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Abstract
A large proportion of studies assessing the impact of disturbances on the invertebrate community composition focus on a 
single life stage, assuming that those are an adequate indicator of environmental conditions. The effect of a specific distur-
bance may, however, depend on the life stage of the exposed organism. Therefore, we focused on the effect of spates on the 
caddisfly Agapetus fuscipes CURTIS (Trichoptera: Glossosomatidae) during different larval stages. A 2 year field study was 
performed in which we measured the discharge dynamics and population development of A. fuscipes in four lowland streams 
in The Netherlands. A stage-structured population model (i.e. StagePop) was used to test the impact of peak discharge on the 
different life stages, as larval instars 1–4 were not effectively sampled in the field. Four different mortality rates in response 
to spates were simulated, including a constant low, a constant high, a decreasing and an increasing impact per larval stage. 
This way, we were able to show a potential association between spates and population declines, where the stage-population 
model including decreasing impact by spates with increasing larval life stage most accurately described the population 
development of the larval instars 5–8. Focusing only on late instars could thus potentially result in underestimation of the 
effects of spates on this species. In conclusion, determination of responses of critical life stages to specific disturbances may 
help to identify the causes of the presence and absence of species, and thereby aid more effective management and restora-
tion of degraded aquatic systems.

Keywords Agapetus fuscipes · Bioassessment · Discharge · Life cycle · Lowland streams

Introduction

Natural flow variations, including spates and droughts, 
largely determine the spatial and temporal dynamics of 
invertebrate populations in running waters, as species have 
evolved traits that enable them to survive, exploit and even 
depend on these flow regimes (Resh et al. 1988; Poff et al. 
1997; Lytle and Poff 2004). Disturbances outside the predict-
able flow regime to which stream organisms were originally 

adapted can, however, reduce population densities, and these 
adverse effects increase with the frequency, intensity and 
severity of the disturbance (Poff 1992; Lytle and Poff 2004). 
A specific disturbance may, however, lead to very differ-
ent ecological responses depending on the (ontogenetic) 
life stage of the exposed organism, i.e. eggs, different larval 
stages, pupae and adults each have different sensitivities 
(Lancaster and Downes 2010). This was shown for chemi-
cal pollution to which early instars of different insect species 
were commonly more sensitive than later larval stages (e.g. 
McCahon and Pascoe 1988; Stuijfzand et al. 2000; Pineda 
et al. 2012). For hydrological disturbance it has been pos-
tulated that invertebrate responses depend on the timing of 
the event relative to the life history of the constituent inver-
tebrate species (Boulton 2003; Lytle and Poff 2004; Nijboer 
2004). Hence, the timing of harmful events in relation to 
the critical periods in the life cycle of the exposed species 
may be important in determining changes in the population 
structure after a disturbance (Lancaster and Downes 2010; 
Miller et al. 2012; Wesner 2019).
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Studies assessing the impact of disturbances on inverte-
brate population dynamics that take the organism’s entire 
life cycle into consideration are, however, rare (but see 
Kohler and Hoiland 2001; Elliott 2006; Elliott 2013; Pan-
dori and Sorte 2018). Most studies focus on a single life 
stage, generally late instars or aquatic adults (Lancaster and 
Downes 2010). This is partly due to the practical limitations 
involved in the sampling of early instars, since the mesh size 
of sample nets is commonly too large to retain these small 
individuals (Cummins and Wilzbach 1988). Alternatively, 
stage-structured population models (e.g. StagePop) may be 
used to simulate the impact of a disturbance on life stages 
that are difficult to sample in the field (Kettle and Nutter 
2015). Hereby, the un-impacted population dynamics are 
modelled by using previously required information on repro-
duction, natural death rates and stage durations. Different 
scenarios can then be simulated in which the environmental 
variables or disturbances have a different effect on the death 
rates during each life stage, subsequently affecting the popu-
lation dynamics during later stages (Kettle and Nutter 2015). 
Such stage-structured population models have previously 
been used to evaluate the effectiveness of pest control during 
different life stages of an invasive culicid mosquito species 
(Wieser et al. 2019). Stage-structured population models 
were further successfully applied to assess the effects of 
invasive species and drought on crayfish population dynam-
ics during different life stages (Yarra and Magoulick 2019). 
Hence, these stage-population models may be a promising 
tool to simulate the effect of hydrologic disturbances on 
invertebrate population dynamics during different life stages, 
including those life stages that are difficult to collect.

The present study applied this approach to the caddisfly 
Agapetus fuscipes CURTIS (Trichoptera: Glossosomatidae), 
as there is adequate information available on the popula-
tion dynamics of A. fuscipes in unimpacted upper courses 
of European streams where the species can locally reach 
high densities (e.g. Nielsen 1942; Castro 1975; Becker 1990; 
Sangpradub et al. 1999; Becker 2005). A. fuscipes is a case-
building species with a univoltine life cycle consisting of an 
egg stage, eight larval instars, a pupae stage and a terrestrial 
flying adult (Castro 1975). Several life stages of A. fuscipes 
are generally simultaneously present in the stream (Becker 
2005). Some knowledge on the stress responses for different 
life stages of A. fuscipes is already available, showing that 
unpredictable drops in stream water levels may result in the 
desiccation and subsequent loss of pupae above the water 
line (Nielsen 1942; Marchant and Hehir 1999). A labora-
tory experiment showed that late instar larvae endure more 
respiratory difficulties than early instar larvae when material 
is deposited upon them (Majecki et al. 1997). Moreover, 
terrestrial adults may be affected by disturbance of the ripar-
ian vegetation, with attendant impacts on larval population 
densities (Harrison et al. 2000). The literature is, however, 

ambiguous concerning the sensitivity of A. fuscipes to 
spates. Some studies reported that A. fuscipes populations 
were very susceptible to spates (Jones et al. 1977), while 
others reported that larvae were relatively unaffected (Giller 
et al. 1991). The discrepancy between these studies may 
be related to the timing of the peak discharge in relation 
to its life cycle, as argued above, but this explanation lacks 
verification.

Therefore, we aimed to gain a better understanding of 
the effect of spates on the population dynamics of A. fusci-
pes during different larval stages. We hypothesized that first 
instar larvae are more sensitive to spates than final instar lar-
vae, i.e. high currents may cause dislodgment of first instar 
larvae as they attach themselves poorly to the gravel (Jones 
et al. 1977; Nijboer 2004). To test this hypothesis, we per-
formed a 2 year field study in which we measured discharge 
dynamics and the population development of A. fuscipes 
in four lowland streams in The Netherlands and tested the 
larval instar specific mortality rates in response to spates 
using a stage‐structured population model. Normally, these 
four streams have a relatively stable discharge pattern. How-
ever, in the first year of the field study several severe spates 
occurred, providing a ‘natural experiment’ to evaluate the 
effect of these spates on the population development of A. 
fuscipes compared to the more stable second year.

Materials and methods

Study area

The field study was performed in two regions in The Neth-
erlands, one region in Zuid-Limburg (region I: 50°54′ 
N; 5°48′ E), and one region in the Veluwe (region II: 
52°04′ N; 5°52′ E) (Fig. 1a). In each region, two head-
water streams were selected; region I Bunderbosbeek 
(BU) and Strabekervloedgraaf (ST: Fig. 1b), region II 
Seelbeek (SE) and Oude beek (OB). The water chemis-
try differed between the two regions, as the soil in Zuid-
Limburg is more calcareous than in the Veluwe, leading 
to a higher mean pH (BU = 7.2 ± 0.1 and ST = 7.3 ± 0.2 
vs SE = 6.9 ± 0.2 and OB = 7.0 ± 0.1), higher mean elec-
trical conductivity (BU = 702 ± 108 and ST = 558 ± 90 vs 
SE = 342 ± 48 and OB = 193 ± 11 µS/cm) and higher con-
centration of some micro-ions in the stream water (Sup-
plementary material A, Table S1). In spring and autumn, 
mean daily water temperatures were similar in the four 
streams (Supplementary material A, Table S1 and Fig. 
S1a). In summer, the water temperature was higher in the 
ST stream than in the other streams, while in winter the 
water temperature was lower in the ST and SE streams 
than in the BU and OB streams. In each stream, two 
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sections of 5 m length were selected, which were up to 
10 cm deep and up to 2 m wide (Fig. 1c). Coarse gravel 
was the most frequently observed substrate category in 
each section, i.e. 59% coverage in the SE stream, 61% in 
the OB stream, 74% in the BU stream and 83% in the ST 
stream (Supplementary material A, Fig. S2). Larvae gener-
ally inhabit these gravel beds, feeding on biofilms growing 
on hard substrates (Fig. 1d; Castro 1975; Becker 1990).

Data collection

Discharge dynamics The water level (m) of each stream was 
measured every 15 min for 2 years from April 2002 until 
April 2004 with a mini-Troll model ssp-100 (In-Situ inc, Ft. 
Collins, CO, USA) installed in a monitoring well (Fig. 1c). 
To be able to translate the water level measurements into 
discharge, a cross-section profile of the stream was measured 
every 2 weeks at 10 cm intervals across the channel. Dis-
charge (Q) was calculated in  m3/s from the corrected water 
level and cross-section data using the slope-area method 

I

II

Section A

Flow direction

Section B

<     5 m. >

Water level logger

Cross-section

= A. fuscipes sample

a)                                      b)

c)  

d) e) f)

Fig. 1  a Occurrence of A. fuscipes (dots) and location of study 
regions (squares) in The Netherlands: I Zuid-Limburg and II Veluwe, 
b picture of the Strabekervloedgraaf (ST stream), c schematic over-

view of the field set-up, d A. fuscipes larvae on gravel bed, e shovel 
used for sampling, f measured head capsule width of A. fuscipes 
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(Boiten 2000; details in Nijboer et al. 2003). Discharge data 
were normalized to the median flow  (Q50 or base flow) to 
enable comparison of the streams with different flow mag-
nitude (Riis et al. 2008).

Agapetus fuscipes Population density and head capsule 
width were measured every 2 weeks during the first year. 
In the second year sampling was continued every 3 months, 
which was considered sufficient to follow general trends 
in population dynamics based on the results from the first 
year. In each 5 m stream section, three random samples were 
taken from the gravel beds (Fig. 1c; N = 6 per stream). For 
each sample, the top gravel layer was collected with a shovel 
from a surface area of 45 cm2 and placed into plastic buckets 
(Fig. 1e). A total area of 270 cm2 was sampled per stream. 
This sampling surface was considered sufficient as the den-
sity of A. fuscipes was very high on these gravel beds, and 
could reach up to 388 larvae/270  cm2 (25th percentile = 9; 
median = 64; 75th percentile = 103 larvae/270  cm2). The 
samples were stored for one night aerated at 5 °C, sieved 
through a 0.16 mm mesh sieve and sorted. All larvae and 
pupae of A. fuscipes were preserved in 70% ethanol. The 
head capsule width was measured under 50 × magnification 
with a microscope equipped with a horizontal micrometer 
scale, to the nearest 0.025 mm (Fig. 1f). The A. fuscipes lar-
vae were assigned to eight larval instars, based on the head 
width classes defined by Castro (1975). Based on the entire 
sampling collection over 2 years, the number of specimens 
increased from the first larval instar to the fifth (Fig. 2), sug-
gesting that early instars 1–4 were not collected effectively 
from the field.

Stage‑structured population model

As larval instars 1–4 were not collected effectively from 
the field, we used a stage-structured population model to 
analyze the effect of peak discharges on the development 
of the A. fuscipes population density. The natural life cycle 
of the population was modeled using the delay-differential 
equation formulation by Nisbet and Gurney (1983). This 
formulation assumes that once an individual is born it passes 
through different life stages, unless it dies. The stage dura-
tions and background or natural death rates were based on 
parameters measured previously in unimpacted streams 
(see “Model parameters”). Discharge peaks were then used 
as input to the model to alter the mortality rates of each 
individual in the population based on its life stage and the 
intensity of the spate. This way we could assess the effect 
of discharge during all stages, i.e. also those that were not 
sampled effectively, on the population development during 
later stages. We simulated four scenarios with different sen-
sitivity (mortality rates) to spates and tested which scenario 
corresponded best with the measured A. fuscipes population 
density of larval instars 5–8 (see “Model testing”).

Model parameters

Parameter values were obtained from Castro (1975), who 
extensively monitored A. fuscipes in the Breitenbach, an 
unimpacted headwater stream in Central Germany with 
dimensions and temperature regimes similar to our studied 
streams (Supplementary material A, Fig. S1b). The stage-
structured population model comprised the egg stage, the 
eight larval instars, the pupal and adult stage. The time for 
one larval instar to develop into the next instar depends 
on the cohort and water temperature (Castro 1975). After 
each moult, the larvae leave their old case and build a new 
one from sand grains (Hanna 1961). The mean durations 
of these stages over all cohorts were 33, 25, 34, 44, 42, 45, 
50, 40, 27, 29, and 4 days, respectively (Castro 1975). The 
sex-ratio was 2:1 (♂:♀), with a female laying 200 eggs on 
average during her 4 day life as an adult, so we simplified 
the reproduction rate to 200/4 = 50 eggs per female per day 
(Castro 1975). Background mortality rates were estimated 
from the data on population density of larval instars 4–8 of 
Castro (1975), by dividing the area under the density curve 
by the duration of each larval instar (Southwood 1978). 
The other stages were either not sampled or not sampled 
effectively, so we extrapolated the results assuming a lin-
ear trend. This resulted in slightly higher background mor-
tality rates of the early life stages than those of the later 
life stages, decreasing from 0.016 to 0.006 day−1.
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Fig. 2  Number of specimen per larval instar collected during the 
entire sample collection period of 2 years
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Model testing

The simulation was initiated with the immigration of 1 
adult per day over 120 days, as most adults emerge over a 
4 month period, resulting in the presence of several devel-
opmental stages present at the same time (Becker 2005; 
Nijboer 2004). For each measurement year the model was 
run separately, as A. fuscipes populations may recover 
quickly after stress (Nijboer 2004). A ‘spin up’ time was 
applied to get all stages established, with 394 days for the 
BU stream, SE stream and OB stream and 424 days for 
the ST stream to match the respective pupation period in 
each stream. To determine the effect of spates we selected 
discharge peaks exceeding thresholds relevant for inver-
tebrate communities in lowland streams, including small 
spates of 2–4 times the  Q50, medium spates of 4–8 times 
the  Q50 and high spates of > 8 times the  Q50 (Verdons-
chot and van den Hoorn 2010). Mortality rates were set to 
test four different scenarios (i.e. responses) to spates: (1) 
constant low, no impact by spates, (2) constant high, all 

larval stages are highly sensitive to spates, (3) decrease 
with instar stage, the sensitivity of the larvae to spates 
decreases exponentially with increasing larval stage, and 
(4) increase with instar stage, the sensitivity of larvae to 
spates increases exponentially with increasing larval stage 
(Fig. 3). We assumed a density loss of 80% for high spates, 
40% for medium spates, and 20% for small spates (Bond 
and Downes 2003; Death 2008; Supplementary material 
B). The root mean square error (RMSE) was then used 
to test which scenario corresponded best with the meas-
ured A. fuscipes population density development of larval 
instars 5–8. The RMSE estimates the standard deviation 
of the model, so smaller values indicate a better fit. The 
unit is the same as the unit of the dependent variable, i.e. 
number of specimen/270 cm2. The analysis was performed 
in R version 3.4.1, using r package ‘StagePop’ to construct 
the stage–structured population models (Kettle and Nut-
ter 2015), ‘PBSddesolve’ to solve the delay- differential 
equations (Schnute et al. 2013) and ‘Metrics’ to calculate 
the RMSE values (Hamner et al. 2018).

Fig. 3  Four potential scenarios 
for the effects of spates on A. 
fuscipes population density 
losses per larval instar: 1) 
constant low, no impact by 
spates, 2) constant high, all 
larval stages are highly sensitive 
to spates, 3) decrease with instar 
stage, the sensitivity of the 
larvae to spates decreases with 
increasing larval stage, and 4) 
increase with instar stage, the 
sensitivity of larvae to spates 
increases with increasing larval 
stage (corresponding mortality 
rates for population density loss 
in each model in Supplementary 
material B) 3. Decrease 4. Increase

1. Constant low 2. Constant high
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Results

Discharge dynamics The base flow  (Q50) was higher in the 
OB stream (0.014 m3/s) than in the other three streams 
(0.004 m3/s). The flow duration curves showed that in 
the BU stream more peak discharges occurred in the first 
measurement year than in the second year (Supplementary 
material C). All peak discharges took place from May to 
October 2002 with one high spate (> 8 times the  Q50) on 
13 July 2002 (Fig. 4a). Discharge peaks occurred during 
both years in the ST stream, although they were higher in 
the first year. High spates took place on 13 July, 20 and 
21 August, and 3 November 2002 (Fig. 4b). Discharge in 
the SE stream was rather stable during both years, as only 
some small spates occurred between April and May 2002 
and one in November 2002 (Fig. 4c). In the OB stream, 
more peak discharges occurred in the first year than in 
the second year, with one high spate on 27 October 2002 
(Fig. 4d).

Agapetus fuscipes Pupae started to appear from the end 
of March in the ST stream and the end of April in the BU, 
SE and OB stream (Fig. 4). In all streams, the majority of 
the individuals had pupated by September. Matching the 
start of the pupation period of the model to the data on A. 
fuscipes resulted in comparable timing between the model 
and the data for the larval instars 5–8. In all streams, the 
population density of larval instars 5–8 was lower in the 
first measurement year than in the second year, except for 
the OB stream where the population density was similar 
during both years.

In the BU stream, a high spate and several smaller spates 
occurred in the first year when primarily larvae of instar 
stages 1–3 were present (Fig. 4a). Here, the models includ-
ing either a constant high impact by spates or a decreasing 
impact by spates were better able to represent the population 
development in larval instars 5–8 than the models includ-
ing either a constant low impact by spates or an increasing 
impact by spates (Table 1). In the ST stream, spates of vari-
ous intensities occurred during different life stages (Fig. 4b). 
The model including a decreasing impact by spates most 
accurately described the population development in larval 
instars 5–8 in this stream (Table 1). In the SE stream, several 
small spates occurred between instar stage 7 to instar stage 
1 (Fig. 4c). The model including a constant high impact by 
spates most accurately described the population develop-
ment in larval instars 5–8 (Table 1). In the OB stream, the 
population density of larval instars 5–8 was similar during 
both years (Fig. 4d). The high spate during instar stages 4–6 
did not seem to be associated with a decrease in population 
density. The model including decreasing impact by spates 
most accurately described the population development in 
larval instars 5–8 in this stream (Table 1).

Discussion

For three of the four studied streams the stage-population 
model including a decreasing impact by spates with larval 
life stage most accurately described the A. fuscipes popu-
lation development of larval instars 5–8, supporting our 
hypothesis. It must be stressed that the study was based on 
a ‘natural experiment’ where several high spates occurred 
during early stages, while there was only one data point for a 
high spate during later periods in the life cycle. In the fourth 
stream, the population density of larval instars 5–8 was most 
accurately described by the model including constant high 
impact by spates. In that stream only several small spates 
occurred between instar stage 7 to instar stage 1 in the first 
year. The lowered population density of larval instars 5–8 in 
that year may not have been directly related to the flow, but 
instead to the large amount of deposited sand, silt and detri-
tus on the gravel beds during this period (extra observations 
in Supplementary material A, Figure S3). A. fuscipes larvae 
may endure respiratory difficulties when material is depos-
ited upon them, in particular during later stages (Majecki 
et al. 1997). The effects of flow and sediment transport are, 
however, difficult to separate as both factors interact (Hynes 
1970). Controlled experiments are needed to understand the 
mechanistic effects of flow and sediment transport on inver-
tebrate species during a spate (e.g. Bond and Downes 2003; 
Gibbins et al. 2007), but to our knowledge such experiments 
have not been combined with testing for the effect on spe-
cific life stages.

Comparable to our study, Elliott (2006) assessed the 
effects of a severe spate on different life stages of four Elmid 
beetles species in a ‘natural experiment’. The effects of the 
spate were negligible for the larvae as they were buried 
in the gravel, which served as a refuge from the spate. In 
contrast, all adult densities were negatively affected by the 
spate, but the magnitude varied between species, presum-
ably related to species specific habitat requirements (Elliott 
2006). The same spate had limited effect on a Baetid may-
fly, as the specimens present during the spate were in larval 
stages 2–3, and probably small enough to burrow between 
small stones in the substratum to avoid effects of the spate 
(Elliott 2013). In agreement with these studies, Sagnes et al. 
(2008) observed that the aquatic insect larvae can make use 
of different hydraulic habitats while growing, i.e. dependent 
on the species they may prefer higher or lower shear velocity 
conditions with increasing larval stage. Beside the timing of 
spates during the invertebrate life cycle, Lancaster (1992) 
concluded that the time of day at which a disturbance takes 
place should be taken into account when interpreting the 
effect of peak discharges on invertebrates, as the density of 
Baetis nymphs in her study was reduced significantly by the 
spate created after sunset, but not at dawn or mid-afternoon.
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Fig. 4  Impact of discharge dynamics (Q) on A. fuscipes population 
densities during different life stages from April 2002–April 2004 in 
four streams a Bunderbosbeek (BU stream), b Strabekervloedgraaf 
(ST stream), c Seelbeek (SE stream), d Oude beek (OB stream). 
Measurements of population densities of larval instars 5–8 and pupae 
from year 1 are shown in red bars (sampled monthly) and from year 

2 in blue bars (sampled every 3 months). The best fitting stage-struc-
tured population model, which assumes that the sensitivity of larvae 
to spates decreases with increasing larval stage, is shown for each 
aquatic life stage by a red solid line for year 1 and a blue dashed line 
for year 2. Note the discharge is in sqrt-scale and y-axis for stages 
egg-instar 4 is 10 times larger than instar 5-pupae
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Fig. 4  (continued)
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Similar to other aquatic ecological studies, the early 
life stages of A. fuscipes (larvae instar 1–4) were not sam-
pled effectively in this study. The smallest larvae may have 
been present in a different (micro)habitat than the larger 
larvae, like the sand under the stones, as only the top layer 
of gravel was collected. Alternatively, they may have been 
mechanically damaged in the buckets during transport or 
passed through the sieve when sorting the samples, as the 
mesh of the sieve was larger than the head width of larval 
instars 1–4. To compensate for the ineffective sampling, 
we applied the stage-structured population model (i.e. 
StagePop), which proved to be a valuable tool to obtain 
an indication of the duration, timing and mortality patterns 
of the early life stages of A. fuscipes for which sampling 
was ineffective.

The natural life cycle of the population in the model was 
based on previously obtained parameter values, such as stage 
durations, of an un-impacted headwater stream in Central 
Germany. However, actual stage durations are dependent 
on water temperature and cohort (Castro 1975). This tem-
perature dependency may have caused slight differences 
between the timing and duration of each life stage, poten-
tially causing uncertainty in the sensitivity of the popula-
tion model compared to the field situation. In future studies, 
the model could thus be improved by making each stage 
duration temperature dependent (Kettle and Nutter 2015). 
Additionally, in some streams (e.g. BU and SE stream) that 
were disturbed by peak discharges during the first year, 
the A. fuscipes population grew fast and recovered during 
the following stable year. Similar to previous studies, we 
observed a simultaneous presence of different life stages of 
A. fuscipes in each stream, which may spread the risk of high 
mortality to discharge peaks (Becker 2005). Nijboer (2004) 
proposed that after a reduction in the population density by 
hydrological disturbances, the remaining females may be 
able to lay more eggs than normal, as there is less competi-
tion for food. Such density-dependent processes would need 
to be studied further in experiments, and could be included 
in the model to gain a better understanding the influence of 
spates on the local extinction of populations. Despite these 
uncertainties in the stage-population model, we were able 

to show that population declines may have been associated 
with the timing of spates, coinciding with the presence of 
early life stages.

Our study supports previous findings that floods can 
result in severe declines in stream invertebrate densities 
(see studies in Lake 2000; Death 2008). Although recovery 
from floods by invertebrates is typically high, some previous 
studies observed changes in species composition following 
repeated, severe and/or unpredictable flooding (e.g. Giller 
et al. 1991; Scrimgeour et al. 1988; Robinson et al. 2003). 
It is generally accepted that the effects of spates depend 
greatly on the taxon, as taxa have different resistance (abil-
ity to tolerate disturbance) and resilience to flow (ability to 
recover after a disturbance) (Death 2008; De Brouwer et al. 
2017). This study provided initial indication that the resist-
ance to peak discharge of invertebrates not only depends on 
the taxon, but also varies between life stages. This may have 
implications for management and restoration of freshwater 
ecosystems, as the current single-life-stage-based assess-
ments with a strong focus on late instar or aquatic adult life 
stages may not elucidate which stressors or disturbances 
actually constrain invertebrate population densities during 
their entire life cycle, which may lead to unsuccessful man-
agement efforts. Restoration measures might aim at envi-
ronmental factors relevant for late instars or aquatic adult 
life stages, which may not be the limiting life stage for that 
species (Bond and Lake 2003; Lancaster and Downes 2010). 
The assessment of the critical life stages of a specific spe-
cies to specific disturbances may help to identify the actual 
cause for the presence and absence of species and thereby 
aid more effective management and restoration of degraded 
aquatic systems.
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Δi represents distance from the model with the lowest RMSE, and thus best fit
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ST stream
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SE stream
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RMSE Δi RMSE Δi RMSE Δi RMSE Δi

Constant low 160 133 162 137 130 80 117 68
Constant high 27 0 39 14 49 0 74 25
Decrease with stage 28 1 25 0 72 23 49 0
Increase with stage 134 107 66 41 64 15 92 43
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