ for training the student network.

To the best of our knowledge, LUPI has never been used in time series fore-
casting and utilizing existing LUPI frameworks is not straight-forward in a fore-
casting scenario. In this work, we propose a network architecture to leverage
non-plannable features. We achieve this with two different networks at training

4 M. Ariannezhad et al.

and prediction time. In contrast to common teacher-student networks, our second
network is not guided by a loss component, but learns a simulation component
that mimics the output of the missing branch.

3 A Privileged Information-Aware Neural Network
We present a dual branch neural network architecture for demand forecasting.
It incorporates non-plannable features as privileged information (PI) at training
time, with a first branch (the historical branch) that embeds historical informa-
tion and plannable features via dilated causal convolutional layers, and a second
branch, the PIBranch, which leverages fully-connected feed-forward layers to
predict sales based on privileged information. At prediction time, we apply a
slightly different single branch network with a simulation component to mimic
the behavior of the PIBranch, whose inputs are not available at prediction time.

3.1 Problem Statement

The goal of a demand forecasting model is to predict the amount of sales in the
future. Many different settings exist for building a forecasting model. Without
loss of generality, we consider the case of multiple stores and multiple items, and
forecast the demand of each item per store. Formally, for an arbitrary target
product in a target store, the goal of the forecasting model is to predict

{ŷt}T+∆
t=T+1 = {ŷT+1, . . . , ŷT+∆},

where T is the length of history being considered, ∆ is the forecast horizon,
and ŷt ∈ R denotes the predicted sales of the target item in the target store at
time t. Future sales are affected by both the history of sales in the past, and
other influential features. Influential features can be divided into two categories.
Plannable features are known both for the past and the future; they can be
static, such as product-dependent features like category and brand, or time-
dependent, such as promotional campaigns and calendar events. Future values
of non-plannable features are not known at the time of forecast; examples include
behavior data from users on an online shopping website, sales of similar items
in the same store, or sales of the same item in other stores.

We design a forecasting model that incorporates both types of feature along-
side the historical sales. Formally:

{ŷt}T+∆
t=T+1 = F

(
{yt}Tt=1, {x

p
t }T+∆
t=1 , {xnpt }Tt=1

)
, (1)

where F (·) is a non-linear mapping function that we learn, and

{yt}Tt=1 = {y1, y2, . . . , yT } (2)

{xpt }T+∆
t=1 = {xp1,x

p
2, . . . ,x

p
T+∆} (3)

{xnpt }Tt=1 = {xnp1 ,xnp2 , . . . ,xnpT } (4)

denote the historical sales of the target item, and the corresponding plannable
features xp ∈ Rn and non-plannable features xnp ∈ Rm for the item, respectively,
with the corresponding feature dimensions n and m.

For training our model, we adopt the ‘walk-forward’ training schema that
is a common choice for time series data [8, 15, 27]. In this approach, which we
illustrate in Fig. 1, we apply a sliding window to divide the data into history

Demand Forecasting in the Presence of Privileged Information 5

Prediction Time:

Training Time:

1

History Forecast Horizon

History Forecast Horizon

Time

Fig. 1: The ‘walk-forward’ training scheme. A history of length T is used for
training, and validation is performed on [T +1, T +∆]. For predication time, the
history is shifted ∆ steps, and [T + ∆ + 1, T + 2∆] is used as forecast horizon.

and forecast horizon, and shift this sliding window ∆ steps from training time
to prediction time. In other words, assuming the length of the whole dataset is
T + 2∆ and T � ∆ is the length of the sliding window, the [1, T] interval is used
as the history training time, the [T + 1, T + ∆] interval is used as the forecast
horizon at training time (i.e., the validation window), the [∆+ 1, T +∆] interval
is used as the history at prediction time and finally, the [T + ∆ + 1, T + 2∆]
interval is used as the forecast horizon at prediction time.

We evaluate our model on the forecast horizon at prediction time, for which
the non-plannable features are not available. For training and hyperparameter
selection, we leverage the history and the validation window, for which non-
plannable features are known. This assumption is inline with real world cases,
where a forecasting model is trained on the past data, for which the values of all
influential features are already known. We rephrase Eq. 1 into Eq. 5 at training
time and into Eq. 6 at prediction time in order to account for this setup:

{ŷt}T+∆
t=T+1 = F1

(
{yt}Tt=1, {x

p
t }T+∆
t=1 , {xnpt }T+∆

t=1

)
(5)

{ŷt}T+2∆
t=T+∆+1 = F2

(
{yt}T+∆

t=∆+1, {x
p
t }T+2∆
t=∆+1

)
, (6)

where F1(·) is the function that we learn at training time and F2(·) is the function
that we apply at prediction time to produce the forecast.

3.2 Architecture Overview

We model non-plannable features as privileged information (PI), i.e., information
that is available at the training time but not available at prediction time. This
approach requires different forecasting models for training and prediction time.
We therefore propose: a Dual Branch PI Aware Neural Network (DB-PIANN) to
embed both the historical sales and PI at training time, and a Single Branch PI
Aware Neural Network (SB-PIANN) to produce the forecast at prediction time.
Fig. 2a illustrates the architecture of DB-PIANN. Historical sales and plannable
features are fed into one branch of the network, while privileged information is fed
into a different branch. The outputs of these two branches are then merged with
a combination layer, and fed into the output module to produce the forecast. The
unavailablity of the PI for the future implies that we cannot produce a forecast
with DB-PIANN at prediction time. However, only the input to the privileged
information branch (PIBranch) is missing at prediction time, and we can still
utilize the historical branch (HiBranch) of DB-PIANN.

We tackle this challenge by training an additional simulation network to
mimic the behavior of the missing PI Branch. This network takes the output of

6 M. Ariannezhad et al.

HiBranch

PIBranch

combination layer

output module

...

...

...

...

..................

Produces the forecast.

Combines the outputs of HiBranch and
PIBranch.

Models the effects of non-plannable
features.

Models the effects of historical sales,
alongside plannable features.

(a) DB-PIANN (dual branch)

HiBranch

simulation module

output module

...

...

..................

Module identical to DB-PIANN. Produces
the forecast.

Since the inputs to the PIBranch are not
available at the prediction time, the PIBranch
and the combination layer are replaced by a
simulation module that is trained to mimic
the effects of PI, by estimating the output
of the combination layer based on the
output of HiBranch.

Module identical to DB-PIANN.
Models the effects of historical sales,
alongside plannable features.

(b) SB-PIANN (single branch)

Fig. 2: Neural network architectures for PI-aware demand forecasting. Fig. 2a
illustrates the architecture of DB-PIANN applied at training time and Fig. 2b
details the architecture of the SB-PIANN, which we leverage at prediction time

.

the historical branch as input, and learns to reproduce the output of the combi-
nation layer. Fig. 2b details the architecture of the SB-PIANN. The difference to
DB-PIANN is that the PIBranch and the combination layer are replaced with the
simulation network; the other branch is identical. DB-PIANN and SB-PIANN
model F1(·) and F2(·) in Eq. 5 and Eq. 6, respectively.

3.3 Architecture Details

Next, we introduce the details of DB-PIANN and SB-PIANN. As illustrated in
Fig. 2a, DB-PIANN consists of four modules: (1) a historical branch (HiBranch),
which is responsible for modeling the effects of historical sales data, along with
plannable features, (2) a privileged information branch (PIBranch), which takes
care of non-plannable features, (3) a combination layer, which combines the
outputs of the two previous branches, and (4) an output module, which produces
the final forecasts.

Based on these definitions, we break up Eq. 5 as follows:

{ŷt}T+∆
t=T+1 = F1

(
{ct}T+∆

t=T+1

)
, (7)

where F1 is the output module, and {ct}T+∆
t=T+1 is the output of the combination

layer, defined as:
{ct}T+∆

t=T+1 = {zt + ut}T+∆
t=T+1, (8)

where {zt}T+∆
t=T+1 and {ut}T+∆

t=T+1 are the outputs of the HiBranch and PIBranch,
respectively (Fig. 2a).

Historical branch. The input of this branch, namely N1, consists of the his-
torical sales of an item yt with of length T , and the plannable features xp

t of
length T +∆ corresponding to that item. The output of this branch, zt, has the
length of ∆, and will be fed to the combination layer. Formally:

{zt}T+∆
t=T+1 = N1

(
{yt ⊕ xp

t }Tt=1, {x
p
t }
T+∆
t=T+1

)
, (9)

where ⊕ denotes the concatenation operation. With this definition, HiBranch
can be applied in SB-PIANN at prediction time, where we shift the time ∆

Demand Forecasting in the Presence of Privileged Information 7

steps. However, one cannot include non-plannable features as well at prediction
time, since their values are unknown for the forecast horizon.

We choose a stack of dilated causal 1D convolution layers [19] for the histor-
ical branch, followed by two fully-connected feed-forward layers to produce the
final output of the branch. Formally:

N1

(
{yt ⊕ xp

t }Tt=1, {x
p
t }
T+∆
t=T+1

)
= Wh

2 ReLU(Wh
1 cL1

+ bh1) + bh2 , (10)

where cL1 is the output of the last convolutional layer, and Wh
1 , bh1 , Wh

2 , and bh2
are the weights and biases of the first and second feed-forward layer.

Causal convolutions are typically faster to train compared to RNNs and
LSTMs (the common choice for sequence to sequence problems), since they do
not have any recurrent connections [3]. Dilated convolutions allow us to process a
long sequence without exponentially increasing the number of layers, by skipping
input values with a certain step size. This is especially useful for the case of de-
mand forecasting, where the history of the data is relatively long. More formally,
for a sequence input x and a filter f with size k, a causal dilated convolution
operation g on element s of the sequence is defined as:

g(s) = (x ∗d f)(s) =

k−1∑
i=0

f(i) · xs−d·i, (11)

where d is the dilation factor. Following [19], we increase d exponentially with
the depth of the network, i.e., d = O(2j) at level j of the network, where j ∈
{0, . . . , L1 − 1} and L1 denotes the number of layers. All parameters are shared
across the whole forecast horizon.

The historical branch N1 operates on a rolling basis, meaning that the output
zt ∈ R is produced one step at a time and is concatenated to the history in the
input, which is is then shifted one step forward, and fed back into the first
convolutional layer, until the end of the forecast horizon is reached (see Fig. 2a).

Privileged information branch. The input of this branch, namely N2, are
the non-plannable features with a length of ∆, and the output of this branch,
ut, (also of length ∆), will be fed to the combination layer. To make use of all
the available training data, we apply a sliding window of length ∆ and move it
forward one step at a time, until we reach the end of the training interval, i.e.,
T + ∆. For the PIBranch N2, we leverage fully-connected feed-forward layers
with dropout [26] applied after each hidden layer. We use a ReLU activation
function for the hidden layers, and a linear fully-connected layer for the output.
Formally:

{ut}i+∆t=i = N2({xnp
t}i+∆t=i) = Wnp

L2
ReLU(Wnp

l xl + bnpl) + bnpL2
, (12)

where 1 6 i 6 T is the start of the sliding window, L2 denotes the number
of layers, and Wnp

l and bnpl are the weights and biases of the l-th layer for
l ∈ {1, . . . , L2}; xl is the input of the l-th layer, which is the output of the
previous layer for l ∈ {2, . . . , L2}, and equal to {xnp

t}T+∆
t=T+1 for l = 1.

Note that the PIBranch cannot be used in SB-PIANN at prediction time,
since its input values are unknown for the forecast horizon.

8 M. Ariannezhad et al.

Output module. In SB-PIANN, this module consumes the output of the com-
bination layer, and produces the predicted sale values for the validation period.
We again apply fully-connected feed-forward layers:

{ŷt}T+∆
t=T+1 = F1({ut + zt}T+∆

t=T+1) = W o
L3

ReLU(W o
l sl + bol) + boL3

, (13)

where W o
l and bol are the weights and biases of the l-th layer for l ∈ {1, . . . , L3},

sl is the input of l-th layer, which is the output of the previous layer for l ∈
{2, . . . , L3}, and equal to {ut + zt}T+∆

t=T+1 for l = 1.
Together, the definitions of the aforementioned modules complete the archi-

tecture of DB-PIANN, according to Eq. 7.

SB-PIANN. Next, we define our second architecture SB-PIANN, which is going
to produce the forecast at prediction time. We break down Eq. 6 as follows:

{ŷt}T+2∆
t=T+∆+1 = F2

(
{yt}T+∆

t=∆+1, {x
p
t}T+2∆
t=∆+1

)
= F1

(
S({zt}T+2∆

t=T+∆+1)
)

= F1

(
S(N1

(
{yt ⊕ xp

t }
T+∆
t=∆+1, {x

p
t }
T+2∆
t=T+∆+1

)
)
)
,

(14)

where S is the simulation module, which we define in Eq. 15 below, N1 refers
to the historical branch defined in Eq. 10, and F1 depicts the output module,
defined in Eq. 13.

Simulation module. The purpose of the simulation module is to replace the
missing PIBranch of DB-PIANN. As we cannot use the PIBranch at prediction
time, one of the inputs of the combination layer is not available at prediction
timeas well (see Fig. 2). Therefore, we train a feed-forward neural network to
estimate the output of the combination layer based on the output of HiBranch.
Formally:

S({zt}T+2∆
t=T+∆+1) = W s

L4
ReLU(W s

l pl + bsl) + bsL4
, (15)

where W s
l and bsl are the weights and biases of the l-th layer for l ∈ {1, . . . , L4}.

pl is the input of l-th layer, which is the output of the previous layer for l ∈
{2, . . . , L4}, and equal to {zt}T+2∆

t=T+∆+1 for l = 1.

3.4 Learning Process

Many options exist for training a forecasting model for a collection of time series,
such as the sales per item per store in our case. Following previous work [8, 23],
we train a single model for all of the items; each training sample contains the
sales of a single item in a single store, along with its corresponding influential
features.

We train the PIBranch N2 and the historical branch N1 separately, and
then train DB-PIANN using the learned models, as outlined in the previous
section. We subsequently train the simulation network S in isolation. With this
scheme, SB-PIANN does not actually need training and can be composed from
the previously learned modules, i.e., HiBranch, the simulation module and the
output module. We leverage the mean absolute error between the predicted
values and the actual values as objective function to train all the components
of our architecture. All of our proposed modules are smooth and differentiable,
which allows us to learn their parameters by standard back propagation. With

Demand Forecasting in the Presence of Privileged Information 9

Table 1: Dataset statistics.

Dataset Items Stores #time series Time series’ length

Favorita 1, 656 54 11, 614 365
Dunnhumby 1, 101 26 8, 825 117

mean absolute error as the objective function, we define the loss for each module
as follows:

L =
1

N

(N∑
n=1

T+∆∑
t=T+1

| yant − y
p
nt |

)
, (16)

where N is the number of training samples, n is an index for the samples, yant
is the label for sample n at time t, and ypnt is the output of the corresponding
module. Specifically, when training the HiBranch, PIBranch, and output module,
yant is equal to the actual sales of the training sample n at time t, and ypnt is equal
to the corresponding value of zt, ut, and ŷt for sample n. For the simulation
module, yant translates to the corresponding values of zt + ut of sample n.

4 Experimental Setup

Datasets. Unfortunately, most of the sales datasets from existing work are not
publicly available. For example, we could neither obtain the ‘One Stop Ware-
house’ dataset from [8], the Amazon Demand Forecasting dataset from [31], nor
the JD50K Online Sales Forecasting dataset from [11].

We therefore evaluate the performance of SB-PIANN on two publicly avail-
able datasets to ensure reproducibility. Both datasets contain sales numbers at
the product and store level; we therefore set the goal of predicting the sales
per product per store for a certain forecast horizon. Here, for a target item in
a target store, we treat its sales in other stores as the privileged information.
The Favorita dataset contains daily sales of thousands of items across 54 stores
located in Ecuador.4 We use the data from the 15th of August 2016 to the 15th
of August 2017, and only consider items that have less than five days of sales
data missing.5 We also use the The Complete Journey dataset published by
Dunnhumby.6 This dataset contains around 300 million transactions for ∼5,000
items across ∼760 distinct stores, spanning more than two years of history. We
randomly select a subset of items and stores for our experiments, and aggregate
sales on a weekly basis to reduce the sparsity. The statistics of the datasets are
shown in Table 1. Not all of the items are sold in all of the stores, so the to-
tal number of time series, i.e., training samples, is different from the number of
items multiplied by the number of stores.

Influential features. Our design of the network architecture does not restrict
the types of influential features that our approach can incorporate. However,

4 https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data
5 The same dataset is used in [8], however the authors do not mention how they

created a subset of the original dataset in their paper. Nevertheless, we achieve a
comparable performance with their method on our version of the data.

6 https://www.dunnhumby.com/careers/engineering/sourcefiles

10 M. Ariannezhad et al.

we work with non-plannable features only in the experiments, as their effect on
the forecast is the focus of this paper. For such non-plannable features, we rely
on the sales of an item in other stores. In many demand forecasting datasets,
including both of the datasets that we use, the retail company has more than
one store, and the sales of a target item in other stores can help to forecast the
demand in the target store. Formally:

xnp
t = {(xs0t , x

s1
t , . . . , x

sn
t)}, (17)

where n is the number of stores and xsit denotes the sales for the target item in
store si at time t.

Training and testing. Analogous to previous work, we use the walk-forward
strategy [27, 8] for the train-test split, as detailed in Section 3.3. Following this
strategy, we split the data according to the time dimension, and not based on
stores and items. Given a time series with a total size of T for the history of sales
data and ∆ steps to predict, we use [1, T] as the training data, [T + 1, T + ∆]
for validation and [T + ∆ + 1, T + 2∆] for testing (as illustrated in Fig. 1). We
experiment with ∆ ∈ {2, 8, 16}.
Implementation details. Our models are implemented using the Keras frame-
work [10] with TensorFlow as backend [1]. We use mini-batch stochastic gradient
descent (SGD) together with the Adam optimizer [13] to train the models. We
set the batch size to 32, and stop training when the loss on the validation set
converges. All the methods run on a Linux server with an Intel Xeon CPU, and
a GeForce GTX 980 (Maxwell GM204) GPU. The GPU code is implemented
using CUDA 9.

Metrics. We consider two metrics for evaluation: mean absolute error (MAE)

= 1
N×∆

∑N
n=1

∑T+2∆
t=T+∆+1 |yt−ŷt| and symmetric mean absolute percentage error

(SMAPE) = 100
N×∆

∑N
n=1

∑T+2∆
t=T+∆+1

|yt−ŷt|
(|yt|+|ŷt|)/2 , where yt and ŷt denote real and

predicted sales, respectively.

Parameter settings. For all of the parameters of the networks, we conduct
a grid search and leverage the parameters with the best performance on the
validation set. For the feed-forward modules, we conduct a grid search over
{1, 2, 3, 4} for the number of hidden layers, {16, 32, 64, 128, 256, 512} for the
number of nodes in each hidden layer, and {0.1, 0.2, 0.3, 0.4} for the dropout
rate. For the convolutional layers, we search over {16, 32, 64} for the number of
filters, {2, 4, 8, 16} for the filter size, and {4, 5, 6, 7, 8} for the number of layers.

5 Experimental Results

5.1 Capturing the Effects of Privileged Information

Our first set of experiments addresses the following research question: To what
extent is the proposed model, SB-PIANN, able to capture the effect of privi-
leged information? We conduct experiments with different components of our
proposed model to answer our first research question. The purpose of these ex-
periments is to reveal the importance of privileged information and to quantify
its impact on the final performance of SB-PIANN. We compare its performance

Demand Forecasting in the Presence of Privileged Information 11

Table 2: Performance of SB-PIANN and DB-PIANN and their components on
the Favorita and Dunnhumby datasets. ∗ indicates that a component is signif-
icantly outperformed by SB-PIANN; − indicaties that there is no significant
difference between DB-PIANN and SB-PIANN (student t-test, α = 0.05).

Method
∆ = 2 ∆ = 8 ∆ = 16

MAE SMAPE MAE SMAPE MAE SMAPE

Favorita dataset
HiBranch 6.126∗ 38.840∗ 6.494∗ 38.563∗ 7.278∗ 38.794∗

PIBranch 6.415∗ 38.235∗ 6.664∗ 39.692∗ 7.080∗ 38.431∗

SB-PIANN 6.069 37.139 6.277 38.102 6.868 38.241
DB-PIANN 5.985− 36.956− 6.052− 37.304− 6.752− 37.314−

Dunnhumby dataset
HiBranch 3.593 43.042∗ 3.661∗ 44.348∗ 4.079∗ 50.289∗

PIBranch 3.669∗ 44.108∗ 3.640 44.006 3.691 45.059
SB-PIANN 3.558 42.567 3.612 43.506 4.059 49.540
DB-PIANN 3.555− 42.531− 3.601− 43.384− 3.899− 47.817−

to that of the HiBranch and PIBranch in isolation, as well to the “oracle” per-
formance of DB-PIANN. DB-PIANN’s performance is only reported for the sake
of comparison; the model cannot be used for prediction in real world cases due
to the unavailability of the values of non-plannable features at prediction time.

Results and discussion. Table 2 shows the performance of HiBranch, PI-
Branch, SB-PIANN and DB-PIANN in terms of MAE and SMAPE, on testing
time intervals, i.e., [T + ∆ + 1, T + 2∆]. The results are reported for all ∆ set-
tings on the Favorita and Dunnhumby datasets. We compare the performance
of two different branches for different forecast horizons. We observe that the
performance of the PIBranch is comparable to that of the HiBranch for shorter
forecast horizons, i.e., 2 and 8, and outperforms HiBranch for the longest forecast
horizon. This shows that the PIBranch is capable of predicting the sales at least
as well as HiBranch, and is more robust with respect to forecast horizon. We
attribute the ability of PIBranch to predict future sales to two aspects: First, we
note that the historical sales data are not taken into account in the PIBranch,
and the forecast is produced solely based on the privileged information. This
indicates the usefulness of this information for demand forecasting. Second, the
obtained performance points out the effectiveness of the proposed network to
model the effects of privileged information. In other words, a deep feed-forward
neural network is capable of producing a forecast based on the sales of products
in other stores, and this forecast is comparable to and in some cases superior to
the one based on the historical sales.

We also report the performance of DB-PIANN, while noting (again) that it
cannot be used in a real world setting, as it requires the privileged information,
which is not available at prediction time. DB-PIANN outperforms individual
branches on both datasets and for all of the forecast horizons, which shows that
it is able to leverage both the historical sales and the privileged information

12 M. Ariannezhad et al.

0 20 40 60 80 100 120
0

50

100

150

200

250 actual sales
SB-PIANN predictions
HiBranch predictions
PIBranch predictions

(a)

0 20 40 60 80 100 120
0

25

50

75

100
actual sales
SB-PIANN predictions
HiBranch predictions
PIBranch predictions

(b)

Fig. 3: Forecasts produced by HiBranch, PIBranch and SB-PIANN, along with
the actual sales, for sample products. 3a is taken from Favorita and 3b is selected
from Dunnhumby. y axis shows the sales and x axis is the time. 3a and 3b show
the improved forecasts using PI.

to produce the final forecast. The performance gain also indicates that both
branches contribute positively to the final forecast; their contribution is not
overlapping, and they are both essential to achieve the highest performance.

Finally, we observe that the performance of SB-PIANN is better than that
of HiBranch and is relatively close to DB-PIANN, on both datasets and for all
forecast horizons. Recall that SB-PIANN is not using the inputs of the PIBranch,
and indirectly models the effects of privileged information via the simulation
component. The close performance of SB-PIANN to that of DB-PIANN shows
that the proposed approach is able to embed the PI from train to test time
effectively. In other words, the simulation component is capable of transferring
the effects of privileged information absorbed in the train time to the prediction
time. The superiority of SB-PIANN compared to the HiBranch supports the
hypothesis that utilizing the privileged information leads to a better performance
than a forecast that only relies on the historical data.

To gain more insights into forecasts by our proposed method, we visualize
a few examples in Fig. 3. Each figure shows the demand for a product in a
store, taken from both Favorita and Dunnhumby. We show 101 days of history
for both datasets. The history of sales as well as the actual sales in the future
are plotted, along with forecasts made by PIBranch, HiBranch, and SB-PIANN.
We observe that the forecast based on PI has a different trend from the one
based on the history of sales. This might be a result of an event that affects the
sales of the product in the stores, and leads to a better prediction for the future
sales, compared to the forecast of HiBranch, which is based on the history of
sales in the target store. We can also recognize that SB-PIANN picks-up on this
difference, and its forecast is superior to that of HiBranch.

5.2 Comparison to Existing Approaches for Demand Forecasting

Next, we focus on the following question: How effective and accurate is SB-PIANN
for the task of demand forecasting? We compare SB-PIANN to the following
state-of-the-art neural network-based forecasting models:

DA-RNN [21]. This dual-stage attention-based RNN method is proposed for
time series prediction. It uses an encoder-decoder structure with two different
attention mechanisms. In this model, the PI are available also for the future.
However, this is an unrealistic assumption; we use this model as the baseline to
evaluate the ability of our model in making use of PI.

Demand Forecasting in the Presence of Privileged Information 13

LSTNet [16]. The long- and short-term time-series network uses both CNNs
and RNNs to capture both short-term and long-term trending patterns of the
time series. It also has an auto-regressive component. The architecture is pro-
posed for multi-variate TSF, therefore we build a model for each item and fore-
cast for the target stores simultaneously. For LSTNet, we only make use of the
historical values of PI for both training and test time.

TADA [8]. An encoder-decoder based architecture that uses two LSTM branch-
es for encoding different types of feature. Since the method was tested on the
Favorita dataset, we also report their results based on their original division
of features for this dataset. For the Dunnhumby dataset, we randomly divide
the data from other stores into two categories. We again only make use of the
historical values of PI available for both training and test time.

All baselines report superior performance compared to auto-regressive models,
decision tree models, and simpler neural network-based approaches. We therefore
omit these methods from our evaluation. Aside from their state-of-the-art per-
formance, we chose these methods as baseline to cover a wide range of possible
approaches. Specifically, they apply different training schemes; DA-RNN trains
a model per time-series, LSTNet trains a model per store, and TADA uses an
approach similar to ours, training a single model for all of the data. They also
differ in the ways they treat the PI. For DA-RNN, the assumption is that these
features are available for both history and the future (which is not true in real
world settings), while the other two only use the historical values of the PI.

Implementation details. For the baseline implementation, we asked the au-
thors of TADA and DA-RNN for the code and they kindly provided us with their
own implementation. For LSTNet, we leverage the code which is made publicly
available by the authors.7 We use the same testing environment as SB-PIANN
for the baselines, as outlined in Section 4.

Results and discussion. Table 3 shows the performance of SB-PIANN com-
pared to the baselines for different forecast horizons on Favorita and Dunnhumby,
respectively. The best performance is highlighted with bold face. In almost all
cases, SB-PIANN outperforms the baselines in terms of MAE and SMAPE. We
observe that the performance of all methods starts to drop with the increase of
the forecast horizon, but SB-PIANN is more robust with respect to the length of
the forecast horizon. In all cases, the performance is better on Favorita than on
Dunnhumby in terms of SMAPE. This might be due to the fact that the sales
data in Dunnhumby is more scarce.

According to the results, SB-PIANN even outperforms DA-RNN, which makes
the unrealistic assumption of having the PI available at prediction time. The fact
that SB-PIANN outperforms even DA-RNN shows the effectiveness of our pro-
posed approach to leverage privileged information. The lower performance of
DA-RNN might also be a result of its training scheme, i.e., building a forecast
model per time series. In this scenario, the model cannot learn from the similarity
and differences between different products and stores.

7 https://github.com/laiguokun/LSTNet

14 M. Ariannezhad et al.

Table 3: Comparison of neural network-based forecasting methods on the Fa-
vorita and Dunnhumby datasets. ∗ indicates that a method is significantly out-
performed by SB-PIANN (student t-test, α = 0.05).

Method
Uses PI ∆ = 2 ∆ = 8 ∆ = 16

Train Test MAE SMAPE MAE SMAPE MAE SMAPE

Favorita dataset
DA-RNN + + 9.343∗ 48.864∗ 8.583∗ 46.174∗ 8.709∗ 43.132∗

LSTNet − − 6.619∗ 40.509∗ 7.481∗ 43.920∗ 8.332∗ 45.016∗

TADA − − 6.428∗ 36.744 7.431∗ 41.389∗ 8.463∗ 43.165∗

SB-PIANN + − 6.069 37.139 6.277 38.102 6.868 38.241

Dunnhumby dataset
DA-RNN + + 4.535∗ 52.779∗ 3.995∗ 47.154∗ 4.168∗ 48.942
LSTNet − − 4.134∗ 48.484∗ 4.818∗ 55.310∗ 5.673∗ 59.864∗

TADA − − 4.367∗ 49.018∗ 5.777∗ 63.834∗ 8.251∗ 78.055∗

SB-PIANN + − 3.558 42.567 3.612 43.506 4.059 49.540

While the special type of PI that we experiment with, i.e., sales in other
stores, suggests the use of a multi-variate TSF model, our experiments show that
compared to LSTNet, a state-of-the-art model proposed for the multi-variate
TSF, SB-PIANN, performs better in all cases. On the Favorita dataset, we com-
pare the performance of SB-PIANN with the original version of TADA, i.e.,
using the definition that the authors propose for internal and external features.
In this version, a set of 13 attributes are used as features, such as the location
of the stores and the oil price. In our approach, we only rely on the sales of the
items in other stores as features, and we observe that our model performs signif-
icantly better in terms of both error metrics, while using no manual categoriza-
tion of features. The gain in performance is more significant on the Dunnhumby
dataset, which indicates the limitation of TADA when the division of features
into internal and external as required by TADA is not straightforward. In other
words, the performance of TADA degrades when influential features cannot be
characterized as internal and external, and accordingly, cannot be fed into the
corresponding LSTM layers.

6 Conclusions and Future Work
Demand forecasting is a fundamental problem in the replenishment process of re-
tail companies. Models for forecasting the demand for a product usually consider
patterns in the history of sales data and influential features. Such influential fea-
tures can be divided into two categories: plannable features that are known for
the past and the future, and non-plannable features, for which the future values
are unknown. Neural forecasting models usually ignore non-plannable features
when predicting the amount of sales in the future.

In this paper, we identify non-plannable features as privileged information
and design a novel neural network to utilize them. We propose two different
network architectures for training and prediction time. At the time of training,
the network has two different branches to model the effect of historical sales and

Demand Forecasting in the Presence of Privileged Information 15

non-plannable features. At prediction time, the second branch is not available,
and is replaced by a simulation network that is trained to mimic its behavior.
We extensively evaluate our proposed approach on two real-world forecasting
datasets, and find that it outperforms state-of-the-art baselines in terms of mean
absolute error and symmetric mean absolute percentage error metrics.

While our proposed architecture is capable of plannable features, our focus
in this paper is on modeling non-plannable features. In future work, it will be
appealing to study different approaches to incorporate plannable features in the
model; aside from treating them as an extra dimension of the historical sales, they
can be fed into the PIBranch, or an extra dedicated branch. Moreover, although
we make no specific assumptions about the type of non-plannable features in our
model, we rely on a single type of non-plannable features in our experiments.
We also aim to investigate the impact of more sources of privileged information.

Code and data. To facilitate the reproducibility of the reported results, this
work only made use of publicly available data and our experimental implemen-
tation is publicly available at https://github.com/mzhariann/PIANN.

Acknowledgments. This research was supported by Ahold Delhaize. All con-
tent represents the opinion of the authors, which is not necessarily shared or
endorsed by their respective employers and/or sponsors.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al.:
Tensorflow: A system for large-scale machine learning. In: OSDI. pp. 265–283
(2016)

2. Adhikari, B., Xu, X., Ramakrishnan, N., Prakash, B.A.: Epideep: Exploiting em-
beddings for epidemic forecasting. In: KDD. pp. 577–586 (2019)

3. Bai, S., Kolter, J.Z., Koltun, V.: Convolutional sequence modeling revisited. In:
ICLR (2018)

4. Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using
stacked autoencoders and long-short term memory. PLoS one 12(7), e0180944
(2017)

5. Boese, J., Flunkert, V., Gasthaus, J., Januschowski, T., Lange, D., Salinas, D.,
Schelter, S., Seeger, M.W., Wang, B.: Probabilistic demand forecasting at scale.
PVLDB 10(12), 1694–1705 (2017)

6. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: fore-
casting and control. John Wiley & Sons (2015)

7. Carbonneau, R., Laframboise, K., Vahidov, R.M.: Application of machine learning
techniques for supply chain demand forecasting. European Journal of Operational
Research 184(3), 1140–1154 (2008)

8. Chen, T., Yin, H., Chen, H., Wu, L., Wang, H., Zhou, X., Li, X.: TADA: trend
alignment with dual-attention multi-task recurrent neural networks for sales pre-
diction. In: ICDM. pp. 49–58 (2018)

9. Chen, Y., Jin, X., Feng, J., Yan, S.: Training group orthogonal neural networks
with privileged information. In: IJCAI. pp. 1532–1538 (2017)

10. Chollet, F., et al.: Keras. https://keras.io (2015)

16 M. Ariannezhad et al.

11. Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., Wu, D., Wang, W.,
Pei, J., Huang, H.: Multi-horizon time series forecasting with temporal attention
learning. In: KDD. pp. 2527–2535 (2019)

12. Hoffman, J., Gupta, S., Darrell, T.: Learning with side information through modal-
ity hallucination. In: CVPR. pp. 826–834 (2016)

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

14. Koprinska, I., Wu, D., Wang, Z.: Convolutional neural networks for energy time
series forecasting. In: IJCNN. pp. 1–8 (2018)

15. Ladyzynski, P., Zbikowski, K., Grzegorzewski, P.: Stock trading with random
forests, trend detection tests and force index volume indicators. In: ICAISC. pp.
441–452 (2013)

16. Lai, G., Chang, W., Yang, Y., Liu, H.: Modeling long- and short-term temporal
patterns with deep neural networks. In: SIGIR. pp. 95–104 (2018)

17. Lambert, J., Sener, O., Savarese, S.: Deep learning under privileged information
using heteroscedastic dropout. In: CVPR. pp. 8886–8895 (2018)

18. Lopez-Paz, D., Bottou, L., Schölkopf, B., Vapnik, V.: Unifying distillation and
privileged information. In: ICLR (2016)

19. Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499 (2016)

20. Qi, Y., Li, C., Deng, H., Cai, M., Qi, Y., Deng, Y.: A deep neural framework for
sales forecasting in e-commerce. In: CIKM. pp. 299–308 (2019)

21. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W.: A dual-stage
attention-based recurrent neural network for time series prediction. In: IJCAI. pp.
2627–2633 (2017)

22. Ristanoski, G., Liu, W., Bailey, J.: Time series forecasting using distribution en-
hanced linear regression. In: PAKDD. pp. 484–495 (2013)

23. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Fore-
casting 36(3), 1181–1191 (2019)

24. Shen, Z., Zhang, Y., Lu, J., Xu, J., Xiao, G.: Seriesnet: A generative time series
forecasting model. In: IJCNN. pp. 1–8 (2018)

25. Shih, S., Sun, F., Lee, H.: Temporal pattern attention for multivariate time series
forecasting. Machine Learning 108(8-9), 1421–1441 (2019)

26. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

27. Stein, R.M.: Benchmarking default prediction models: Pitfalls and remedies in
model validation. Moody’s KMV, New York 20305 (2002)

28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NeurIPS. pp. 3104–3112 (2014)

29. Vairagade, N., Logofatu, D., Leon, F., Muharemi, F.: Demand forecasting using
random forest and artificial neural network for supply chain management. In: IC-
CCI. pp. 328–339 (2019)

30. Vapnik, V., Vashist, A.: A new learning paradigm: Learning using privileged in-
formation. Neural Networks 22(5-6), 544–557 (2009)

31. Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile
recurrent forecaster. arXiv preprint arXiv:1711.11053 (2017)

32. Wu, X., Shi, B., Dong, Y., Huang, C., Faust, L., Chawla, N.V.: Restful: Resolution-
aware forecasting of behavioral time series data. In: CIKM. pp. 1073–1082 (2018)

