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Article

Relating teenagers’ science
interest network
characteristics to later science
course enrolment: An analysis
of Australian PISA 2006 and
Longitudinal Surveys of
Australian Youth data

Maien S. M. Sachisthal and
Brenda R. J. Jansen
University of Amsterdam, the Netherlands

Jonas Dalege
Santa Fe Institute, USA

Maartje E. J. Raijmakers
Free University Amsterdam, the Netherlands

Abstract

Recently, students’ interest in science has been conceptualized as a network model: the science

interest network model (SINM) in which affective, behavioural and cognitive components interact

together; building on science interest being a dynamic relational construct. In the current study,

we combine the Australian Programme for International Student Assessment (PISA) 2006 and

Longitudinal Surveys of Australian Youth 2008 data (N¼ 4758) to investigate relationships

between the network characteristics of Year 10 students with their decision to enrol in a science

course in Year 12. Specifically, we identified indicators central to the SINM and tested whether

they predicted chemistry, physics and biology course enrolment. Students’ intentions to pursue a

science-related study or career (future intentions in science) and their enjoyment of science

(science enjoyment) were the most central indicators for all three science courses. Centrality

was strongly related to course enrolment (r¼ .36–.74), lending support to the validity of network
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theory in the context of science interest, as central indicators may play an influential role within

the network.

Keywords

Science interest, subject selection, science courses, secondary school, network analysis,

prediction

Science interest is seen as an important educational outcome. It is considered to be a driving
force of engagement with the sciences, be it keeping up to date with new developments in

science, or deciding to take up a science course or pursuing a science career (e.g. Ainley &
Ainley, 2011, 2015; Nugent et al., 2015). Recently, the science interest network model was
introduced (SINM; Sachisthal et al., 2019), building on commonly agreed upon character-

istics of theories of (science) interest which focus on the development of interest (see
Renninger & Hidi, 2011). The SINM conceptualizes science interest as a dynamic relational
construct (Ainley, 2017). Interest is dynamic, in that individual interest (a more stable trait-

like form of interest) may emerge from short-lived situational interest (an externally trig-
gered state-like form of interest) through the interaction of an individual with their envi-
ronment (Hidi & Renninger, 2006; Krapp, 2002). Individual and situational interest may
interact and re-organize throughout the development of interest. Interest is relational in that

it only exists in relation to something – a teenager is interested in science, for instance (Hidi
& Renninger, 2006; Krapp, 2007; Renninger & Hidi, 2011). In the SINM, the mutual
interactions of affective, behavioural and cognitive components of science interest are cen-

tral, meaning that the dynamic aspects of interest (development) lie at the core of the model.
The potential for increasing or improving students’ interest in science through targeted

interventions (e.g. Gunter, 2013; Hulleman & Harackiewicz, 2009), and thereby positively
effecting the take-up of science courses and careers, has been highlighted as an important
area of research. Conceptualizing science interest as a network of interconnected interest

components allows for the identification of indicators that may be more central (i.e. influ-
ential), and therefore a potential target for successful interventions. If such central indica-
tors are indeed influential, we expect that they are related with relevant outcome measures,

such as the enrolment of secondary science courses by students – an important predictor of
tertiary study enrolment in science courses (Ainley et al., 2008; Maltese & Tai, 2011). The
aim of the current study is therefore to test whether centrality of indicators of the SINMs is
related to students’ later enrolment in science courses (chemistry, physics, biology).

Science interest as network

The basic premise of the SINM is that mutually interacting indicators (i.e. items) of interest

components and closely related motivational constructs constitute science interest. Interest
components are constructs that are commonly included in definitions of interest in research
literature on interest development, such as affect, behaviour, knowledge, value (Hidi &
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Renninger, 2006), whereas related motivational constructs are constructs that have been
shown to have reciprocal relationships with interest, such as self-efficacy (Fryer & Ainley,
2019) or self-concept (Marsh et al., 2005). Figure 1 (left panel) displays a representation of a
SINM; the nodes (indicators’ such as Science Enjoyment (Efu) and Engaging with Science
(Bsc)) are connected by edges (i.e. partial correlations). Edges differ in their width and style,
representing the strength and direction (positive/negative) of relationships between indica-
tors. For example, the nodes Science Enjoyment (Efu) and Future Intentions in Science
(Fmd) are closely and positively related, as indicated by the thicker, solid edge between
them, whereas the nodes Engaging with Science (Bsc) and Knowledge in Science (Kis) have
a weak negative relationship – the edge between them is thinner and dashed. In addition to
building on commonly agreed upon characteristics of (science) interest (see Renninger &
Hidi, 2011), namely content-specificity, emergence and multidimensionality, the SINM
builds on the causal attitude network model (Dalege et al., 2016), which conceptualizes
attitudes as causally interacting evaluative reactions. A distinction between the SINM
and other modelling techniques that can be used to explore relationships between interest
constructs is how the indicators (or the items presented to students) are considered. In latent
variable approaches, such as structural equation modelling (SEM), the indicators are viewed
as potential measures of the underlying constructs, while in SINM the indicators are treated
as a part of the construct. The focus of the analysis then moves away from modelling
predictive paths between constructs (e.g. enjoyment predicts behavioural engagement) in
latent variable analyses, to the analysis of the characteristics of networks in the SINM. One
characteristic that may be considered is node centrality: With the nodes assumed to be
interacting, when one (central) node changes, so should any other, closely connected

Figure 1. Left: Estimated science interest network based on a subset of indicators. Nodes represent
indicators and edges connecting them represent the mutual interactions between them. Edges differ in their
width and style (solid, dashed), representing the strength and direction (positive, negative) of the relation.
The nodes represent the following indicators: Bsc¼ Engaging with Science; Ich¼ Interest in Chemistry,
Efu¼ Science Enjoyment; Kis¼Knowledge in Science; Fmd¼ Future Intentions in Science; Vpr¼ Science
Value; Scu¼ Science Self-Concept. Right: Centrality plot of the example SINM; for purposes of simplicity,
only the (standardized) strength centrality (i.e. direct influences) and closeness (i.e. direct and indirect
influences) are displayed. The node names are displayed on the y-axis in alphabetical order.
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nodes. Nodes with more and stronger (in)direct connections should therefore have a stron-
ger influence on the network, and may hence be efficient targets for intervention (e.g.
Borsboom & Cramer, 2013; McNally, 2016).

Different measures of node centrality in psychometric network analysis exist (Freeman,
1978; Opsahl et al., 2010); most commonly used are strength centrality (i.e. strength of direct
relations of node with other nodes), betweenness centrality (i.e. number of times a node is
passed on the shortest path between any pair of nodes) and closeness centrality (i.e. indirect
and direct connections of node with other nodes). Going back to Figure 1 (right panel), the
nodes representing Future Intentions in Science (Fmd) and Enjoyment of Science (Efu) have
the strongest direct (and indirect) connections, as indicated by the strength (closeness) cen-
trality. Interventions that target these constructs would therefore be expected to have a
positive effect on the rest of the network, whereas intervening on the nodes with lowest
strength centrality – Science Value (Vpr) and Science Knowledge (Kis) – would have a
smaller effect.

Node centrality has been shown to be related with relevant outcome variables: In attitude
networks, central nodes predicted voting behaviour (Dalege et al., 2017), and in clinical
networks, central nodes predicted post-treatment outcomes in anorexia nervosa (Elliott
et al., 2020). In a previous study on the SINM using PISA 2015 data from the
Netherlands and Colombia, enjoyment nodes were strongest in the SINM for Dutch stu-
dents and behaviour nodes were strongest in the SINM for Columbian students indicating
that the efficacy of intervention targets may vary across cultural environments (Sachisthal
et al., 2019).

Overview of studies using PISA and Longitudinal Surveys of Australian
Youth (LSAY) data to predict course enrolment

Previous studies have predicted science course enrolment using the same data set as used in
the current study, using a latent variable approach. Jeffries et al. (2019) used SEM to
investigate the predictive effect of students’ background variables (e.g. gender and socio-
economic status (SES)) on their Science, Technology, Engineering and Mathematics
(STEM) subject choice, and the mediating role of attitudinal variables (personal value,
enjoyment, self-concept) as well as their achievement in science and mathematics. They
found that the attitudinal variables and achievement acted as mediators between back-
ground variables and STEM subject choice. Ainley and Ainley (2015) used three SEM
models to predict the enrolment in a biology, chemistry or physics course in the final year
of secondary school and found that prediction strength as well as structure of relations
differed for the science courses, showing the importance of domain-specificity. The science
knowledge of 15-year-olds was an important direct predictor for chemistry and physics
enrolment, but not for biology, whereas gender played an important direct role in enrolment
in biology and physics, but not in chemistry.

Current study

In the current study, we aim to test whether node centrality within the SINMs is related to
students’ later enrolment in senior secondary science courses. When representing science
interest as a network, relevant science interest components and closely related motivational
components should be included in the SINM. The following relevant components1 present
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in the PISA 2006 data set are included in the SINM (OECD, 2006): Science Enjoyment,
Science Interest, Personal Value, Future Intentions and Science Knowledge (as in Ainley &

Ainley, 2015) plus Science Self-concept, which was shown to be reciprocally related with
interest and achievement (Marsh et al., 2005) and Science-related Activities, an important

indicator of interest. Moreover, given the importance of domain-specificity of science inter-
est (e.g. Ainley & Ainley, 2015; Krapp & Prenzel, 2011), we will estimate one SINM per

science course (chemistry, physics and biology) and only include the science interest item(s)
that are related to the course in question, for example Interest in Chemistry in the SINM

focused on enrolment in chemistry courses.
Considering the cross-sectional nature of the data set and the fact that the psychometric

network approach to science interest is still in its early stages (Sachisthal et al., 2019), the
current study should be seen as an exploratory study. We do expect to find a positive

correlation between centrality of nodes and their strength of relation with the outcome
measure (course enrolment). Based on earlier studies we hypothesize that (1) generally,

enjoyment nodes will be central to the SINMs (Sachisthal et al., 2019) but that (2) centrality
of other nodes may differ between the specific course networks (Ainley & Ainley, 2015).

Method

Participants

We analysed data from the Australian PISA 2006 data (OECD, 2009) and the LSAY 2008

data from the 2006 cohort (NCVER, 2017; OECD, 2009). A sample of 14,170 teenagers
(6978 girls, 7192 boys; Mage¼ 15.78, SDage¼ .29) participated in the PISA 2006 assessment,

of which 5423 teenagers (2894 girls, 2529 boys; Mage¼ 15.72, SDage¼ .28) also participated
in the LSAY 2008 data collection and were still in school at that time. To make sure that

students indeed had the choice to elect a science course, students who followed the inter-
national baccalaureate program in their last year of secondary school were excluded

(N¼ 54). Moreover, students who were not in Year 10 in 2006 and Year 12 in 2008 were
excluded (N¼ 611), to ensure participants followed the same schooling trajectory. This

resulted in a final sample size of 4758 (2596 girls, 2162 boys; Mage¼ 15.45, SDage¼ .27).

PISA and LSAY measures

The main focus of PISA 2006 was scientific literacy, which was defined as ‘the ability to use

scientific knowledge and processes not only to understand the natural world but to partic-
ipate in decisions that affect it’ (OECD, 2006, p. 12). The Australian participants of the

PISA 2006 cycle were later tracked through the LSAY research program, which contacts the
participants once a year for up to 12 years to collect data about education, work and social

development (NCVER, 2017). Table 1 shows an overview of the self-report scales, which are
all measured on a 1 (¼ strongly disagree) to 4 (¼ strongly agree) Likert-scale, and Table 2

lists the indicators included in the network analyses. While the reliability of PISA measures
is reported for the full sample (OECD, 2009), please note that the assumption of local

independence (i.e. indicators measuring the same latent variable are not directly causally
linked) and exchangeability of indicators (i.e. additional indicators may increase reliability

but will not add substantial information) that are usually required for latent variable models
are not necessary in psychometric network models. This is because in the SINM, (1)
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indicators are thought to be mutually linked with one another and (2) indicators may differ

in their importance within the network.

Science knowledge. Students answered different subsets of the science knowledge items, which

measured knowledge about science (i.e. content knowledge; OECD, 2006), and three abilities

(identify, explain, use evidence). Based on the subsets, five probable proficiencies per student

were imputed, referred to as plausible values (PVs). PV1 was used for each science knowl-

edge indicator (content, identify, explain, use evidence) in all analyses, as has been done in

similar studies (Ainley & Ainley, 2015; Sachisthal et al., 2019).

Science course in Year 12. The LSAY 2008 data (wave 3) included a variable indicating

whether students followed a science course (0¼no; 1¼ yes) and if so, which course they

followed (NCVER, 2017). Information from these items was combined to create a dichot-

omous variable for each of the three science courses in question – biology, chemistry and

physics. It should be noted that generally, Australian students choose to enrol in a course at

the beginning of their senior secondary school (Year 11). Their Year 12 enrolment thus not

only reflects subject selection but also retention in senior secondary school science courses.

Data preparation

Before estimating the networks, we tested whether the missing data were missing completely

at random (MCAR), and whether the assumptions of multivariate normality and homosce-

dasticity were met (Jamshidian et al., 2014; see Supplementary Materials for further infor-

mation). The Hawkins test of normality and homoscedasticity was significant (p< .001),

indicating that at least one assumption was not met in the data set. The non-parametric test

was not significant (p¼ .234), meaning that MCAR can be assumed given that the data are

not normally distributed; we therefore decided to use casewise deletion of missing data.

Network estimation. The different SINMs were estimated using the R-package bootnet

(Epskamp & Fried, 2017). The indicators in Table 2 were included in the estimation and

are represented as nodes. The partial correlations per pair of nodes, controlling for relations

with all other included nodes, are represented as edges connecting the nodes. Solid (dashed)

edges represent positive (negative) partial correlations; darker and thicker edges represent

stronger partial correlations (Epskamp et al., 2012).

Table 1. Overview of the components used in the study which were assessed using self-report measures.

Component Scale name in PISA 2006 Cronbach’s alpha (OECD, 2009)

Science Enjoyment Enjoyment of science .94

Science Interest Interest in science learning .87

Personal Value Personal value of science .86

Future Intentions Future-oriented science motivation .93

Self-concept Science self-concept .93

Science Activities Science-related activities .80

PISA: Programme for International Student Assessment.

Note: Cronbach’s alpha as reported for the full sample of Australian 15-year-olds who participated in PISA 2006.
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Table 2. List of indicators used in the network, the component they are intended to measure, the colour
(or shape) corresponding to the component (as intended by PISA 2006) and their description.

Component Colour/ Shape Item description

Item

label

Science Enjoyment Light blue I generally have fun when I am learning <broad science>
topics

Efu

I like reading about <broad science> Elr

I am happy doing <broad science> problems Esp

I enjoy acquiring new knowledge in <broad science> Enk

I am interested in learning about <broad science> Els

Science Interest Yellow Physics Iph

Chemistry Ich

Plant biology Ipb

Human biology Ihb

Personal Value Red Some concepts in <broad science> help me see how I

relate to other people

Vpr

I will use <broad science> in many ways when I am an

adult

Vpa

<broad science> is very relevant to me Vpm

I find that <broad science> helps me to understand the

things around me

Vpu

When I leave school there will be many opportunities

for me to use <broad science>
Vpo

Future Intentions Green I would like to work in a career involving <broad

science>
Fmc

I would like to study <broad science> after <secondary

school>
Fms

I would like to spend my life doing advanced <broad

science>
Fmd

I would like to work on <broad science> projects as an

adult

Fmw

Science Knowledge Dark blue Plausible value in science Ksc

Plausible value in explaining phenomena scientifically Kex

Plausible value in identifying scientific issues Kis

Plausible value in using scientific evidence Kue

Self-concept Purple Learning advanced <school science> topics would be

easy for me

Sce

I can usually give good answers to <test questions> on

<school science> topics

Scg

I learn <school science> topics quickly Scl

<School science> topics are easy for me Sct

When I am being taught <school science> I can

understand the concepts very well

Scu

I can easily understand new ideas in <school science> Sci

Science Activities Maroon Science tv Btv

Science books Bsb

Web content Bwc

Science radio Bsr

Science mags Bsm

Science club Bsc

Note. The interest items are only included in corresponding course SINMs.
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Data were dichotomized because (1) of the use of different measurement scales in the

PISA 2006 data set (OECD, 2006), (2) of the finding of non-normality of data and (3)

centrality stability (CS) was highest in networks using dichotomized data. Self-reported

interest components were dichotomized based on the mid-point of the scale, behaviour

indicators were dichotomized indicating no behaviour (1¼ 0) or some behaviour (2–4¼ 1)

and the knowledge indicators were dichotomized along their median score. Due to the use of

binary data, we estimated the networks using the IsingFit default within the

estimateNetwork function (Epskamp & Fried, 2017). The eLasso-procedure was used to

estimate the edges (Van Borkulo & Epskamp, 2015), meaning that (1) all indicators are

regressed on each other; and (2) each regression is subjected to regularization, as to control

for multicollinearity, which presents a problem in data sets with many indicators (Friedman

et al., 2008; Tibshirani, 1996) and to create sparser, more interpretable models. The extend-

ed Bayesian information criterion is used to select the regression function with the best fit (as

in Foygel & Drton, 2010). The SINMs were visualized using the Fruchterman–Reingold

algorithm (Fruchterman & Reingold, 1991), in which highly correlated nodes are placed

close together and nodes with many strong correlations are placed in the centre of the

network, whereas nodes with fewer, weaker correlations are placed towards the periphery.

Forecast analysis. Before testing whether node centrality was predictive of later course enrol-

ment, we first determined the stability of three centrality measures (closeness, betweenness

and strength; Epskamp & Fried, 2017). Centrality indices are deemed sufficiently stable

if the CS coefficient is at least 0.25 and preferably above 0.5 (Epskamp, Borsboom,

et al., 2018).
To determine whether node centrality is predictive of course enrolment we conducted the

following steps for each science course SINM and centrality measure: (1) We calculated the

correlation of each node with the outcome measure across the sample. (2) This forecast

correlation was regressed on each centrality index separately. (3) Covariates: Other node

characteristics such as node variance and mean may be related with the forecast correlation

(e.g. Elliott et al., 2020; Rodebaugh et al., 2018). We controlled for their effect by including

them as covariates in the linear regression in step 2 in addition to the centrality index. A

stepwise algorithm evaluating model fit (Venables & Ripley, 2002) based on the Akaike

information criterion was then used to investigate model fit. Only the final (best fitting)

model is reported (see Table S2 in the Supplementary Materials for both models). We report

standardized regression weight (b) as a measure of effect size.

Additional analyses. We ran additional analyses to establish the stability and accuracy of the

SINMs and the centrality indices. Bootstrap difference tests were run to test which nodes

differed significantly on their strength and closeness (Epskamp, Borsboom et al., 2018). We

also performed a topological analysis to test whether any two nodes were essentially mea-

suring the same underlying construct (Jones, 2019) and ran forecast analyses based on

networks which were estimated using different methods. These additional analyses, the

covariance matrices of the networks as well as the descriptive statistics of all included

variables are included in the supplementary materials.
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Results

Network estimation

The estimated course SINM networks and the corresponding centrality plots are displayed on
the left and right panel of Figure 2, respectively. The edges connecting nodes are positive
(solid) across all three networks, indicating a positive relationship between indicators for each
course SINM. This is in line with developmental interest theories, in which positive mutually
reinforcing relations are thought to underlie the development of interest (e.g. Renninger &
Hidi, 2011). Moreover, indicators of the different included components seem to form clusters,
which are more (e.g. enjoyment cluster) or less (e.g. knowledge cluster) connected with the
other clusters. These findings suggest that enjoyment is playing a larger role in the interest
network, while knowledge plays a smaller part. The one to two indicator(s) included for the
domain-specific interest measure seem to be most closely related with indicators in the enjoy-
ment and the future intentions cluster across all three SINMs.

Only strength (CS[cor¼ 0.7]¼ .75, .75, .75) and closeness (CS[cor¼ 0.7]¼ .67, .67, .67)
centrality are included as they were sufficiently stable across the chemistry, physics and
biology networks, respectively, whereas betweenness centrality (CS[cor¼ 0.7]¼ .21, .21,
.28) was unstable. We interpret the results of the centrality of nodes only when they signif-
icantly differ from the centrality of other nodes, as shown in the bootstrap difference test
(see the Supplementary Material). In general, the strength and closeness of indicators seems
to be similar for all three SINMs, with Future Intention nodes having the highest strength
across SINMs and the nodes Vpr (Value), Bsc (Behaviour) and the Interest nodes having the
lowest strength. For closeness, a similar picture emerges: nodes related to Future Intentions
are the strongest in closeness across SINMs, followed by nodes of the Enjoyment compo-
nent and the node Sce (Self-concept). Knowledge nodes have the lowest closeness.

Forecast analysis

Step 1: Correlation between centrality and course enrolment. Figure 3 shows the relation between
centrality and course enrolment, by SINM (rows) and centrality measure (left: strength;
right: closeness). Visual inspection of Figure 3 gives an idea of which items are most central
and predicte course enrolment best. Correlations between centrality and course enrolment
are positive and significant for all subjects (ranging from r¼ . 36 to r¼ .74; all ps< .05).
Details for each subject are discussed below, by centrality index.

Strength. Seven nodes are significantly higher in strength than the other nodes across all
three course SINMs: three Future Intentions nodes (Fmd, Fmc, Fms), two Enjoyment
nodes (Els, Elr), a Personal Value node (Vpm) and a Self-concept node (Sct). The nodes
with lowest strength are one Behaviour node (Bsc), one Personal Value node (Vpr) as well as
the (or one of the) Interest node(s) (Ich for chemistry; Iph for physics and Ihb for biology).
While the Interest node(s) are low in strength, they are predictive of course enrolment (see
Figure 3; triangles).

Closeness. Nine nodes are significantly higher in closeness than the other nodes across all
three SINMs: four Future Intentions nodes (Fmd, Fmc, Fms, Fmw), one Self-concept node
(Sce) and four Enjoyment nodes (Enk, Els, Elr, Efu). The four Knowledge nodes (Ksc, Kex,
Kue, Kis) and one Personal Value node (Vpr) are consistently lower in closeness than the
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Figure 2. Course SINMs and centrality plots. Left panels: Networks depicting the relationships between the
nodes (i.e. indicators) of Interest, Enjoyment, Personal Value, Behaviour, Knowledge and Self-concept in
learners choosing chemistry (top), physics (middle) and biology (bottom) in the last year of secondary
school. See Table 2 for the item labels of the nodes. The edges correspond to partial correlations between
two nodes. Edge thickness indicates the strength of the relation, which can be positive (solid) or negative
(dashed). Right panels: Scaled centrality measures per course SINM: strength (left) and closeness (right). The
node names are displayed on the y-axis in alphabetical order.
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Figure 3. Effect of centrality on course enrolment for (a) strength centrality on chemistry course enrol-
ment, (b) closeness centrality on chemistry course enrolment, (c) strength centrality on physics course
enrolment, (d) closeness centrality on physics course enrolment, (e) strength centrality on biology course
enrolment and (f) closeness centrality on biology course enrolment. Each point represents an indicator
(node) in the networks, with different shapes corresponding to different components (see Table 2). Points
towards the right on the x-axis are central nodes. Points high on the y-axis represent nodes that are
predictive of course enrolment.
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other nodes. While the Interest node(s) are low (biology) to medium (chemistry, physics) in

closeness, they are predictive of course enrolment (see Figure 3; triangles).

Steps 2 and 3: Regressions analyses

Chemistry course enrolment – strength. The model including node mean and strength fits

best and is significant, F(2, 28)¼ 20.36, p< .001, R2
Adjusted¼ .56. Only node strength is a

significant predictor, t(28)¼ 6.28, p< .001, b¼ .76; and not the node mean t(28)¼ 1.70,

p¼ .10, b¼ .21.

Chemistry course enrolment – closeness. The model including node closeness and vari-

ance fits best and is significant, F(2, 28)¼ 18.58, p< .001, R2
Adjusted¼ .54. Node closeness is a

significant predictor, t(28)¼ 5.54, p< .001, b¼ .70; alongside node variance, t(28)¼ 3.44,

p¼ .002, b¼ .43.

Physics course enrolment – strength. The model including node strength and node vari-

ance fits best and is significant, F(2, 28)¼ 7.66, p¼ .002, R2
Adjusted¼ .31. Only node strength

is a significant predictor, t(28)¼ 3.13, p¼ .004, b¼ .49; and not node variance, t(28)¼ 1.48,

p¼ .151, b¼ .23.

Physics course enrolment – closeness. The model including node strength and node var-

iance fits best and is significant, F(2, 28)¼ 9.14, p< .001, R2
Adjusted¼ .35. Both node close-

ness, t(28)¼ 3.52, p¼ .002, b¼ .52; and not node variance, t(28)¼ 2.90, p¼ .007, b¼ .43; are

significant predictors.

Biology course enrolment – strength. The model including node strength and node mean

fits best and is significant, F(2, 29)¼ 6.25, p¼ .006, R2
Adjusted¼ .25. Both node strength, t

(29)¼ 2.53, p¼ .017, b¼ .39; and node mean, t(29)¼ 2.69, p¼ .012, b¼ .42; are significant

predictors.

Biology course enrolment – closeness. The model including node closeness and node mean

fits best and is significant, F(2, 29)¼ 6.61, p¼ .004, R2
Adjusted¼ .27. Both node closeness, t

(29)¼ 2.65, p¼ .013, b¼ .41; and node mean, t(29)¼ 2.68, p¼ .012, b¼ .41; are significant

predictors.

Discussion

Using the PISA 2006 and LSAY 2008 data (NCVER, 2017; OECD, 2006), we were able to

test whether centrality of nodes in Year 10 students’ SINMs is related to their chemistry,

physics and biology course enrolment around two years later – in their last year of second-

ary school. Our results suggest that strength as well as closeness centrality of nodes in the

SINM, meaning the extent to which a node is directly and indirectly related with other

nodes, was predictive of later behaviour, namely enrolment choices learners made. Students’

Future Intentions and their Enjoyment of learning science were most consistently central,

which replicated earlier findings of the central role of enjoyment in the SINM (Sachisthal

et al., 2019) and the importance of future intentions for later choices (e.g. Stokking, 2000).
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Theoretical implications

Theories of how (science) interest develops highlight the importance of mutual interactions

of different science interest components, such as behaviour, enjoyment and knowledge, in

the developmental trajectory from situational to individual interest (e.g. Ainley, 2017; Hidi

& Renninger, 2006; Krapp, 2002). These mutual interactions between indicators are the

central focus of analysis when using a network approach, as the indicators and their rela-

tions are what constitutes science interest (Sachisthal et al., 2019). As such, indicators that

are more closely connected to other indicators are more central – and are assumed to be

more influential – and should therefore be related with later outcomes. The results of the

current study suggest that centrality within the SINMs is a significant predictor of enrolment

in chemistry, physics and biology courses, even when controlling for covariates (mean and

variance of the indicators), therefore validating the applicability of network models in the

context of science interest. These mutual interactions between components are not com-

monly accounted for in latent variable models, in which directionality between components

is often assumed (e.g. Ainley & Ainley, 2015; Jeffries et al., 2019). While the centrality of

indicators was a significant predictor of enrolment for all three science courses, the predic-

tion strength differed between the courses. It was strongest for chemistry, followed by

physics and lowest for enrolment in biology subjects. This may be due to possible effects

of background variables, which we did not account for; gender, for instance was found to be

a direct predictor of biology, but not chemistry enrolment in an earlier study (Ainley &

Ainley, 2015). Domain-specific differences between the SINMs are also a possible reason for

differences in predictor strength, mirroring structural differences in SEM models predicting

chemistry, physics and biology course enrolment in M. Ainley and Ainley’s study (2015).
The contribution of each component at different stages within (science) interest develop-

ment is one of the open questions within interest research (e.g. Ainley, 2017; Renninger &

Hidi, 2011). It is thought that affect is more important in earlier stages of interest, whereas

value and knowledge components may contribute, in co-occurrence with affect, in later

stages of interest. As such, our results concerning centrality of nodes within the SINM

partly confirm this hypothesis, as future intentions, enjoyment (affect) and one value

node (‘Broad science is very relevant to me’) were found to be the most central nodes

across course SINMs. Knowledge was not central though, a finding that is also at odds

with the results of studies using SEM models on the same data set (Ainley & Ainley, 2015;

Jeffries et al., 2019). The finding is, however, consistent with earlier findings of the SINM

(Sachisthal et al., 2019), in which Knowledge was not found to be central to the networks.

When controlling for all other variables in the interest construct, the role of knowledge thus

seems to be less influential.

Practical implications

Similar indicators were central in all three SINMs: All four indicators of students’ future

intentions, such as wanting to spend one’s life doing advanced science, and two to five of the

five Enjoyment indicators, such as being interested in learning about science, had both the

highest indirect (closeness) and direct (strength) effect across all three course SINMs. The

two indicators of students’ self-concept in science, such as their reported ease of learning

school science topics, were either one of the highest indirect or direct indicators. Regarding

science as being relevant for oneself, an indicator of students’ personal valuing of science,
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belonged in the group of indicators having the highest direct influence. These results are
consistent with earlier research which has found that future intentions (e.g. Ainley & Ainley,
2015; Stokking, 2000), enjoyment (e.g. Lyons, 2006; Smyth & Hannan, 2006) and self-
perceptions, including self-concept (e.g. Dickh€auser et al., 2005) are important predictors
of course enrolment. The influential roles of these factors within the SINMs suggest that
targeting these indicators in interventions may increase science interest in students, and may
subsequently have a positive effect on students’ enrolment in science courses.

Limitations and avenues for future research

The results of the current study have to be interpreted with care due to the following
limitations. First, we relied on existing data sets (NCVER, 2017; OECD, 2006). These
data sets included measures and scales that were constructed to fit a latent variable per-
spective, using an empirically driven questionnaire construction approach, whereas from a
network perspective, a theory driven approach is more appropriate (see Borsboom et al.,
2004). The components of science interest were measured on different levels of specificity:
from least specific for Knowledge being a composite score based on students’ responses to
multiple test items, to most specific for the Interest indicators. This varying degree of
specificity may have led to underestimation of the edges connecting indicators measured
at different levels. Further research is needed to investigate whether networks differ for
science subjects if components are measured for specific versus general domains (i.e. mea-
suring chemistry knowledge versus science knowledge).

Second, contrary to earlier findings highlighting the importance of domain-specific inter-
est in predicting course enrolment (e.g. Maltese & Tai, 2011), the Interest indicators were in
the group with the lowest direct influence in the three SINMs. This can be attributed to the
fact that there were only one (chemistry and physics SINM) or two science interest indica-
tors (biology SINM) included in each SINM – as indicators belonging to the same science
interest component form clusters of tighter interaction, their relation with one another
contributes to their total strength centrality – meaning that the Interest indicators naturally
have a lower strength centrality. An earlier study of SINM, which included a greater number
of interest indicators than the current study, also found that nodes related to students’
interest were not the most central, neither in the Dutch nor the Columbian samples
(Sachisthal et al., 2019). In the Dutch SINM, interest nodes did not even form their own
cluster, but clustered instead with related domain-specific nodes. This finding, again, points
towards the importance of domain-specificity in these networks. In future studies, a more
balanced number of indicators per component should be used to counteract this issue.

Third, we decided to dichotomize the variables due to differences in scales measuring the
constructs, non-normality of the data (particularly those items related to the Behaviour
component), and higher stability of centrality indices. We acknowledge that this approach
can lead to a significant loss of information, but it ensures that stability indices are more
stable. For a more thorough discussion of this issue, please see Dalege et al.’s (2016) paper.

Fourth, the importance of student background variables, such as gender and SES, as well
as students’ cultural identities, which may be of particular relevance in the Australian con-
text in predicting science course enrolment or interest in science, has been reported previ-
ously (e.g. M. Ainley & Ainley, 2015; Jeffries et al., 2019; McConney et al., 2011; Van
Langen et al., 2006). These factors were not included in the current study. A previous
study of SINM using the PISA 2015 data (Sachisthal et al., 2019) found no structural
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differences of SINMs based on gender or SES in two countries, but future studies may

consider including student background variables as possible mediators in the networks.
A variety of centrality indices exist and we decided to employ the centrality indices most

widely used. Future research could use other centrality indices, one of which seems espe-

cially interesting in the context of science interest: Bridge centrality indices, which take into

account components or communities of nodes and are a measure of in how far a node

connects (i.e. bridges) the communities, and therefore may carry information between com-

munities (Blanken et al., 2018; Jones et al., 2019).
Relying on cross-sectional data, we cannot make any reliable conclusions about the

direction of relations between science interest indicators and possible individual differences

in interest development (Krapp, 2002). Intervention studies are needed to test whether

targeting central indicators within the SINMs indeed has a positive effect on interest devel-

opment. Trajectories of interest development may be studied using network tools allowing

the analysis of time series data, for instance (Epskamp, Waldorp, et al., 2018). Such analysis

would allow for the modelling of the development of interest within and between individ-

uals, which may be a fruitful avenue for research given that interest development theories

hypothesize that different components may be more or less influential throughout the devel-

opment of individual interest (e.g. Renninger & Hidi, 2011).

Conclusion

In the current study, we demonstrated that central indicators of the SINM of Year 10

students are important predictors of chemistry, physics and chemistry enrolment in their

last year of secondary school. Our results suggest that similar interventions may be fruitful

in increasing science interest for the enrolment of any of the three courses, that is increasing

the future intention of science and enjoyment of science learning. The strength of prediction

did differ between course SINMs though, with prediction strength being higher for chem-

istry and physics than for biology course enrolment. We believe that the psychometric

network approach is a promising avenue for future research, especially as it enables us to

study inter- and intra-individual dynamics of science interest development when applied to

time series data.
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