
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A Comparison of Supervised Learning to Match Methods for Product Search

Sarvi, F.; Voskarides, N.; Mooiman, L.; Schelter, S.; de Rijke, M.

Publication date
2020
Document Version
Final published version
Published in
The 2020 SIGIR Workshop On eCommerce
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Sarvi, F., Voskarides, N., Mooiman, L., Schelter, S., & de Rijke, M. (2020). A Comparison of
Supervised Learning to Match Methods for Product Search. In The 2020 SIGIR Workshop On
eCommerce: July 30 : accepted papers [30] SIGIR eCom'20. https://sigir-
ecom.github.io/ecom20Papers/paper30.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/a-comparison-of-supervised-learning-to-match-methods-for-product-search(8a45b605-8493-4815-b237-271b601daf59).html
https://sigir-ecom.github.io/ecom20Papers/paper30.pdf
https://sigir-ecom.github.io/ecom20Papers/paper30.pdf


A Comparison of Supervised Learning to Match
Methods for Product Search

Fatemeh Sarvi1 Nikos Voskarides2 Lois Mooiman3 Sebastian Schelter2,4 Maarten de Rijke2,4
1AIRLab, University of Amsterdam 2University of Amsterdam 3Bol.com 4Ahold Delhaize

[f.sarvi,n.voskarides,s.schelter,m.derijke]@uva.nl,lmooiman@bol.com

ABSTRACT
The vocabulary gap is a core challenge in information retrieval (IR).
In e-commerce applications like product search, the vocabulary
gap is reported to be a bigger challenge than in more traditional
application areas in IR, such as news search or web search. As
recent learning to match methods have made important advances
in bridging the vocabulary gap for these traditional IR areas, we
investigate their potential in the context of product search.

In this paper we provide insights into using recent learning to
match methods for product search. We compare both effectiveness
and efficiency of these methods in a product search setting and
analyze their performance on two product search datasets, with
∼50,000 queries each. One is an open dataset made available as part
of a community benchmark activity at CIKM 2016. The other is a
proprietary query log obtained from a European e-commerce plat-
form. This comparison is conducted towards a better understanding
of trade-offs in choosing a preferred model for this task. We find
that (1) models that have been specifically designed for short text
matching, like MV-LSTM and DRMMTKS, are consistently among
the top three methods in all experiments; however, taking efficiency
and accuracy into account at the same time, ARC-I is the preferred
model for real world use cases; and (2) the performance from a
state-of-the-art BERT-based model is mediocre, which we attribute
to the fact that the text BERT is pre-trained on is very different
from the text we have in product search. We also provide insights
into factors that can influence model behavior for different types
of query, such as the length of retrieved list, and query complex-
ity, and discuss the implications of our findings for e-commerce
practitioners, with respect to choosing a well performing method.
ACM Reference Format:
Fatemeh Sarvi, Nikos Voskarides, Lois Mooiman, Sebastian Schelter and
Maarten de Rijke. 2020. A Comparison of Supervised Learning to Match
Methods for Product Search. In Proceedings of the 2020 SIGIR Workshop on
eCommerce (SIGIR eCom’20), July 30, 2020, Xi’an, China. ACM, New York,
NY, USA, 10 pages.

1 INTRODUCTION
Online shopping is gaining in popularity [35]. E-commerce plat-
forms offer rich choices in each of (often) many categories to the
point that finding the desired article(s) can be impossible without
an adequate search engine. In this context, an effective product
search engine benefits not just the users but also suppliers.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR eCom’20, July 30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s).

Implications of the vocabulary gap in product search.. The
vocabulary mismatch between query and document poses a critical
challenge in search [19]. The vocabulary gap occurs when docu-
ments and queries, represented as a bag-of-words, use different
terms to describe the same concepts. While BM25 [31] continues
to be a reliable work horse in practical search engines, there is
a growing collection of neural learning to match methods aimed
specifically at overcoming the vocabulary gap. These methods go
beyond lexical matching by representing queries and documents
in finite-dimensional vector spaces and learning their degree of
similarity in this space [26, 28]. In product search, the vocabulary
gap may be a larger problem than in other information retrieval (IR)
domains [36]. Product titles and queries tend to be short, and titles
are not necessarily well-structured sentences but consist of phrases
or simple combinations of keywords.
Semantic matching. While product search leverages a wide range
of ranking features [35], features that do not rely on popularity
or past interaction behavior, are deemed to be important as well.
Semantic matching is one of the most important techniques to
improve the ranking in product search [35, 36]. Several semantic
matching methods have already been applied in the area of product
search to generate latent representations for queries and product
descriptions [35, 43, 44]. Surprisingly, despite recent advances in su-
pervised learning to match methods (see Section 2 for an overview),
relatively little is known about the performance of these methods
in the setting of product search.
Our experimental study. We fill this gap by conducting a system-
atic comparison of 12 supervised learning to match methods on the
task of product search. We compare the ranking performance of
these methods in terms of Normalized Discounted Cumulative Gain
(NDCG), at position 5 and position 25 (an estimate of first page
length in a search session) on two product search datasets, both
with more than 50,000 queries. One dataset is an open dataset made
available during a benchmarking activity at CIKM 2016, the other
dataset is a proprietary dataset obtained from a large European
e-commerce platform (Sections 3 and 4).

Our main experimental finding (detailed in Section 5) is the
following: modern learning to match methods are able to make an
improvement of 134.46% in terms of NDCG at position 5 of the list,
on top of a lexical baseline that is based on BM25 on the CIKM
2016 dataset, while on the proprietary dataset this improvement is
not bigger than 29.93%. We attribute this finding to the fact that
in our proprietary dataset almost all the items presented on the
first result page have a high lexical overlap with the query, while
in the public dataset the word overlap between query and product
descriptions is about 1.8%, which is very low [40]. This implies that
for the public dataset there are more opportunities for semantic
methods to prioritize some items over the others.



SIGIR eCom’20, July 30, 2020, Virtual Event, China Sarvi, Voskarides, Mooiman, Schelter and De Rijke

We find a high degree of correlation between the performance
of the learning to match methods on our two datasets. Except for a
special case, ARC-I, we see the same models corresponding to the
top 5 scores achieved for both datasets. We find that models that
have been specifically designed for short text matching, such as
MV-LSTM and DRMMTKS, are consistently among the top three
methods in all experiments, while the performance of a BERT-based
model is mediocre. Moreover, we show model behavior regarding
different aspects of queries, namely query length and popularity,
and explain similarities and differences between the two datasets.
We also look deeper into the queries for which either of the two
matchingmethods, lexical or semantic, is preferred and discuss their
characteristics. We found that for most queries in both datasets
semantic matching can improve the ranking, however, since the
fraction of queries hurt is substantial, we conclude that query-
dependent selection of matching function would be beneficial.
Implications for e-commerce practitioners. The effectiveness
in terms of NDCG is not the only criterion in selecting a learning-
to-match model for a real world use case. As Trotman et al. [34]
point out, efficiency (both at training and inference time) is a major
consideration for product search on e-commerce platforms. We
therefore analyze our results with a focus on choosing a suitable
model for production deployments, and discuss how this choice is
influenced by the trade-off between computation time and model
performance (Section 6). We have seen that ARC-I provides a good
balance between, on the one hand effectiveness improvements over
and above a lexical baseline, with minimum effort required for
fine-tuning, and on the other hand efficiency.

2 RELATEDWORK
Product search. Many approaches have been proposed for product
search, ranging from adaptations of general web search models [9]
to using versions of faceted search to speed up browsing of prod-
ucts [37, 38]. To help select optimal approaches, Sondhi et al. [33]
propose a taxonomy for queries and costumer behavior in product
search. Independent of the type of query, it is customary to consider
a cascade of two or more steps in producing a search engine result
page (SERP): first we retrieve all potentially relevant items; then,
using one or more re-ranking or learning to rank steps, we decide
which items to put on top [34].

There are specific challenges involved in applying learning to
rank to product search; Karmaker Santu et al. [18] study these in
an e-commerce setting. The signals used for matching queries and
products in this learning to rank setup are diverse. E.g., Wu et al.
[40] combine three types of feature: (1) statistical features (e.g.,
total show count, click count, view count, purchase count of a prod-
uct); (2) query-item features (e.g., content-based query-description
matching); and, finally, (3) session features about co-clicked items
in sessions. Ludewig and Jannach [22] also consider a broad range
of ranking features in a hotel ranking setting, with features rang-
ing from descriptive statistics and latent features to product and
location features. In this paper we focus, specifically, on query-item
features and contrast their effectiveness for product search.
Learning to match. Many learning to match methods based on
deep neural networks have recently been introduced and used
in a range of retrieval tasks; see, e.g., [26, 28] for overviews. In

product search, in addition to [22, 40], Bell et al. [2] develop an
e-commerce-specific learning to match function based on query
specific term weights and Zhang et al. [44] use interaction data
between queries and products contained in a graph, along with
text embeddings generated by a deep learning to match model to
rank a list of products. Magnani et al. [25] devise (deep) learning to
match models for product search, based on different types of text
representation and loss functions.
Comparing learning to match methods. Systematic compar-
isons of (deep) learning to match methods are rare. Exceptions
include work by Linjordet and Balog [21], who examine the impact
of dataset size on training learning to match models.

Guo et al. [11] summarize the current status of neural ranking
models, as well as their underlying assumptions, major design prin-
ciples, and learning strategies. They survey the published results
of some neural ranking models for ad-hoc retrieval and QA tasks,
but mention that it is difficult to compare published results across
different papers since even the smallest changes in experimental
setup can lead to significant differences.

Brenner et al. [4] contrast the use of learning to match models
on web search vs. on product search and find a complex trade-off
between effectiveness and efficiency. Ludewig et al. [23] benchmark
four neural approaches in the context of session-based recommen-
dation against a nearest neighbors-based baseline and identify im-
portant lessons for reproducibility. Yang et al. [42] apply five neural
ranking models on the Robust04 collection to examine whether
neural ranking models improve retrieval effectiveness in limited
data scenarios.

What we add on top of the previous work listed above is a
systematic study of the effectiveness and efficiency of learning to
match methods for product search. To facilitate reproducibility, we
use the methods implemented in the MatchZoo library [12] for our
study, like [21], as well as a BERT-based baseline. We summarize
those methods in Section 3, and in Sections 4 and 5 we detail our
experimental setup and outcomes.

3 LEARNING TO MATCH METHODS
We summarize the learning to match methods that we evaluate in
our experimental study. Guo et al. [10] propose a categorization
of learning to matching models as follows: representation-based
models aim to obtain a representation for the text in both queries
and documents; interaction-based models on the other hand, aim
to capture the textual matching pattern between input texts. We
follow this organizing principle.

3.1 Representation-Based Models
DSSM. The Deep Structured Semantic Model [16] maps text strings
to a common semantic space with a deep neural network (DNN) that
converts high-dimensional text vectors to a dense representation.
Its first layer applies a letter n-gram based word hashing as a linear
transformation to reduce the dimensionality of feature vectors
and to increase the model’s robustness against out-of-vocabulary
inputs. Its final layer computes the cosine similarity between the
embedding vectors as a measure of their relevance. This model is
trained on clickthrough data to maximize the conditional likelihood
of a clicked document given the query.



A Comparison of Supervised Learning to Match Methods for Product Search SIGIR eCom’20, July 30, 2020, Virtual Event, China

CDSSM. The Convolutional Deep Structured Semantic Model [32]
extends DSSM and adopts multiple convolution layers to obtain
semantic representations for queries and documents. Its first two
layers transform the input to a representation, based on word and
letter n-grams. Next, it extracts local and global (sentence-level)
contextual features from a convolution layer followed by max-
pooling, before computing the final matching score like DSSM.
MV-LSTM. The MV-LSTM [13] captures local information to deter-
mine the importance of keywords at different positions. It leverages
a Bi-LSTM to generate positional sentence representations. Its Bi-
LSTM generates two vectors that reflect the meaning of the whole
sentence from two directions when based on the specified posi-
tion. The final positional sentence representation is obtained by
concatenating these vectors. MV-LSTM produces a matching score
by aggregating interaction signals between different positional
sentence representations to take into account contextualized local
information in a sentence.
ARC-I. The ARC-I [15] network employs a convolutional approach
for semantic similarity measurements. It leverages pre-trained word
embeddings, and several layers of convolutions and max-pooling to
generate separate dense representations for queries and documents.
Finally, it applies an MLP to compare the resulting vectors via a
non-linear similarity function.

3.2 Interaction-Based Models
ARC-II. Models that defer the interaction between inputs until
their individual representations “mature,” like ARC-I, run the risk
of losing information that can be important for matching, because
each representation is formed without knowledge of the others [15].
ARC-II [15] addresses this problem by using interactions between
query and document, so that the network gets the opportunity to
capture various matching patterns between the input texts from the
start. It learns directly from interactions rather than from individual
representations. A first convolution layer creates combinations
of the inputs via sliding windows on both sentences, so that the
remaining layers can extract matching features.
DRMM. Guo et al. [10] mention three factors in relevance match-
ing: exact matching signals, query term importance, and diverse
matching requirements, and design the architecture of their deep
matching model (DRMM) accordingly. DRMM first builds interac-
tions between pairs of words from a query and a document, and
subsequently creates a fixed-length matching histogram for each
query term. Next, the model employs a feed forward network to pro-
duce a matching score, and calculates the final score by a weighted
aggregation of the scores of the query terms.
DRMMTKS. This model is a variant of DRMM provided by the
MatchZoo [12] library. It is meant for short-text matching, and
replaces the matching histogram with a top-𝑘 max pooling layer.
MatchPyramid. This convolution-based architecture views text
matching as image recognition [29]. The model first constructs
a word-by-word matching matrix by computing pairwise word
similarities. This matrix is processed by several convolutional layers
to capture the interaction patterns between words, phrases and
sentences. In the first layer, a square kernel of size 𝑘 extracts a

feature map from the matching matrix, which is aggregated by max-
pooling to fix the feature size. Repetitions of these layers produce
higher-level features of a pre-defined size as the final embedding.
K-NRM. The kernel-based neural ranking model employs kernels
to produce soft-match signals between words [41]. Given a query
and document, it constructs a translation matrix from word pair
similarities. These similarities are based on word embeddings that
are learned jointly with the ranking model. In the next layer, ker-
nels generate 𝐾 soft-TF ranking features by counting soft matches
between pairs of words from queries and documents at multiple
levels. The model combines these soft-TF signals and feeds them
into a learning to rank layer to produce the final score.
CONV-KNRM. This model [6] is a variant of KNRM and applies a
convolution to represent n-gram embeddings of queries and docu-
ments, from which it builds translation matrices between n-grams
of different lengths in a unified embedding space. Its remaining
architecture is identical to KNRM.

3.3 Hybrid Models
DUET. DUET is a duet of two DNNs that combines the strengths of
representation- and interaction-based models [27]. DUET calculates
the relevance between a query and a document using local and
distributed representations and for this reason, has been classified as
a hybridmodel [11]. By local representationwemean properties like
the exact match position and proximity while distributed properties
are synonyms, related terms and well-formedness of content.

The local sub-network applies a one-hot encoding to each term,
fromwhich it generates a binary matrix indicating each exact match
between query and document terms. This interaction matrix is fed
into a convolution layer, and the output is passed through two fully-
connected layers, a dropout layer and another fully-connected layer,
which generates the final output. The distributed sub-network takes
a character n-graph based representation [16] of each term in the
query and document.

For the distributed part, DUET first learns non-linear transforma-
tions to the character-based input by applying a convolution layer
on both queries and documents. This step is followed by a max-
pooling step, whose output is the processed by a fully-connected
layer. The matrix output for the documents is passed through an-
other convolution layer. It then performs the matching by the
element-wise product of the two embeddings. Next, it passes the
resulting matrix from the previous step to fully-connected layers
and a dropout layer until it obtains a single score. These two sub-
networks are jointly trained as one deep neural network.
BERT. BERT is a deep bidirectional transformer architecture pre-
trained on large quantities of text [8], which has recently achieved
state-of-the-art results on ad-hoc retrieval [24, 30]. BERT encodes
two meta-tokens, namely [SEP] and [CLS], and uses text segment
embeddings to simultaneously encodemultiple text segments. [SEP]
and [CLS] are used for token separation and making judgments
about the text pairs, respectively. In the original pre-training task
[CLS] is used for determining whether the two sentences are se-
quential, but it can be fine-tuned for other tasks. In our experiments
we adopted BERT for classification, and to this end, a linear combi-
nation layer is added on top of the classifier [CLS] token [24].



SIGIR eCom’20, July 30, 2020, Virtual Event, China Sarvi, Voskarides, Mooiman, Schelter and De Rijke

4 EXPERIMENTAL SETUP
In this section, we introduce our research questions, and describe
the two datasets we use for the experiments. We also describe the
model tuning procedures and evaluation methodology.
Research questions. Our experimental study aims to answer the
following research questions:
RQ1. How do learning to match models perform in ranking for product
search compared to each other and to a lexical matching baseline?

We consider the following aspects while investigating RQ1:
• How do learning to match models perform for different types of
query in terms of length and popularity?

• What is the per query score difference of the best semantic model
compared to the lexical matching baseline?

• How does BERT perform on short, unstructured text from product
search descriptions?

By answering these questions we want to provide insights into
the usefulness of these models in a comparable setting for product
search. In product search it is important to know the model be-
havior for different types of query. For example, some e-commerce
platforms may prefer to respond as effectively as possible to popular
queries even if it yields low performance for long-tailed ones. On
the other hand, some might prefer a model that is quite robust to
different aspects of queries like length and popularity. In the last
question we want to investigate the impact of BERT pre-trained
weights on the data we collected from a product search engine,
given the fact that the documents used in pre-training BERT are
well-structured sentences, but in our case, the majority of doc-
uments (product descriptions and queries) can be considered as
phrases or combinations of keywords.

Based on the experimental results, we aim to assist data sci-
entists in e-commerce scenarios by focusing on two additional
research questions, which concern the choice of a suitable model
for e-commerce scenarios:
RQ2. Can we come to a general conclusion about which category of
models, interaction-based or representation-based, to prefer for the
product search task?

Most e-commerce companies have a high number of searches per
second, therefore, it is important for them to be able to conduct
some part of the model training offline for efficiency purposes.
Representation-based models can generate embeddings for doc-
uments separately from queries (offline), which is an important
advantage over interaction-based models in an online setting. This
motivates a comparison of these model classes to obtain an under-
standing of their (dis)advantages for e-commerce practitioners.

Furthermore, every production deployment of machine learning
has to take the cost incurred by model training and inference into
account, which often has to be traded off against the business
benefits provided by the model [20]. The time for inference is also
crucial, as the response latency of a model has a major impact on
its online performance [1]. We therefore ask the following research
question:
RQ3.Will the choice of preferred models change when we take training
time, required computational resources and query characteristics into
account?

Table 1: Basic statistics of our datasets.

CIKM 2016 Proprietary

#queries 51,888 53,474
#unique queries 26,137 40,125
#unique presented products 37,964 214,778
#clicks 36,814 63,859

By targeting this question, we aim to assist e-commerce practition-
ers with the decision which models to select as candidates for their
production use cases.
Datasets. We conduct experiments on two datasets, of which one
is publicly available and the other one is proprietary. The basic
statistics of the two datasets are shown in Table 1.
CIKM 2016. Our first dataset is the publicly released dataset from
track two of the CIKM Cup 2016.1 This dataset contains six months
of anonymized users’ search logs including query and product
description tokens, clicks, views and purchase records on an e-
commerce search engine from January 1st, 2016 to June 1st, 2016.
The dataset contains additional product metadata such as product
categories, description and price. In the original split of the data,
the last query of each session is marked as test sample, so we do
not have user interaction signals for these queries. In addition to
search sessions that come with queries, this dataset also contains
browsing logs that are query-less. We ignore this part of the data
in our experiments, since we are interested in query/document
matching based on text, and we study its impact in a SERP re-
ranking task. As a consequence, since the results achieved here
are only based on text matching on query-full queries, they are
not comparable to studies in which the whole dataset is used to
improve the ranking such as [40, 44].
Proprietary dataset. Our second dataset is extracted from the search
logs of a large, popular European e-commerce platform. The main
language of the dataset is Dutch. This dataset contains sampled
queries from ten days of users’ search logs. We leverage the first
nine days as training data and the last day queries as test data. For
each query, we know the items rendered on the first result page. We
only use the title for each item, which contains a short description
of the product to be consistent with the CIKM 2016 data. We label
positive matches between queries and items according to observed
click-through data, and remove sessions without clicks from the
dataset [17]. In the preprocessing step, we remove punctuation
marks, HTML tags, and other unknown characters from the text.
Also, we lowercase all the tokens.
Model tuning. We experiment with models from the well estab-
lished MatchZoo [12] library,2 which itself is based on Keras and
TensorFlow. The MatchZoo library contains a tuning module that
fine-tunes the models based on pre-defined model-specific hyper-
parameter spaces [12]. In the tuning process parameters are sampled
from the hyper-space, but this sampling is not random, the scores
of past samples will have an effect on the future selection process
in a way that it yields a better score. The tuner uses Tree of Parzen
Estimators (TPE) [3] to search the hyper-space. We start tuning

1https://competitions.codalab.org/competitions/11161
2https://github.com/NTMC-Community/MatchZoo

https://competitions.codalab.org/competitions/11161
https://github.com/NTMC-Community/MatchZoo


A Comparison of Supervised Learning to Match Methods for Product Search SIGIR eCom’20, July 30, 2020, Virtual Event, China

from the default parameter values provided by MatchZoo, and se-
lect hyper-parameters for all models based on a fixed validation set
in 50 rounds.

For the experiments with BERT, we used the implementation
from Contextualized Embeddings for Document Ranking (CEDR)3
provided by MacAvaney et al. [24]. We employed BERT base model
(12 layers) with multilingual weights as well as a (Dutch) mono-
lingual version called BERTje [7], which is trained on a large and
diverse dataset of 2.4 billion tokens. We conducted separate ex-
periments with both sets of weights in this work. We also added
gradient clipping and warm-up steps from the HuggingFace trans-
former [39] implementation to improve the performance.4

Evaluation setup. The cascade model [5] assumes that users scan
items presented in a SERP one by one, from the top of the list,
and the scan will continue after observing non-relevant items but
stops after a relevant item is found. Motivated by this assumption,
we only consider the items above the last clicked product in the
list as well as two items below that. This approach additionally
helps to reduce the data size while balancing the number of posi-
tive and negative samples in our data. This principle is applied to
both datasets, and we use the same maximum number of epochs
with early stopping for training all the models. Moreover, since we
labeled our proprietary data only based on clickthrough informa-
tion, we treat clicks and purchases identically for the CIKM dataset.
While we consider the items to be presented in a list, it is common
for e-commerce websites to use a grid view to display the products.
In this case, users’ examination behavior can be different from the
cascade model we use in this study.
Evaluation metrics. We report NDCG at two cut-offs: 5 and 25.
We decided for a cut-off of 5 because the top items returned for a
query are important to capture a user’s attention; we choose 25
which is the maximum number of results per query in both datasets,
and it is a good estimate of the items shown on the first page of an
e-commerce website.

5 PERFORMANCE OF LEARNING TO MATCH
METHODS FOR PRODUCT SEARCH

In this section, we seek to answer the research questions mentioned
in Section 4. For this purpose we study the performance of different
learning to match models in a comparable setting.

We first address RQ1: How do learning to match models perform
in ranking for product search compared to each other and to a lexical
matching baseline? by determining the best-performing method
or group of methods in bridging the vocabulary gap for product
search.

The overall performance of the learning to match methods on
our datasets is summarized in Table 2. Here, we re-rank an original
ranked list obtained by a lexical matching method as first step in a
two-step retrieval cascade. For the CIKM data, the original ranking
comes from BM25, so it is only based on matching between query,
and product title. For the proprietary data, we omit signals involved
in the production ranking which are not related to lexical match, so
that we obtain a similar baseline as the one we have for the public

3https://github.com/Georgetown-IR-Lab/cedr
4https://github.com/huggingface/transformers

Table 2: Performance of MatchZoo models on both datasets
in terms of NDCG at position 5 and 25.

Model CIKM data Proprietary data
NDCG@5 @25 @5 @25

Lexical 0.148 0.343 0.314 0.474
MatchPyramid 0.152 0.347 0.287 0.454
CDSSM 0.314 0.452 N/A N/A
ARC-II 0.320 0.458 0.334 0.488
ARC-I 0.326 0.462 0.408 0.549
DRMM 0.331 0.464 0.288 0.455
DSSM 0.334 0.467 N/A N/A
KNRM 0.341 0.472 0.337 0.490
DUET 0.345 0.473 0.350 0.500
MV-LSTM 0.342 0.474 0.408 0.549
CONV-KNRM 0.347 0.476 0.349 0.498
DRMMTKS 0.347 0.477 0.345 0.498
Best-BERT N/A N/A 0.340 0.493

data. As a result, the ranking produced by the lexical baseline is
purely based on matches of the query and the title, which enables
us to compare the results to the BM25 baseline provided for the
public dataset.
Results for the CIKM2016 dataset. For the CIKM dataset, all
learning to match models outperform the lexical match baseline.
The score achieved by MatchPyramid is almost the same as the
baseline, but other models perform 112.16% to 134.46% better than
BM25 in terms of NDCG@5 for the public dataset. It is worth
mentioning that, although, the differences in scores might not be
noticeable, they indicate improvement for many queries. In other
words, the 0.001 difference between the scores achieved by CONV-
KNRM and DRMMTKS at position 25, means better NDCG for
3.22% of test queries. DRMMTKS performs better than the baseline
for 36.02% of test queries. This confirms that semantic matching
can indeed improve the matching of query/item pairs in product
search as well as more general ranking tasks, even in the absence
of well-structured sentences or long documents.
Results for the proprietary dataset. Not all semantic matching
models outperform the lexical matching baseline for the propri-
etary dataset. Specifically, MatchPyramid and DRRM achieve lower
results for this dataset. On average, the spread of the results we get
for this data is smaller than for the CIKM dataset. In the latter the
improvement made by the best performing model – DRMMTKS – is
roughly 134.46% better in terms of NDCG@5 compared to the lexi-
cal baseline, which implies that in this case, semantic matching can
greatly help ranking most relevant items on top of the list. However,
the corresponding improvement of our learning to match methods
for the proprietary dataset is not bigger than 29.93% when we take
ARC-I/MV-LSTM as the best performing semantic methods. If we
compare MatchPyramid’s score as the lowest, to ARC-I/MV-LSTM
the gain is 42.16%which is still way smaller than what we see in the
public data. It should be noted that, although we report the same
score for ARC-I and MV-LSTM, they perform differently for 0.4%
of test samples. Since the difference is marginal, it is not visible in
3 decimal digits.

We attribute the lower impact of the semantic matching methods

https://github.com/Georgetown-IR-Lab/cedr
https://github.com/huggingface/transformers


SIGIR eCom’20, July 30, 2020, Virtual Event, China Sarvi, Voskarides, Mooiman, Schelter and De Rijke

on the proprietary dataset to the fact that almost all the items
presented on the first page have a high lexical overlap with the
query. In other words, the diversity of the first page, if we only
consider contextual aspects of products (titles) as the source of
diversity, is much smaller compared to the public dataset. This
implies that for the public dataset there are more opportunities for
semantic methods to prioritize some items over others. Besides,
the chronological split of our proprietary dataset makes it a more
challenging case than the public dataset.

In general, we observe that models like MV-LSTM and DR-
MMTKS are consistently among the top performing methods in all
experiments, which we attribute to the fact that these models have
been specifically designed for short text matching. The average
length of queries in our public dataset is 3.1 and the average length
for product descriptions is 4.8, which both are very short.

Note that we could not successfully finish a run of CDSSM and
DSSM on the proprietary dataset, due to out-of-memory issues with
the respective MatchZoo implementations. We plan to address this
issue in future work.

One aspect of RQ1 is to investigate the performance of BERT-
based models on short, unstructured text from product search logs.
As indicated in Table 2, our best performing BERT-based model
(Best-BERT) which employed “bert-base-multilingual-uncased" pre-
trained weights, and early stopped after 10 patience steps, is not
among the top ranked models for our proprietary dataset. In Sec-
tion 4 we mentioned that we also considered another version of
BERT named Bertje, however, since we have English terms mixed
in with the (predominantly) non-English text in product titles and
queries, multilingual weights performed better than a monolingual
model. The NDCG@25 achieved with Bertje pre-trained weights
on our dataset is 0.488 while the score achieved from multilingual
weights, in the same setting, is 0.493. It is worth mentioning that to
study the impact of fine-tuning on our dataset, we once applied the
model on the test data without any fine-tuning. The performance
we obtained is 0.445 which implies the effectiveness of fine-tuning.

We conjecture that one of the main reasons behind this poor
performance from state-of-the-art BERT is the fact that the text it
is pre-trained on is very different from the text we have in product
search; more investigations are needed to support this conjecture.

5.1 Performance for Different Types of Queries
Next, we drill down into the experimental results to investigate an
additional aspect of RQ1: How do learning to match models perform
for different types of query in terms of length and popularity?

Query length. Figure 1 depicts the ranking performance of all
models under varying query lengths. Most of the queries in our
datasets contain a single word only, but there are a few very long
queries with more than 75 words in the CIKM data and smaller
queries of 17 words in our proprietary data. Note that we restrict
ourselves to query lengths up to 8 words for which we have a
sufficient number of samples in our datasets.

For the proprietary dataset (Figure 1b), we observe that as the
query length increases the matching performance increases too.
All the models follow the same trend. Figure 2 shows the average
number of items presented in response to queries in both datasets.
In general this number is larger for the CIKM data and we can see

1 2 3 4 5 6 7 8
Length of queries

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

NC
DG

@
25

(a) CIKM dataset

1 2 3 4 5 6 7 8
Length of queries

0.5

0.6

0.7

0.8

0.9

NC
DG

@
25

(b) Proprietary dataset

ARC-I
ARC-II
BM25
Best-BERT
CDSSM
CONV-KNRM
DRMM
DRMMTKS
DSSM
DUET
KNRM
Lexical-Baseline
MVLSTM
MatchPyramid

Figure 1: Ranking performance for varying query length.
On the X-axis we see the length of the query, and Y-axis indi-
cated the average NDCG at position 25 per queries of a spec-
ified length.

1 2 3 4 5 6 7 8 9
query length

18.4

18.6

18.8

19.0

19.2

19.4

19.6

19.8

20.0

av
er

ag
e 

le
ng

th
 o

f S
ER

P

(a) CIKM dataset

1 2 3 4 5 6 7 8 9
query length

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

av
er

ag
e 

le
ng

th
 o

f S
ER

P

(b) Proprietary dataset
Figure 2: Average number of items presented on a SERP for
different lengths of queries.

that the length of SERP increases by the length of queries. In our
proprietary dataset, however, longer queries result in fewer items,
which is attributed to the fact that in most cases these long queries
are the exact descriptions of specific products which are already
known by the users. Since in these cases, the search engine can
precisely retrieve the intended products, the users can be easily
satisfied, which is visible in high scores of NDCG for these queries.
Unfortunately, we do not have access to the actual content of the
CIKM queries, so we cannot further interpret the behavior of this
data.

For the CIKM dataset (Figure 1a) however, we cannot arrive at a
reasonable conclusion regarding the relationship between query
length and performance. Since the terms in this dataset are hashed,
it is difficult for us to investigate the performance of different meth-
ods based on query length as we do not know the original terms.
When comparing different models, KNRM seems more robust to
query length compared to the other models, and CONV-KNRM also
performs quite consistently for shorter queries.
Query popularity. Figure 3 depicts the results based on the pop-
ularity of queries, i.e., the number of times a query is repeated
throughout our dataset. We again only include popularity values
for which we have a sufficient number of samples. The X-axis in-
dicates the popularity of the queries, and the Y-axis denotes the
average NDCG at position 25.

Interestingly, we observe a “valley” in themiddle for both datasets.
We can explain what we see in Figure 3b in three steps: starting
from leftmost part of the plot, it contains less popular queries which
are usually longer than the popular ones, and from what was indi-
cated in Figure 1b, we know that it is easier for the models to rank
items for these types of queries. That is why we see a relatively



A Comparison of Supervised Learning to Match Methods for Product Search SIGIR eCom’20, July 30, 2020, Virtual Event, China

10 20 30 40 50
query popularity

0.35

0.40

0.45

0.50

0.55

NC
DG

@
25

(a) CIKM dataset

0 10 20 30 40 50 60 70
query popularity

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

NC
DG

@
25

(b) Proprietary dataset

ARC-I
ARC-II
BM25
CDSSM
CONV-KNRM
DRMM
DRMMTKS
DSSM
DUET
KNRM
Lexical-Baseline
MVLSTM
MatchPyramid

Figure 3: The behavior of models based on query popularity.
The flow is quite the same in all cases and all of the models
tend to perform better for more frequently seen queries.

high performance at this part. However, as the popularity increases
the queries get shorter. The middle part contains queries that are re-
peated between 10 to 15 times, we encounter some shorter queries,
which are more challenging for the models, and are not repeated
often enough for the models to pick up the patterns between the
pairs of these queries with the large number of associated items.
This situation gets more difficult since based on the nature of the
original production ranking function which was employed during
logging of our proprietary data, we often see that the retrieved list
for a query can vary a lot from day to day. As we move further in
Figure 3b toward the most popular queries which we consider to be
short, the performance improves. The reason for this observation
can be that popular queries get repeated over and over again, the
lists of items presented for them converge, and the models can learn
the relationship between the pairs. As expected, we see that the
models generally perform better for more popular queries.

5.2 Per Query Score Difference between the
Best Semantic Model and the Lexical
Matching Baseline

Next, we focus on the final aspect of RQ1: What is the per query
score difference of the best semantic model compared to the lexical
matching baseline?

Figure 4 shows the difference between the best performing se-
mantic model and the lexical match per query for each of the
datasets. The best performing semantic model for the CIKM dataset
was DRMMTKS, while ARC-I and MV-LSTM performed best for
the proprietary data. The Y-axis shows the difference in NDCG at
position 25 of the best performing model to the lexical baseline
for all test queries. The X-axis lists the queries in decreasing order
of ΔNDCG such that the queries for which the semantic model
performs better are on the left and vice versa for the lexical model
on the right. Queries that benefit from semantic matching have a
positive value on the Y-axis while those that prefer lexical matching
have a negative value. The plots indicate that semantic matching
improves the ranking for most of the queries. This is more obvious
in Figure 4a, considering that semantic matching has more influ-
ence on the CIKM data than for the proprietary data, which is also
presented in Table 2. Although in Figure 4b this difference is not
as visible, the area under the curve for the upper part is 1.2 times
bigger than the part below the X-axis. This suggests that query-
dependent selection of matching function would be beneficial.

In the case of the CIKM data, it is hard to interpret the queries

queries
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

∆N
CD

G@
25

(a) CIKM dataset

queries
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

∆N
CD

G@
25

(b) Proprietary dataset
Figure 4: Per-query paired differences between the best se-
mantic model and lexical baseline for models trained on
each dataset and evaluated on the test sets. The Y-axis indi-
cates ΔNDCG at position 25 of ranking between best seman-
tic model and lexical baseline The X-axis lists the queries in
the referenced dataset in decreasing order of ΔNDCG such
that queries for which semantic model performs better are
on the left and vice versa for the lexical model on the right.

from the uppermost and bottom points of the plot, since we do
not have access to the actual content of the queries. However, for
the proprietary data, we can analyze these respective queries. We
observed that, analogous to the public dataset, there is no mean-
ingful difference in terms of the length and the popularity of these
queries, but the words in the queries for which semantic matching
performs best are more general and commonly used than the words,
which we see in the other group. For example, among the queries
for which semantic method vastly outperforms lexical matching,
we encounter queries like “wireless earbuds”, and “lego”, which are
closer to a category name than to one specific product. On the other
hand, we have examples like “anneke kaai,” “buzzed” and “Stephan
Vanfleteren” for queries with a higher NDCG achieved by the lexical
matching baseline, these are mostly proper nouns or specific items.

There are some queries that are repeated in both groups. In other
words, we can see sessions with the same query, while in one ses-
sion lexical matching performs better, in the other one semantic
matching provides a better ranking. This is because of different
relevance judgments from different users based on personal prefer-
ences. Examples of these queries are “star wars lego” or “perfume”
of different brands. In these cases, all the products rendered in SERP
contain the exact words from query, so the only factor that makes
a user click on an items is personal preferences and possibly the
position of the product in the list. When these preferences vary
from user to user there is no discriminating signal that the semantic
models can capture to prioritize one item over the other for future
queries.

When looking at per query best/worst performances of the se-
mantic matching model and the lexical baseline on our proprietary
dataset, we see that for 62.3% of the queries both models either
perform accurately or poorly. However, in 15.9% of the cases, we
have queries for which the performance of semantic matching is
high, while lexical matching does not perform accurately. On the
other hand, we see that the opposite behavior, i.e., where the lexical
matching baseline outperforms semantic matching, is much rarer
(7.9%).

Again it is interesting to look at some examples: among the
queries for which semantic method is preferred, we can see queries



SIGIR eCom’20, July 30, 2020, Virtual Event, China Sarvi, Voskarides, Mooiman, Schelter and De Rijke

expressed in general terms like “woonkamer klok,” “tractor hout” or
“panty met print,” which means “living room clock," “tractor wood,"
and “panty with print," respectively. These queries do not match
to any specific item, as they are more exploratory queries. Among
the queries that do not benefit from a semantic method and prefer
a lexical match, we again mostly see queries with proper nouns,
and more interestingly combinations of numbers like 11 400 700
which matches the sizes of some charging cables. For these queries,
the user exactly knows what he/she is looking for in the product
catalog and we see that these terms match to parts of titles.

5.3 Further Considerations
Impact of word embeddings. For some of the models, the word
embeddings used for initialization are more critical than for others.
For example, DRMM creates a similarity matrix based on the word
embeddings at the beginning, and does not update the embeddings
in the training process (like MV-LSTM does, for example). In our
experiments, we have all models start with a random initialization
in order to have an identical setting for both datasets to make the
results comparable. However, as a result we encountered very poor
performance for DRMM as one of the worst performing models
with NDCG scores of 0.331 and 0.288 at position 5 for the public
and proprietary data, respectively, which contrasts other studies,
where it proved to be one of the strongest models for different
tasks [11, 42].

We ran an additional experiment for DRMM, ARC-I and ARC-II
in order to investigate the impact of the leveraged word embeddings
on their performance. For training these models we experimented
with both a Word2Vec model learned from a large corpus of general
text in the same language as our proprietary data, and a Word2Vec
model learned from the text of a corresponding proprietary product
catalog and our training queries. However, we did not observe
meaningful improvements over using pre-trained embeddings.

The problem with using embeddings learned from general text
is that queries and product descriptions of our proprietary data
contain both English and non-English text, so when using only non-
English embeddings the model misses plenty of words. To solve this
problem we also trained a Word2Vec model on the product catalog
and training queries. However, we found it difficult to balance
the amount of product descriptions and queries to achieve robust
weights from the Word2Vec model.

6 IMPLICATIONS FOR E-COMMERCE
Experiments into position bias in e-commerce settings have shown
that customers are prejudiced towards the first few results [14]. It
is customary to rank products primarily based on the popularity
of a product without taking semantics into account [34]. However,
user studies and analyses of interaction logs reveal that customers
use various queries with subtle differences to search for the same
product set that should lead to different rankings [33]. Adding
semantics, to query understanding and to product ranking, should
result in a better ranking. From the point of view of generating
semantically more meaningful ranked lists of products than purely
ranking by popularity, our experiments in Section 5 suggest that
we should consider models like ARC-I, MV-LSTM and DRMMTKS.

But effectiveness as measured in terms of NDCG is not the only

criterion in selecting a learning to match model for a real world
use case. As Trotman et al. [34] point out, for product search on
e-commerce platforms, efficiency is a major consideration: both
efficiency at training time and at inference time. In order to accom-
modate for the special considerations in production use cases, we
analyze our results in this section. This discussion can be leveraged
as a starting point for deciding which model to choose for a real
world deployment by e-commerce practitioners. We focus on the
question of which model family to choose (Section 6.1) and how
this choice is influenced by the trade-off between computation time
and model performance (Section 6.2).

6.1 Choosing between Representation-Based
Models and Interaction-Based Models

We now discuss RQ2: Can we come to a general conclusion about
which category of models, interaction-based or representation-based,
to prefer for the product search task?

The motivation for this question is as follows. Most e-commerce
companies have a high number of searches per second, and are at
the same time continuously expanding their total number of prod-
ucts, partners and customers. This results in a lot of new product
and interaction data per day, as well as an ever shifting catalog
of products. As a consequence, we require a model that can be
extended with new data and is able to rank products that have not
been seen with a particular query before.

Representation-based models can generate embeddings for docu-
ments separately from queries and we can cache these embeddings
for efficiency purposes. In these models the embeddings for query
and product are not dependent on each other unlike interaction-
based models where query and product are linked. This allows us to
easily compute the embeddings for all products and popular queries
offline. For interaction-based models, even if we manage to cache
the representations of top items retrieved for popular queries, in
the case of new products or changed items (possible changes in
product description or other contents that we might use), we again
need to compute online which can be very time consuming.

Thus, we have a preference for representation based models.
Based on the results in Table 2 interaction-based models, namely
DRMMTKS and CONV-KNRM are the two best performing models
for the public dataset with NDCG@25 of 0.477 and 0.476 respec-
tively. However, the representation-based model MV-LSTM is in
the third rank with the score of 0.474, which is a marginal decrease
compared to the two interactive models. Furthermore, for our pro-
prietary dataset the best performance is from representation-based
models, ARC-I and MV-LSTM, which is fortunate for practitioners.
In summary, we would recommend representation-based models
for production deployments in general, due to the discussed op-
erational advantage of being able to incorporate new query and
production representations easily [11].

6.2 Training Cost and Inference Speed
Next, we discuss efficiency specific aspects of RQ3:Will the choice
of preferred models change when we take training time, required com-
putational resources and query characteristics into account? In the
real world, resources are always limited; by answering this question
we aim to assist e-commerce practitioners with the decision which



A Comparison of Supervised Learning to Match Methods for Product Search SIGIR eCom’20, July 30, 2020, Virtual Event, China

models to select as candidates for their production use cases. Infer-
ence time is also important since the response time of the system
has a huge impact on the user experience.

We compare the training and inference time for the learning
to match models on our proprietary dataset. We only provide this
information for our proprietary data, since it contains raw search
logs extracted from an e-commerce platform, and the chronological
split of test/train samples is a more acceptable representation of
the real world use cases.

Given that we have to trade-off computation cost and ranking
performance, based on Figure 5, we conclude that ARC-I and Best-
Bert are the strongest candidates, since they have strong ranking
performance (see Table 2) while having low training and infer-
ence times. Considering ARC-I, it is really important that we could
achieve the best performance on our dataset using this model with
the default values for its hyper-parameters (Figure 5). This means
that compared to the other models, it is possible to obtain a suffi-
cient performance using ARCI-I without the need to fine-tune the
model.
Memory consumption. In Section 5 we mentioned that we could
not successfully finish a run of CDSSM and DSSM on the propri-
etary dataset, due to out-of-memory issues with the respective
MatchZoo implementations. MatchZoo has specific preprocessing
modules for these two models that include word hashing. This pre-
processing step consumes a huge amount of memory, which makes
it inapplicable of being applied on our proprietary data. Although
MatchZoo provides us with the option of not using word hashing
for the preprocessing step of the training process, for the evaluation
part it does not support the same setting. From the experiments
we observed that CDSSM was considerably slower than DSSM, but
none of them can be considered proper choice for a big dataset like
ours.

It should also be noted that, although the MatchZoo implemen-
tation supports GPU computation, we observed a very low GPU
usage for all of our models during training and evaluation time.
In terms of average computational time spent on GPU non of the
models exceeds 5% GPU utilization during the whole process on
any of our two datasets. Since we checked the functionality of the
implementation with a QA dataset consisting of long documents,
we can attribute this observation to the fact that our texts are too
short to engage the GPU properly. We also contacted the MatchZoo
team and they suggested to increase the batch size to a very big
number to solve the issue, but since it could cause a lower ranking
performance we did not follow this advice.

6.3 Impact of Query Characteristics
Finally, we discuss aspects of RQ3 with respect to query charac-
teristics. Query characteristics are important for an e-commerce
platform because it is important to know which model is preferred
in which case. Length of the query and query popularity are two
characteristics that differ per language and per device on the plat-
form. The results from Section 5.1 show that query length does
have an influence on the model and it could be worth investing
into various models for various settings if the average query length
differs per setting. For example, from the analysis conducted, we
see that customers who access the e-commerce platform through

0.44 0.46 0.48 0.50 0.52 0.54
NCDG@25

10

20

30

40

Ti
m

e 
(s

ec
on

ds
)

(a) Performance vs. inference time

0.44 0.46 0.48 0.50 0.52 0.54
NCDG@25

2

4

6

8

10

12

14

16

Ti
m

e 
(h

ou
rs

)

(b) Performance vs. training time

performance with default params
performance after fine-tuning

ARC-I
ARC-II
Best-BERT
CONV-KNRM
DRMM
DRMMTKS
DUET
KNRM
MVLSTM
MatchPyramid

Figure 5: Ranking performance in comparison to training
and inference time for the proprietary dataset. Both ranking
performances achieved from the default hyper-parameters
and the fine-tuned ones are depicted in this figure.

an app use shorter queries than customers who use a browser. E-
commerce platforms could develop different models for different
settings, although this might affect consistency to an unacceptable
level.

Query popularity is the second important characteristic. Ide-
ally, each query should result in the best ranking for the customer.
However, popular queries are searched more often and thus these
influence the revenue more than less popular queries. A model
should thus work well enough on the less popular queries and ex-
cellent on the popular queries with a certain trade-off, so MV-LSTM
seems to be a good choice. Having said that, there exist cases where
less popular queries can equally influence the revenue (e.g., when
they are issued after a popular query in a session). This should also
be taken into consideration when selecting rankers for deployment.

6.4 Recommendations for Deployment
In terms of overall performance, we have seen that ARC-I provides a
good balance between, on the one hand effectiveness improvements
over and above a lexical baseline and on the other hand efficiency.
Plus, the fact that it can perform well with the default configuration
is another positive point.

Next, we found that in terms of query length, most learning to
match methods perform consistently across different query lengths
on the CIKM dataset, with the results for MV-LSTM going up as
query length increases; on the proprietary dataset, the performance
of all methods consistently increases with query length. In terms
of query popularity, we see consistent performance across different
levels of popularity for all learning to match models on the CIKM
dataset, but on the proprietary data we seen that some learning to
match methods clearly benefit from increased popularity, including
DUET and MV-LSTM.

Furthermore, in a side-by-side comparison between top perform-
ing learning to match methods and a lexical method, we see that
substantial fractions of queries are helped by the learning to match
method than are hurt, on both the CIKM dataset and the proprietary
dataset, while the fraction of queries hurt is substantial. The lat-
ter suggest that query-dependent selection of a matching function
would be beneficial.

Finally, we found that representation-based models provided the
best trade-off between accuracy and efficiency.



SIGIR eCom’20, July 30, 2020, Virtual Event, China Sarvi, Voskarides, Mooiman, Schelter and De Rijke

7 CONCLUSION & FUTUREWORK
In this paper, we have set up a comprehensive comparison of su-
pervised learning to match methods for product search. We have
considered 12 learning to match methods, considering both effec-
tiveness and efficiency in terms of training and testing costs. Our
comparison was organized around three main research questions,
using two datasets.

From the experiments we find that models that have been specif-
ically designed for short text matching, like MV-LSTM and DR-
MMTKS, are among the best performing models for both datasets.
By taking efficiency and accuracy into account at the same time,
ARC-I is the preferred model at least for our proprietary data, which
is a good representation of real world e-commerce scenario. More-
over, the performance from a state-of-the-art BERT-based model
is mediocre, which we attribute to the fact that the text BERT is
pre-trained on is very different from the text we have in product
search. We also provide insights that help practitioners choose a
well performing method for semantic matching in product search.

In future work, we aim to categorise queries based on their con-
tent and user intent to study the behavior of different methods
based on query type, and automatically select the methods accord-
ingly. In addition to that, it would be interesting to investigate other
reasons that make matching for product search a challenging task
for BERT-based models. Finally, adding a controlled experiment is
also beneficial to better validate the results.

DATA AND CODE
To facilitate reproducibility of the work in this paper, all codes and
parameters are shared at https://github.com/arezooSarvi/sigir2020-
eComWorkshop-LTM-for-product-search

ACKNOWLEDGMENTS
We would like to thank the reviewers for their thoughtful com-
ments and efforts towards improving our work. This research was
supported by Ahold Delhaize. All content represents the opinion of
the authors, which is not necessarily shared or endorsed by their
respective employers and/or sponsors.

REFERENCES
[1] Ioannis Arapakis, Xiao Bai, and B Barla Cambazoglu. 2014. Impact of Response

Latency on User Behavior in Web Search. In SIGIR. ACM, 103–112.
[2] Anthony Bell, Prathyusha Senthil Kumar, and Daniel Miranda. 2018. The Title

Says It All: A Title Term Weighting Strategy For ECommerce Ranking. In CIKM.
2233–2241.

[3] James S Bergstra, Rémi Bardenet, et al. 2011. Algorithms for Hyper-parameter
Optimization. In NeurIPS. 2546–2554.

[4] Eliot Brenner, Jun Zhao, et al. 2018. End-to-End Neural Ranking for eCommerce
Product Search. In eCom: The SIGIR 2018 Workshop on eCommerce.

[5] Nick Craswell, Onno Zoeter, et al. 2008. An Experimental Comparison of Click
Position-bias Models. In WSDM. 87–94.

[6] Zhuyun Dai, Chenyan Xiong, et al. 2018. Convolutional Neural Networks for
Soft-matching n-grams in Ad-hoc Search. In WSDM. ACM, 126–134.

[7] Wietse de Vries, Andreas van Cranenburgh, et al. 2019. BERTje: A Dutch BERT
Model. arXiv preprint arXiv:1912.09582 (2019).

[8] Jacob Devlin, Ming-Wei Chang, et al. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[9] Huizhong Duan, ChengXiang Zhai, et al. 2013. Supporting Keyword Search in
Product Database: A Probabilistic Approach. VLDB 6, 14 (2013), 1786–1797.

[10] Jiafeng Guo, Yixing Fan, et al. 2016. A Deep Relevance Matching Model for
Ad-hoc Retrieval. In CIKM. ACM, 55–64.

[11] Jiafeng Guo, Yixing Fan, et al. 2019. A Deep Look into Neural Ranking Models
for Information Retrieval. IPM (2019), Article 102067.

[12] Jiafeng Guo, Yixing Fan, et al. 2019. MatchZoo: A Learning, Practicing, and
Developing System for Neural Text Matching. arXiv preprint arXiv:1905.10289
(2019).

[13] Tian Guo, Tao Lin, and Yao Lu. 2018. An Interpretable LSTM Neural Network
for Autoregressive Exogenous Model. arXiv preprint arXiv:1804.05251 (2018).

[14] Katja Hofmann, Anne Schuth, et al. 2014. Effects of Position Bias on Click-based
Recommender Evaluation. In ECIR. Springer, 624–630.

[15] Baotian Hu, Zhengdong Lu, et al. 2014. Convolutional Neural Network Architec-
tures for Matching Natural Language Sentences. In NIPS. 2042–2050.

[16] Po-Sen Huang, Xiaodong He, et al. 2013. Learning Deep Structured Semantic
Models for Web Search using Clickthrough Data. In CIKM. ACM, 2333–2338.

[17] Thorsten Joachims. 2002. Optimizing Search Engines Using Clickthrough Data.
In KDD. 133–142.

[18] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017.
On Application of Learning to Rank for E-commerce Search. In SIGIR. ACM,
475–484.

[19] Hang Li and Jun Xu. 2014. Semantic Matching in Search. FnTIR 7, 5 (2014),
343–469.

[20] Edo Liberty, Zohar Karnin, et al. 2020. Elastic Machine Learning Algorithms in
Amazon SageMaker. In SIGMOD. 731–737.

[21] Trond Linjordet and Krisztian Balog. 2019. Impact of Training Dataset Size on
Neural Answer Selection Models. In ECIR. Springer, 828–835.

[22] Malte Ludewig and Dietmar Jannach. 2019. Learning to Rank Hotels for Search
and Recommendation from Session-based Interaction Logs and Meta Data. In
RecSys Challenge ’19. ACM.

[23] Malte Ludewig, NoemiMauro, et al. 2019. Performance Comparison of Neural and
Non-Neural Approaches to Session-Based Recommendation. In RecSys (RecSys
’19). ACM, 462–466.

[24] Sean MacAvaney, Andrew Yates, et al. 2019. CEDR: Contextualized Embeddings
for Document Ranking. In SIGIR. 1101–1104.

[25] Alessandro Magnani, Feng Liu, et al. 2019. Neural Product Retrieval at Wal-
mart.com. In WWW. 367–372.

[26] Bhaskar Mitra and Nick Craswell. 2017. Neural Models for Information Retrieval.
arXiv preprint arXiv:1705.01509 (2017).

[27] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match Using
Local and Distributed Representations of Text for Web Search. In WWW. ACM,
1291–1299.

[28] Kezban Dilek Onal, Ye Zhang, et al. 2018. Neural Information Retrieval: At the
End of the Early Years. Information Retrieval 21, 2–3 (June 2018), 111–182.

[29] Liang Pang, Yanyan Lan, et al. 2016. Text Matching as Image Recognition. In
AAAI.

[30] Yifan Qiao, Chenyan Xiong, et al. 2019. Understanding the Behaviors of BERT in
Ranking. arXiv preprint arXiv:1904.07531 (2019).

[31] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. FnTIR 3, 4 (2009), 333–389.

[32] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In WWW. ACM, 373–374.

[33] Parikshit Sondhi, Mohit Sharma, et al. 2018. A Taxonomy of Queries for E-
commerce Search. In SIGIR. ACM, 1245–1248.

[34] Andrew Trotman, Jon Degenhardt, and Surya Kallumadi. 2017. The Architecture
of eBay Search. In eCom: The SIGIR 2017 Workshop on eCommerce.

[35] Manos Tsagkias, Tracy Holloway King, et al. 2020. Challenges and Research
Opportunities in eCommerce Search and Recommendations. SIGIR Forum 54, 1
(June 2020).

[36] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
latent vector spaces for product search. In CIKM. ACM, 165–174.

[37] Damir Vandic, Steven Aanen, et al. 2017. Dynamic Facet Ordering for Faceted
Product Search Engines. TKDE 29, 5 (2017), 1004–1016.

[38] Damir Vandic, Flavius Frasincar, and Uzay Kaymak. 2013. Facet Selection Algo-
rithms for Web Product Search. In CIKM. ACM, 2327–2332.

[39] Thomas Wolf, Lysandre Debut, et al. 2019. HuggingFace’s Transformers: State-
of-the-art Natural Language Processing. arXiv preprint arXiv:1910.03771 (2019).

[40] Chen Wu, Ming Yan, and Luo Si. 2017. Ensemble Methods for Personalized E-
commerce Search Challenge at CIKM Cup 2016. arXiv preprint arXiv:1708.04479
(2017).

[41] Chenyan Xiong, Zhuyun Dai, et al. 2017. End-to-end Neural Ad-hoc Ranking
with Kernel Pooling. In SIGIR. ACM, 55–64.

[42] Wei Yang, Kuang Lu, et al. 2019. Critically Examining the “Neural Hype” Weak
Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models.
In SIGIR. 1129–1132.

[43] Hongchun Zhang, Tianyi Wang, et al. 2019. Improving Semantic Matching
via Multi-Task Learning in E-Commerce. In eCom: The SIGIR 2019 Workshop on
eCommerce.

[44] Yuan Zhang, Dong Wang, and Yan Zhang. 2019. Neural IR Meets Graph Embed-
ding: A Ranking Model for Product Search. In WWW. ACM, 2390–2400.

https://github.com/arezooSarvi/sigir2020-eComWorkshop-LTM-for-product-search
https://github.com/arezooSarvi/sigir2020-eComWorkshop-LTM-for-product-search

	Abstract
	1 Introduction
	2 Related work
	3 Learning To Match Methods
	3.1 Representation-Based Models
	3.2 Interaction-Based Models
	3.3 Hybrid Models

	4 Experimental Setup
	5 Performance of Learning To Match Methods for Product Search
	5.1 Performance for Different Types of Queries
	5.2 Per Query Score Difference between the Best Semantic Model and the Lexical Matching Baseline
	5.3 Further Considerations

	6 Implications for E-Commerce
	6.1 Choosing between Representation-Based Models and Interaction-Based Models
	6.2 Training Cost and Inference Speed
	6.3 Impact of Query Characteristics
	6.4 Recommendations for Deployment

	7 Conclusion & Future Work
	Acknowledgments
	References

