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ABSTRACT
Electronic Health Record (EHR) coding is the task of assigning
one or more International Classification of Diseases (ICD) codes
to every EHR. Most previous work either ignores the hierarchical
nature of the ICD codes or only focuses on parent-child relations.
Moreover, existing EHR coding methods predict ICD codes from the
leaf level with the greatest ICD number and the most fine-grained
categories, which makes it difficult for models to make correct de-
cisions. In order to address these problems, we model EHR coding
as a path generation task. For this approach, we need to address
two main challenges: (1) How to model relations between EHR and
ICD codes, and relations between ICD codes? (2) How to evaluate
the quality of generated ICD paths in order to obtain a signal that
can be used to supervise the learning? We propose a coarse-to-
fine ICD path generation framework, named Reinforcement Path
Generation Network (RPGNet), that implements EHR coding with
a Path Generator (PG) and a Path Discriminator (PD). We address
challenge (1) by introducing a Path Message Passing (PMP) module
in the PG to encode three types of relation: between EHRs and
ICD codes, between parent-child ICD codes, and between sibling
ICD codes. To address challenge (2), we propose a PD component
that estimates the reward for each ICD code in a generated path.
RPGNet is trained with Reinforcement Learning (RL) in an adversar-
ial manner. Experiments on the MIMIC-III benchmark dataset show
that RPGNet significantly outperforms state-of-the-art methods in
terms of micro-averaged F1 and micro-averaged AUC.

CCS CONCEPTS
• Information systems→Content analysis and feature selec-
tion; • Applied computing → Health care information sys-
tems; • Computing methodologies→ Adversarial learning; Re-
inforcement learning.
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1 INTRODUCTION
An Electronic Health Record (EHR) contains a variety of clinical
patient information, such as medical history, vital signs, lab test
results and clinical notes [23]. EHR coding aims to assign multi-
ple International Classification of Diseases (ICD) codes to EHRs.
ICD codes can be used in search, data mining, billing, epidemiol-
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Figure 1: A schematic diagram of the ICD-9 taxonomy.

ogy assessment, and quality control of health care providers [1, 5].
Fig. 1 shows an example of ICD codes organized in a hierarchical
tree structure; as the level increases, the granularity of the ICD
codes becomes finer; the ICD codes at level-4 (the leaf level) are
the most fine-grained. Automatic EHR coding is increasingly at-
tracting attention because manual coding is time-consuming and
error-prone [15].

Most existing methods for EHR coding treat the task as a multi-
label classification task on the leaf codes of the ICD taxonomy [19,
31, 40]. There are some downsides to this approach. First, the code
space is high-dimensional, with over 18,000 codes in ICD-9-CM,1
and the distribution of ICD codes is extremely unbalanced; most
of the codes are seldom used in EHRs. Second, most classification
1https://www.cdc.gov/nchs/icd/icd9cm.htm
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methods neglect relations between ICD codes, which is not con-
ducive to ICD prediction. For example, in Fig. 1 “003.21” (ICD code
of salmonella meningitis) and “003.22” (ICD code of salmonella
pneumonia) share common characteristics (i.e., they are all caused
by salmonella infections) and may be strongly related to each other.
Third, few publications [24, 39] consider such relations and only
focus on the relations between parent-child ICD codes.

To address the above issues, we propose to reformulate automatic
EHR coding as a path generation task along the ICD tree. This new
formulation generates ICD paths level by level. Intuitively, the
number of ICD codes at lower levels is generally smaller than the
number of leaf ICD codes; in other words, the candidate space of
ICD codes is reduced. The generated ICD codes at coarse-grained
levels (i.e., lower levels) can be used to facilitate the ICD generation
at more fine-grained levels (i.e., higher levels). Moreover, each ICD
code in a path can be seen as a prediction result for the EHR at
a particular level, so the path generation method can yield multi-
grained EHR coding.

However, there are two challenges to be addressed: (1) How to
model the relations between EHR and ICD codes, and between
ICD codes? There are at least three types of relation, i.e., relations
between EHRs and the ICD hierarchy, relations between parent and
child ICD codes, and relations between sibling ICD codes. (2) How
to evaluate the quality of the generated ICD paths in order to define
a supervision signal for learning? In many cases, the generated
path is partially correct (i.e., the path 1○ → 2○ → 3○ → 4○ and
the path 1○ → 2○ → 3○ → 5○ → 7○ in Fig. 1). For example, the
agent gets the correct path at level-1 and level-2, but makes wrong
decisions at level-3 because of finer ICD granularity at level-3,
which corresponds to the path 1○ → 2○ → 3○ → 4○ in Fig. 1. In
addition, the classification granularity at each level is different, and
the rewards obtained at each level should probably also be different.
Defining rewards as a signal to learn from remains a challenge [10].

In this paper, we address the issues and challenges listed above by
proposing a coarse-to-fine ICD path generation framework, namely
Reinforcement Path Generation Network (RPGNet), for automatic
EHR coding. RPGNet is a coarse-to-fine path generation framework
because it generates ICD codes from lower levels to higher lev-
els in the ICD hierarchy. RPGNet solves the EHR coding task by
taking an EHR as input and returning a set of paths whose final
nodes are codes to be assigned to the record. RPGNet contains two
main components: a Path Generator (PG) and a Path Discrimina-
tor (PD). The PG consists of an EHR Encoder and a Path Message
Passing (PMP) module. Given an EHR, the EHR Encoder is used
to obtain latent EHR representations. We implement the EHR En-
coder with a multi-channel Convolutional Neural Network (CNN).
Then, the PMP module is introduced to model relations between
EHRs and ICD codes, and between ICD codes to obtain representa-
tions of the relations. Specifically, PMP addresses challenge (1) by
propagating information between an EHR and related ICD codes.
Finally, a hybrid policy network is exploited to generate ICD paths
for a given EHR based on the relation representations. To address
challenge (2) and train RPGNet, we design a PD to evaluate the
intermediate reward for each ICD code in a path. RPGNet is trained
with Reinforcement Learning (RL) in an adversarial learning fash-
ion [13]. Specifically, the PG is meant to generate paths that are

indistinguishable from positive paths, while the PD is meant to
distinguish positive paths and generated paths.

We conduct extensive experiments on the MIMIC-III benchmark
dataset [17] to obtain empirical evidence for the effectiveness of
RPGNet. Our experimental results demonstrate that RPGNet signif-
icantly outperforms state-of-the-art methods by a large margin. We
also conduct a number of analyses to show how RPGNet performs
w.r.t. the two challenges listed above.

To sum up, the contributions of this work are as follows:
• We formulate automatic EHR coding as a path generation
task and propose a reinforcement path generation frame-
work, RPGNet, for coarse-to-fine EHR coding.

• We propose a Path Message Passing module that models the
relations between EHRs and ICD codes, and between ICD
codes by allowing information to spread between them.

• We devise a Path Discriminator with an adversarial reward
learning mechanism to evaluate the intermediate rewards
as supervision signals for learning RPGNet.

• We carry out extensive experiments on a benchmark dataset
to verify and analyze the effectiveness of RPGNet.

2 RELATEDWORK
2.1 Automatic EHR coding
In recent years, the automatic EHR coding task has been studied in
a large number of publications, in information retrieval, machine
learning, and healthcare. Kavuluru et al. [19] treat the task as amulti-
label classification problem and develop a label ranking method
based on features selected from the EHR text. Shi et al. [31] use a
neural architecture with LSTM and attention mechanism, which
takes diagnosis descriptions as input to predict ICD codes. Wang
et al. [35] propose a model that can jointly capture word and label
embeddings and exploit the cosine similarity between them to
predict ICD codes. Sadoughi et al. [30] solve the task as a multi-
task classifier problem and exploit the description of ICD codes for
regularizing the attention for each individual classifier. Xu et al.
[40] investigate several separate machine learning models to handle
EHR data from different modalities, and then employ an ensemble
method to integrate all modality-specific models to predict ICD
codes. None of the above methods takes the hierarchical relations
between ICD codes into account, which is problematic because ICD
codes are organized in a hierarchical structure.

There have been some methods that attempt to encode the hi-
erarchical structure of ICD codes. Perotte et al. [27] utilize “flat”
and “hierarchical” SVMs based on tf-idf document features for EHR
coding; the former treats each code as an individual prediction,
while the latter exploits the ICD code ontology for hierarchical
classification. Mullenbach et al. [24] adopt a CNN-based model
with a per-label attention mechanism to assign ICD codes based
on free-text descriptions. In addition, they use a Graph Neural
Network (GNN) [42] to capture the parent-child relations between
ICD codes and obtain a representation of each ICD code. Similarly,
Xie et al. [39] leverage GNNs to encode the ICD hierarchy and
incorporate multi-scale feature attention for EHR coding.

The differences between the work listed above and our work
are at least two-fold. First, no previous work formulates automatic
EHR coding as a path generation task, which is a more appropriate
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Figure 2: Overview of RPGNet. RPGNet contains twomajor components: a path generator𝐺\ and a path discriminator𝐷𝜙 . The
PMP in𝐺\ represents path message passing module. The input of RPGNet is an EHR and the output consists of coarse-to-fine
ICD paths.

modeling choice considering how ICD codes are organized. Second,
although some previous work has proposed to model relations
between ICD codes, only parent-child relations have so far been
considered while relations between sibling codes have been ignored:
we model different kinds of relation in a unified framework.

2.2 Reinforcement learning for healthcare
To the best of our knowledge, there is no prior work that uses RL
work for automatic EHR coding, so we survey related work from
a broader healthcare perspective. Tang et al. [33] use RL to create
an effective and efficient symptom checker to predict diseases by
asking patient questions. Nemati et al. [25] leverage a combination
of Hidden Markov Models and deep Q-networks to predict optimal
heparin dosing for ICU patients. Besson et al. [4] focus on disease
diagnosis based on RL by minimizing the average number of medi-
cal tests. Kao et al. [18] use hierarchical reinforcement learning for
selecting symptoms to inquire and diagnose so as to improve diag-
nosis accuracy. Wang et al. [36] propose a graph convolutional RL
model for medicine combination prediction by learning correlative
and adverse interactions between medicines.

In this work, we study how to apply RL to automatic EHR coding
where we need to generate coarse-to-fine paths of ICD codes. And
unlike the work listed above, rather than setting rewards manually,
we exploit adversarial learning to estimate rewards automatically
by determining the authenticity of the paths.

2.3 Adversarial networks for healthcare
The idea of Generative Adversarial Networks (GANs) has achieved
great success in many domains, especially in computer vision. The
training process is formalized as a game in which the generative
model is trained to generate outputs to fool the discriminator; the
discriminator judges the output of the generator and directs the gen-
erator to produce indistinguishable results. In healthcare, several

GAN-based models have been proposed to handle tabular data in
EHRs. RGAN and RCGAN [8] can generate real-valued time-series
data. Choi et al. [6] and Guan et al. [12] have proposedmedGAN and
mtGAN, respectively, to generate realistic synthetic patient records.
Yu et al. [41] use GANs in a semi-supervised learning setting to
improve the detection performance on rare diseases.

Unlike previous work, we make use of the idea of adversarial
learning in GAN and combine it with RL to explore ICD code paths
and estimate intermediate rewards for each code in a path. The dis-
criminator is used to determine the authenticity of a path explored
by our model; its results are considered as intermediate rewards for
each code in a path to guide the learning of our model.

3 METHOD
Given an EHR 𝑥 in free text, i.e., 𝑥 = [𝑤1,𝑤2, . . . ,𝑤𝑖 , . . .], where
𝑤𝑖 denotes a token, the task of EHR coding with ICD paths is to
generate several optimal ICD paths 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦 𝑗 , . . .], where
𝑦 𝑗 = [𝑐1, 𝑐2, . . . , 𝑐𝑡 , . . .] is the 𝑗-th ICD path and 𝑐𝑡 ∈ 𝐶 is the 𝑡-
th ICD code in the path, where 𝐶 represents all candidate ICD
codes. Note that all paths start with the root code 𝑐1 in the ICD tree
taxonomy. Without loss of generality, we omit the notation 𝑗 in the
following sections. Next, we describe the proposed Reinforcement
Path Generation Network (RPGNet) in detail.

3.1 Overview
RPGNet consists of two components: a path generator 𝐺\ and a
path discriminator 𝐷𝜙 , as shown in Figure 2.

The path generator𝐺\ , parameterized by \ , generates ICD paths
given an EHR. 𝐺\ contains two modules: an EHR Encoder and a
Path Message Passing (PMP) module. The EHR Encoder is used to
obtain the representation of each EHR; the PMP module is used
to merge information from the EHR, the current ICD code, and
the candidate ICD codes. The information obtained from the PMP
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module determines the initial state 𝒔𝑡 . A hybrid policy network is
designed to generate ICD path𝑦𝑡 till timestamp 𝑡 along the ICD tree
taxonomy. The path𝑦𝑡 is then integrated with the EHR information
to get a new state 𝒔𝑡+1 through the PMP module. This process is
repeated several times until the path reaches leaf ICD codes.

The path discriminator 𝐷𝜙 , parameterized by 𝜙 , is a binary clas-
sifier that takes an EHR 𝑥 and an ICD path 𝑦𝑡 till timestamp 𝑡 as
inputs and outputs a probability 𝑟𝑡 indicating whether the current
path is a ground truth path or generated by 𝐺\ . Specifically, the
generated path 𝑦𝑡 till timestamp 𝑡 is first encoded into a vector
representation 𝒉𝑡 using an Long Short Term Memory (LSTM), and
concatenates with an EHR representation 𝒙 . The concatenated rep-
resentation is then fed into a fully-connected layer with sigmoid
activation function to get 𝑟𝑡 , which indicates the probability of 𝑦𝑡
being a part of a ground truth path. 𝑟𝑡 is considered as a reward to
guide the learning of the path generator 𝐺\ .

3.2 Markov Decision Process formulation
Wemodel the above process as aMarkovDecision Process (MDP) [3]
⟨S,A,T ,R, 𝛾⟩, where S is a continuous state space, A is the set
of all available actions, T is the state transition function, R is the
reward function of each (state, action) pair, and 𝛾 is the discount
factor. Next, we introduce how we model S,A,T , and R in detail.

• State S. The state S contains EHR information, current ICD
information, and children ICD information.

• Action A. A is organized in a hierarchical structure con-
sistent with the ICD taxonomy, where the action space is
different for different steps when generating an ICD path.
For example, if the agent reaches ICD code 𝑎𝑡−1 whose level
is 𝑡−1, the candidate actions at timestamp 𝑡 are all ICD codes
at level 𝑡 .

• Transition T . T represents the transition function from
current state to the next state. In our case, the transition
function is deterministic, which means that the next state
𝒔𝑡+1 is not stochastic and only depends on the current state
𝒔𝑡 and action 𝑎𝑡 .

• Reward R. The reward 𝑟𝑡 ∈ R indicates how good the
selected ICD code is at timestamp 𝑡 which is evaluated auto-
matically by the path discriminator 𝐷𝜙 .

In order to encourage the path generator to generate correct ICD
paths that are indistinguishable from ground truth paths, we pro-
pose to maximize the expected rewards of the path generator using
the reinforce algorithm [37]:

𝐽 (\ ) = E𝑎∼𝜋 (𝑎 |𝒔,𝒙 ;\ )

(∑
𝑡

𝑅 (𝒔𝑡 ,𝒙),𝑎𝑡

)
=

∑
𝑡

∑
𝑎𝑡 ∈A

𝜋 (𝑎𝑡 | 𝒔𝑡 , 𝒙 ;\ )𝑅 (𝒔𝑡 ,𝒙),𝑎𝑡 ,
(1)

where 𝐽 (\ ) is the expected total rewards for one episode; 𝜋 (𝑎𝑡 |
𝒔𝑡 , 𝒙;\ ) is the hybrid policy network of the path generator 𝐺\ ,
which maps the state vector 𝒔𝑡 and EHR representation 𝒙 to a sto-
chastic policy 𝑎𝑡 . 𝑎𝑡 is the generated ICD code based on the current
state 𝒔𝑡 and EHR representation 𝒙 . 𝑅 (𝑠𝑡 ,𝑥),𝑎𝑡 indicates the reward
value the agent receives for executing 𝑎𝑡 , which is implemented
with the path discriminator 𝐷𝜙 . We can update \ with the policy
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ond, the relation representation 𝒐𝑡 is spread to children (i.e.,
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parent code𝐴 and each child𝐴𝑖 . Third, the 𝒗𝑡 passes between
siblings (i.e.,𝐴1,𝐴2 and𝐴3) to get the final relation represen-
tation 𝒎𝑡 . Lastly, after passing through the two gates 𝜎 and
1−𝜎 , the relation representation𝒎𝑡 and EHR representation
𝒙 are added together as state 𝑠𝑡 .

gradient as follows:

∇𝐽 (\ ) =
∑
𝑡

∑
𝑎𝑡 ∈A

𝜋 (𝑎𝑡 | 𝒔𝑡 , 𝒙 ;\ )∇\ log𝜋 (𝑎𝑡 | 𝒔𝑡 , 𝒙 ;\ ) . (2)

Next, we will show how to model 𝜋 (𝑎𝑡 | 𝒔𝑡 , 𝒙;\ ) and 𝑅 (𝑠𝑡 ,𝑥),𝑎𝑡 in
the path generator 𝐺\ and path discriminator 𝐷𝜙 , respectively.

3.3 Path generator 𝐺\

Wemodel 𝜋 (𝑎𝑡 | 𝒔𝑡 , 𝒙 ;\ ) with a hybrid policy network that consists
of two policies, a local policy 𝜋𝑙 and a global policy 𝜋𝑔 :

𝜋 (𝑎𝑡 | 𝒔𝑡 , 𝒙 ;\ ) = _𝜋𝑙 (𝑎𝑡 | 𝒔𝑡 ;\𝑙 ) + (1 − _)𝜋𝑔 (𝑎𝑡 | 𝒙 ;\𝑔) . (3)

Here, _ is a trade-off factor to balance the two policies. The local
policy 𝜋𝑙 decides the next ICD code from child ICD codes of the last
action 𝑎𝑡−1 based on state 𝒔𝑡 to extend the path, while the global
policy 𝜋𝑔 decides the ICD code from all the ICD codes at the 𝑡-th
level of the ICD taxonomy (not only the child codes of 𝑎𝑡−1). The
intuition behind the global policy is that the local policy only selects
the next ICD code from child ICD codes of the previous ICD code,
which easily causes error accumulation, i.e., if the agent makes a
wrong decision at lower levels, all subsequent decisions are wrong.
The global policy alleviates the error accumulation by allowing the
agent to decide the next ICD code from all 𝑡-th level child codes so
as to correct its decisions.

The global policy uses a fully-connected layer to directly map
the EHR representation 𝒙 to the probability distribution over ICD
codes at the corresponding level. Another fully-connected layer is
used by the local policy to map the state 𝒔𝑡 to the probability distri-
bution over child ICD codes of the last action. The two probability
distributions are weighted together to obtain the final probability
distribution over all candidate ICD codes:

𝜋 (𝑎𝑡 | 𝒔𝑡 , 𝒙 ;\ ) = _𝜎 (𝑾𝑙 (𝒔𝑡 ) + 𝒃𝑙 ) + (1 − _)𝜎 (𝑾𝑔 (𝒙) + 𝒃𝑔), (4)

where𝑾𝑙 and𝑾𝑔 are weight matrices; 𝒃𝑙 and 𝒃𝑔 are bias terms; and
𝜎 is the sigmoid activation function.
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3.3.1 PathMessage Passing. Inspired by [21, 32], we propose a PMP
module to encode the state 𝒔𝑡 by taking into account the relation
between an EHR and the hierarchical ICD structure, parent-child
relations, and sibling relations of ICD codes, as shown in Figure 3.
Formally, 𝒔𝑡 is defined as:

𝒔𝑡 = 𝒎𝑡 ⊙ 𝑇 (𝒙,𝑾𝑇 ) + 𝒙 ⊙ (1 −𝑇 (𝒙,𝑾𝑇 )) . (5)

where𝑾𝑇 is the weight matrix;𝑇 is a gate that is used to control the
information transforming from the EHR representation 𝒙 and 𝒎𝑡 ,
respectively; 𝒎𝑡 represents the relation representation obtained
by three steps of message passing: EHR-to-path message passing,
parent-to-child message passing, and sibling-to-sibling message
passing, as shown in Figure 3. Next, we introduce the modeling of
these three steps one by one.

Step 1: EHR-to-pathmessage passing. This step is used to integrate
the EHR representation and ICD path representation. The relation
representation between an EHR and an ICD path is denoted as 𝒐𝑡 ,
which can be obtained as follows:

𝒐𝑡 = tanh(𝑾𝑜 (𝒖𝑡 )), (6)

where𝑾𝑜 is the weight matrix and 𝒖𝑡 is obtained through various
transformations of EHR representation 𝒙 and path representation
𝒄𝑡 . Here, 𝒖𝑡 is computed as follows:

𝒖𝑡 = 𝒙 ⊕ 𝒄𝑡 ⊕ (𝒙 ⊙ 𝒄𝑡 ) ⊕ (𝒙 + 𝒄𝑡 ) ⊕ (𝒙 − 𝒄𝑡 ) ⊕ (𝒄𝑡 − 𝒙), (7)

where ⊕ indicates vector concatenation, ⊙ indicates the element-
wise product, and 𝒄𝑡 is the representation of selected ICD code at
timestamp 𝑡 (i.e., the representation of 𝑎𝑡 ).

Step 2: Parent-to-child message passing. This step is used to cap-
ture the relation between parent and child ICD codes of ICD code
𝑎𝑡 . After obtaining relation representation 𝒐𝑡 between an EHR and
an ICD path, we propagate this relation representation from parent
code to all its child codes to generate relation representation 𝒗𝑡 :

𝒗𝑡 = 𝒐𝑡 ⊙ 𝒄𝑐𝑡 , (8)

where ⊙ indicates the element-wise product operation, and 𝒄𝑐𝑡 is
the vector representation of each child ICD.

Step 3: Sibling-to-sibling message passing. This step is used to
capture the relation between sibling ICD codes by spreading in-
formation between sibling ICD codes. Specifically, we achieve this
by passing information between sibling ICD codes using intra-
attention (also called self-attention [34]) neural message passing,
which enables ICD codes to attend over their sibling ICD codes
differently. This allows for the network to learn different degrees
of importance for different sibling ICD codes. Sibling-to-sibling
message passing is formulated as follows:

𝒎𝑡 = 𝒗𝑡 +
∑

𝑗 ∈𝑁𝒗𝑡

𝑀𝑎𝑡𝑡𝑛 (𝒗𝑡 , 𝒗 𝑗𝑡 ), (9)

where𝑀𝑎𝑡𝑡𝑛 is the attention function; 𝑁𝑣𝑡 indicates all the sibling
ICD codes of 𝑣𝑡 , and 𝑣 𝑗𝑡 represents the 𝑗-th sibling ICD of code 𝑣𝑡 .
𝑀𝑎𝑡𝑡𝑛 is used to pass the message from the 𝑗-th sibling ICD code
to the current ICD code 𝑣𝑡 using the learned attention weights 𝜶 𝑗

𝑡 :

𝑀𝑎𝑡𝑡𝑛 (𝒗𝑡 , 𝒗 𝑗𝑡 ) = 𝜶 𝑗
𝑡 𝒗

𝑗
𝑡 . (10)

The attention weights 𝜶 𝑗
𝑡 for a pair of sibling codes (𝒗𝑡 , 𝒗 𝑗𝑡 ) can be

calculated using the attention function 𝑎(·):

𝜶 𝑗
𝑡 = softmax𝑗 (𝒆 𝑗𝑡 ) =

𝒆 𝑗𝑡∑
𝑘∈𝑁 (𝒗𝑡 ) exp(𝒆𝑘𝑡 )

, (11)

where 𝒆 𝑗𝑡 represents the importance of the 𝑗-th sibling code for the
current code before normalization; the 𝒆 𝑗𝑡 are normalized across
all sibling nodes of the current ICD code using a softmax function
(Eq. 11) to get 𝜶 𝑗

𝑡 . For the attention function 𝑎(·), we use a dot
product with linear transformations𝑾𝑞 on code 𝒗𝑡 and𝑾𝑢 on 𝒗 𝑗𝑡 :

𝑒
𝑗
𝑡 = 𝑎(𝒗𝑡 , 𝒗 𝑗𝑡 ) (12)

𝑎(𝑣𝑡 , 𝑣 𝑗𝑡 ) = (𝑾𝑞𝒗𝑡 )⊤ (𝑾𝑢𝒗
𝑗
𝑡 ). (13)

3.3.2 EHR encoder. This module applies a multi-channel CNN [20]
to encode each EHR to a vector representation 𝒙 . Let𝒘𝑖 be the 𝑑-
dimensional token vector corresponding to the 𝑖-th token in the
EHR. An EHR of length 𝑛 is represented as:

𝒘1:𝑛 = 𝒘1 ⊕𝒘2 ⊕ · · · ⊕𝒘𝑛, (14)

where ⊕ is the concatenation operator. A convolution operation
involves a filter𝑾𝑓 ∈ R𝑙𝑘 , which is applied to a window of 𝑙 words
to produce a new feature. For example, a feature 𝒛𝑖 is generated
from a window of words𝒘𝑖:𝑖+𝑙−1 by

𝒛𝑖 = 𝑟𝑒𝑙𝑢 (𝑾𝑓 ⊛𝒘𝑖:𝑖+𝑙−1 + 𝑏), (15)

where ⊛ indicates the convolution operation, 𝑏 ∈ R𝑘 is a bias
term and 𝑟𝑒𝑙𝑢 is a non-linear function. This filter is applied to each
possible window in the EHR to produce a feature map 𝒛:

𝒛 = 𝒛1 ⊕ 𝒛2 ⊕ · · · ⊕ 𝒛𝑛−ℎ+1 . (16)

Then we apply a max-over-time pooling operation [7] over the
feature map and take the maximum value as the feature 𝒛 corre-
sponding to this particular filter:

�̂� = max(𝒛). (17)

This module uses multiple filters (with varying window sizes) to
obtain multiple features. These feature are concatenated together
as a vector representation 𝒙 of an EHR as follows:

𝒙 = 𝒛1 ⊕ 𝒛2 ⊕ · · · ⊕ 𝒛𝑘 , (18)

where 𝒛𝑘 represents the 𝑘-th feature map obtained by the 𝑘-th filter.

3.4 Path discriminator 𝐷𝜙

We design the path discriminator module𝐷𝜙 to get the reward 𝑟𝑡 for
each code in the generated path 𝑦𝑡 until timestamp 𝑡 . Specifically,
we model 𝑟𝑡 as the discrimination probability as follows:

𝑟𝑡 = 𝑅 (𝑠𝑡 ,𝑥),𝑎𝑡 = 𝑝𝐷 (𝑦𝑡 , 𝒙) = 𝜎 (𝑾𝑟 (𝒉𝑡 ⊕ 𝒙)), (19)

where ⊕ denotes the concatenation operation, and𝑾𝑟 is the weight
matrix; 𝒉𝑡 is the representation of the current generated path 𝑦𝑡 ,
which is obtained by recurrently applying an LSTM to the ICD code
path 𝑦𝑡 = (𝑐1, 𝑐2, . . . , 𝑐𝑘 , . . . , 𝑐𝑡 ):

𝒉𝑘 = 𝐿𝑆𝑇𝑀 (𝒉𝑘−1, 𝒄𝑘 ), (20)

where 𝒉𝑘−1 is the hidden vector at timestamp 𝑘 − 1; 𝒄𝑘 is the 𝑘-th
ICD code representation.
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To learn the path discriminator 𝐷𝜙 , we adapt an adversarial
training schema, where we consider the paths generated from the
path generator 𝐺\ as negative samples and the ground truth paths
as positive samples. The objective of path discriminator 𝐷𝜙 can be
formulated as minimizing the following cross-entropy function:

𝐿𝐷 = −
∑

(𝑦𝑡 ,𝒙) ∈𝑄+
log𝑝𝐷 (𝑦𝑡 , 𝒙) −

∑
(𝑦𝑡 ,𝒙) ∈𝑄−

log(1 − 𝑝𝐷 (𝑦𝑡 , 𝒙)), (21)

where 𝑄+ and 𝑄− denote positive and negative samples, respec-
tively; 𝑝𝐷 (𝑦𝑡 , 𝒙) represents the probability of sample (𝑦𝑡 , 𝒙) belong-
ing to a positive sample.

The update of path discriminator 𝐷𝜙 is identical to the com-
mon binary classification problem, which can be optimized by any
gradient-based algorithm.

3.5 Adversarial reinforcement learning
The alternating training process of the path generator 𝐺\ and the
path discriminator 𝐷𝜙 is shown in Algorithm 1. After randomly
initializing 𝐺\ and 𝐷𝜙 , we use ground truth paths to pre-train 𝐺\

(line 1–2). The training times for 𝐺\ and 𝐷𝜙 in each epoch are𝑀
and 𝑁 respectively (line 4 and line 12). For training𝐺\ , we generate
a single path 𝑦 for each EHR 𝑥 in the batch EHRs (line 6). Then we
calculate the reward for each ICD code in the generated path𝑦 (line
7). We use batch EHRs and generated paths to update the generator
𝐺\ with policy gradient (line 9). To make the exploration of 𝐺\

more effective, we train 𝐺\ on batch EHRs and ground truth paths
(line 10). For training 𝐷𝜙 , we generate a single path 𝑦 for each EHR
𝑥 in the batch EHRs (line 14) and also sample a ground truth path
for this EHR (line 15). Then, we train the path discriminator 𝐷\

with generated paths and ground truth paths (line 17).

Algorithm 1: Adversarial reinforcement learning algo-
rithm for training RPGNet.

1 Initialize 𝐺\ , 𝐷𝜙 with random weights \, 𝜙 ;
2 Pre-train 𝐺\ on dataset 𝐷 with teacher forcing using the

ground truth paths;
3 for epoch = 1: EPOCHS do
4 for each 𝑗 = 1, 2, . . . , 𝑀 do
5 for each EHR 𝑥 in batch EHRs do
6 Sample a path for EHR 𝑥 from 𝐺\ , 𝑦 ∼ 𝐺\ ;
7 Compute rewards for each code in 𝑦 with Eq. 19;
8 end
9 Update generator 𝐺\ via policy gradient with Eq. 2;

10 Train 𝐺\ on batch EHRs and ground truth paths
with teacher forcing;

11 end
12 for each 𝑗 = 1, 2, . . . , 𝑁 do
13 for each EHR 𝑥 in batch EHRs do
14 Sample a path for EHR 𝑥 from 𝐺\ ;
15 Sample a ground truth path for EHR 𝑥 from 𝐷 ;
16 end
17 Train path discriminator 𝐷𝜙 with Eq. 21;
18 end
19 end

4 EXPERIMENTAL SETUP
We seek to answer the following research questions: (RQ1) What
is the performance of RPGNet on the EHR coding task? Does it
outperform state-of-the-art methods? (RQ2) How does RPGNet
perform at different ICD levels of the ICD taxonomy? (RQ3) Where
do the improvements of RPGNet come from? What are the effects
of different components? (RQ4) How does the trade-off coefficient
(_) between the local and global policy influence the performance?

4.1 Dataset
We conduct experiments on a real-world dataset: the MIMIC-III
dataset,2 which is a large, freely-available database comprising de-
identified health-related data associated with over forty thousand
patients between 2001 and 2012. This is the only benchmark dataset
that is commonly used on this task and publicly available [17, 39].

As with previous studies [e.g., 24, 28, 29], we focus on discharge
summaries in EHR, which summarize the information about a stay
into a single document. We clean discharge summaries by remov-
ing noisy information, such as doctors’ information and hospital
information. There are two experimental settings for comparison:

(1) Top-50 label setting: We only predict the 50 most frequent
ICD codes, and filter each dataset down to the instances that
have at least one of the top 50 most frequent codes; and

(2) Full-label setting: We keep all diagnosis ICD codes appearing
in discharge summaries.

We randomly divide the MIMIC-III dataset into training, validation
and test sets with 4:1:1 ratios for the above two different settings.

Table 1: Statistics of the MIMIC-III dataset.

Statistics Top-50 labels Full-label

# discharge summaries 49,354 52,722
# total ICD codes 122 9,219
# ICD codes in level-1 23 155
# ICD codes in level-2 38 1,098
# ICD codes in level-3 47 4,475
# ICD codes in level-4 50 6,918
# avg ICD codes per EHR in level-1 4.05 8.56
# avg ICD codes per EHR in level-2 4.55 10.78
# avg ICD codes per EHR in level-3 4.30 11.13
# avg ICD codes per EHR in level-4 1.69 5.36

Table 1 shows the statistics of two dataset settings, respectively.
From the statistics we can see that: (1) In the MIMIC-III dataset, the
number of ICD codes at different levels varies greatly. Generally,
the number of ICD codes at coarse-grained levels is much smaller
than that at fine-grained levels. This is why we believe that using
the ICD hierarchy structure to explore ICD paths from lower levels
to higher levels can effectively reduce the candidate ICD space,
and the difficulty of model learning. (2) The average number of
ICD codes per EHR is quite small compared to the total number of
ICD codes in the hierarchical structure. This is why we think it is
critical to integrate the relations of ICD codes between different
levels and same levels to reduce the influence of non-relevant ICD
information when predicting multiple ICD codes for each EHR.
2The dataset used in this paper is available at https://mimic.physionet.org/

https://mimic.physionet.org/
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4.2 Baselines
In order to demonstrate the effectiveness of RPGNet, we compare
it with several methods, including state-of-the-art models for EHR
coding and a hierarchical text classification method:

• Flat SVMs [27]. This method uses 10,000 tf-idf unigram
features to train multiple binary SVMs for EHR coding.

• Multi-layer Percepetion (MLP). We learn a multi-label
classification model with a three-layer perceptron to predict
the probability of each ICD code.

• BI-GRU [43]. This method uses a bidirectional gated recur-
rent unit to encode EHR and then performs binary classifi-
cation on each ICD code based on the EHR representation.

• HA-GRU [2]. HA-GRU uses a hierarchical attention Bidi-
rectional Gate Recurrent Unit (BI-GRU) to encode EHR by
identifying the most relevant sentences in EHR w.r.t. each
ICD code.

• CAML and DR-CAML [24]. CAML exploits Text-CNN [20]
to obtain a representation of each EHR and then uses label-
dependent attention to learn the most informative repre-
sentation for each ICD code, based on which it does binary
classification. DR-CAML enhances CAML by adding an ICD
description regularization term to the final classification
weights.

• MSATT-KG [39]. MSATT-KG leverages a densely connected
convolutional neural network to produce variable n-gram
features for clinical notes and incorporates multi-scale fea-
ture attention to adaptively select multi-scale features. The
multi-scale features are used to perform multi-label clas-
sification over all the ICD codes. It also leverages graph
convolutional neural networks to capture the hierarchical
structure of the ICD taxonomy.

• HARNN [16]. This method was initially proposed for multi-
label text classification. It also takes the hierarchical struc-
ture of the taxonomy into account by integrating text with
the hierarchical category structure through an hierarchical
attention-based recurrent layer. We apply HARNN to this
task because the ICD taxonomy has a similar hierarchical
structure.

4.3 Evaluation metrics
We report a variety of metrics that are commonly used by previ-
ous studies on this task [24, 28, 39], including micro-averaged and
macro-averaged metrics. Micro-averaged metrics are calculated by
treating each sample as a separate prediction, while macro-averaged
metrics are calculated by averaging metrics computed per-label.
The macro-averaged metrics pay more attention to rare label pre-
diction. Specifically, we use Precision, Recall, F1 and Area Under
Curve (AUC) as evaluationmetrics [11, 14]. F1 score is the harmonic
mean of Precision and Recall, and AUC summarizes performances
under different thresholds. We also use the Jaccard Similarity Co-
efficient [26] to measure the overlap between two sets, which are
prediction results by EHR coding methods and ground truth ICD
codes. It is defined as Jaccard = 1

𝑚

∑𝑚
𝑖 |𝑌𝑖 ∩ 𝑌𝑖 |/|𝑌𝑖 ∪ 𝑌𝑖 |, where𝑚

indicates the number of instances of the dataset, 𝑌𝑖 is the prediction
result by different EHR coding methods, and 𝑌𝑖 is the ground truth
ICD set.

4.4 Implementation details
The local policy and global policy both use 300 hidden units for
the fully connected layers (Eq. 3). In the EHR encoder module, the
𝒘𝑖 (Eq. 14) is a 100-dimensional vector that is randomly initialized.
We use 3 convolutional layers, and the filter sizes are all set to 100.
The kernel size of each layer is set to 3, 4, 5 respectively. After the
last convolutional layer, we apply dropout with a drop ratio of 0.5
(Eq. 18). In the PMP module, the hidden size of the transform gate
𝑇 is set to 300 (Eq. 5). The embedding size of each ICD code is set
to 100 (Eq. 7 and Eq. 8). The hidden sizes in the transformations𝑊𝑞

and𝑊𝑢 are set to 300 and 500, respectively (Eq. 13). During training,
the number of epochs is limited to 200. The number of training
iterations𝑀 and 𝑁 for path generator 𝐺\ and path discriminator
𝐷𝜙 at each epoch are both set to 1 (Algorithm 1). We initialize
model parameters randomly and use a batch size of 32. The Adam
optimizer [38] is used to optimize all parameters. The learning
rate 𝛼 = 0.0001 and the momentum parameters are set to default
𝛽1 = 0.9 and 𝛽2 = 0.999. We implement RPGNet in PyTorch and
train it on a GeForce GTX TitanX GPU.

5 RESULT AND ANALYSIS
5.1 Overall performance (RQ1)
To answer RQ1, we report the evaluation metrics for both the top-50
label setting and the full-label setting in Table 2 and 3, respectively.
We first analyze the results on the top-50 label setting, which is
mostly adopted in the literature [24, 28, 31]. From Table 2, we have
the following observations:

First, RPGNet achieves the best performance on most of the
evaluation metrics. This indicates that RPGNet is able to effectively
perform EHR coding by exploiting the hierarchical ICD structure.
The micro Recall value gets the most significant improvement, i.e.,
14.5% over the best baseline HA-GRU. The reason is that RPGNet
explores ICD paths through adversarial reinforcement learning,
which helps to discover rare ICD paths, which in turn increases
coverage of ICD codes.

Second, CAML, DR-CAML, and MSATT-KG all have higher Pre-
cision values and lower Recall values compared to RPGNet. CAML
achieves the best micro Precision with even 18.45% higher than
RPGNet. However, its micro and macro Recall values are much
lower (20.63% and 14.76% lower) compared to RPGNet. Lower Re-
call values of CAML, DR-CAML and MSATT-KG indicate that they
miss a lot of correct ICD codes, which is a more severe problem
because a higher coverage of correct ICD codes, especially the rare
ones, is more important in practice. In addition, the F1 values and
AUC values of RPGNet are better than those of CAML, DR-CAML,
and MSATT-KG.

Third, generally RNN-based models (i.e., BI-GRU, HA-GRU, and
HARNN) have worse performance compared to the other ones.
This is because an EHR is a long sequence, which easily gives
rise to vanishing gradient problems with RNN-based models [22].
This also suggests that sequence information for words is not as
important as it is in natural language models [39]. For EHR coding,
the keywords and phrases are more important and this type of
information can already be better captured by CNN-based models.
Especially, HARNN performs the worst with a macro F1 value of
2.13% and a micro F1 value of 15.84%. Although HARNN considers
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Table 2: Results (%) on the MIMIC-III dataset for the top-50 label setting. Bold face indicates the best result in terms of the cor-
responding metric. Significant improvements over the best baseline results are marked with ∗ (t-test, 𝑝 < 0.01). The results for
some baselines do not match the results published by MSATT-KG[39] as (1) we use different data preprocessing and different
data scale, and (2) we use a different split of training, validation and test sets.

Precision Recall F1 AUC

Method Jaccard micro macro micro macro micro macro micro macro
Flat SVMs 9.21 36.77 13.66 11.64 4.75 17.68 5.93 54.79 51.18
MLP 17.01 36.86 16.95 21.20 12.09 26.86 12.70 58.75 53.96
BI-GRU 16.05 28.93 2.39 25.03 8.02 26.76 3.54 59.38 50.01
HA-GRU 6.55 7.29 3.94 42.31 54.00 12.44 7.20 43.56 50.00
CAML 30.43 59.65 51.03 36.18 29.75 45.04 34.71 66.84 63.47
DR-CAML 31.82 59.09 48.94 37.93 28.90 46.21 32.49 67.63 62.90
MSATT-KG 31.35 57.68 51.19 37.92 30.10 45.76 35.01 67.54 63.41
HARNN 11.35 39.70 4.31 9.89 2.03 15.84 2.13 54.72 52.40
RPGNet 33.34∗ 41.20 33.59 56.81 44.51 48.35 35.40∗ 75.14∗ 70.50∗

Table 3: Results (%) on the MIMIC-III dataset for the full-
label setting. Bold face indicates the best result in terms
of the correspondingmetric. Significant improvements over
the best baseline results are marked with ∗ (t-test, 𝑝 < 0.01).

F1 AUC

Method Jaccard micro macro micro macro
Flat SVMs 2.71 4.43 0.08 51.16 50.04
MLP 10.81 18.19 0.11 56.58 51.19
BI-GRU 8.51 14.02 0.02 54.70 50.00
HA-GRU 0.18 0.35 0.17 50.86 50.00
CAML 13.69 21.87 1.63 56.67 50.97
DR-CAML 13.34 21.55 1.11 56.56 50.69
MSATT-KG 5.73 9.28 1.55 57.72 51.02
HARNN 0.10 1.07 0.09 50.00 50.01
RPGNet 14.68∗ 22.83 1.20 59.08∗ 54.53∗

the hierarchical structure of the ICD taxonomy, it only considers
on the relations of all codes in the same level. The parent-child and
sibling relations between ICD codes are not considered.

We also show the coding results for the full-label setting, in
Table 3. RPGNet performs better than other baselines on most of
metrics in this setting, which shows the merits of RPGNet on a
large ICD space. As the ICD space gets larger, it is getting more
difficult to predict the correct ICD codes. RPGNet alleviates this by
narrowing down the space along the ICD taxonomy, i.e., predicting
ICD codes from the corresponding levels one at a time. As a result,
it gets better results than other models. Besides, we find that for
all models, the metrics that drop the most are the macro-averaged
metrics, such as the macro F1 of CAML drops from 34.71% to 1.63%
andmacro F1 of RPGNet drops from 35.40% to 1.20%. This is because
the imbalanced distribution of ICD codes becomes severe in the
full-label setting. Some ICD codes only occur 1 or 2 times, which is
not enough for learning, even for RPGNet.

5.2 Performance at different ICD levels (RQ2)
It is important to evaluate performance at different levels because in
some cases, a different granularity of EHR coding may be required.
Since RPGNet can generate ICD paths for each EHR and each ICD
code in a path can be seen as a prediction result for the EHR at a
particular level, we conduct an experiment under the top-50 label
setting to compare the performance at different levels of the ICD
taxonomy. The results are shown in Fig. 4.

For the results, we can see that the performance of RPGNet
decreases as the level goes deeper generally, e.g., the micro-average
F1 gradually decreases from 61.55% to 48.35% from level 1 to level
4. This is to be expected because the number of ICD categories
increases as the level goes deeper, as shown in Table 1, which, in
turn, increases the difficulty of prediction. But note that the decrease
in performance is acceptable for RPGNet. For example, when the
level increases from 1 to 2, the micro Precision of RPGNet decreases
from 63.42% to 50.49%, while when hierarchical level increases from
3 to 4, the micro Precision drops by just 3.31%. Once again, this
is because RPGNet considers the relations between EHRs and the
hierarchical structure of the ICD taxonomy. There are also some
exceptions. For example, the micro Recall, micro AUC of RPGNet
at level-4 are higher than those at level-3. We think the reason is
that the ICD codes at lower levels facilitate the generation at higher
levels in RPGNet. At the same time, the global policy in the hybrid
policy network can correct the decisions at higher levels.

These results show that RPGNet is effective for EHR coding by
considering the relations between ICD codes and using a hybrid
policy network to make decisions.

5.3 Ablation study (RQ3)
We conduct an ablation study to analyze the effects of different
modules in RPGNet, as shown in Table 4. These are the variants
of RPGNet that we consider: (1) No ARL denotes RPGNet without
adversarial reinforcement learning. We remove the adversarial re-
inforcement learning process and just use teacher forcing with
ground truth paths to train our model. (2) No PMP denotes RPGNet
without the PMP module. (3) No ICD-MP denotes RPGNet without
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Figure 4: Performance at different levels of hierarchical ICD.

Table 4: Ablation study for the top-50 label setting. Bold face
indicates the best result in terms of corresponding metric.

F1 AUC

Method Jaccard micro macro micro macro
RPGNet 33.34 48.35 35.40 75.14 70.50
No ARL 30.25 44.70 31.59 72.05 68.38
No PMP 32.16 46.98 33.98 73.30 69.50
No ICD-MP 32.79 47.53 34.89 73.67 68.72
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Figure 5: Performance with different values of _.

the parent-to-child message passing and sibling-to-sibling message
passing in PMP. From the results, we obtain the following insights:

First, the performance of RPGNet decreases dramatically after
removing adversarial reinforcement learning (i.e., No ARL). Specifi-
cally, the micro F1 and macro F1 drop by 3.65% and 3.81% respec-
tively. The result shows that adversarial reinforcement learning
for RPGNet plays a crucial role. This is because adversarial rein-
forcement learning helps RPGNet to generate ICD paths closer to
the ground truth paths through feedback from the path discrimina-
tor. In addition, RPGNet samples ICD paths based on a stochastic
strategy, which helps to explore new rare paths [9].

Second, the performance of RPGNet decreases significantly after
removing all three stages ofmessage passing (i.e.,No PMP) or parent-
to-child message passing and sibling-to-sibling message passing
(i.e., No ICD-MP). Specifically, the micro F1 and macro F1 drop
by 1.37% and 1.42% respectively with No PMP. This indicates that
relations between EHRs and ICD paths, and between ICD codes
play an important role in the path generation process. The micro
F1 and macro F1 drops by 0.82% and 0.51% respectively with No
ICD-MP. This verifies the importance of relations between ICD
codes.

5.4 The impact of _ (RQ4)
The trade-off parameter _ is used to balance the local and global
policies in Eq. 3. When _ is smaller, RPGNet tends to prioritize the
global policy during learning. Conversely, when _ is larger, RPGNet
relies more on its local policy. We conduct an experiment by setting
different _ values from {0, 0.1, 0.2, . . . , 1.0} to see the effects of _.
The results are shown in Fig. 5.

First, as _ increases, most metrics except micro Precision increase
gradually at the beginning, but they decrease afterward. The best
performance is not achieved when _ = 0 or _ = 1. This indicates
that combining local and global policies properly is necessary.

Second, the overall trend of micro Precision is downward and
it reaches the maximum when _ = 0 (i.e., 61.94%). However, the
micro Recall, macro Precision, and macro Recall at that time are
very low, with 33.26%, 29%, and 22% respectively. Since when _ = 0,
the prediction result is completely dependent on the global policy,
the result indicates that the global policy pays more attention to
the frequent ICD codes, but ignores rare ICD codes.

Third, with increases in _, the macro Recall, macro F1 show
an overall growth trend. Specifically, the macro Recall reaches
maximum (i.e., 47.86%) when _ = 0.6. This result indicates that
unlike the global policy, the local policy pays more attention to rare
ICD codes. Eventually, taking both global and local policies into
account, RPGNet performs best at _ = 0.2.

6 CONCLUSION AND FUTUREWORK
In this work, we reformulate Electronic Health Record (EHR) cod-
ing as a path generation task, and propose Reinforcement Path
Generation Network (RPGNet), which incorporates a Path Mes-
sage Passing (PMP) module to encode the relations between EHR
and International Classification of Diseases (ICD) codes. We also
devise an adversarial reinforcement learning schema for training
RPGNet. Experiments on a benchmark dataset show that RPGNet
significantly outperforms recent state-of-the-art methods. Further
analysis demonstrates the effectiveness of the proposed PMP and
of the adversarial reinforcement learning mechanisms.

A limitation of RPGNet is that it only uses unstructured free-text
of EHRs; it does not take semi-structured and/or structured infor-
mation into account. As to future work, we plan to first extract semi-
structured and/or structured information from EHRs and ground
it to a knowledge base. Then, we hope to further improve RPGNet
by exploring how to model the unstructured, semi-structured and
structured information in EHRs with grounded knowledge.

DATA AND CODE
To facilitate reproducibility of our work, we are sharing all resources
used in this paper at https://github.com/WOW5678/RPGNet.
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