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1

Preface

1.1 Setting the stage

Quantum systems consisting of many interacting particles typically thermalize, loosely
meaning that information confined to a (small) part of the system will eventually
spread out uniformly over all available space. The question under which conditions
thermalization happens and how it can be avoided has been a challenge for a long
time. This question attracted considerable interest in recent years, mainly triggered by
the discovery of many-body localization by Basko, Aleiner, and Altshuler in 2006 [6].

Many-body localization occurs in disordered one-dimensional interacting quantum
many-body systems, where emergent conserved quantities (local integrals of motion)
make the system behaving as if it is integrable [7]. Currently, many-body localization is
the only known robust mechanism by which interacting many-body systems can avoid
thermalization [8]. Despite significant progress towards a complete understanding of
the phenomenon, many questions remain open.

This dissertation discusses a number of explorations on many-body localization. In a
broad sense, the focus is on the statistical properties of both the energy levels and the
eigenstates of models possessing many-body localization. As for the majority of works
on many-body localization, the approach is mainly numerical.

1.2 Outline and main results

One can divide this dissertation in three parts. The first part, covering chapters 2
and 3, discusses the background knowledge required for the investigations discussed
thereafter. The second part consists of chapters 4 and 5, focusing on the statistics
of energy levels. The final part is covered by chapters 6 and 7, which focuses on
the statistics of eigenstates. The main results obtained in the works discussed in this
dissertation are summarized below.

Chapter 4 Level statistics provide a common diagnostic for ergodicity in quantum
many-body systems. This chapter studies the level spacing statistics across the many-
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1.3. Conventions and notations

body localization transition, and compares them with the level statistics of the Gaussian
beta random matrix ensemble. This ensemble provides a smooth interpolation between
Poissonian and and Wigner-Dyson level statistics with only a single parameter. Near-
perfect agreement over the full crossover range from the thermal to the many-body
localized phase is observed.

Chapter 5 Spectral form factors can be used to quantify long-range spectral correla-
tions that are not visible when studying level spacing statistics. In this chapter, it is
indicated that the time-integrated value of the spectral form factor depends on the
spectral self-correlation, which could strongly affect the interpretation. A new use of
the spectral form factor as a probe for ergodicity is proposed.

Chapter 6 The eigenstates of fermionic many-body systems are naturally character-
ized by the one-particle occupation matrix. This chapter numerically studies many-body
localization in the Fock space constructed out of the natural orbitals. Focusing on the
participation ratio, a crossover at a disorder strength significantly below the many-body
localization transition is identified.

Chapter 7 Entanglement is fully characterized by the entanglement spectrum. Mo-
tivated by physical considerations, this chapter studies the extreme value statistics
of entanglement spectra of many-body localized eigenstates. The main result is the
observation of Gumbel statistics, which provides a parameter-free characterization of
the many-body localized phase.

1.3 Conventions and notations

This dissertation adapts units in which the Boltzmann constant kB ≈ 1.38× 10−23 J/K
and the reduced Planck constant ħh ≈ 1.05× 10−34 J s are both set to unity. For sum-
mations and integrations, the range is sometimes omitted for notational convenience
when it is clear from the context.
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2

Many-body localization

2.1 Introduction

Many-body localization is a relatively recently discovered phase of matter which
distinguishes itself by the fact that it can not be described by conventional statistical
physics. Many-body localization can be seen as a generalization of the real-space
Anderson localization to the many-body Fock space. This chapter aims to introduce
the subject by discussing a number of selected topics.

Anderson localization is briefly reviewed in section 2, followed by a discussion of the
generalization to many-body localization in section 3. Often, many-body localization
is interpreted by using a phenomenological model, which is discussed in section 4.
Section 5 reviews a number of key signatures of many-body localization. Finally, section
6 introduces a ‘standard model’ in the field of many-body localization, which is studied
in parts of the remainder of this dissertation.

Arguably the most profound topics in the literature on many-body localization that
are not covered in this chapter are the many-body localization transition separating
the many-body localized phase from the thermal phase, the non-trivial phenomena
such as anomalous diffusion and Griffiths effects at the thermal side of the many-
body localization transition, and experimental realizations in for example cold atom-
experiments. For a recent review of these topics, the reader is referred to ref. [8].

2.2 Anderson localization

Anderson localization is a phenomenon of disorder-induced localization for non-
interacting quantum systems, discovered over sixty years ago [9]. As in the original
work cited above, consider the tight-binding lattice Hamiltonian

H = −t
L−1∑
i=1

�
c†

i ci+1 + c†
i+1ci

�
+

L∑
i=1

Vi c†
i ci . (2.1)
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2.2. Anderson localization

The operator c†
i (ci) creates (annihilates) a particle on site i, and obeys the fermionic

anticommutation relations

{c†
i , c j}= δi j , (2.2)

{c†
i , c†

j }= {ci , c j}= 0. (2.3)

The first term of the Hamiltonian (proportional to t) describes the hopping of spinless
fermions between neighboring sites, the second term describes an onsite site-dependent
potential Vi . The total number of particles is conserved. In the context of Anderson
localization, the potential terms Vi are given by independent random variables, repre-
senting disorder. The focus is on potential terms that are sampled from the probability
distribution

P(x) =

¨
1/(2W ) if |x | ≤W,

0 if |x |>W,
(2.4)

corresponding to a uniform distribution ranging over the interval [−W, W ]. It should be
remarked that, even though it is conventional to sample Vi from probability distribution
given in eq. (2.4), the physics does not depend strongly on the characteristics of the
probability distribution.

Ref. [9] shows that the presence of disorder induces interference effects leading to
the spatial localization of all single-particle eigenstates for any value W/t > 0 when
considering the thermodynamic limit L→∞. Spatial localization of a single-particle
eigenstate (or more general, a sigle-particle state) can be quantified by the overlaps
with the spatially localized basis states

|i〉= c†
i |0〉, (2.5)

where |0〉 is the zero-particle (vacuum) state. Here, the spatial localization of a state
|φ〉 means that there there exist i and σ such that the envelope of |φ〉 obeys the
asymptotic scaling

|〈φ|x〉|2 ∼ exp
�
−
�

i − x
σ

�2�
. (2.6)

Note that this scaling differs qualitatively from the scaling |〈φ|x〉|2 ∼ 1/L for extended
(delocalized) states. Scaling arguments [10] show that a similar phenemenology
holds for two-dimensional systems, while in three dimensions there is a mobility edge
above (below) which eigenstates are delocalized (localized). At the transition point,
non-trivial phenomena such as multifractality of eigenstates have been observed [11].

This section only pointed out some basic aspects of Anderson localization. A more
throughout pedagogical introduction is provided in for example ref. [12]. A review of
relatively recent developments is provided in ref. [13].
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Chapter 2. Many-body localization

2.3 From Anderson to many-body localization

Considerable interest has been devoted to the robustness of Anderson localization
against interactions [6, 14, 15]. Consider an L-site lattice model of non-interacting
spinless fermions, and let d†

i (di) denote the operators creating (annihilating) the
single-particle eigenstate |φi〉 from the zero-particle state |0〉, meaning that

d†
i |0〉= |φi〉, di |φi〉= |0〉. (2.7)

In terms of these operators and the eigenvalues εi associated with the single-particle
eigenstatestates |φi〉, the Hamiltonian H takes the diagonal form

H =
L∑

i=1

εid
†
i di . (2.8)

An eigenstate |ψ~n〉 labeled by the indices ~n= {i1, i2, . . . , iN} of the N occupied single-
particle eigenstates is given by the Slater determinant (see for example ref. [16])
reading

|ψ~n〉=
1p
N

∑
i1,i2,...,iN

�
det

�
φn j
(ik)

	
j,k=1,2,...,N

�
|i1〉 ⊗ |i2〉 ⊗ . . .⊗ |iN 〉, (2.9)

where φi( j) = 〈φi | j〉 and all summed indices run over 1,2, . . . , L. The eigenstate
satisfies the fermionic antisymmetry property due to the determinantal structure of the
expansion. The collection of all multi-particle eigenstates spans a basis for the Fock
space constructed out of the single-particle eigenstates.

The concept of spatial localization for single-particle states can not be extended to
systems of interacting particles in a trivial way. An arguably natural generalization is
provided by many-body localization [6]. For spinless fermions, interacting systems are
described in general by Hamiltonians of the form H = H0 +Hint, where

H0 =
∑

i

εi c†
i ci , (2.10)

Hint =
∑

i j

J (1)i j c†
i c j +

∑
i jk`

J (2)i jk` c†
i c†

j ckc`. (2.11)

The first and second term represent respectively the diagonal and the off-diagonal part
of the Hamiltonian, meaning that J (n) = 0 if the first and last n indices are identical.
An eigenstate of H is said to be many-body localized if it is localized in the Fock space,
meaning that if it can be obtained by a perturbative treatment of the non-diagonal
part Hint. Many-body localization can be viewed as a generalization of the real-space
Anderson localization to Fock space.

Many-body localization was first established by Basko, Aleiner, and Altshuler in 2006
for a model with weak two-body interaction terms [6]. It was found that this model
has a mobility edge below (above) which all eigenstates are localized (delocalized).
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2.4. Phenomenology of many-body localization

2.4 Phenomenology of many-body localization

The generalization of Anderson localization to many-body localization has been
established for a model with weak two-body interactions in ref. [6]. Using numerical
techniques, it was suggested first by Oganesyan and Huse in 2007 [17] that many-body
localization persists even in the non-perturbative regime. Since then, a lot of evidence
in favor of this statement has been reported [18].

A well-adapted qualitative phenomenological model for many-body localization in a
beyond-perturbative setting has been proposed by Huse, Nandkishore, and Oganesyan
in 2014 [7]. Consider a system of N spin-1/2 particles (which can be mapped to a
system of spinless fermions by a Jordan-Wigner transformation). The starting point
is the notion that, in general, there exist a set of (not necessarily local) pseudospin
operators inducing a basis in which all eigenstates of the Hamiltonian are product
states. Let the pseudospin operators be given by

τx
i =

1
2

�
0 1
1 0

�
, τ

y
i =

1
2

�
0 −i
i 0

�
, τz

i =
1
2

�
1 0
0 −1

�
, (2.12)

with τx ,y,z
i acting only on the pseudoparticle with index i ∈ {1,2, . . . , N}, leaving

the others unaffected. The Hamiltonian H is diagonal in the basis induced by the
pseudospin operators, implying that the number of independent elements equals
dim(H) = 2N . In terms of the pseudospin operators, the Hamiltonian takes the diagonal
form

H = J (0) +
∑

i

J (1)i τ
z
i +

∑
i> j

J (2)i j τ
z
iτ

z
j + · · ·+

∑
i> j>k>...

J (N)i jk···τ
z
iτ

z
jτ

z
k . . . . (2.13)

The Hamiltonian is diagonal in the basis induced by the τz
i (i = 1,2, . . . , N), which

follows from the observation that [H,τz
i ] = 0 for all i. It can be verified easily that

the number of expansion coefficients in eq. (2.13) equals the dimension of the Hilbert
space by using the combinatorial relation

N∑
i=0

�
N
i

�
= 2N . (2.14)

Remark that finding the expansion coefficients in eq. (2.13) is a non-trivial task. As far
as the author is aware, no direct formula in terms of the eigenvalues of H is known.

The phenomenological model discussed in this section applies to Hamiltonians H
for which all eigenstates are many-body localized. It proposes that the expansion
of the Hamiltonian in the form of eq. (2.13) has the non-generic property that the
pseudospins are spatially localized. More precisely, supposing that the τz

i are spatially
ordered (meaning that τz

i+1 is located at the right side of τz
i ), one finds

J (2)i j ∼ e−| j−i|/ξ, J (3)i jk ∼ e−|k−i|/ξ, J (4)i jk` ∼ e−|`−i|/ξ (2.15)
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Chapter 2. Many-body localization

et cetera, where ξ is the localization length depending on the details of the system.
The prefactor in front of the exponential is comparable for all orders.

For the purpose of an analytical study on many-body localization, the phenomenologi-
cal model was formulated more precisely by Imbrie in 2016 [19, 20]. Adapting the
definition used in ref. [20], many-body localization is equivalent to all of the following
properties of the eigenvalues and eigenstates of the Hamiltonian:

1. The Hamiltonian can be diagonalized by a sequence of unitary basis transforma-
tions, each acting only on a spatially localized region. Each basis transformation
is generated by quasi-local operators, meaning that a transformation genera-
tor involving n spins is exponentially small in n with high probability. These
transformations define a way to deform the original basis states into the exact
eigenstates.

2. Resonant regions where the required transformations are far from the identity are
dilute; the probability that two sites a distance ` apart are in the same resonant
region decays faster than any power law of `. It is the violation of this property
that suggests many-body localization to be unstable in dimensions d ≥ 2 [21].

3. Away from resonant regions, each eigenstate resembles the basis state it came
from in terms of the physical spins. This physical basis state can be used to label
the eigenstate. The pseudo-spins can be thought of as ‘dressed’ phyiscal spins,
and many-body localization can be thought of as a phenomenon of emergent
integrability.

Several attempts to identify the pseudospins (sometimes referred to as ‘local integrals
of motion’ or ‘local conserved charges’) have been undertaken. An example is provided
in ref. [22].

2.5 Signatures of many-body localization

Many-body localized systems can be distinguished from delocalized (ergodic) ones in
various ways. This section aims to provide a (non-exhaustive) list of diagnostics for
many-body localization that are encountered in the literature. The selection is partially
guided by the similar list in a relatively recent review by Alet and Laflorencie [23].

2.5.1 Poissonian level statistics

Many-body localized and delocalized many-body systems are characterized by different
statistics for the spacings between consecutive energy levels, known as respectively
Poissonian and Wigner-Dyson [24]. Let

{Ei}Ni=1, E1 ≤ E2 ≤ . . .≤ EN (2.16)
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2.5. Signatures of many-body localization

2 4 6 8 10
0.40

0.45

0.50

0.55

W

〈r〉

L = 8
L = 10
L = 12
L = 14
L = 16

Fig. 2.1: The average ratio of consecutive level spacings for a one-dimensional model
of strongly interacting spinless fermions with disorder. The parameters W and L give
the disorder strength and chain length, respectively. The data presented in this figure
is extracted from ref. [17], in which also details on the model can be found.

denote an energy spectrum, with the elements sorted in ascending order. An in the field
of many-body localization often used diagnostic to discriminate between Poissonian and
Wigner-Dyson level spacing statistics is provided by the average ratio 〈r〉 of consecutive
level spacings [25],

〈r〉= 1
N − 2

N−2∑
i=1

ri , ri =min
�

Ei+2 − Ei+1

Ei+1 − Ei
,

Ei+1 − Ei

Ei+2 − Ei+1

�
. (2.17)

For localized and delocalized systems, it follows from random matrix theory arguments
(discussed in chapters 3 and 4) that the average ratio of consecutive level spacings
acquires a value 〈r〉 ≈ 0.386 and 〈r〉 ≈ 0.530, respectively. It is convenient to perform
additional averaging over disorder realizations.

The use of level statistics to diagnose localization can be illustrated with the results
reported by Oganesyan and Huse cited above [17]. The focus is on a one-dimensional
disordered lattice with strongly interacting spinless fermions. Fig. 2.1 shows 〈r〉 as a
function of the disorder strength W and chain length L. The average 〈r〉 is computed
from full spectra (meaning that considering infinite temperature) and additionally
averaged over a large number of disorder realizations.

With increasing system size, one observes a drift of 〈r〉 towards the value for localized
systems at strong enough disorder, which is intepreted as a hint for the existence of a
many-body localized phase in the thermodynamic limit L→∞. Additional evidence
based on level statistics has been provided for example in refs. [26, 27].
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Chapter 2. Many-body localization

2.5.2 Area-law scaling of eigenstate entanglement entropy

Entanglement is a concept used to quantify the connectedness of different parts of a
system. It plays an important role in the field of condensed matter physics, including
many-body localization [28]. Consider the generic setting of a system decomposed in
subsystems A and B. Let

{|ai〉}Mi=1, {|bi〉}Ni=1 (2.18)

denote basis states for the respective subsystems, without loss of generality labeled
such that M ≥ N . A pure state |ψ〉 is associated with a density matrix ρ = |ψ〉〈ψ|.
Taking the partial trace of the density matrix over the basis states of subsystem A, one
obtains the reduced density matrix

ρB = TrA

�|ψ〉〈ψ|� (2.19)

of subsystem B. This matrix encodes all information accessible by performing measure-
ments on subsystem B only. A common (but not unique [29]) measure for the degree
of entanglement between subsystems A and B is provided by the entanglement entropy

Sent = −Tr
�
ρB ln(ρB)

�
(2.20)

= −
N∑

i=1

λi ln(λi) (2.21)

with λi (i = 1,2, . . . , N) denoting the eigenvalues of ρB. The entanglement entropy
takes a value bounded from below by Sent = 0 for unentangled states corresponding
to {λi} = {1,0,0, . . . , 0}, and bounded from above by Sent = ln(n) for maximally
entangled states corresponding to {λi}= {1/N , 1/N , . . . , 1/N}.
Many-body localization is believed to be a phase of matter that can be observed in

one-dimensional systems only [21]. Consider a one-dimensional chain of L (spin-1/2)
particles divided into parts A and B covering respectively the first LA and last LB = L−LA
sites, with LB ≤ LA to ensure M ≥ N . It was established in refs. [30, 31] that the
entanglement entropy for many-body localized eigenstates obeys the area-law scaling

Sent ∼ constant. (2.22)

Note that a similar scaling can be observed for single-particle eigenstates of Anderson
localized systems. Remark that this scaling contrasts with the volume-law scaling
Sent ∼ LB observed for ergodic states [32].

2.5.3 Logarithmic growth of entanglement entropy

A hallmark of many-body localization is logarithmic growth of the entanglement
entropy in time. This phenomenon has been observed first by Žnidarič, Prosen and
Prelovšek in 2008 [33], but only attracted significant attention after a more systematic
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2.6. Standard model of many-body localization

investigation by Bardarson, Pollmann and Moore in 2012 [34] and a phenomenological
explanation by Serbyn, Papić and Abanin in 2013 [35].

The setup in which this phenomenon is observed consists of a one-dimensional system
in a many-body localized phase, splitted in two subsystems covering the left- and
right-hand sides, and prepared in the (unentangled) Neél state. Let |ψ(t)〉 denote the
state of the system at time t, obtained from the initial state |ψ(0)〉 by applying the
time-evolution operator,

|ψ(t)〉= eiH t |ψ(0)〉 (2.23)

with H denoting the Hamiltonian of the system. The focus is on the ensemble-average
of the entanglement entropy 〈Sent(t)〉 as a function of time. Here, the ensemble average
is taken over disorder realizations. It has been observed [33, 34] that after a short
transient period, the ensemble-average of the entanglement entropy displays a slow
growth

〈Sent(t)〉 ∼ ln(t), (2.24)

being in sharp contrast with 〈Sent(t)〉 ∼ t for thermal systems. This growth is believed to
persist up to t →∞ in the thermodynamic limit of large system sizes. This observation
is understood as being a consequence of dephasing between remote local integrals of
motion, which is a distinguishing property of many-body localization [35].

2.6 Standard model of many-body localization

This section introduces a ‘standard model’ of many-body localization, which is studied
in parts of the remainder of this dissertation. The model can be seen as an extension of
the Anderson-localized model discussed in section 2.2 with interactions. The expression
for the Hamiltonian H reads

H =
L∑

i=1

�
S x

i S x
i+1 + S y

i S y
i+1 + Sz

i Sz
i+1 + hiS

z
i

�
, (2.25)

where periodic boundary conditions S x ,y,z
L+1 ≡ S x ,y,z

1 are imposed. The Hamiltonian
describes an L-site spin-1/2 XXX-chain appended by a site-dependent onsite potential
hi . The spin-1/2 operators in which it is formulated are given by

S x
i =

1
2

�
0 1
1 0

�
, S y

i =
1
2

�
0 −i
i 0

�
, Sz

i =
1
2

�
1 0
0 −1

�
, (2.26)

with S x ,y,z
i acting only on site i ∈ {1, 2, . . . , L}, leaving the others unaffected. As for the

Anderson-localized model discussed in section 2 of this chapter, the onsite potentials
hi represent disorder. As before, the potentials are sampled independently from the
probability distribution

P(x) =

¨
1/(2W ) if |x | ≤W,

0 if |x |>W,
(2.27)
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Chapter 2. Many-body localization

corresponding to the uniform distribution ranging over the interval [−W, W ]. Observe
that, apart from the interaction term Sz

i Sz
i+1, the Hamiltonian is equivalent to the one

given in eq. (2.1) for t = 1 by a Jordan-Wigner transformation as given in eq. (6.24)
below.

For the Hamiltonian given in eq. (2.25), the total spin projection

Sz =
L∑

i=1

Sz
i (2.28)

is a conserved quantity, meaning that [H, Sz] = 0. It is convenient to consider L even
and restrict the focus to the Sz = 0 sector. The dimension of this symmetry sector of
the Hamiltonian is given by

� L
L/2

�
, scaling exponentially in L for large system sizes. For

L = 10, 12, 14 and 16 one finds the respective Hilbert space dimensions 252, 924, 3432
and 12970. Standard modern computer facilities allow for the exact diagonalization
Hamiltonians up to size L = 16.

The physics of the model discussed in this section is dependent on the energy den-
sity (not to be confused with the density of states). Let {Ei}dim(H)

i=1 denote the set of
eigenvalues of the Hamiltonian for a given disorder realization, and let Emin =mini(Ei)
and Emax =maxi(Ei) denote the lowest and the highest energy level, respectively. The
energy density εi ∈ [0,1] corresponding to an energy level Ei is given by

εi =
Ei − Emin

Emax − Emin
. (2.29)

A careful numerical study by Luitz, Laflorencie, and Alet from 2015 [27] strongly
suggests that in the thermodynamic limit L → ∞, the model is in a many-body
localized phase at ε = 0.5 for disorder strengths W ¦ 3.6, while it is in a thermal phase
at weaker disorder. Remark that, contrary to most other branches of condensed matter
physics, the focus is typically on highly-excited states at nonzero energy density.
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3

Random matrix theory

3.1 Introduction

The first connection between physics and random matrix theory was established
mainly by Wigner and Dyson in a number of studies on spacings between energy levels
for heavy atomic nuclei (see for example refs. [36, 37]). The motivation to study the
spectral properties of such systems using random matrix theory is two-fold [38]:

1. Heavy nuclei consist of ∼ 100 strongly interacting particles. The resulting com-
plicated structures of the associated Hamiltonians does not allow for analytical
studies both technically (diagonalizing) and physically (interpreting).

2. The statistics of the spacings between consecutive energy levels appear to be
independent of the specific constitution of the nucleus that is studied, suggesting
the use of a statistical approach.

Similar considerations led to the discovery of many more connections between (con-
densed matter) physics and random matrix theory [39, 40]. This chapter reviews some
connections between random matrix theory and the statistical properties of ergodic (in
the context of many-body localization, delocalized) systems, serving as an introduction
to the following chapters on localization.

Sections 2 and 3 random matrix models for Hamiltonians of ergodic systems. Section 4
discusses the circular ensembles, serving as random matrix models for Floquet operators
as discussed in chapter 5. Section 5 discusses a number of probes for eigenvalue
statistics of random matrices. Section 6 discuss the universal statistics of entanglement
ergodic systems obey. The content of this chapter is also covered in most standard
reference works on random matrix theory, such as ‘Random Matrices’ by Mehta [24] or
‘Log-Gases and Random Matrices’ by Forrester [41].

3.2 Gaussian invariant ensembles

This section discusses part of the content covered in sections 1.1 and 1.3 of the book
‘Log-Gases and Random Matrices’ by Forrester [41]. For a system obeying time-reversal
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Chapter 3. Random matrix theory

symmetry, the Hamiltonian can be expressed as a real symmetric matrix. Random
matrix models for such matrices are given by samples from the Gaussian orthogonal
ensemble. This ensemble consist of real symmetric matrices for which the diagonal and
upper triangular elements are sampled independently from probability distributions

P(x) =
1p
2π

e−x2/2, P(x) =
1p
π

e−x2
, (3.1)

respectively. The diagonal elements are sampled from a Gaussian distribution with
mean 0 and variance 1, while the upper triangular elements are sampled from a
Gaussian distribution with mean 0 and variance 1/2. The joint probability distribution
for the elements X i j (i, j = 1,2, . . . , N) of a matrix X of dimension N is given by

P(X ) =
N∏

i=1

1p
2π

e−X 2
ii/2

∏
j<i

1p
π

e−X 2
i j (3.2)

=
1

CN

N∏
i, j=1

exp
�
− 1

2
X 2

i j

�
(3.3)

=
1

CN
exp

�
− 1

2

N∑
i, j=1

X 2
i j

�
(3.4)

=
1

CN
exp

�
− 1

2
Tr(X 2)

�
(3.5)

with CN denoting a normalization constant. The motivation to constuct the ensemble
in this particular way follows from inspection of eq. (3.5). A basis transformation
X → X̃ = OXO−1 for an orthogonal N × N matrix O leaves P(X ) invariant, as

Tr(X 2)→ Tr(X̃ 2) (3.6)

= Tr(OXO−1OXO−1) = Tr(O(X X )O−1) = Tr(X 2). (3.7)

The invariance of P(X ) under transformations of the basis means that the ensemble has
no preferred basis, which can be interpeted as ‘maximal randomness’ of the ensemble.
The eigenstates are said to be ergodic.

Next to the Gaussian orthogonal ensemble there exist the Gaussian unitary and
symplectic ensembles, which are invariant under unitary and symplectic basis transfor-
mations, respectively. The former serves as a random matrix model for Hamiltonians
with broken time-reversal symmetry. It consist of Hermitian matrices (meaning that
elements are related by the relation X i j = X̄ ji). The diagonal elements (which are
real-valued) are sampled independently from the probability distribution

P(x) =
1p
π

e−x2
, (3.8)

corresponding to a Gaussian distribution with mean 0 and variance 1/2, while the upper
triangular elements x = u+ iv with u, v ∈ R real-valued are sampled independently
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3.3. Eigenvalue statistics

from the probability distribution

P(x) =
2
π

e−2(u2+v2) =
2
π

e−2|x |2 , (3.9)

representing a complex Gaussian with 0 and variance 2. As for the Gaussian orthogonal
ensemble, the joint probability distribution for the elements X i j (i, j = 1, 2, . . . , N) of a
matrix X is given by

P(X ) =
N∏

i=1

1p
π

e−X 2
ii/2

∏
j<i

2
π

e−2|X i j |2 (3.10)

=
1

CN
exp

�
− 1

2
Tr(X 2)

�
, (3.11)

again for a normalization constant CN . The invariance P(UX U−1) = P(X ) for any
unitary matrix U follows as before.

The Gaussian symplectic ensemble is not discussed separately as it has no direct
application in the context of this dissertation. It will be incorporated in the general
description of the Gaussian invariant ensembles discussed in section 4.3 of the next
chapter.

3.3 Eigenvalue statistics

The universality of level spacing statistics mentioned in the introduction of this chapter
extends to a broad range of physical systems. These statistics are known as Wigner-
Dyson, and have been conjectured to apply generally to systems that are non-integrable
in the semiclassical limit (ħh→ 0) by Bohigas, Giannoni, and Schmit 1984 [42]. This
section discusses these statistics.

3.3.1 Joint probability distribution

The content of the below discussion is covered in sections 1.2 and 1.3 of the book ‘Log-
Gases and Random Matrices’ by Forrester [41]. An arguably natural representation
of a random matrix ensemble is given by the joint probability distribution for the
matrix elements X i j , as for example in eq. (3.5). Alternatively, one might consider the
representation in terms of the joint probability distribution for the eigenvalues λi and
the remaining variables pi , which are linear combinations of the independent elements
of the eigenvectors. Let {qi} denote the union of {λi} and {pi}. For the Gaussian
invariant ensembles of dimension N , the joint probability distribution for the elements
qi reads

P({qi}) = exp
�
− 1

2

N∑
i=1

λ2
i

�
|J |, (3.12)
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Chapter 3. Random matrix theory

where the first term on the right hand-side is equal to exp[−Tr(X 2)/2] in the basis in
which X is diagonal, and J is the Jacobian relating the coordinates {X i j} to {qi} given
by

J =




∂ X11
∂ q1

∂ X12
∂ q1

· · · ∂ XNN
∂ q1

∂ X11
∂ q2

∂ X12
∂ q2

· · · ∂ XNN
∂ q2

...
...

. . .
...

∂ X11
∂ qN(N+1)/2

∂ X12
∂ qN(N+1)/2

· · · ∂ XNN
∂ qN(N+1)/2




. (3.13)

Remark that a symmetric matrix of dimension N has N(N + 1)/2 degrees of freedom,
of which are N required to fix the eigenvalues and N(N − 1)/2 to fix the eigenvectors.

The Gaussian random matrix ensembles discussed in the previous section were in-
dicated to be invariant under basis transformations. This suggests that the joint
probability distribution for the λi and the pi factorizes in parts depending on either
the λi or the pi . Indeed, the evaluation of the Jacobian for the Gaussian orthogonal
ensemble yields the factorized expression

J =
∏
i< j

|λi −λ j | f (p1, p2, . . . , pN(N−1)/2), (3.14)

where f is some function only depending on the elements of {pi}. The joint distribution
for the eigenvalues is obtained by integrating out the pi from P({λi}, {pi}). The value
of the integral over the pi can be absorbed in a normalization constant, resulting in the
joint distribution for the eigenvalues of the Gaussian orthogonal ensemble is given by

P(λ1,λ2, . . . ,λN ) =
1

CN
exp

�
− 1

2

N∑
i=1

λ2
i

� ∏
i< j

|λi −λ j | (3.15)

with CN denoting a normalization constant. A derivation can be found in appendix A.
The exponent strongly suppresses the probability to find configurations in which some
eigenvalues are very far from the origin, while the product factor strongly suppresses
the probability to find configurations in which two eigenvalues are very close to each
other. As a consequence, the eigenvalues are strongly correlated.

The above discussion of the Gaussian orthogonal ensemble can be generalized to the
unitary and symplectic ensembles. For this, one introduces the Dyson index

β =





1 (Gaussian orthogonal ensemble),

2 (Gaussian unitary ensemble),

4 (Gaussian symplectic ensemble).

(3.16)

The Dyson index, first introduced by Dyson in 1962 [37], gives the number of degrees
of freedom per matrix element (1 for real numbers, 2 for complex numbers, 4 for
quaternionic numbers). It can be shown that the joint probability distribution for
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3.3. Eigenvalue statistics

the eigenvalues of the Gaussian orthogonal ensemble as given in eq. (3.15) can be
generalized to

P(λ1,λ2, . . . ,λN ) =
1

CN ,β
exp

�
− 1

2

N∑
i=1

λ2
i

� ∏
i< j

|λi −λ j |β , (3.17)

where β is the Dyson index and CN ,β is a normalization constant.

3.3.2 Coulomb gas analogy

This section discusses part of the content covered in section 1.4 of the book ‘Log-
Gases and Random Matrices’ by Forrester [41]. Eq. (3.17) can be interpreted as the
Boltzmann factor of a so-called 1-dimensional Coulomb gas at inverse temperature
β = 1/T ,

P(λ1,λ2, . . . ,λN ) =
1
Z e−βV [λi]. (3.18)

Here, λi are the positions of fictitious particles, V [λi] is the configuration energy,
and Z = CN ,β is the partition function which is equal to the normalization constant.
Generically, one can identify a joint eigenvalue distribution with a Boltzmann factor if
it can be written in the form of eq. (3.18) for some β-independent potential V [λi].
For eq. (3.17), one has

Z =
∫ ∞

0

�
n∏

i=1

dλi

�
e−βV [λi], (3.19)

V [λi] =
1
2

n∑
i=1

λ2
i −

∑
i< j

ln |λi −λ j |. (3.20)

The gas is in equilibrium under the competing effect of a quadratic one-particle potential
and pairwise repulsion. The quadratic potential is attractive towards the origin.

A Coulomb gas (sometimes called a logarithmic gas) is characterized by an interaction
potential between particles i and j scaling as ln |λi −λ j |. Coulomb gas particles can be
thought of as infinitely long parallel oriented rods with an uniform charge density, for
which the Coulomb force is described by a logarithmic potential [43].

3.3.3 Wigner’s semicircle law

The physical interpretation of the eigenvalue distribution for the Gaussian invariant
ensembles given in eq. (3.17) as the Boltzmann factor of a Coulomb gas allows one to
use techniques from statistical physics. By making a continuum approximation, the
Boltzmann factor function can be rewritten in terms of the charge density

ρ(λ) =

®
N∑

i=1

δ(λ−λi)

¸
, (3.21)
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where 〈·〉 denotes an ensemble average. Determining the assocated partition function
Z and minimizing the free energy F = −β−1 ln(Z ) gives the equilibrium charge density.

A lengthy but straightforward calculation (see for example section 4.2 of the book
‘Introduction to Random Matrices’ by Livan, Novaes, and Vivo [44]) shows that for the
Gaussian invariant ensembles, one finds

lim
N→∞

Æ
βNρ

�Æ
βNλ

�
=

1
π

p
2− x2 (3.22)

for x ∈ [−p2βN ,
p

2βN], which has the form of a semicircle. This result is known
as Wigner’s semicircle law, first found for the Gaussian unitary ensemble of infinite
dimension by Wigner in 1958 [45]. Qualitative agreement of the charge density with
the semicircle law can be observed already for small matrix dimensions N ∼ 100 at all
allowed values of β [46].

Physical systems are ‘maximally random’ often only locally (on a finite, microscopic
energy window). Consequently, the semicircle law of eq. (3.22) does typically not
hold for physical systems, even though Wigner-Dyson level statistics can be observed
[47]. Local level statistics are known to be largely independent of the smooth part of
the density of states as given in eq. (3.21) [48].

3.4 Circular ensembles

This section discusses the circular random matrix ensembles, introduced by Dyson
in 1962 [37]. The circular ensembles are random matrix models for unitary matrices,
having eigenvalues {λ j} lying on the unit circle centered at the origin in the complex
plane, meaning that they are parametrizable as λ j = exp(iθ j) with θi ∈ [0,2π). This
section is based on parts of section 2.2 of the book ‘Log-Gases and Random Matrices’
by Forrester [41].

Similar to the case of the Gaussian random matrix ensembles, one distinguishes the
circular orthogonal, unitary, and symplectic ensembles. Let

O(N) := {N × Ncomplex-valued symmetric unitary matrices} (3.23)

U(N) := {N × Ncomplex-valued unitary matrices} (3.24)

Sp(2N) := {N × N real quaternionic unitary matrices}. (3.25)

The circular unitary ensemble of dimension N contains elements from U(N) sampled
uniformly with respect to the Haar measure. Again, this means that the ensemble is
invariant under basis transformations.

The spaces of real and quaternion valued unitary matrices do not form groups under
multiplication. For example, the product of two complex-valued symmetric unitary
matrices is not neccesarily symmetric again. This implies that the circular orthogonal
and symplectic ensembles can not be defined in a similar fashion as the circular unitary
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3.5. Probing eigenvalue statistics

ensemble. As the focus below is only on the eigenvalues (and not the eigenvectors),
the construction of these ensembles is not discussed here.

As for the Gaussian invariant ensembles, the circular ensembles can be labeled by the
Dyson index β as introduced in eq. (3.16). Analogously, let β = 1, 2, 4 for respectively
the circular orthogonal, unitary, and symplectic ensembles. In terms of β , the joint
probability distribution for the eigenvalues {exp(iθ j)}Nj=1 for matrices of dimension N
is proportional to ∏

j<k

��eiθ j − eiθk
��β , (3.26)

with an explicitly known normalization constant. Trivially, the density of states for the
circular ensembles is uniform.

The elements of unitary matrices are correlated, such that no (simple) description of
the ensembles in terms of the matrix elements can be formulated. Numerical algortihms
to sample from the circular ensembles are described in for example ref. [49].

3.5 Probing eigenvalue statistics

Level spacing statistics are used to discriminate between ergodic (semiclassically
non-integrable) and non-ergodic (semiclassically integrable) systems. For the latter,
it has been conjectured by Berry and Tabor in 1977 [50] that the energy levels are
uncorrelated, implying that the spacings between consecutive energy levels are Pois-
sonian distributed. Nowadays, the occurence of Poissonian level spacing statistics is
often adapted as a definition of quantum integrability [51].

3.5.1 Level spacing distribution

A convenient diagnostic for local level statistics is given by the level spacing distribution
[24]. Let

{Ei}Ni=1, E1 ≤ E2 ≤ · · · ≤ EN (3.27)

denote an energy spectrum, with the elements sorted in ascending order. Because
correlations decay on microscopic windows (only a few levels apart as illustrated
below), the level spacings

si = Ei+1 − Ei , (i = 1, 2, . . . , N − 1) (3.28)

can essentially be treated as independent random variables when considering statistics.
Considering a spectrum with an uniform density of states scaled such that the average
level spacing

〈s〉= 1
N − 1

N−1∑
i=1

si (3.29)
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Fig. 3.1: The level spacing distribution for Wigner-Dyson (WD) and Poissonian level
statistics. The curves for Wigner-Dyson level statistics represent eq. (3.31).

is unity, a direct result with standard results from random matrix theory can be made.
If a spectrum has a non-uniform density of states ρ(E), this can be acquired by an
appropriate scaling

Ei → Ẽi =

∫ Ei

−∞

1
ρ(ε)

dε (3.30)

of the spectrum, a procedure known as unfolding (see for example section 4.8 the book
‘Quantum Signatures of Chaos’ by Haake [52]).

An arguably surprising result is that the probability distributions P(s) for the level
spacings can be approximated qualitatively well by considering random matrices of
dimension 2 × 2. The resulting probability distributions for the level spacings are
known as the Wigner surmise, and can be read off from eq. (3.17) with N = 2 directly
as

P(s) = aβ sβ e−bβ s2
, (3.31)

where aβ and bβ are constants fixing both the normalization and average level spacing
to 1. For integrable systems, the energy levels are uncorrelated, due to which the level
spacing distribution is Poissonian, P(s) = exp(−s).

Fig. 3.1 shows P(s) as given by eq. (3.31) and for Poissonian distributed level
spacings. A qualitative difference between the curves is the scaling of P(s) near s = 0.
One observes P(0) = 0 for Wigner-Dyson level statistics, which is called level repulsion
originating from the Coulomb gas analogy as discussed in section 3.3.2.
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3.5. Probing eigenvalue statistics

3.5.2 Distribution of ratios of consecutive level spacings

The distribution of the ratios of consecutive level spacings was first proposed by
Oganesyan and Huse in 2007 [17] as an alternative for the level spacing distribution
to discriminate between Poissonian and Wigner-Dyson level statistics. Because of the
important role in the remainder of this dissertation, this probe is discussed in a separate
section. The motivation to consider ratios of consecutive level spacings is two-fold:

1. Determining the level spacing distribution requires an energy spectrum to be
unfolded, meaning that the spacings between consecutive energy levels are scaled
such that the average equals 1 in every part of the spectrum. Determining ratios
of consecutive level spacings does not require a spectrum to be unfolded.

2. The average ratio of consecutive level spacings (see also section 2.5.1) provides
a natural statistic to quantify intermediate level statistics in between Poissonian
and Wigner-Dyson.

Both points are clarified in the remainder of this section.

The distribution of the ratios of consecutive level spacings was first investigated by
Atas, Bogomolny, Giraud, and Roux in 2013 [25]. Following this reference, the focus is
on an energy spectrum

{Ei}Ni=1 (E1 ≤ E2 ≤ . . .≤ EN ) (3.32)

with the elements sorted in ascending order. The ratios of consecutive level spacings ri
(i = 1, 2, . . . , N − 2) are defined as

ri =min
�

r̃i ,
1
r̃i

�
, r̃i =

Ei+2 − Ei+1

Ei+1 − Ei
. (3.33)

For the eigenvalues of the Gaussian invariant ensembles, the distribution of the ratios
of consecutive level spacings can be evaluated analytically only for small values of N
[53], as might be expected.

Consider the Gaussian invariant ensembles with N = 3, such that P(E1, E2, E3) is given
by eq. (3.17) for the appropriate value of β . The probability distribution for r̃ (note
the tilde) is then given by

P(r̃) =

∫ ∞

−∞
dE2

∫ E2

−∞
dE1

∫ ∞

E2

dE3 P(E1, E2, E3) δ
�

r̃ − E3 − E2

E2 − E1

�
. (3.34)

The distributions of P(r̃) and P(1/r̃) are trivially the same. It can be shown that this
statement holds generically in the bulk of a spectrum, where boundary effects are
negligible. From a mathematical viewpoint, this means that

P(r̃) =
1
r̃2

P
�

1
r̃

�
. (3.35)
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Fig. 3.2: The distribution of the ratios of consecutive level spacings for Wigner-Dyson
(WD) and Poissonian level statistics. The curves for Wigner-Dyson level statistics
represent eq. (3.31).

from which it follows that P(r) = 2 P(r̃)Θ(1− r) where Θ denotes the Heaviside step
function. Note that r ∈ [0,1]. Evaluating the integral in eq. (3.34) and substituting
the result in eq. (3.35) gives the Wigner-like surmise (in the sense that is is evaluated
for the smallest possible matrix dimension) reading

P(r) =
1

Cβ

(r + r2)β

(1+ r + r2)1+(3/2)β
, (3.36)

where Cβ is again a normalization constant. For Poissonian level statistics, one finds
trivially P(r) = 1/(1+ r)2. Fig. 3.2 shows plots of eq. (3.36) for β ∈ {1, 2, 4} as well
as the expression for Poissonian level statistics. These curves are rather accurate (less
than 1% deviation) for the statistics of the Gaussian invariant ensembles at N = 1000,
as is verified numerically in the reference.

The distribution of the ratios of consecutive level spacings for the Wigner-like surmise
obeys two non-generic properties. For small values of r, a scaling P(r) ∼ rβ can be
observed. It has been argued that this scaling holds for generic N in ref. [53]. Next, the
relation P(r) = r−2 P(r−1) as established in eq. (3.35) relates P(r) and the derivative
with respect to r at r = 1. Taking the derivative of with respect to r on both sides of
this equation yields

d
dr

P(r) = − 1
r4

�
r P
�

1
r

�
+

d
dr

P
�

1
r

��
(3.37)

=⇒ P(1) = − d
dr

P(r)

����
r=1

. (3.38)

Note that also this propery is valid for generic values of N .

24



3.6. Fixed-trace Wishart ensembles

Poissonian WD (β = 1) WD (β = 2) WD (β = 4)

〈r〉 (N = 3) 0.38629 0.53590 0.60266 0.67617
〈r〉 (N = 1000) 0.38629 0.5307(1) 0.5996(1) 0.6744(1)

Table 3.1: The average ratio of consecutive level spacings 〈r〉 for Poissonian and
Wigner-Dyson (WD) statistics, the latter being obtained from the eigenvalues of random
matrices sampled from the Gaussian invariant ensembles. The data is obtained from
ref. [25]. Results for matrices of dimension N = 105 obtained by the author can be
found in table 4.1 below.

The density of states does not vary within small windows for large-dimensional random
matrices, while it obviously does for matrices of dimension N = 3. In view of this, the
close agreement between P(r) for matrices of dimensions N = 3 and N = 1000 can be
seen as surprising.

As mentioned above and illustrated in section 2.5.1, the average ratio of consecutive
level spacings given by

〈r〉=
∫ 1

0

r P(r) dr (3.39)

can be used as a probe to distinguish between Poissonian and Wigner-Dyson level
statistics. Table 3.5.2 shows 〈r〉 determined for matrices sampled from the Gaussian
invariant ensembles of dimension N = 3 and N = 1000, the latter obtained numerically.
Notice the close agreement for N = 3 and N = 1000, illustrating the accuracy of the
N = 3 expression (‘Wigner-like surmise’) of eq. (3.36).

3.6 Fixed-trace Wishart ensembles

As discussed in section 2 of this chapter, the Gaussian orthogonal, unitary, and sym-
plectic ensembles are invariant under rotations of the basis. As a consequence, the
elements of a single eigenvector can be considered as independent samples from a
Gaussian distribution with mean zero, subject to the normalization constraint. An
application of random matrix theory for the statistics of eigenstates is encountered in
the context of entanglement.

3.6.1 Schmidt spectra

This section discusses part of the content covered in section 3.3.4 of the book ‘Log-
Gases and Random Matrices’ by Forrester [41]. Consider a quantum system divided
into subsystems A and B with respective Hilbert space dimensions M and N . A state |ψ〉
of the composite system can be expanded in basis states |ai〉 and |bi〉 for the respective
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Chapter 3. Random matrix theory

subsystems as

|ψ〉=
∑
i, j

X i j |ai〉 ⊗ |b j〉, (3.40)

where X is an M × N matrix. Labeling the subsystems such that M ≥ N , a Schmidt
decomposition of X uniquely expands |ψ〉 as a linear combination of product states
over the subsystems as

|ψ〉=
N∑

i=1

Æ
λi |vA

i 〉 ⊗ |vB
i 〉, (3.41)

where |vA
i 〉 and |vB

i 〉 are basis states for respectively subsystems A and B, and λi is the
Schmidt spectrum. The Schmidt spectrum fully encodes the entanglement between
subsystems A and B. Details on the procedure can be found in section 7.4 below.

In physical terms (see also section 2.5.2), the Schmidt spectrum can be interpreted
as set of eigenvalues of the reduced density matrix of subsystem B. Again, consider a
state |ψ〉. This state is associated with the reduced density matrix ρ = |ψ〉〈ψ|. Tracing
out the degrees of freedom of subsystem A gives the reduced density matrix ρB of
subsystem B given by

ρB = TrA (|ψ〉〈ψ|) . (3.42)

The reduced density matrix ρB of subsystem B encodes all physical information acces-
sible by a measurement on subsystem B only. The elements λi (i = 1, 2, . . . , N) of the
Schmidt spectrum give the probability to find the system in the associated eigenstate.
Consequently, the Schmidt spectrum obeys

N∑
i=1

λi = 1, (3.43)

which is known as the fixed-trace constraint on reduced density matrices.

3.6.2 Wishart ensembles

This section discusses part of the content covered in section 3.2.3 of the book ‘Log-
Gases and Random Matrices’ by Forrester [41]. Matrices of the form X †X with the
entries X i j given by independent samples from a Gaussian distribution with mean
zero are known as Wishart matrices. These matrices are samples from the Wishart
random matrix ensembles, sometimes referred to as the Wishart-Laguerre random
matrix ensembles. Similar as for the Gaussian random matrix ensembles discussed
above, the Dyson index β as given in eq. (3.16) labels three types of Wishart ensembles.
One distinguishes the Wishart orthogonal (β = 1), unitary (β = 2), and symplectic
(β = 4) ensembles, obtained for respectively real, imaginary, or symplectic elements
X i j .
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3.6. Fixed-trace Wishart ensembles

It can be shown that the joint probability distrbution for the eigenvalues λi (i =
1,2, . . . , N) of matrices sampled from the Wishart ensembles is given by

P(λ1,λ2, . . . ,λN ) =
1

Ca,β ,N

N∏
i=1

λ
βa/2
i e−βλi/2

∏
j<k

|λ j −λk|β (3.44)

with λi ≥ 0, where a = M − N + 1− 2/β , and Ca,β ,N a normalization constant. Eq.
(3.44) can be interpreted as the partition function of a Coulomb gas (see section 3 of
this chapter) at inverse temperature β , for which the partition function Z is given by

Z =
∫ ∞

0

dλi e−βV [λi], (3.45)

V [λi] =
1
2

N∑
i=1

λi +
1
2

�
M − N − 1+ 2/β

� N∑
i=1

logλi −
∑
i< j

log |λi −λ j |. (3.46)

The gas is in equilibrium under the competing effect of a linear potential, a logarithmic
potential, and pairwise electrostatic repulsion. The linear potential is attractive towards
the origin. The logarithmic potential is repulsive if β ≥ 2/(1+ N −M), and attractive
otherwise. The density of states in the limit m, n → ∞ at fixed c = M/N obeys
Marčenko-Pastur law [54] discussed below.

3.6.3 Fixed-trace constraint

In the context of entanglement as sketched above, the fixed-trace constraint imposes
that the elements λi of a Schmidt spectrum sum up to unity. The Schmidt spectra
obtained from eigenstates of matrices sampled from the Gaussian invariant ensembles
are thus given by sets of eigenvalues of Wishart matrices, having a joint probability
distribution �

eq. (3.44)
�
×δ

� N∑
i=1

λi − 1
�

. (3.47)

Remark that the fixed-trace constraint alters the normalization constant in the expres-
sion of eq. (3.44).

The effect of the fixed-trace constraint in the joint probability distribution of eq. (3.47)
can be studied by considering the probability for a sample

{λi}Ni=1, λi = (1+ c)λ′i (3.48)

having a trace tunable by the parameter c. Elementay mathematical manipulations
show that the probabilities P(λ1,λ2, . . . ,λn) and P(λ′1,λ′2, . . . ,λ′N ) are proportional to
each other by a factor only depending on c,

P(λ1,λ2, . . . ,λN ) =
�
eNccβaN/2cβN(N−1)

�
P(λ′1,λ′2, . . . ,λ′N ). (3.49)
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Remark that the proportionality factor does not depend on the λ′i . This proportionality
relation shows that samples from eq. (3.47) can be obtained from samples from eq.
(3.44) by a proper rescaling of the λi [55].

3.6.4 Marčenko-Pastur law

This section uses section 14.1 of the book ‘Introduction to Random Matrices’ by Livan,
Novaes, and Vivo [44] as the main reference. As for Wigner’s semicircle law for the
Gaussian invariant ensembles, the eigenvalue density for the Wishart ensembles can be
obtained by making a continuum approximation. The eigenvalue density ρ(x) given
by

ρ(x) =
N∑

i=1

δ (x −λi) (3.50)

converges in the limit n, m→∞ with c = n/m kept fixed after proper rescaling to

ρ(x) =

¨
1

2πx

p
(x − ξ−)(ξ+ − x) if x ∈ [ξ−,ξ+],

0 if x /∈ [ξ−,ξ+],
(3.51)

where ξ± = (1± c−1/2)2. Eq. (3.51) is known as the Marčenko-Pastur law [54]. The
Marčenko-Pastur law can be for example to estimate the entanglement entropy of
ergodic states [32]. Note that for c < 1 (meaning that N 6= M) there is a lower value
ξ− below which no eigenvalues are found.
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4

Level statistics across the many-body
localization transition

4.1 Introduction

In the thermodynamic limit of large system sizes, many-body localized and ergodic
phases are believed to be separated by a phase transition known commonly referred to
as the many-body localization transition, as suggested by finite-size scaling analysis
[8, 27]. At finite system sizes, the transition becomes a crossover, leading to the
observation of intermediate phenomena [8, 18]. This chapter focuses on level statistics
along the crossover from an ergodic to a many-body localized phase. The results
presented in this chapter are published in ref. [2].

Apart from the potential intrinsic interest and technical convenience, there are several
motivations to consider level statistics when studying crossovers from ergodic to many-
body localized phases, including:

1. Level statistics do not depend on the basis in which the Hamiltonian is formulated.
As a result, level statistics provide an ‘agnostic’ probe. Some aspects of basis
dependence in the context of many-body localization are discussed in chapter 6.

2. Typically, eigenvalues of matrices can be obtained at a significantly lower compu-
tational costs than eigenvectors (see appendix B for a discussion). Level statistics
are thus relatively computationally cheap to obtain.

In the context of many-body localization, intermediate level statistics have been studied
rather extensively (see section 4.2 below for a review).

This chapter proposes the Gaussian beta ensemble [56] as a one-parameter random
matrix model for the intermediate level statistics along the crossover from the ergodic
to the many-body localized phase for the ‘standard model of many-body localization’,
discussed in section 2.6. At the level of eigenvalues, the Gaussian beta ensemble is a
generalization of the Gaussian invariant random matrix ensembles from the discrete set
of Dyson indices β ∈ {1, 2, 4} to the continues range β ∈ (0,∞). The level statistics of
this ensemble, providing a smooth interpolation between Poissonian and Wigner-Dyson,
are interpreted as generalized Wigner-Dyson level statistics.
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Chapter 4. Level statistics across the many-body localization transition

Section 2 briefly reviews existing results on intermediate level statistics along crossovers
from ergodic to many-body localized phases. The Gaussian beta ensemble is introduced
in sections 3 and 4. The eigenvalue statistics of this ensemble are compared with the
intermediate level statistics in sections 5 – 7. A discussion of the results and proposals
for future research are discussed in section 8.

4.2 Literature review

Historically, the problem of intermediate level statistics was studied first in the con-
text of heavy atomic nuclei [57]. Concering the level spacing distribution, a simple
interpolation between Poissonian and Wigner-Dyson level statistics was proposed by
Brody in 1973 [58]. On phenomenological grounds, it is argued that the intermediate
level statistics of unfolded spectra approximately obey

P(s) = aβ sβ exp
�
− bβ sβ+1

�
, (4.1)

where aβ and bβ fix the normalization and average level spacing to unity, and β (in the
reference denoted by ω) is a fitting parameter tuning the degree of level repulsion. For
β = 0 one recovers Poissonian level statistics, while for β = 1 the expression coincides
with Wigner’s surmise as given in eq. (3.31). This distribution was shown to match
experimental data at a qualitative level [59].

For the crossover from ergodic to many-body localized phases, intermediate level
statistics have been investigated by Serbyn and Moore in 2016 [60]. In this work, a
Coulomb gas picture as discussed in section 3.3.2 of the energy spectra is adapted. In
intermediate phases, the potential energy due to interactions between two particles
(energy levels) at positions λ1 and λ2 is argued to scale as

U ∼ |λ1 −λ2|−γ, (4.2)

where γ ≤ 1 is a parameter. Remark that this potential strictly does not describe
a Coulomb gas as the potential does not scale logarithmically. Compared to the
scaling U ∼ ln |λ1 −λ2| for Wigner-Dyson statistics, the interactions described by this
potential are short-ranged. At the same time, it is qualitatively different from the
scaling U ∼ constant for many-body localized phases (Poissonian level statistics).

It is argued that the distribution of level spacings capturing these characteristics can
be approximated by a generalization of eq. (4.1) reading

P(s) = aβ sβ exp
�
− bβ s2−γp

�
, (4.3)

where γp (allowed to differ from γ) is a second fitting parameter. Qualitative numerical
evidence for the validness of eq. (4.3) is provided. Motivated by the suggestion that U is
short-ranged at the transition point from the ergodic to the many-body localized phase,
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it is conjectured that the many-body localization transition are ‘critical’, different from
Poissonian and Wigner-Dyson, in analogy with Anderson [61] and certain topological
[62] transitions.

A different approach was adapted by Kravtsov, Khaymovich, Cuevas, and Amini in
2015 [63]. The starting point is a generalization of the Gaussian invariant ensembles
proposed by Rosenzweig and Porter [57]. For the Gaussian orthogonal ensemble, the
generalization of consists of real symmetric matrices for which the diagonal and upper
triangular elements are sampled independently from probability distributions

P(x) =
1p
2π

e−x2/2, P(x) =
1p
π

e−(x/σ)
2
, (4.4)

respectively. The diagonal elements are sampled from a Gaussian distribution with
mean 0 and variance 1, while the upper triangular elements are sampled from a
Gaussian distribution with mean 0 and variance σ/2. Note that for σ = 1 the Gaussian
orthogonal ensemble as defined in eq. (3.15) is recovered. The parameter σ is
parametrized as

σ = 2λ2/Nγ (4.5)

with N denoting the dimension of the matrices, where λ is a constant, and γ is a control
parameter. It is shown that in the limit N →∞ this random matrix ensemble exhibits
2 transitions:

1. At γ= 2, there is a transitition from localized (γ > 2) to extended eigenstates.
These eigenstates are spread out over a large but non-extensive number of basis
states.

2. At γ= 1, there is a transition from extended to ergodic eigenstates that spread
out over an extensive number of basis states.

It is proposed that the ergodic, intermediate, and many-body localized phases obey the
statistics of the phases found for respectively γ≤ 1, 1< γ≤ 2, and γ > 2. At the level
of eigenvalues, it was observed numerically by Sierant and Zakrzewski in 2019 [64]
that this picture is correct at a qualitative level.

The above-cited work by Sierant and Zakrzweski [64] puts forward a yet different
view on intermediate level statistics. A Coulomb gas model in which β is a random
variable to account for sample-to-sample variations in the disorder is proposed. As for
the model proposed by Serbyn and Moore, the intermediate phase is characterized by
short-ranged interactions, although inspired by a short-rangle plasma model proposed
by Bogomolny, Gerland, and Schmit in 2001 [65] and thus of a different form than eq.
(4.2). The model is shown to be quantitatively correct, although this could be related
to the relatively large number of fitting parameters.
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Chapter 4. Level statistics across the many-body localization transition

4.3 Gaussian beta ensemble

The Dyson index β ∈ {1, 2, 4} introduced in section 3.3.1 labels the Gaussian invariant
ensembles according to the number of degrees of freedom per (upper triangular) matrix
element. For these ensembles, the joint probability distribution for the eigenvalues λi
(i = 1, 2, . . . , N) of N -dimensional matrices is given in eq. (3.17) as

P(λ1,λ2, . . . ,λN ) =
1

CN ,β
exp

�
− 1

2

N∑
i=1

λ2
i

� ∏
i< j

|λi −λ j |β , (4.6)

where CN ,β is a normalization constant. This section is about the Gaussian beta
ensemble [56], which is a random matrix ensemble for which the joint eigenvalue
distribution is given by eq. (4.6) with β taken from the continues range β ∈ (0,∞).
This generalization from the discrete taxonomy β ∈ {1,2,4} to the continues one
β ∈ (0,∞) provides an extension of the level statistics for the Gaussian invariant
ensembles, which can be referred to as generalized Wigner-Dyson level statistics.

The Gaussian beta ensemble was introduced by Dumitriu and Edelman in 2002 [56].
This random matrix ensemble consists of matrices T of the form

T =




aN bN−1
bN−1 an−1 bN−2

bn−2 aN−2 bN−3
. . .

. . .
. . .

b2 a2 b1
b1 a1




(4.7)

with all blank elements equal to zero. The elements ai and bi are sampled independently
from respectively the Gaussian distribution with mean 0 and variance 1 and the χ
distribution with the shape parameter given by iβ ,

P(ai) =
1p
2π

e−a2
i /2, (4.8)

P(bi) =

¨
0 if bi ≤ 0,

2
Γ (iβ/2) b

iβ−1
i e−b2

i if bi > 0.
(4.9)

Here, Γ (x) =
∫∞

0 t x−1e−t d t represents the Gamma function. As shown in appendix
A, the joint distribution for the eigenvalues matches the expression given in eq. (4.6).
The matrix model allows one to sample from the joint probability distribution given in
eq. (4.6) in a straightforward manner at low computational costs, as is detailed out in
the next section.

Before continuing, two remarks can be made:

1. The idea that β could be generalized beyond the values 1, 2, and 4 goes back
to the early works on applications of random matrix theory in physics (see for
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example ref. [37]). Before the appearance of the work by Dumitriu and Edelman
[56], no random matrix ensembles with the joint eigenvalue distribution given
by eq. (4.6) were known.

2. The invariance of the Gaussian invariant ensembles under rotations of the basis
(see section 3.2) does not hold for the Gaussian beta ensemble. Thus, the
Gaussian beta ensemble can not be thought of as a full generalization of the
Gaussian invariant ensembles.

It is a potentially interesting and (to the knowledge of the author) open question if a
natural generalization of the Gaussian invariant ensembles beyond β ∈ {1,2,4} for
the eigenvectors can be constructed.

It was proven by Benaych-Georges and Péché in 2015 [66] that the eigenvalues of the
Gaussian beta ensemble are uncorrelated in the combined limit

β → 0, N →∞, Nβ → 0 (4.10)

on windows in which the density of states is uniform, meaning that Poissonian level
statistics are obeyed. From this, one can conclude that the Gaussian beta ensemble
provides an interpolation between Poissonian (β → 0) and Wigner-Dyson (β ∈ {1, 2, 4})
level statistics. Additional numerical evidence is provided below.

An intuition for the occurence of Poissonian level statistics for β → 0 can be obtained
from the notion that β gives the number of degrees of freedom per upper triangular
matrix element for the Gaussian invariant ensembles. This suggests that β = 0 corre-
sponds to an ensemble of diagonal matrices, characterized by uncorrelated eigenvalues.
A similar intuition could be obtained from the interpretation of the joint eigenvalue
distribution of the Gaussian beta ensemble as the Boltzmann factor of a Coulomb gas
(outlined in section 3.3.2), where β is an inverse temperature.

4.4 Eigenvalue statistics for intermediate beta

The Gaussian beta ensemble provides a random matrix model for intermediate level
statistics, smoothly interpolating between Poissonian (β → 0) and Wigner-Dyson
(β ∈ {1,2,4}). This section numerically explores the eigenvalue statistics for the
Gaussian beta ensemble for the intermediate values β ∈ (0, 1).

4.4.1 Numerical implementation

Eigenvalue statistics of the Gaussian beta ensemble are obtained by numerically
diagonalizing matrices T sampled from the matrix model discussed in section 4.3.
Alternatively, data could for example be obtained by Monte Carlo simulations. Aiming
to minimize finite-size (boundary) effects, the focus is restricted to elements near the
middle of the eigenvalue spectra.
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Chapter 4. Level statistics across the many-body localization transition

Matrices are diagonalized using an iterative algorithm based on the inverse power
method [67]. For a general introduction to iterative inverse algorithms in the context of
many-body localization, the reader is referred to ref. [68]. The inverse power method
works in two steps:

1. The inverse matrix T−1 is considered. The eigenvalues of T−1 are given by the
reciprocals of the eigenvalues of T . The eigenvalues of interest can thus be
computed from the largest-modulus eigenvalues of T−1.

2. The power method is used to find the largest-modulus eigenvalues of T−1, from
which the corresponding smallest-modulus eigenvalues of T are computed. This
method utilizes that the iterative application of a random vector on T−1 yields the
(unnormalized) eigenvector corresponding to the largest-modulus eigenvalue.

When properly implemented, the inverse power method does not require the actual
computation of T−1, which is in computational costs comparable to full diagonalization.
Instead, solving a matrix equation of the form T ~x = ~y at each iteration is sufficient. A
more detailed discussion of the inverse power method and the implementation can be
found in section 2 of appendix B.

Matrix diagonalizations are performed using the eigs function (default options)
of MATLAB release 2017a [69], which uses the ARPACK library. For each value of β ,
statistics are obtained from at least 104 matrix realizations of dimension N = 105. For
each matrix realization, the focus is restricted to the 100 eigenvalues closest to 0. Per
value of β , the data is obtained in O (10) hours of computational time on a desktop
computer. The default random number generator is used.

For each of the results presented below, only negligible deviations can be observed
when comparing with results for matrices of dimension 104. As for the Gaussian invari-
ant ensembles, the density of eigenstates obeys Wigner’s semicircle law as discussed in
section 3.3.3 [46]. Aiming to maximize the accuracy of the results, unfolding according
to Wigner’s semicircle law by using eq. (3.30) is performed before analysis.

4.4.2 Evaluations

As discussed in section 3.5.2, the average ratio of consecutive level spacings can be
used as a measure for how close level statistics are to Poissonian or Wigner-Dyson. For
n ascendingly ordered eigenvalues {λi}Ni=1 (λ1 ≤ λ2 ≤ · · · ≤ λN ) of a matrix realization,
the average ratio of consecutive level spacings 〈r〉 is given by

〈r〉= 1
N − 2

N−2∑
i=1

ri , ri =min
�
λi+2 −λi+1

λi+1 −λi
,
λi+1 −λi

λi+2 −λi+1

�
. (4.11)

Additional averaging over matrix realizations is performed. Fig. 4.1 shows 〈r〉 for
several β ∈ [0,1]. One observes a one-to-one correspondence between β and 〈r〉.
In the remainder of this chapter, β is estimated from 〈r〉 when comparing the level
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β 0.00 0.01 0.05 0.10 0.15 0.20

〈r〉 0.3863 0.389(0) 0.398(4) 0.408(9) 0.410(1) 0.429(5)

β 0.25 0.30 0.35 0.40 0.45 0.50

〈r〉 0.438(1) 0.446(2) 0.453(6) 0.461(7) 0.469(3) 0.475(8)

β 0.55 0.60 0.65 0.70 0.75 0.80

〈r〉 0.482(6) 0.489(0) 0.494(6) 0.500(8) 0.505(8) 0.511(2)

β 0.85 0.90 0.95 1.00 2.00 4.00

〈r〉 0.516(4) 0.521(5) 0.526(2) 0.530(2) 0.599(7) 0.673(9)

Table 4.1: The average ratio 〈r〉 of consecutive level spacings as a function of β for the
Gaussian beta ensemble. See the main text for computational details.

statistics of the physical model with the eigenvalue statistics of the Gaussian beta
ensemble. For this purpose, the data displayed in the figure is shown in table 4.1.

Next, the distributions of the level spacings and the ratios of consecutive level spacings
are considered. For N ascendingly ordered eigenvalues {λi}Ni=1 (λ1 ≤ λ2 ≤ · · · ≤ λN )
of a matrix realization, the probability distributions for the level spacings si = λi+1−λi
and the ratios of consecutive level spacings ri are given respectively by

P(s) =
1

N − 1

N−1∑
i=1

δ(si − s), P(r) =
1

N − 2

N−2∑
i=1

δ(ri − r). (4.12)

As before, additional averaging over a large number of matrix realizations is performed.
Figs. 4.2 and 4.3 show respectively P(s) and P(r) for several values of β ∈ [0,1].
Because of the limited number of samples, some noise can be observed. The curves
for β = 0 (Poissonian statistics) are plotting the exact expressions P(s) = exp(−s) and
P(r) = 1/(1+ r)2 as given respectively below eqs. (3.31) and (3.36). Note that the
average level spacing equals 1 as a result of the unfolding.

4.5 Agreement with intermediate level statistics

This chapter aims to argue that the intermediate level statistics along the crossover
from the ergodic to the many-body localized phase for the ‘standard model of many-
body localization’ discussed in section 2.6 are captured by the eigenvalue statistics of
the Gaussian beta ensemble. Below, a number of comparisons between the eigenvalue
statistics of the Gaussian beta ensemble and the level statistics of the physical model
are disucssed.
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0.0 0.2 0.4 0.6 0.8 1.0
0.35

0.40

0.45

0.50

0.55

β

〈r〉

Fig. 4.1: The average ratio of consecutive level spacings for the Gaussian beta ensemble
at several β ∈ [0,1]. The line connecting the data points serves as a guide to the
eye. Error bars are significantly smaller than the marker size. See the main text for
computational details.
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β = 0 (exact)
β = 0.01
β = 0.10
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β = 1.00

Fig. 4.2: The level spacing distribution for the unfolded Gaussian beta ensemble at
several β ∈ [0,1]. The curve for β = 0 (Poissonian statistics) is obtained analytically.
Because of the limited number of samples, some noise can be observed. See the main
text for computational details.
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Fig. 4.3: The distribution of the ratios of consecutive level spacings for the Gaussian
beta ensemble at several β ∈ [0,1]. The curve for β = 0 (Poissonian statistics) is
obtained analytically. Because of the limited number of samples, some noise can be
observed. See the main text for computational details.

4.5.1 Model and parameters

The focus is on the ‘standard model of many-body localization’ discussed in section
2.6. The motivation to consider this model is that it allows for a comparison of the
results with what is known from the literature. Recapitulating, the model describes a
spin-1/2 XXX-chain appended by random onsite disorder. The Hamiltonian H is given
by

H =
L∑

i=1

�
S x

i S x
i+1 + S y

i S y
i+1 + Sz

i Sz
i+1 + hiS

z
i

�
, (4.13)

where L is the total number of sites. The spin-1/2 operators S x ,y,z
i are defined in

eq. (2.26). Periodic boundary conditions S x ,y,z
L+1 ≡ S x ,y,z

1 are imposed. The total spin
Sz =

∑L
i=1 Sz

i is a conserved quantity, meaning that [H, Sz] = 0. The focus is on
the Sz = 0 symmetry sector. The onsite potentials hi (i = 1,2, . . . , L) are sampled
independently from the probability distribution

P(x) =

¨
1/(2W ) if |x | ≤W,

0 if |x |>W,
(4.14)

which corresponds to the uniform distribution ranging over the interval [−W, W ]. The
phase diagram for this model indicating ergodic and many-body localized phases has
been establised numerically in ref. [27].

Unless stated otherwise, all results in this chapter are for L = 16, which is the largest
possible system size for which exact diagonalization methods (discussed below) can
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be used to obtain statistics over sufficiently many disorder realizations (≥ 1000) in a
reasonable amount of time. The disorder strength W (defined in eq. (4.14)) is used as
a tuning parameter enabling one to explore the phase diagram.

The focus is restricted to the middle part of the energy spectra. Let E( j)i denote the
i-th element of the energy spectrum obtained for the j-th disorder realization. The
index i runs over 1, 2, . . . , dim(H) whereas j runs over 1, 2, . . . , N with N denoting the
total number of disorder realizations. At the ensemble level, the density of states ρ(E)
is given by

ρ(E) =
1

dim(H)× N

∑
i, j

δ
�
E( j)i − Ei

�
. (4.15)

Remark that for N →∞ the density of states becomes independent of N . The data
analysis below is concerned only with energy levels in the interval [Emin, Emax] defined
implicitly by ∫ Emin

−∞
ρ(E) dE = 0.45,

∫ Emax

−∞
ρ(E) dE = 0.55. (4.16)

Roughly, the selection matches the selection of states with an energy density (defined
in eq. (2.29)) ε in the range ε ∈ [0.45, 0.55]. The motivation not to adapt the energy
density as a selection criterion is that it is arguably too strongly dependent on the
values of the energies associated with the ground state and the highest excited state.
The bandwidth is chosen such that level statistics are uniform over the full band at a
qualitative level.

4.5.2 Numerical implementation

Energy spectra are obtained by exact diagonalization of Hamiltonians using the eig
function (default options) of MATLAB version 2017a [69], which uses the ARPACK

library. The computational algorithm is based on the QR diagonalization scheme
[70], which is discussed in section 3 of appendix B. Contrary to the algorithm used to
find the eigenvalues of matrices sampled from the Gaussian beta ensemble, the QR
diagonalization scheme is designed to find all eigenvalues of a matrix. There are two
motivations to consider full spectra:

1. The Hamiltonian for the physical model can not be trivally represented as a
tridiagonal matrix, contrary to realizations of the Gaussian beta ensemble. Pre-
sumably related to this (see also the appendix referred to above), the loss in
computational complexity of using an iterative inverse algorithm turns out to be
limited.

2. In the evaluation of level spacing distributions, unfolding is applied. It appears
that the numerical procedure for this yields proper results only when a signifi-
cantly larger part of the spectrum than is analyzed is available, which advocates
in favor of using an algorithm designed to find full spectra.
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4.5. Agreement with intermediate level statistics

For each disorder strength W , at least 1000 disorder realizations are considered. On a
desktop computer, this diagonalization task requires O (1 week) of computational time.

4.5.3 Evaluations

The first step in comparing the level statistics of the physical model with the eigenvalue
statistics of the Gaussian beta ensemble is to estimate the value of β corresponding
to a given disorder strength W . As indicated above, β is estimated from the average
ratio of consecutive level spacings. Analog to eq. (4.17), the average ratio 〈r〉 of
consecutive level spacings for an ascendingly ordered set of energy levels {Ei}Ni=1
(E1 ≤ E2 ≤ . . .≤ EN ) is given by

〈r〉= 1
N − 2

N−2∑
i=1

ri , ri =min
�

Ei+2 − Ei+1

Ei+1 − Ei
,

Ei+1 − Ei

Ei+2 − Ei+1

�
. (4.17)

As before, additional averaging over disorder realizations is performed. The dependence
of 〈r〉 on β is given in table 4.1. The value of 〈r〉 for β intermediate between two
data points is estimated from an interpolation by a third order polynomial. Only
tiny deviations in the estimated value of β are observed when interpolating with
polynomials of order 1, 2, or 4.

The first comparison between the level statistics of the physical model and the eigen-
value statistics of the Gaussian beta ensemble is made by focusing on the distribution
of the ratios of consecutive level spacings, for the {ri}N−2

i=1 mentioned above analog to
eq. (4.12) given by

P(r) =
1

N − 2

N−2∑
i=1

δ(r − ri). (4.18)

Also here, additional averaging over disorder realizations is performed. Fig. 4.4 shows
P(r) for the energy levels of the physical model (solid lines) and the eigenvalues of
the Gaussian beta ensemble (dashed lines). The estimated values of β are indicated in
the legend. One observes good agreement for all values of W , which marks the main
result presented in this chapter.

The second comparison is made by focusing on the level spacing distribution. For
a fair comparison between the level spacing distributions of the physical model and
the Gaussian beta ensemble, spectra need to be unfolded. A spectrum {Ei}Ni=1 with a
smoothened density of states ρ(E) is unfolded by the transformation

Ei → Ẽi =

∫ Ei

−∞

1
ρ(ε)

dε. (4.19)

Supposing that the elements of the spectrum are labeled such that Ẽ1 ≤ Ẽ2 ≤ . . .≤ ẼN ,
the level spacings {si}N−1

i=1 and the mean level spacing 〈s〉 are given analog to eq. (3.28)
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Fig. 4.4: The distribution of the ratios of consecutive level spacings for the physical
model at several W (solid lines) combined with corresponding distributions for the
Gaussian beta ensemble (dashed lines). Solid and dashed lines obey the same color
scheme. The estimated values of β are indicated in the legend.

by

si = Ẽi+1 − Ẽi , 〈s〉=
N−1∑
i=1

si , (4.20)

with 〈s〉= 1 due to the unfolding. For the Gaussian beta ensemble, the smoothened
density of states is known to be well approximated by the Wigner semicircle (see section
4.4.1).

Unfolding is accomplished using the function SmoothKernelDistribution of the
mathematical software package MATHEMATICA version 10.0 [71]. For a collection
{x i}Ni=1 of samples, this function returns an estimate of the smoothened probability
distribution

P(x) =

®
n∑

i=1

δ(x i − x)

¸
, (4.21)

where 〈·〉 denotes an ensemble average. As an illustrative example, the function is
expected to return a function resembling P(x) = (

p
2πσ)−1 exp[−(x −µ)2/(2σ2)] if

the x i are sampled from the Gaussian distribution with mean µ and variance σ2.

Energy spectra originating from different disorder realizations are unfolded separately.
For disorder strengths W = 2 and W = 3, the function is used with bandwidth specifi-
cation {�Adaptive�,Automatic,1}, �Biweight�, while for W = 4 and W = 5
{�Adaptive�,Automatic,1} is used as specification. The bandwith specifications
are tuned such that agreement between the level spacing distributions for the physical
model and the Gaussian beta ensemble is optimal. Remark that the ambiguity of the
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Fig. 4.5: The estimated density of states ρ(E) for a single (representative) realization
of the physical model for W = 2. See the main text for computational details.

level spacing distribution due to the unfolding makes that one can only draw conclu-
sions up to a limited extend (see also ref. [72] for some examples of mis-interpretations
due to improper unfolding).

In view of the study of longer-range statistics in section 7 of this chapter, the unfolding
procedure is illustrated before presenting the main result. Fig. 4.5 shows the density
of states as estimated for a single (representative) realization of the physical model
with disorder strength W = 2. Two observations can be made:

1. The density of states appears to fluctuate rapidly, in particular near the center
of the spectrum. This shows that the density of states needs to be estimated
separately for each disorder realization. Averaged over disorder realizations, one
expects ρ(E) to be close to a Gaussian.

2. Because the average onsite disorder is different from 0 for this particular disorder
realization, the Gaussian shape is shifted to the left when comparing with a
Gaussian with the same variane but mean value 0. Again, this indicates that the
density of states needs to be estimated separately for each disorder realization.

As a further illustration, fig. 4.6 shows the estimated density of states for three different
(representative) realizations of the physical model in the vicinity of the middle of the
spectra, on a window containing roughly 900 levels. This window roughly matches
the window set by eq. (4.16), which is concerned in the analysis. One observes that
the density of states apparently can not be fitted by a low-order polynomial.

Taking into account the considerations above, the level spacing distributions for the
physical system and the Gaussian beta ensemble can be compared. Fig. 4.7 shows
P(s) for the energy levels of the physical model (solid lines) and the eigenvalues of the
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Fig. 4.6: The estimated density of states ρ(E) around the middle of the spectra for
some (representative) realization of the physical model for W = 2. Note that the
vertical axis does not start at zero.

Gaussian beta ensemble (dashed lines). As in fig. 4.4, one observes good agreement
for all values of W .

4.6 Breaking time-reversal symmetry

An arguably interesting question is whether the agreement observed in the former
section holds beyond Dyson indices β ∈ [0,1]. The Gaussian unitary ensemble, cor-
responding to β = 2, is a random matrix model for ergodic systems with broken
time-reversal symmetry (see section 3.2). This section compares the level statistics
for an extension of the ‘standard model of many-body localization’ having broken
time-reversal symmetry with the eigenvalue statistics of the Gaussian beta ensemble.

In the most general form (see for example section 2.3 of ref. [52]), a time-reversal
operator T can be represented as T = UK, where U is unitary (UU−1 = 1) and
K performs complex conjugation. The Hamiltonian of the physical model under
consideration is written down in terms of the spin-1/2 operators

S x
i =

1
2

�
0 1
1 0

�
, S y

i =
1
2

�
0 −i
i 0

�
, Sz

i =
1
2

�
1 0
0 −1

�
(4.22)

acting only on site i, as given in eq. (2.26). Trivially, the time-evolution operator can
be expanded as a sum of terms Ti over i ∈ {1,2, . . . , L} with Ti acting only on site i.
It is conventional to take Ti = exp

�
iπS y

i

�
K, such that all spin operators transform
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Fig. 4.7: The level spacing distribution for the physical model at several W (solid lines)
combined with corresponding distributions for the Gaussian beta ensemble (dashed
lines). Solid and dashed lines obey the same color scheme. The estimated values of β
(as in fig. 4.4) are indicated in the legend.

similarly as S x ,y,z
i →−S x ,y,z

i under time reversal,

S x ,y,z
i → Ti S x ,y,z

i Ti (4.23)

= exp
�
iπS y

i

�
K S x ,y,z

i K exp
�−iπS y

i

�
. (4.24)

Notice that here Ti can equivalently be written as Ti = 2i S y
i K , and that T−1

i = −2iS y
i K

implying that T−1
i = −Ti .

Let H̃ = T HT−1 denote the Hamiltonian for the ‘standard model of many-body
localization’ given in eq. (4.13) with reversed time obtained by using the time-reversal
operator discussed above. One observes that H̃ 6= H, naivley suggesting broken time-
reversal symmetry:

H̃ = T HT−1 (4.25)

=
L∑

i=1

�
S x

i S x
i+1 + S y

i S y
i+1 + Sz

i Sz
iT+1 − hiS

z
i

�
. (4.26)

Remark that H̃ 6= H does not imply that time-reversal symmetry is broken, although
the opposite statement that there is time-reversal symmetry when H̃ = H holds. The
Hamiltonian can be shown to be time-reversal invariant by setting Ti = K , such that
the operators S x ,y,z

i transform under time-reversal as

S x
i → S x

i , S y
i →−S y

i , Sz
i → Sz

i . (4.27)

Breaking time-reversal symmetry can be accomplished by adding a term H ′ to the
original Hamiltonian such that H 6= H̃ for every choice of Ui . Ref. [73] proposes the
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Chapter 4. Level statistics across the many-body localization transition

use of

H ′ =
L∑

i=1

~Si ·
�
~Si+1 × ~Si+2

�
, (4.28)

where ~Si = (S x
i , S y

i , Sz
i ). Note that H ′ perserves the conservation of the total spin Sz

given in eq. (2.28), meaning that [H ′, Sz] = 0. In the work cited above, a term H ′ of
this form is claimed to be experimentally relevant.

In this section, the focus is on the level statistics of the Hamiltonian H+H ′ with H and
H ′ given by respectively eqs. (4.13) and (4.28). The comparison with the eigenvalue
statistics of the Gaussian beta ensemble is made by focusing on the distribution of the
ratios of consecutive level spacings as defined in eq. (4.18). As pointed out in section
3.5.2, determining the distribution of the ratios of consecutive level spacings does not
require unfolding, thus allowing for an unambiguous comparison.

As before, β is estimated from the average ratio 〈r〉 of consective level spacings given
in eq. (4.17). The correspondence between β and 〈r〉 for the Gaussian beta ensemble
with β > 1 is deduced from the Wigner-like surmise given in eq. (3.36). Explicitly, for
a given value of β , the average ratio of consecutive level spacings for the Gaussian
beta ensembel is approximated by

〈r〉 ≈ 1
Cβ

∫ 1

0

(r + r2)β+1

(1+ r + r2)1+(3/2)β
dr, Cβ =

∫ 1

0

(r + r2)β

(1+ r + r2)1+(3/2)β
dr. (4.29)

Fig. 4.8 shows 〈r〉 versus β for the Gaussian beta ensemble and the Wigner-like surmise,
where the data of the former is obtained from table 4.1 presented before. One observes
that the Wigner-like surmise gives a reasonable good estimate of 〈r〉 when β ¦ 1 is
large enough. A more accurate correspondence could be obtained by extending table
4.1, which is not done here in view of the associated computational costs.

Fig. 4.9 shows the distribution P(r) as defined in eq. (4.18) of the ratios of consecutive
level spacings for the Hamiltonian H+H ′. The procedure followed to obtain the data is
identical to the one followed in section 4.5.3, except that here additionally the disorder
strength W = 3.9 is studied aiming to study agreement for β ≈ 1 and the estimation
of β is obtained by using eq. (4.29). One can make a number of observations:

1. Good agreement between the level statistics of the physical model and the
eigenvalue statistics of the Gaussian beta ensemble can be observed, which
shows that the Gaussian beta ensemble can serve as a model for intermediate
level statistics beyond β ∈ [0, 1].

2. Because of the adding of H ′ to the original Hamiltonian, the crossover from
the ergodic to the many-body localized phase shifts towards a higher disorder
strength W . To the knowledge of the author, it has not been investigated if many-
body localization can persists in settings with broken time-reversal symmetry.

3. It can be of interest to observe that a proper tuning of the disorder strength (here
W ≈ 3.9) makes that the level statistics of the Hamiltonian gimmick those of an

44



4.7. Longer-range statistics

0 1 2 3 4

0.40

0.50

0.60

0.70

β

〈r〉

Gaussian beta ensemble
Wigner-like surmise

Fig. 4.8: The average ratio of consecutive level spacings for the Gaussian beta en-
semble at several β ∈ [0,4] (dots) and the Wigner-like surmise (line) as given in eq.
(4.29). Error bars are significantly smaller than the marker size. See the main text for
computational details.

ergodic system with time-reversal symmetry (meaning that β = 1). There are no
indications this disorder strengh is special in some physical sense.

4.7 Longer-range statistics

The preceding sections indicated that the of level spacing distribution and the distri-
bution of the ratios of consecutive level spacings for the ‘standard model of many-body
localization’ match the corresponding eigenvalue statistics of the Gaussian beta ensem-
ble for a properly chosen fitting parameter β . This section investigates to what extend
a similar agreement can be observed for longer-range statistics, acting over a larger
number of level spacings

The focus is on higher-order ratios of consecutive level spacings, first introduced by
Tekur, Bhosale, and Santhanam in 2018 [74]. The k-th order ratios of consecutive
level spacings generalize the ‘ordinary’ ratios of consecutive level spacings by only
considering every k-th level. More precise, let {Ei}Ni=1 (E1 ≤ E2 ≤ . . .≤ EN ) denote an
ascendingly ordered set of energy levels. The set of k-th order ratios of consecutive
level spacings contains the elements

r(k)i =min
�

Ei+2k − Ei+k

Ei+k − Ei
,

Ei+k − Ei

Ei+2k − Ei+k

�
, i = 1, 2, . . . , N − 2k. (4.30)

Notice that r(1)i equals ri as given in eq. (4.17). The motivation to consider higher-
order ratios of consecutive level spacings instead of for example the spectral form
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Fig. 4.9: The distribution of the ratios of consecutive level spacings for the Hamilto-
nian H + H ′ as discussed in the main text at several W (solid lines), combined with
corresponding distributions for the Gaussian beta ensemble (dashed lines). Solid and
dashed lines obey the same color scheme. The estimated values of β are indicated in
the legend.

factor is two-fold:

1. The (higher order) ratios of consecutive level spacings are insensitive to unfolding,
as pointed out in section 3.5.2. As a result, the higher-order ratios of consecutive
level spacings can be determined unambiguously.

2. Higher-order ratios of consecutive level spacings can be used as a tool to quantify
the range over which the level statistics of the physical model and the Gaussian
beta ensemble agree by varying k.

Higher-order level spacings can be defined in multiple ways, see for example ref. [53]
for an alternative definition.

Analog to the procedure followed above, here the distribution of the higher-order
ratios of consecutive level spacings is studied. For the ratios of higher-order spacings
given above, the distribution is analog to eq. (4.18) for the ordinary ratios (k = 1)
given by

P
�
r(k)

�
=

1
N − 2k

N−2k∑
i=1

δ
�
r(k) − r(k)i

�
. (4.31)

Also here, additional averaging over a large number of disorder realizations is per-
formed. The distribution of higher-order ratios of consecutive spacings for the eigenval-
ues of the Gaussian beta ensemble is defined analogously. Figs. 4.10, 4.11, 4.12, and
4.13 show the distributions of r(k) for the ‘standard model of many-body localization’
and the corresponding distributions of the Gaussian beta ensemble for respectively
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Fig. 4.10: The distribution of the ratios of consecutive level spacings of order k =
2,3,4,5 for the physical model at W = 2 (solid lines) combined with corresponding
distributions for the Gaussian beta ensemble (dashed lines) with β ≈ 0.86 as estimated
in section 4.5.3. Solid and dashed lines obey the same color scheme.

W = 2, W = 3, W = 4, and W = 5 for k ∈ {2,3,4,5}. The procedure followed to
obtain the data is identical to the one followed in section 4.5.3. Three observations
can be made:

1. In each of the figures, there is qualitative agreement up to and including k = 3,
indicating that the level spacing statistics of the physical model and the eigenvalue
statistics of the Gaussian beta ensemble match up to windows of ∼ 6 level
spacings.

2. There is a tendency for agreement to persist up to higher k with a lowering value
of β . Apparently, weaker correlations (corresponding to lower β) tend to follow
random matrix theory predictions on larger energy windows.

3. The eigenvalue statistics of the Gaussian beta ensemble systematically give a
higher degree of level repulsion than the level statistics of the physical model. In
other words: the energy levels of the physical model are correlated less strongly
than the random matrix theory prediction. It can not be excluded that this is an
artefact related to fluctuations in the density of states (see also fig. 4.6).

At this point, it can be of relevance to remark that a more extensive similar study on
longer-range statistics yielding similar conclusions appearing after the work described
in this chapter was published is provided in ref. [64].
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Fig. 4.11: The distribution of the ratios of consecutive level spacings of order k =
2,3,4,5 for the physical model at W = 3 (solid lines) combined with corresponding
distributions for the Gaussian beta ensemble (dashed lines) with β ≈ 0.23 as estimated
in section 4.5.3. Solid and dashed lines obey the same color scheme.
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Fig. 4.12: The distribution of the ratios of consecutive level spacings of order k =
2,3,4,5 for the physical model at W = 4 (solid lines) combined with corresponding
distributions for the Gaussian beta ensemble (dashed lines) with β ≈ 0.05 as estimated
in section 4.5.3. Solid and dashed lines obey the same color scheme.
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Fig. 4.13: The distribution of the ratios of consecutive level spacings of order k =
2,3,4,5 for the physical model at W = 5 (solid lines) combined with corresponding
distributions for the Gaussian beta ensemble (dashed lines) with β ≈ 0.02 as estimated
in section 4.5.3. Solid and dashed lines obey the same color scheme.

4.8 Discussion and outlook

In summary, this chapter proposed the eigenvalue statistics of the Gaussian beta
ensemble as a random matrix model for the intermediate level statistics along the
crossover from the ergodic to the many-body localized phase for the ‘standard model
of many-body localization’. The Gaussian beta ensemble provides a generalization of
Wigner-Dyson level statistics from the discrete taxonomy β ∈ {1, 2, 4} to the continuous
one β ∈ (0,∞), providing a smooth interpolation between Poissonian and Wigner-
Dyson statistics.

Focusing on the level spacing distribution and the distribution of the ratios of conse-
cutvie level spavings, near-perfect agreement was observed between the eigenvalue
statistics of the physical model and the corresponding statistics of the Gaussian beta
ensemble over the full crossover range between the ergodic (corresponding to β ≈ 1)
and many-body localized (corresponding to β ≈ 0) phase, where β is a single fit-
ting parameter. Similar agreement is shown to hold for a related model with broken
time-reversal symmetry.

Recently, a number of works focusing on spectral form factors (a probe not considered
in this chapter) in the context of many-body localization appeared. Most notably, ref.
[75] uses spectral form factors to argue that many-body localization can not persist
in the thermodynamic limit (see also ref. [18] for a number of counter-arguments).
Next, ref. [76] explores the spectral form factor for the ‘standard model of many-body
localization’ along the crossover from the ergodic to the many-body localized phase.
This probe is discussed in chapter 5.
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A number of potentially interesting questions remain open for further investigations:

1. What is physical interpretation of the level statistics of the Gaussian beta ensemble
for β /∈ {1, 2, 4}? In particular, could one expect these level statistics to be found
more generically in systems displaying intermediate level statistics?

2. The agreement between the level statistics of the physical model and the eigen-
value statistics of the Gaussian beta ensemble was shown to hold up to ∼ 6 mean
level spacings. Is this due to a physical mechanism due to which level repulsion
is only short-ranged, or do fluctuations in the density of states play a role?

To the knowledge of the author, both questions are currently still open.
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5

Spectral form factor and level
repulsion

5.1 Introduction

Level statistics can be characterized by the spectral form factor, which is essentially
given by the Fourier transformation of the two-point spectral correlation function.
Typically, the spectral form factor is used as a probe for ergodicity by a comparison
with the expectation for ergodic systems obtained using random matrix theory. The
onset of ergodicity is quantified by the so-called Thouless time, which is given by the
smallest time (wave number) from which onwards the two agree.

In this chapter, it is observed that the degree of level repulsion imposes a constraint
on the time-integrated spectral form factor. It is discussed how this constraint could
have a strong effect on the Thouless time. A new probe based on the spectral form
factor, approximating the spectral self-correlation in a controlled way, is proposed. It is
indicated how the spectral form factor can be integrated up to arbitrarily large times
at low computational costs.

Section 2 discusses the spectral form factor. In section 3, the relation between the time-
integrated spectral form factor and level repulsion is introduced. Section 4 reviews the
Thouless time. In section 5, the new probe is proposed. Section 6 provides a numerical
illustration for a system that can be tuned from an ergodic to a many-body localized
phase. A discussion and outlook is provided in section 7.

5.2 Spectral form factor

Spectral form factors are studied primarily in the context of periodically driven systems,
which are described by a time-dependent Hamiltonian H(t) obeying the property

H(t + T ) = H(t), (5.1)

where T is the length of a single driving period. Periodically driven systems are
commonly referred to as Floquet systems [77]. They are characterized by the Floquet

51



Chapter 5. Spectral form factor and level repulsion

operator

UF = exp
�
− i

∫ T

0

H(t) d t
�
, (5.2)

which gives the time-evolution operator acting over a single driving period. Since UF
is unitary, the eigenvalues are parameterizable as exp(iθ ) with 0≤ θ < 2π. The set of
angles {θi} is known as the quasi-energy spectrum.

The quasi-energy spectrum is scaled to unit mean level spacing. Let N = dim(UF )
denote the number of levels in a spectrum. The elements of the scaled spectrum {x i}
are obtained from the θi through the scaling x i = N/(2π)θi .

Let 〈·〉 denote an ensemble average. The spectral density ρ(x) and two-point spectral
correlation function ρ(2)(x , x ′) for an ensemble of scaled quasi-energy spectra {x i} are
given by

ρ(x) =
∑

i

δ(x i − x)
·

, (5.3)

ρ(2)(x , x ′) =
∑

i 6= j

δ(x i − x)δ(x j − x ′)
·

. (5.4)

The focus is on the cluster function ρ(2)c (x , x ′), representing the excess of the spectral
density at x ′ due to the presence of a level at x (see for example ref. [24]). In terms
of the spectral density and two-point spectral correlation function, the cluster function
(equialent to the connected part of the two-point spectral correlation function, hence
the subscript c) is expressed as

ρ(2)c (x , x ′) = ρ(2)(x , x ′)−ρ(x)ρ(x ′). (5.5)

The spectral form factor K(t) (in the mathematical literature also known as the structure
function [78]) is given by the Fourier transformation the cluster function,

K(t) = 1+
1
ρ(0)

∫ N

0

�
ρ(2)(0, x)−ρ(0)ρ(x)

�
ei x t d x , (5.6)

where t ∈ 2πn/N with n ∈ Z. The set of eigenvalues of the n-th power of UF , which
is the time-evolution operator for n cyclces, is given by {θin} = {x i t}. Since the
parameter t only enters in the expression for the spectral form factor as θ t, it follows
that t has the interpretation of a (discrete) time.

Quasi-energy spectra generically have a uniform density of states, and obey the spectral
symmetry ρ(2)(x , x ′) = ρ(2)(x ′, x). The latter property implies that K(t) = K(−t) and
that K(t) is real-valued. The spectral form factor for a quasi-energy spectrum scaled to
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5.3. Constraint by level repulsion

unit mean level spacing can be evaluated numerically as

K(t) =
1
N

∑
j,k

ei(x j−xk) t − N δ(t) (5.7)

=
1
N

����
∑

j

ei x j t

����
2

− N δ(t), (5.8)

again for t ∈ 2πn/N with n ∈ Z and all summed indices running over 1, 2, . . . , N . The
spectral form factor for an ensemble of quasi-energy spectra is given by the ensemble
average of the spectral form factors for single spectra. As K(t) = K(−t), the focus is
typically restricted to t ≥ 0.

The spectral form factor can be evaluated for the (unfolded) energy spectra of Hamil-
tonians as well [79]. The results discussed below are valid for both energy and
quasi-energy spectra.

5.3 Constraint by level repulsion

A key distinction between ergodic and non-ergodic systems is the occurence of level
repulsion. Level repulsion is a characteristics property of Wigner-Dyson level spacing
statistics, which is absent for Poissonian level spacing statistics (see section 3.5). It can
be quantified by the self-correlation ρ(2)(x , x). For unfolded spectra (uniform density
ρ = 1), one trivially finds

ρ(2)(x , x) =

¨
0 (level repulsion),

1 (no level repulsion).
(5.9)

The self-correlation puts a constraint on the time-integrated spectral form factor, as
outlined below.

Aiming to express the self-correlation ρ(2)(0, 0) in terms of the spectral form factor as
introduced in eq. (5.6), consider the time-integrated value of 1− K(t) given by

2π
N

∑
n∈Z

�
1− K

�
2πn
N

��
. (5.10)

After substituting eq. (5.6) in (5.10), it follows by simple algebraic manipulations that
the latter can be expressed as

2π
N

∑
n∈Z

�
1− K

�
2πn
N

��
=

2π
N

∫ N

0

�∑
n∈Z

�
1−ρ(2)(0, x)

�
e2πinx/N

�
d x (5.11)

= 2π
�
1−ρ(2)(0, 0)

�
. (5.12)

First, the summation and integration are reversed in order. Second, the Fourier transfor-
mation of δ(x) is recognized and evaluated. One observes that the integral of 1− K(t)
over t depends linearly on the spectral self-correlation.
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5.4 Thouless time

When probing ergodicity using the spectral form factor, it is convenient to focus on the
so-called Thouless time. Consider two levels θi and θ j from a quasi-energy spectrum.
The angle ∆ between θi and θ j is given by

∆=min
�|θi − θ j |, 2π− |θi − θ j |

�
. (5.13)

Note that ∆ ∈ [0,π). When taking the n-th power of the Floquet operator to evolve
the system over n cycles, the angle is given by n∆. Correlations can be measured as
long as n∆ < 2π, or equivalently when n < 2π/∆. Remark that correlations no not
vanish for n> 2π/∆.

The (single) assumption underlying the Thouless time is that quasi-energy levels can
be treated as uncorrelated for n> 2π/∆. Now, consider two ensembles of quasi-energy
spectra with matching two-point correlations on angles ∆ < ∆max. The difference
between the two-point correlations due to mismatches on angles ∆ > ∆max can be
detected if the system is evolved over n < 2π/∆max cycles. Under the assumption
mentioned above, two-point correlations are indistinguishable for n> 2π/∆max.

Quasi-energy spectra of ergodic systems obey the eigenvalue statistics of the cor-
responding circular random matrix ensemble, introduced in section 3.4. The angle
∆max on which the two-point correlations of the ensemble under consideration and
the corresponding circular random matrix ensemble match can be referred to as the
Thouless angle, named after an (in spirit) similar quantity encountered in the context
of Anderson localization [80]. Focusing on quasi-energy spectra scaled to unit mean
level spacing, one can define a Thouless energy xTh and a Thouless time tTh by

xTh =
N
2π
∆max, tTh =

2π
N

2π
∆max

, (5.14)

where again N is the number of levels in a spectrum.

Ergodicity is conventionally quantified by the evolution of tTh as a function of a control
parameter such as the system size. The Thouless time is determined as the smallest time
from which onwards the spectral form factor matches the value of the corresponding
circular random matrix ensemble (see refs. [75, 76, 81–84] for a number of recent
examples). When a system is ergodic, one expects∆max = π and thus tTh→ 0 for large
N .

For the quasi-energy spectra scaled to unit mean level spacing of the circular orthogonal
ensemble (β = 1) modeling Floquet operators of ergodic systems, one finds

K(t) =





|t|
π
− |t|

2π
log

�
1+
|t|
π

�
|t| ≤ 2π,

2− |t|
2π

log
�

1+ |t|/π
−1+ |t|/π

�
|t|> 2π.

(5.15)
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Fig. 5.1: The spectral form factor K(t) for the circular orthogonal ensemble as given
in eq. (5.15). The dotted line gives the corresponding value for quasi-energy spectra
obeying Poissonian level spacing statistics.

Note that this expression is independent of N . Similar closed-form expressions can
be found as well for the circular unitary (β = 2) and symplectic (β = 4) ensembles.
Poissonian level spacing statistics are observed for uncorrelated levels. Trivially, it
follows that then ρ(2)c (x , x ′) = 0 and thus K(t) = 1. Fig. 5.1 shows a plot of K(t) as
given in eq. (5.15).

5.5 Proposal for a new probe

The Thouless time is given by the smallest time from which onwards the spectral form
factor matches the value for ergodic systems. Eq. (5.12) shows that the time-integrated
value of the spectral form factor is determined by the presence or absence of level
repulsion, quantified by the spectral self-correlation ρ(2)(0, 0). This could have a strong
effect on the Thouless time:

1. If ρ(2)(0, 0) = 0 as for ergodic systems, a positive (negative) difference between
the spectral form factor and the expectation for ergodic systems at earlier times
is corrected by a negative (positive) difference at later times.

2. If ρ(2)(0, 0)> 0, the spectral form factor can not agree with the expectation for
ergodic systems at all times.

This section aims to propose the spectral self-correlation as a new probe for ergodicity
based on the spectral form factor. A quantity ρ̃(2)(0, 0|tmax) representing the spectral
self-correlation as captured by the spectral form factor for times t ≤ tmax is introduced
below. This quantity approximates the spectral self-correlation ρ(2)(0, 0) in a controlled
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Chapter 5. Spectral form factor and level repulsion

way. It is shown that this quantity can be evaluated for arbitrarily large tmax at low
computational costs.

From eqs. (5.10) and (5.12), it follows that the spectral self-correlation ρ(2)(0,0) is
expressed in terms of the spectral form factor K(t) as

ρ(2)(0,0) = 1− 1
N

∑
n∈Z

�
1− K

�
2πn
N

��
. (5.16)

For a quasi-energy spectrum {x i}, the right-hand side of the this expression can be
evaluated by inserting eq. (5.7), yielding

�
eq. (5.16)

�
= 1− 1

N

∑
n∈Z

�
1− 1

N

∑
j,k

exp
�

2πni
N
(x j − xk)

�
− N δ(t)

�
(5.17)

= 1− 1
N2

∑
n∈Z

�∑
j 6=k

exp
�

2πni
N
(x j − xk)

�
− N δ(t)

�
(5.18)

= 1− 2
N2

∑
n∈Z

�∑
j>k

cos
�

2πni
N
(x j − xk)

�
− N δ(t)

�
(5.19)

= 1− 4
N2

∑
n∈N

�∑
j>k

cos
�

2πn
N
(x j − xk)

��
. (5.20)

Remark that up to now no approximations have been made.

Instead of summing over all n ∈ N, an upper bound nmax is imposed here. Let
tmax = 2πnmax/N , and define

ρ̃(2)(0,0|tmax) = 1− 4
N2

nmax∑
n=1

�∑
j>k

cos
�

2πn
N
(x j − xk)

��
(5.21)

= 1− 4
N2

∑
j>k

� nmax∑
n=1

cos
�

2πn
N
(x j − xk)

��
. (5.22)

The quantity ρ̃(2)(0, 0|tmax) gives the spectral self-correlation as captured by the spectral
form factor for times t ≤ tmax, or equivalently by taking into account only Fourier
modes with a period larger than 1/tmax mean level spacing. It can be seen as a well-
controlled approximation of the spectral self-correlation, becoming better with an
increasing value of tmax. Arguably, ρ̃(2)(0,0|tmax) with tmax � 1 provides a natural
probe for ergodicity based on the spectral form factor.

The summation over n in eq. (5.22) can be evaluated by a single computation using
the relation

nmax∑
n=0

cos(nx) =
1

sin(x/2)
sin
�

1
2
(nmax + 1)x

�
cos

� x
2

nmax

�
, (5.23)
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which gives
�
eq. (5.22)

�
= 1− 4

N2

∑
j>k

�
csc
�π

N
(x j − xk)

�

× sin
�π

N
(nmax + 1)(x j − xk)

�

× cos
�πnmax

N
(x j − xk)

��
,

(5.24)

where csc(x) = 1/ sin(x). The evaluation of ρ̃(2)(0,0|tmax) at arbitrarily large tmax
requires the computation of order N2 sines and cosines, which corresponds to a com-
putational cost comparable to the brute-force integration of the spectral form factor
over times t ® 1.

5.6 Numerical illustration

This section illustrates the use of ρ̃(2)(0,0|tmax) as a probe for ergodicity with an
example. The setup is a Floquet model introduced by Zhang, Khemani, and Huse
in 2016 [85]. It describes a spin-1/2 chain subject to disorder and an external field
switching back-and-forth betweenthe two directions. The Floquet operator UF is given
by

UF = e−iτHx e−iτHz , (5.25)

where

Hx = 2
L∑

j=1

gΓS x
j , Hz = 4

L−1∑
j=1

Sz
j S

z
j+1 + 2

L∑
j=1

�
h+ g

p
1− Γ 2 G j

�
Sz

j . (5.26)

The S x ,z
j represent spin-1/2 operators as given in eq. (2.26), acting on site j only. The

G j represent disorder sampled independently from a Gaussian distribution with mean
zero and unit variance. Aiming at consistency with previous works, the free parameters
are taken as g = 0.9045, h= 0.809, and τ= 0.8.

Finite-size scaling analysis indicates that the system is in a many-body localized
(ergodic) phase for Γ ® 0.3 (Γ ¦ 0.3) at large system sizes. Further evidence for
a transition point at Γ ≈ 0.3 is reported in ref. [86]. The model does not possess
symmetries, such that for a system of L sites one finds N = 2L . The spectral density
ρ(x) as introduced in eq. (5.3) is uniform. The theory of many-body localization in
periodically driven systems is discussed in for example refs. [87–90].

The results of this section are obtained from statistics over at least 1.000 disorder real-
izations. Matrix diagonalizations and exponentiations are evaluated using respectively
the eig and expm functions of MATLAB release 2017a [69] with the default options.
The default random number generator is used to sample disorder.
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Fig. 5.2: The distributions of level spacings for the quasi-energy spectra of the physical
model scaled to unit mean level spacing. Considered is system size L = 12. The noise
is due to the finite number of disorder realizations that is studied.

Before presenting the main result, the level spacing distribution is investigated. The
interpretation of the level spacing distribution as a probe for ergodicity is discussed in
section 3.5. The elements of quasi-energy spectra {θi} are ordered ascendingly. Fig.
5.2 shows the distribution of level spacings

P(s) =
1
N

N∑
i=1

δ(si − s), (5.27)

where
si =

N
2π

min (|θi − θi+1|, 2π− |θi − θi+1|) (5.28)

with θi+N ≡ θi , averaged over disorder realizations. The focus is on the largest
considered system size L = 12 for several values of Γ . For Γ = 0.8, the curve is close to
the random matrix theory prediction for orthogonal random matrix ensembles (see fig.
3.1 for reference). Intermediate statistics are observed for Γ = 0.5. For Γ = 0.3, the
level spacing distribution is close to Poissonian. The figure suggests that here P(0)> 0,
which would indicate that the spectral self-correlation is non-zero.

Next, the evolution of ρ̃(2)(0,0|tmax) as a function of tmax is investigated (see eq.
(5.21)). Fig. 5.3 shows ρ̃(2)(0,0|tmax) as a function of tmax for the same parameter
values as considered above. With decreasing Γ , the curve moves from the random matrix
theory prediction for ergodic systems towards ρ̃(2)(0, 0|tmax) = 1 for integrable systems,
which is consistent with the above observation for the level spacing distribution.

This chapter proposes ρ̃(2)(0, 0|tmax) evaluated at large tmax as a probe for ergodicity.
The main result presented in this section can be found in fig. 5.4, which shows
ρ̃(2)(0, 0|tmax) evaluated at tmax = 1.000 as a function of Γ for several system sizes.
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Fig. 5.3: Plots of ρ̃(2)(0,0|tmax) as a function of tmax obtained from the same data
as considered in fig. 5.2. The dashed line (COE) shows the random matrix theory
prediction for the circular orthogonal ensemble for ergodic systems, as obtained from
eq. (5.15).

For Γ ≤ 0.3 the value increases with increasing system size, whereas it decreases with
increasing system size for Γ ≥ 0.4. This is in agreement with the results presented in
refs. [85, 86] cited above.

5.7 Discussion and outlook

In summary, this chapter revisites the interpretation of the spectral form factor as a
diagnostic for ergodicity. It is shown that the presence or absence of level repulsion
imposes a constraint on the time-integrated spectral form factor. This constraint is ar-
gued to potentially have a strong effect on the Thouless time, which is the conventional
quantity by which ergodicity is diagnosed. A new probe based on the spectral form
factor, approximating the spectral self-correlation in a controlled way, is proposed.

The use of the probe is demonstrated for a Floquet system that can be tuned from an
ergodic to a many-body localized phase. The results are in agreement with the previous
literature. In future studies, it could be interesting to compare the here proposed probe
to other probes, such as the average ratio of consecutive level spacings (see section
3.5.2). For completeness, the average ratio of consecutive level spacings

〈r〉= 1
N

N∑
i=1

min
�

si+1

si
,

si

si+1

�
(5.29)

with si as defined in eq. (5.28) and additionally averaged over disorder realizations
for the parameters considered in fig. 5.4 is shown in fig. 5.5.
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Fig. 5.4: Plots of ρ̃(2)(0,0|tmax = 1.000) for the physical model as a function of Γ for
system sizes L = 8, 10, 12. For ergodic and non-ergodic systems, one finds respectively
ρ̃(2)(0, 0|tmax = 1.000)≈ 0.001 and ρ̃(2)(0, 0|tmax = 1.000) = 1.
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Fig. 5.5: The average ratio of consecutive level spacings 〈r〉 for the physical model as a
function of Γ for system sizes L = 8, 10, 12. For ergodic and non-ergodic systems, one
finds respectively 〈r〉 ≈ 0.531 and 〈r〉 ≈ 0.386.
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6

Many-body localization in the Fock
space of natural orbitals

6.1 Introduction

Natural orbitals and the corresponding occupation numbers resulting from the diago-
nalization of a one-particle density matrix gained significant attention in the field of
many-body localization [91–95]. It was found that the occupation numbers exhibit
qualitatively different statistics in the ergodic and the many-body localized phase,
allowing them to be used as a probe for the many-body localization transition [91].
Based on this observation, this chapter argues that the scope can be naturally broadened
by studying many-body localization in the Fock basis constructed out of the natural
orbitals. The results presented in this chapter are published in ref. [1].

The ergodic phase in the vicinity of the many-body localization transition displays
properties that are typically associated with non-ergodic systems [96, 97], such as
subdiffusion [98, 99] and subthermal entanglement scaling [100]. By numerically
studying the participation ratio for the eigenstates of the Hamiltonian for a finite-size
system, a crossover between different phases at a disorder strength close to the disorder
strength at which the breakdown of thermalization [101] sets in, is identified.

Section 2 introduces one-particle density matrices and discusses their role in the
field of many-body localization. Section 3 points out the motivation for the current
investigation by discussing the Fock space constructed out of the natural orbitals. In
section 4, a probe to quantify localization of quantum states in Fock space is propsed.
The model that is considered and the numerical implementation are discussed in
sections 5 and 6, respectively. The results are presented in section 7. Section 8 provides
a discussion and outlook.

6.2 One-particle density matrices

In this chapter, a study on many-body localization in the Fock space constructed out
of natural orbitals is described. As discussed below, this study can be regarded as a

61



Chapter 6. Many-body localization in the Fock space of natural orbitals

continuation of a series of earlier works on spectra of one-particle density matrices.
This section introduces one-particle density matrices, followed by a discussion of their
relation to many-body localization. A review of the content discussed in this section
can be found in for example section 5 of ref. [93].

Consider a system of spinless fermions, which are created (annihilated) by the opera-
tors c†

i (ci) with i denoting a labeling index. Recapitulating, these operators obey the
anticommutation relations given in eqs. (2.2) and (2.3) by

{c†
i , c j}= δi j , (6.1)

{c†
i , c†

j }= {ci , c j}= 0. (6.2)

In the present context, the use of one-particle density matrices was introduced by
Löwdin in 1955 [16]. The one-particle density matrix associated with a state |ψ〉 is
element-wise defined as

ρ
(1)
i j = 〈ψ|c†

i c j |ψ〉. (6.3)

Note that ρ(1) is symmetric by the anticommutation relations given in eq. (6.1). A
generalization to multi-particle density matrices is discussed in the work cited above.

In what follows, the focus is restricted to systems for which the number of particles N
in the system given by

N =
∑

i

c†
i ci (6.4)

is fixed (conserved). This number can be determined from the trace of the one-particle
density matrix by

Tr
�
ρ(1)

�
=
∑

i

〈ψ|c†
i ci |ψ〉 (6.5)

= N , (6.6)

where the step from eq. (6.5) to (6.6) is made by substituting eq. (6.4). Because
〈ψ|c†

i ci |ψ〉 ∈ [0,1], the eigenvalues of one-particle density matrices are real-valued
numbers ranging from 0 to 1.

The eigenvalue spectra of one-particle density matrices can be used to distinguish
between interacting and (effectively) non-interacting systems. If a system is non-
interacting, the diagonalized Hamiltonian H and the corresponding one-particle density
matrix are of the respective forms

H =
∑

i

εi d†
i di , ρ

(1)
i j = 〈ψ|d†

i d j |ψ〉. (6.7)

Here, d†
i (di) denote creation (annihilation) operators of spinless fermions obeying the

anticommutation relations

{d†
i , d j}= δi j , (6.8)

{d†
i , d†

j }= {di , d j}= 0. (6.9)
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The state under consideration is denoted by |ψ〉, and the εi denote the excitation
energies of the single-particle (N = 1) eigenstates. If |ψ〉 is an eigenstate of the system,
the one-particle density matrix as given in eq. (6.7) is diagonal with elements 1 and
0 on the diagonal. For ergodic states, one-particle density matrices have eigenvalues
that are all approximately equal [91].

As discussed in section 2.3, many-body localization can be interpreted as an emergent
type of Anderson localization in Fock space, meaning that many-body localized systems
are similar to non-interacting ones when considering one-particle density matrices. It
was shown first by Bera, Schomerus, Heidrich-Meisner, and Bardarson in 2015 [91]
that the eigenvalue statistics of one-particle density matrices can be used to probe
many-body localization.

Consider a L-site system with N particles, and let ni (i = 1,2, . . . , L) denote the
eigenvalues of the one-particle density matrix associated with an eigenstate of the
Hamiltonian. Suppose that the ni are labeled in descending order,

n1 ≥ n2 ≥ . . .≥ nL . (6.10)

The ni are referred to as occupation numbers of natural orbitals, the latter being
discussed in the next section. If the system is non-interacting, the first N occupation
numbers have a value 1 while the remaining L − N ones have a value 0. Among a
number of other quantities, the reference cited above studies the occupation gap

∆n= nN − nN+1, (6.11)

which follows to be given by ∆n= 1 for non-interacting systems. It is indicated that
the occupation gap can be used to detect many-body localization; it is given by a
number close to 1 and 0 in respectively the many-body localized and ergodic phase.
Fig. 6.1 illustrates the above for (representative) eigenstates of a non-interacting and
a many-body localized system.

In the context of many-body localization, a number of studies on one-particle density
matrices have been undertaken. The list below gives a non-exhaustive list of results.

1. Ref. [94] focuses on the dynamics of occupation numbers. The setting is a
one-dimensional system in a many-body localized phase with spinless fermions
initially located on every even site, meaning that the system is initialized in a
Néel state. It is shown that at late times the occupation gap remains non-zero,
which is interpreted as a consequence of the local structure of the initial state and
the resulting partial occupation of so-called quasiparticles roughly equivalent to
the local integrals of motion discussed in section 2.4.

2. Ref. [95] studies the natural orbitals (eigenstates) of one-particle density matri-
ces obtained from many-body localized Hamiltonian eigenstates. It is observed
that the natural orbitals are spatially localized. Next, it is found that differ-
ent Hamiltonian eigenstates corresponding to nearby energy levels share an
approximately common set of natural orbitals.
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Fig. 6.1: The occupation numbers ni for (representative) eigenstates of a non-
interacting and a many-body localized system of size L = 10 at half-filling (N = 5).
The occupation gaps are given by ∆n= 1 and ∆n≈ 0.72 for the non-interacting and
the many-body localized eigenstate, respectively. The connecting lines serve as a guide
to the eye.

3. Ref. [102] proposes an experimental setup able to measure the occupation
numbers of one-particle density matrices for systems of ultracold atoms in optical
lattices. To the knowledge of the author, no experimental follow-up study has
been performed currently.

6.3 Fock space of natural orbitals

Consider a system of non-interacting spinless fermions created (annihilated) by the
operators c†

i (ci), which obey the anticommutation relations given in eqs. (6.1) and
(6.2). The particle number N given in eq. (6.4) is conserved. Because the system
is non-interacting, eigenstates of the Hamiltonian are given by Slater determinants
constructed out of single-particle eigenstates, as discussed in section 2.3.

The single-particle eigenstates of the Hamiltonian can be read off from the eigen-
decomposition. In the diagonal representation, the Hamiltonian H and one-particle
density matrix ρ(1) of a non-interacting system are given in eq. (6.7) by

H =
∑

i

εi d†
i di , ρ

(1)
i j = 〈ψ|d†

i d j |ψ〉, (6.12)

where |ψ〉 gives the state under consideration, and the εi denote the excitation energies
of the single-particle (N = 1) eigenstates. The operators d†

i , di obey the anticommuta-
tion relations for spinless fermions given in eqs. (6.8) and (6.9). For eigenstates of the
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Hamiltonian, two statements hold:

1. Both the Hamiltonian and the one-particle density matrix are of diagonal form.
This implies that the single-particle (N = 1) eigenstates of the Hamiltonian are
identical to the eigenstates of the one-particle density matrix.

2. The one-particle density matrix is diagonal for each of the eigenstates of the
Hamitonian. This implies that the set of eigenstates of the one-particle density
matrix is the same for each eigenstate of the Hamiltonian. Eigenstates of the
one-particle density matrices are commonly referred to as natural orbitals [16].

The eigenstates of the Hamiltonian span what is referred to as the Fock space constructed
out of the natural orbitals.

Diagonalizing the one-particle density matrix associated with an eigenstate |ψ〉 gives
the natural orbitals |φi〉 and the associated occupation numbers ni , the latter satisfying
ni ∈ {0, 1} because the system is non-interacting:

ρ(1)|φi〉= ni |φi〉. (6.13)

The natural orbitals are said to be either occupied (occupation number ni = 1) or
unoccupied (occupation number ni = 0). Remark that, because of the degeneracy of
the eigenvalues, the natural orbitals are not defined uniquely in this way. This issue
does not occur in the next sections, where interactions break the degeneracies of the
eigenvalues of one-particle density matrices.

6.4 Localization in Fock space

This section proposes a probe to quantify localization of quantum states in Fock space.
Consider Hamiltonians of the form H = H0 +Hint with the successive terms as given in
eqs. (2.10) and (2.11) by respectively

H0 =
∑

i

εi c†
i ci , (6.14)

Hint =
∑

i j

J (1)i j c†
i c j +

∑
i jk`

J (2)i jk` c†
i c†

j ckc` + . . . . (6.15)

Here, the creation (annihilation) operators c†
i (ci) with i denoting a labeling index

obey the anticommutation relations for spinless fermions given in eqs. (6.1) and (6.2).
The first and second term represent respectively the diagonal and the off-diagonal part
of the Hamiltonian, meaning that J (n) = 0 if the first and last n indices are identical.

In the language of perturbation theory, the non-diagonal part is said to induce hy-
bridizations between basis states. This leads to a hiarchical structure in the set of basis
states, which is explored in the context of many-body localization below.
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Fig. 6.2: A graph with vertices representing the basis states of a non-interacting system
of spinless fermions with 6 sites labeled by {1,2,3,4,5,6} at half-filling. The labels
denote the indices of the occupied natural orbitals. The edges connect basis states that
are hybridized by a two-body interaction. The positioning of the vertices is arbitrary.

Aiming to introduce the main idea, focus on the example of 3 fermions on 6 sites. Let
the sites be labeled by indices {1, 2, . . . , 6}. For two-body interactions, one can draw a
graph consisting of vertices representing the basis states and edges connecting basis
states that can be hybridized by a two-body interaction. Fig. 6.2 shows such a graph.
A hiarchy arisies: from a given basis state, each other one can be reached in either 1, 2,
or 3 hybridization steps (in the current context referred to as particle-hole excitations).

Let |ψ(0)〉 denote an eigenstate of H0. The remaining basis states can be labeled
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6.4. Localization in Fock space

according to the number of particle-hole excitations with respect to this reference state:
¦
|ψ(1)i 〉

©
1 particle-hole excitation, (6.16)

¦
|ψ(2)i 〉

©
2 particle-hole excitations, (6.17)

¦
|ψ(3)i 〉

©
3 particle-hole excitations, (6.18)

et cetera. For a system of N particles on L sites, the number of ways to create k
particle-hole excitations is

dim
�¦
|ψ(k)i 〉

©�
=
�

N
k

�
×
�

L − N
k

�
, (6.19)

where the first term gives the number of ways to take k out of N occupied natural
orbitals, and the second term gives the number of ways to take k out of L−N unoccupied
natural orbitals.

The labeling system proposed above allows one to distinguish localized from delo-
calized states, and to characterize crossovers from localized to delocalized (ergodic)
phases. Let P(k) denote the overlap of a state |ψ〉with basis states having k particle-hole
excitations with respect to the reference state |ψ(0)〉,

P(k) =
∑

i

|〈ψ(k)i |ψ〉|2. (6.20)

For a properly chosen reference state |ψ(0)〉, one finds P(0) = 1 if the state is fully
localized. For an ergodic state, one finds

P(k) ≈ 1
dim(H)

dim
�¦
|ψ(k)i 〉

©�
. (6.21)

For the example of 3 particles on 6 sites discussed above, ergodic states obey P(0) ≈ 0.05,
P(1) ≈ 0.45, P(2) ≈ 0.45, and P(3) ≈ 0.05. Notice that the P(k) sum up to 1.

The building blocks of Fock bases are the single-particle states. For non-interacting
systems, these are naturally given by the natural orbitals. For interacting systems,
several arguably natural choices of single-particle states could be adapted. Below, the
single-particle states are taken as the eigenstates (natural orbitals) of the one-particle
density matrix ρ(1) as given in eq. (6.3). The reference state |ψ(0)〉 is constructed from
the N highest occupied natural orbitals. Two remarks can be made:

1. Constructing the Fock space out of the natural orbitals establishes a relation with
previous studies on the evolution of occupation spectra along crossovers from
ergodic to many-body localized phases (see for example refs. [94, 95, 102] as
discussed in the former section).

2. For the Hamiltonian of an interacting system, the eigenstates do not have a
common set of natural orbials. Consequently, superpositions of eigenstates can
not be naturally studied in the Fock space constructed out of the natural orbitals.
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Chapter 6. Many-body localization in the Fock space of natural orbitals

As suggestion for a different choice of the single-particle states is mentioned in the
discussion section below.

6.5 Model and parameters

This chapter studies the onset of localization along a crossover from an ergodic to a
many-body localized phase. As before, the focus is on the ‘standard model of many-body
localization’ discussed in section 2.6. The model describes a collection of interacting
spin-1/2 particles. First, the model is reformulated as a collection of interacting spinless
fermions.

In section 2.6, the Hamiltonian of the model is written down in terms of the spin-1/2
operators S x

i , S y
i , and Sz

i introduced in eq. (2.26). The spin operators S x
j and S y

j can
be rewritten in terms of the so-called raising and lowering ladder operators S+j and S−j
as

S x
j =

1
2

�
S+j + S−j

�
, S y

j =
1
2i

�
S+j − S−j

�
. (6.22)

Note that direct expressions for S+j and S−j can be obtained in a straightforward way.
In terms of the Sz

j and the ladder operators given above, the Hamiltonian H describing
the model is expressed as

H =
L∑

i=1

�
S+i S−i+1 + S−i S+i+1 + Sz

i Sz
i+1 + hiS

z
i

�
. (6.23)

Again, periodic boundary conditions S+,−,z
L+1 ≡ S+,−,z

1 are imposed. The Hamiltonian
can be rewritten in terms of the fermionic creation (annihilation) operators c†

i (ci)
obeying the anticommutation relations given in eqs. (6.1) and (6.2) by a Jordan-Wigner
transformation. To do this, let

S+i =
1
2

c†
i

i−1∏
j=1

Sz
i , S−i =

1
2

ci

i−1∏
j=1

Sz
i , Sz

i =
1
2

�
1− 2 c†

i ci

�
. (6.24)

One can show that these definitions obey the correct commutation relations. Sub-
stituting the above expressions in eq. (6.23), one finds the (up to a constant offset)
equivalent expression

H =
1
2

L∑
i=1

�
c†

i ci+1 + cic
†
i+1

�
+

L∑
i=1

hi

�
ni −

1
2

�
+

L∑
i=1

�
ni −

1
2

��
ni+1 −

1
2

�
, (6.25)

where ni = c†
i ci is the number of particles on site i.

The Hamiltonian as formulated in eq. (6.23) commutes with the total spin Sz as
introduced in eq. (2.28). Applying the Jordan-Wigner transformation on the total spin
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operator, one finds

Sz → L
2
−

L∑
i=1

c†
i ci (6.26)

=
L
2
− N , (6.27)

where N is (for obvious reasons) referred to as the particle number. As before, the
focus is resticted to the Sz = 0, or equivalent N = L/2 half-filling sector. The onsite
potentials hi (i = 1,2, . . . , L) are again sampled independently from the probability
distribution

P(x) =

¨
1/(2W ) if |x | ≤W,

0 if |x |>W
(6.28)

as given in eq. (4.14), correspondng to the uniform distribution ranging over the
interval [−W, W ]. As outlined in section 2.6, the disorder strength W can be used as a
tuning parameter able to drive the system from an ergodic (W ® 3.6) to a many-body
localized (W ¦ 3.6) phase. Remark that for 1.7 ® W ® 3.6 a number of non-trivial
effects can be observed, as discussed in section 8 of this chapter.

In the numerical investigation discussed below, the focus is restricted to the eigenstate
for which the associated energy is closest to 0. Averages are taken over 1000 disorder
realizations. The motivation only to consider a single eigenstate per disorder realization
is that different eigenstates might have strongly resembling single-particle states, as
suggested by ref. [95] discussed above. System sizes, limited by computational costs,
range from L = 10 to L = 16.

6.6 Numerical implementation

The study discussed in this chapter is about the expansion of many-body states in the
Fock space constructed out of the natural orbitals. The states under consideration are
given by eigenstates of Hamiltonians. The eigenstates are obtained numerically by a
procedure similar to the one discussed in section 4.5.2. For all computations, again the
computational software MATLAB, release 2017a [69] is used.

At a technical level, the following steps are involved to expand a given state |ψ〉 in
the Fock basis constructed out of the natural orbitals:

1. The one-particle density matrix ρ(1) as given in eq. (6.3) is constructed element-
wise. Exact diagonalization (see section B.3 in appendix B for details of the
algorithm) is used to obtain the occupation numbers ni and corresponding
natural orbitals |φi〉 given by respectively the eigenvalues and corresponding
eigenvectors. Matrix diagonalizations are performed using the eig function
(default options).
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Chapter 6. Many-body localization in the Fock space of natural orbitals

2. A table of all possible selections of N distinct indexing labels i ∈ {1, 2, . . . , L} is
generated. Each selection {i1, i2, . . . , iN} labels a basis state of the Fock space
by the indices of the occupied natural orbitals. For each selection, the number
k of particle-hole excitations with respect to the reference state with indices
{1,2, . . . , N} is calculated as the cardinality

k = |{i1, i2, . . . , iN} ∪ {1, 2, . . . , N}|. (6.29)

The number of particle-hole excitations is involved in the determination of P(k)

as given in eq. (6.20).

3. For each selection {i1, i2, . . . , iN} of natural orbitals, the associated basis state
of the Fock space is expaned in the computational basis. The overlap with the
computational basis state with particles localized on sites { j1, j2, . . . , jN} is given
by the Slater determinant

det




φi1( j1) φi1( j2) · · · φi1( jN )
φi2( j1) φi2( j2) · · · φi2( jN )

...
...

. . .
...

φiN ( j1) φiN ( j2) · · · φiN ( jN )


 , (6.30)

where φi( j) is the j-th component of |φi〉 (see for example ref. [16]). The
numerial algorithm used to compute determinants is outlined in section 4 of
appendix B.

4. The overlap of a basis state from the Fock basis with |ψ〉 is determined by
summing over all basis states.

Remark that the number of particle-hole excitations for a basis state of the Fock space
does not need to be determined separately for each |ψ〉.

6.7 Probing crossovers

Localization in Hilbert space can be studied through a number of different probes,
such as the inverse participation ratio [103, 104] or the Shannon-Rényi entropies [105].
This section shows the numerical results obtained by focusing on the weights P(k) as
introduced in eq. (6.20), and the participation ratio (see for example ref. [106]).
Surprisingly, no signatures of the many-body localization transition at disorder strength
W ≈ 3.6 [27] are observed. Instead, a crossover between different phases at the
ergodic side centered at W ≈ 2.3 is reported.

As the focus is on the effect of considering a non-standard basis, only basis-dependent
probes are considered. This excludes probes based on, for example, level statistics
[2, 60] or entanglement [3, 100, 107–109]. Since superpositions of eigenstates can
not be naturally studied in the Fock space constructed out of the natural orbitals, also
dynamical probes as investigated in for example refs. [110–112] are excluded.
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6.7. Probing crossovers

6.7.1 Weight decomposition

Consider the weights P(k) as introduced in eq. (6.20). Recapitulating, P(k) gives the
overlap of the state under consideration with basis states of the Fock space having k
particle-hole excitations with respect to the reference state. Let 〈·〉 denote an ensemble
average. Fig. 6.3 shows the ensemble average 〈P(k)〉 for k = 1, 2, . . . , 5 as a function of
the disorder strength W for systems of size L = 14 and L = 16. One can make three
observations:

1. Many-body localized eigenstates are observed to be well localized in the Fock
space. On average, eigenstates are mainly composed out of basis states with low
values of k, which is consistent with the interpretation of many-body localization
as localization in the Fock space (see section 2.3 and ref.[6]).

2. No clear signatures can be observed of the many-body localization transition
at W ≈ 3.6. However, on average eigenstates appear to remain localized until
significantly lower disorder strengths.

3. At a qualitative level, similar observations can be made for both system sizes.

These observations point in a similar direction as the findings reported by Luitz and
Bar Lev in 2016 [113] on ergodic properties of eigenstates from the point of the Berry
conjecture [114], indicating a violation at a disorder strenght as low as W = 1.6. At a
qualitative level, the Berry conjecture states that the eigenstates of thermal systems
are spread out over the full Hilbert space in any local basis.

6.7.2 Participation ratio

Inspired by works on Anderson localization, the participation ratio has been investi-
gated in the context of many-body localization by De Luca and Scardicchio in 2013
[106], and earlier as part of a broader oriented study by Canovi, Rossini, Fazio, Santoro,
and Silva in 2011 [115]. In ref. [106], a finite-size scaling analysis was shown to be
capable of detecting the many-body localization transition in the computational basis.
Here, the participation ratio is used to investigate the crossover from the ergodic to the
many-body localized phase in the Fock space constructed out of the natural orbitals.

The participation ratio is here interpreted as a measure of the effective Hilbert space
dimension in which a state is confined. For a state |ψ〉 expressed in the basis spanned
by orthonormal states |i〉 labeled by an index i, the participation ratio PR is given by

PR=
1∑

i |〈ψ|i〉|4
. (6.31)

For a fully localized state, PR = 1, while PR = N if |ψ〉 is a uniform superposition of N
basis states. The interpretation of PR an effective Hilbert space dimension has been
adapted previously in for example works on many-body localization [115] and the
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Fig. 6.3: The ensemble-averages of the overlaps P(k) for k = 1,2, . . . , 5 as a function
of the disorder strength W at system sizes L = 14 (top) and L = 16 (bottom). The
many-body localization transition at W ≈ 3.6 is indicated by vertical dashed lines. See
the main text for computational details. For L = 14, an ergodic state is characterized
by P(0) ≈ 0.00, P(1) ≈ 0.00, P(2) ≈ 0.01, P(3) ≈ 0.13, P(4) ≈ 0.36, and P(5) ≈ 0.36.
For L = 16, an ergodic state is characterized by P(0) ≈ 0.00, P(1) ≈ 0.00, P(2) ≈ 0.00,
P(3) ≈ 0.06, P(4) ≈ 0.24, and P(5) ≈ 0.38.
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eigenstate thermalization hypothesis [116]. For the largest system size L = 16 studied
here, one finds dim(H) = 12,870. To account for the large range [1, dim(H)] over
which PR can vary, below the logarithm log10(PR) is considered.

Ensemble average Fig. 6.4 shows the ensemble average 〈log10(PR)〉 for systems of
size L = 10,12,14,16 as a function of the disorder strength W in both the Fock and
computational basis. An approximate disorder strength-independence for W ® 1.7 can
be observed in both bases, which suggests the presence of a crossover from an ergodic
phase to a phase with broken ergodicity at a disorder strength below the many-body
localization reported at W ≈ 3.6.

Although the curves appear to be free of effects due to the finiteness of the number of
samples, one might argue an estimation of the uncertainty is required. The uncertainties
of averages is estimated using the standard statistical approach. For a set of independent
observations {x1, x2, . . . , xN} from an unknown distribution, the estimates of the mean
µ and variance σ2 are estimated as

µ=
1
N

N∑
i=1

x i , (6.32)

σ2 =
1

N(N − 1)

N∑
i=1

(x i −µ)2. (6.33)

As usual, the uncertainty of the mean is estimated as σ/
p

N .

Ensemble variance Second, the focus is on the variance of log10(PR). This investi-
gation is motivated by the obervation of Kjäll, Bardarson, and Pollmann from 2014
[117] that the ensemble of eigenstates at the intermediate region between ergodic and
many-body localized phases consists of members originating from both sides. As a
result, variances peak at the intermediate phase. This idea has been applied to the
occupation entropy of the natural orbitals in ref. [91] and the eigenstate entanglement
entropy in ref. [85] to detect the many-body localization transition.

The variance of log10(PR) within the ensembe is given by

var(log10(PR)) =


(log10(PR)− 〈log10 PR〉)2� . (6.34)

Fig. 6.5 shows var(log10(PR)) in the Fock and the computational bases for system sizes
L = 10, 12, 14, 16 as a function of the disorder strength W . In both bases, one observes
a peak centered around W ≈ 2.3. For the system sizes under consideration, the peak
becomes increasingly sharp with increasing system size. It is an open question is if
the peak moves towards the MBL transition at W ≈ 3.6 in the thermodynamic limit
L →∞, although the figures suggest this not to be the case. Noteworthy, a similar
peak has been observed in studies the ensemble variance of the bipartite entanglement
entropy in refs. [107, 108].
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Fig. 6.4: The ensemble-averages of log10(PR) for L = 10,12,14,16 in the Fock space
constructed out of the natural orbitals (top) and the computational basis (bottom) as a
function of the disorder strength W . Averages are taken over 1000 eigenstates. Error
bars are mostly smaller than the marker size. See the main text for computational
details.
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Fig. 6.5: The variances var(log10(PR)) for L = 10,12,14,16 in the Fock space con-
structed out of the natural orbitals (top) and the computational basis (bottom) as a
function of the disorder strength W . Averages are taken over 1000 eigenstates. For
comparison, the dashed lines in the top (bottom) plot indicate var(log10(PR)) for L =
16 in the Fock (computational) basis. See the main text for computational details.
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Hilbert space occupation Finally, the scaling of the participation ratio with the
Hilbert space dimension is studied. As mentioned above, the participation ratio can be
interpreted as an estimate for the dimension of the effective Hilbert space in which
a state is confined. Hence, 10〈log10(PR)〉/dim(H) can be seen as an indication for the
fraction of the full Hilbert space that is occupied. Fig. 6.6 shows this quantity in
the Fock and computational bases for L = 10,12,14,16 as a function of the disorder
strength W . Again, the figure suggests a crossover at W ≈ 2.3 in both bases. It appears
unlikely that the peak shifts towards the many-body localization transition at W ≈ 3.6
in the thermodynamic limit L→∞.

Since 10〈log10(PR)〉/dim(H) is not an average, the uncertainty can not be estimated
using the approach used above. Here, jackknife resampling (see for example ref. [118])
is used to estimate the uncertainty. As above, consider a set of independent observations
{x1, x2, . . . , xN} from an unknown distribution. Following the introduction section of
the above-cited reference, let

µ(i) =
1

N − 1

∑
j 6=i

x j (6.35)

µ(·) =
1
N

N∑
i=1

µ(i) (6.36)

denote respectively the sample average of the data set with the i-th point omitted, and
the mean of the µ(i). Notice that µ= µ·. The jackknife estimate σ2

J of the variance is
given by

σ2
J =

N − 1
N

N∑
i=1

(µ(i) −µ(·)), (6.37)

which can be verified to be equal to σ2 as given above in eq. (6.33). This estimate can
be generalized to functions f (x1, x2, . . . , xN ) by the substitutions

f(i) = f (x1, x2, . . . , x i−1, x i+1, x i+1, . . . , xN ), (6.38)

f(·) =
1
N

N∑
i=1

f(i). (6.39)

Note that a trivial proper choice of f allows one to estimate the uncertainty for
10〈log10(PR)〉/dim(H).

6.8 Discussion and outlook

In this chapter, the focus was on many-body localization in the Fock basis constructed
out of the natural orbitals. Motivated by studies on the occupation numbers and the
interpretation of many-body localization as localization in Fock space, it was argued
that the Fock space constructed out of the natural orbitals is a natural one in which
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Fig. 6.6: Plots of 10〈log10(PR)〉/dim(H) for system sizes L = 10,12,14,16 in the Fock
space constructed out of the natural orbitals (top) and the compuational basis (bottom)
as a function of the disorder strength W . Averages are taken over 1000 eigenstates.
See the main text for computational details. Error bars (mostly smaller than the marker
size) are determined by jackknife resampling. Note the logarithmic scales on the
vertical axes.
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to study many-body localization. The main result is the identification of a crossover
between different phases centered at disorder strength W ≈ 2.3.

The crossover identified in this chapter is located at the thermal side of the many-
body localization transition. In parameter space, this crossover is accompanied by
the breakdown of thermalization (see for example refs. [97] and [101]). Further
investigations on the relation between these different phenomena might be valuable.
Besides, it might be interesting to investigate whether there is a link with the notion
that no signatures of the many-body localization transition have been observed.

Many-body localized eigenstates are localized in the Fock space constructed out of
the natural orbitals more strongly than in the conventionally used computational basis.
In future research, it could be interesting to search for even more optimal bases in
which to study many-body localization. When adapting P(0) as given in eq. (6.20) as a
measure of the localization of a state, one can not exclude that different single-particle
states leading to even more strongly localized eigenstates can be found [119]. An
iterative algorithm to find the optimal single-particle states archieving this has been
proposed in ref. [120]. However, convergence of this algorithm is not guaranteed.
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7

Gumbel statistics for many-body
localized eigenstates

7.1 Introduction

Entanglement entropies can be extracted from entanglement spectra [28, 121]. Re-
ferring back to section 3.6.1, the most general setting is a quantum system divided
into subsystems A and B with Hilbert space dimensions M and N . A pure state |ψ〉 of
the composite system can be expanded in basis states |ai〉 and |bi〉 of the respective
subsystems as

|ψ〉=
∑
i, j

X i j |ai〉 ⊗ |b j〉, (7.1)

where X is an M × N matrix. Labeling the subsystems such that M ≥ N , the Schmidt
decomposition of X uniquely expands |ψ〉 as a linear combination of product states
over the subsystems,

|ψ〉=
N∑

i=1

Æ
λi |αi〉 ⊗ |βi〉, (7.2)

where |αi〉 and |βi〉 are basis states for respectively subsystems A and B, and the λi
(λi ≥ 0) are the Schmidt coefficients. An element λi can be interpreted as the physical
weight of the product state |αi〉 ⊗ |βi〉, providing a contribution of −λi ln(λi) to the
entanglement entropy. The elements ei of the entanglement spectrum [28, 121] are
given by

ei = − ln(λi) (7.3)

The ei can be interpreted as the eigenvalues of the entanglement Hamiltonian, intro-
duced below.

At the localized side of the many-body localization transition [27], eigenstates obey
area-law scaling of the entanglement entropy, while volume-law scaling is observed at
the ergodic side [31]. The physical information encoded in the entanglement spectrum
of a many-body localized eigenstate is almost fully carried by the smallest few elements
[60], indicating the potential physical significance of the extreme value statistics. This
chapter focuses on the extreme value statistics of entanglement spectra of many-body
localized eigenstates.
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Chapter 7. Gumbel statistics for many-body localized eigenstates

Extreme value statistics display universal characteristics over a wide range of physically
relevant conditions [122–125]. This chapter reports the observation of Gumbel statistics
[126, 127]. These statistics apply to the extreme value of N → ∞ independent
samples drawn from a distribution with a faster than power-law asymptotic decay. This
result provides an analytical, parameter-free characterization of many-body localized
eigenstates.

Section 2 provides a brief overview of the literature on entanglement spectra in the
context of many-body localization. Sections 3 and 4 discuss the technical background
by focusing on respectively Gumbel statistics and entanglement spectra. In section 5,
the physical setup is discussed. Sections 6 shows the results, which are discussed in 7.

7.2 Literature review

This section provides a non-exhaustive list of previous investigations on entanglement
spectra in the context of many-body localization.

1. Ref. [128] identifies a two-component structure in the entanglement spectra of
many-body localized eigenstates. The focus is on a model closely related to the
‘standard model of many-body localization’ (see section 2.6), which is discussed
in section 7.5 below. The system is splitted in equally-sized left- and right -hand
sides. A deviation from the Marčenko-Pastur distribution (see section 3.6.4) is
observed for larger Schmidt coefficients λi , while deviations are absent for the
smaller coefficients.

2. Ref. [129] studies level spacing statistics (see section 3.5) of eigenstate entan-
glement spectra in many-body localized phases. The Schmidt coefficients obey
Wigner-Dyson spacing statistics at the ergodic side of the many-body localization
transition, consistent with the expectation for random states (see section 3.6). At
the many-body localized side of the transition, a so-called semi-Poisson spacing
distribution is observed. It should be remarked that the models studied in this
work are qualitatively different from the model studied in this chapter.

3. Ref. [130] finds a power-law structure in the Schmidt spectra of many-body
localized eigenstates. This observation is interpreted as a consequence of the
emegence of local integrals of motion, as discussed in section 2.4.

4. Ref. [131] studies the Schmidt spectra of eigenstates at the ergodic side of the
many-body localization transition. A correlation length, which diverges at the
many-body localization transition, is extracted by a finite-size scaling analysis.

For completeness, the reader is made aware of a preprint by Pal and Lakshminarayan
from 2020 [132] on extreme value statistics of eigenstate entanglement spectra in the
context of many-body localization, whose initiation was driven by identical motivations
as for the work on which this chapter is based.
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7.3. Gumbel statistics

7.3 Gumbel statistics

Following parts of the first chapter of the book ‘Extremes and Related Properties of
Random Sequences and Processes’ by Leadbetter, Lindgren, and Rootzén [127], this
section gives an introduction to Gumbel statistics. The content is also covered in section
3 of a recent pedagogical review by Majumdar, Pal, and Schehr [133].

Gumbel statistics – also known as Fisher-Tippett-Gumbel statistics [123] – are a type
(specified below) of extreme value statistics. Consider a collection X i (i = 1, 2, . . . , N)
of independent and identically distributed random variables. Extreme value theory is
concerned with the properties of the maximum

MN =max(X1, X2, . . . , XN ), (7.4)

or the minimum by considering −max(−X1,−X2, . . . ,−XN ). Let the cumulative density
function of X i be denoted by F(x), meaning that

P{X i ≤ x}= F(x). (7.5)

Notice that by construction F(−∞) = 0 and F(∞) = 1. Also notice the newly
introduced notation “P{condition}” for a probability density, adapted in this chapter
to avoid notational ambiguities. It follows from the independence of the X i that the
cumulative density function of MN is given by

P{MN ≤ x}= P{X1, X2, . . . , XN ≤ x}, (7.6)

= F N (x). (7.7)

Below, the extremal types theorem is introduced. This theorem states that, when prop-
erly transformed, the distribution of MN can take only three forms when considering
limit N →∞.

7.3.1 Extremal types theorem

The extremal types theorem states that if there exist constants aN > 0 and bN such
that one has

lim
N→∞ F n(aN x + bN ) = G(x), (7.8)

then G(x) can take only three possible forms (given below). In the context of extreme
value statistics, two cumulative density functions F1 and F2 are said to be of the same
type if

F2(x) = F1(ax + b) (7.9)

for some a > 0 and b. Phrased differently, the extremal types theorem thus states that
if there exist constants aN > 0 and bN such that eq. (7.8) holds, then the distribution of
the maximum MN can take only three possible forms. When N is large,MN is sampled
from the right-side tail of the probability distribution of X i . The extremal types theorem
thus distinguishes three types of tail distributions. These are referred to as the Gumbel,
Fréchet, and Weibull distributions.
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Chapter 7. Gumbel statistics for many-body localized eigenstates

Gumbel distribution The Gumbel distribtion is described by a cumulative density
function

G(x) = exp
�−e−x

�
(7.10)

for x ∈ (−∞,∞). Note the double-exponential form of G(x). Gumbel statistics are
observed when the probability distribution for the X i has an unbounded faster-than-
power-law asymptotic decay,

lim
x→∞ P{X i = x} ∼ exp(−xα) (7.11)

with α > 0 a free parameter. Examples include exponential (α = 1) and Gaussian
(α= 2) tails.

Considering α= 1 for illustrative purposes, the probability distribution for the maxi-
mum MN of N samples as defined in eq. (7.4) can be written as

P{MN = x}= (1− ex)N (7.12)

= eN ln(1−e−x ) (7.13)

≈ eN exp(−x) (7.14)

= exp
�−e−(x−ln(N))

�
(7.15)

= G(x − ln(N)), (7.16)

where the approximation ln(1 − x) ≈ x for x → 0 is involved in the third line. By
identifying aN = 1 and bN = ln(N), one finds that this distribution is of the same type
as the one given in eq. (7.10) through eq. (7.9).

Fréchet distribution The Fréchet distribution is described by a cumulative density
function

G(x) =

¨
0 if x ≤ 0,

exp(−x−α) if x > 0,
(7.17)

for some α > 0. Fréchet statistics are observed when the probability distribution for
the X i has an unbounded power-law asymptotic decay,

lim
x→∞ P{X i = x} ∼ x−(1+α). (7.18)

The Pareto and Cauchi distributions are examples of distributions for which Fréchet
extreme value statistics apply. These are not discussed as the focus in this chapter is on
Gumbel statistics.

Weibull distribution The Weibull distribution is described by a cumulative density
function

G(x) =

¨
exp(−(−x)α if x ≤ 0,

1 if x > 0,
(7.19)

for some α > 0. Weibull statistics are observed when the probability distribution for
the X i with an upper-bounded support. An example of distributions for which Weibull
statistics apply is the uniform distribution, which again is not discussed here.
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7.4. Entanglement spectra

7.3.2 Shifting and scaling

As indicated by eq. (7.9), extreme value distributions are defined up to a shift and
scale. To check whether two extreme value distributions are of the same type, one
conventionally fixes these parameters by setting the mean to 0 and the variance to 1.
Considering the Gumbel distribution, one thus needs to find parameters a and b such
that the probability density function

g(x) =
d

d x
G(ax + b) (7.20)

with G(x) given in eq. (7.10) obeys the constraints
∫ ∞

−∞
x g(x) d x = 0,

∫ ∞

−∞
x2 g(x) d x = 1 (7.21)

to fix respectively the mean and variance. It can be verified that these constraints
are satisfied for a = π/

p
6 and b = γ with γ ≈ 0.577 denoting Euler’s constant.

A selection of examples in which this distribution is considered is provided by refs.
[122–125, 134–138].

For the Gumbel distribution, the probability density g(x) for the maximum of N →∞
samples after proper shifting and scaling is given in explicit form by

g(x) =
πp
6

exp
�
−
�
πp
6

x + γ
�
− e−

�
πp
6

x+γ
��

. (7.22)

Fig. 7.1 shows a plot of g(x) as given in eq. (7.22). For later reference, in addition
the density

h(x) =
1p
2π

e−x2/2 (7.23)

for a standard normal distribution is shown. One observes an asymmetric shape, which
is the main qualitative characteristic of the Gumbel distribution.

7.4 Entanglement spectra

The Schmidt decomposition introduced in section 3.6.1 can be used to obtain an
entanglement spectrum. This section first discusses this decomposition at a technical
level. Second, the entanglement Hamiltonian and the physical motivation for the
entanglement spectrum are discussed. Finally, this section focuses on the properties of
entanglement spectra for ergodic and localized states.

7.4.1 Schmidt decomposition

The discussion below essentially follows the first part of section 3.3.4 of the book ‘Log-
Gases and Random Matrices’ by Forrester [41]. A Schmidt decomposition transformes
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−3 0 3 6
10−3

10−2

10−1

100

x

g(x) [Gumbel]
h(x) [Gaussian]

Fig. 7.1: Plots of the Gumbel distribution g(x) and the standard Gaussian h(x) as given
in respectively eqs. (7.22) and (7.23). Note the logarithmic scale on the vertical axis.

a state |ψ〉 expanded in the form of eq. (7.1) to the form of eq. (7.2). As before,
the focus is on a quantum system divided into subsystems A and B with Hilbert space
dimensions M and N , labeled such that N ≤ M . A state |ψ〉 of the composite system
can be expanded in basis states |ai〉 and |bi〉 for the respective subsystems as

|ψ〉=
∑
i, j

X i j |ai〉 ⊗ |b j〉. (7.24)

The reduced density matrix ρB is defined as the partial trace of the density matrix
ρ = |ψ〉〈ψ| over the states {|ai〉} of subsystem A , meaning that ρB = TrA(ρ). Explicitly,

ρB =
∑

i

〈ai |ρ|ai〉 (7.25)

=
∑

i

�∑
j,k

X †
ji X ik |b j〉〈bk|

�
(7.26)

=
∑
j,k

(X †X ) jk |b j〉〈bk|. (7.27)

In a similar way, it follows that the reduced density matrix ρA = TrB(ρ) of subsystem A
is given by

ρA =
∑
j,k

(X X †) jk |a j〉〈ak|. (7.28)

Because (X X †)† = X †X , the matrix products X †X and X X † have a common set of
nonzero eigenvalues. The reduced density matrices ρA and ρB can as a result be
expressed as

ρA =
∑

i

λi |αi〉〈αi |, ρb =
∑

i

λi |βi〉〈βi |, (7.29)
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where {λi} is the set of eigenvalues of X †X . Here, |αi〉 and |βi〉 are basis states for
subsystems A and B, respectively.

The density matrix ρ is given in terms of the reduced density matrices ρA and ρB by
ρ = ρA⊗ρB. By substituting ρA and ρB as given in eq. (7.29) in this expression, one
trivially finds

ρ =
∑

i

λi |αi〉 ⊗ |βi〉〈βi | ⊗ 〈αi |, (7.30)

from which eq. (7.2) can be deduced directly by realizing that ρ has nonzero entries
only on the diagonal. Computationally, the Schmidt spectrum {λi} can thus be found by
diagonalizing X †X . Alternatively, it could be obtained by a singular value decomposition
of X .

7.4.2 Entanglement Hamiltonian

The reduced density matrix ρB of subsystem B contains all information accessible by
measurements on subsytem B only. Specifically, the expectation value of an operator
OB acting on subsystem B only is given by Tr(ρB OB). One can write

ρB = exp(−HB). (7.31)

The Hamiltonian HB is known as the entanglement Hamiltonian [121]. The entangle-
ment Hamiltonian is the result of an interpretation of ρB as the full density matrix of a
ergodic system at temperature 1. By considering eq. (7.31) in the diagonal basis of
eq. (7.29), it follows that the eigenvalues {ei} of the entanglement Hamiltonian are
related to the Schmidt spectrum {λi} by λi = exp(−ei), or

ei = − ln(λi). (7.32)

The spectrum {ei} is known as the entanglement spectrum. It is convenient to study
entanglement by means of the entanglement spectrum. Remark that in some literature
(see for example refs. [128, 130, 139]) the “quantum information definition” ei = λi
of the entanglement spectrum is adapted.

7.4.3 Ground state energy

Consider a Schmidt spectrum λi (i = 1,2, . . . , N). Many-body localized eigenstates
are nearly unentangled [27]. The Schmidt spectrum of an untangled state has only
a single nonzero element of value 1. When assigning this element index i = 1, the
elements ei of the entanglement spectrum are given by

ei =

¨
0 if i = 1

∞ if i > 1.
(7.33)
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One observes that the smallest element ei = 0 plays a special role. Remark that because
λ1 = 1, this element also carries the full physical weight, as follows from the expansion
given in eq. (7.2). In the numerical investigation discussed below, the focus is on
the statistics of −e1. The minus sigh is added to allow for a comparison with Gumbel
statistics, which are for the maximum element of a sequence.

The Schmidt spectra of ergodic states obey the statistics of the appropriate fixed-trace
Wishart ensemble, as discussed in section 3.6. The joint probability density is according
to eq. (3.44) proportional to

N∏
i=1

λ
βa/2
i e−βλi/2

∏
j<k

|λ j −λk|β (7.34)

with λi ≥ 0, where a = M −N + 1− 2/β , and β ∈ {1, 2, 4} is the Dyson index as given
in eq. (3.16), determined by the symmetry of the system with respect to reversing
time. One deduces that the elements are strongly correlated, exhibiting level replsion
(discussed in section 3.5).

Gumbel statistics are observed for the extreme value statistics of certain sets of
uncorrelated or weakly correlated elements [133]. The Schmidt spectra of ergodic
states have strongly correlated elements, due to which the extreme value statistics do
not obey Gumbel, nor any of the other types of extreme value statistics discussed in
section 7.3.1. Instead, the probability density for the extreme value statistics of these
Schmidt spectra (largest elements) as well as the corresponding entanglement spectra
(smallest elements) turns out to be close to a Gaussian (numerical data not shown).
As can be seen in fig. 7.1, these statistics differ at a qualitative level from Gumbel
statistics.

7.5 Physical setup

This section consists of two parts. The first part discusses the model for which
the eigenstate entanglement spectra are studied. In this part, also the numerical
implementation is pointed out briefly. The second part discusses the way the system is
splitted into subsystems.

7.5.1 Model and parameters

This chapter studies the model introduced in ref. [128], which is closely related to the
‘standard model of many-body localization’ discussed in section 2.6. The Hamiltonian
H is given by

H =
L∑

i=1

�
S x

i S x
i+1 + S y

i S y
i+1 + Sz

i Sz
i+1 + hiS

z
i + ΓS

x
i

�
, (7.35)
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where L is the total number of sites. The spin-1/2 operators S x ,y,z
i are defined in eq.

(2.26). Periodic boundary conditions S x ,y,z
L+1 ≡ S x ,y,z

1 are imposed. The onsite potentials
hi (i = 1, 2, . . . , L) are sampled independently from the probability distribution

P(x) =

¨
1/(2W ) if |x | ≤W,

0 if |x |>W,
(7.36)

which corresponds to the uniform distribution ranging over the interval [−W, W ]. For
Γ = 0, the model reduces to the ‘standard model of many-body localization’. As in the
reference cited above, the parameter Γ is set to Γ = 0.3. For this model, indications for
a many-body localization transition at W ≈ 3.5 are reported (see the reference cited
above).

In what follows, histograms (probability densities) are drawn from the combined data
of at least 2.5 × 105 eigenstates. For Hamiltonians with L = 10 or L = 12, the 10
eigenstates associated with energies closest to the middle (max(Ei)+min(Ei))/2 of the
spectrum Ei (i = 1, 2, . . . , dim(H)) are involved in the analysis, while for Hamiltonians
with L = 14 this number is set to 50. The eigenstates are obtained numerically by a
procedure similar to the one discussed in section 4.5.2. As before, the computational
software MATLAB, release 2017a [69] is used for all computations.

7.5.2 Splitting

For the entanglement spectra studied here, the system is splitted into equally-sized
left- and right-hand subsystems A and B. Phrased differently, subsystems A and B cover
respectively sites {1, 2, . . . , L/2} and {L/2+1, L/2+2, . . . , L}. The number of elements
in the corresponding entanglement spectra is 2L/2.

For the ‘standard model of many-body localization’ obtained by setting Γ = 0, the
total spin projection Sz as given in eq. (2.28) is a conserved quantity. Consider a state
|ψ〉 with a fixed total spin projection, expanded in terms of basis states |ai〉 and |bi〉
for respectively subystems A and B as

|ψ〉=
∑
i, j

X i j |ai〉 ⊗ |b j〉. (7.37)

Suppose without loss of generality that the basis states |ai〉 and |bi〉 can be labeled
according to the total spin projections Sz

A and Sz
B of the subsystems given by

Sz
A =

∑
i∈A

Sz
i , Sz

B =
∑
i∈B

Sz
i . (7.38)

Since the total spin projection Sz = Sz
A+Sz

B is conserved, the value of Sz
A determines the

value of Sz
B = Sz − Sz

A. Consequently, the matrix X in (7.37) acquires a block-diagonal
structure with the blocks labeled by either Sz

A or Sz
B. It is not hard to see that the
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Schmidt decomposition of |ψ〉 yields a spectum which is the union of independent
subspectra. To avoid this, the conservation of the total spin projection is broken by
setting Γ = 0.3 as in ref. [128].

7.6 Results

This section shows the main result, namely the observation of Gumbel statistics for the
entanglement spectra of many-body localized eigenstates. Let emin =mini(ei) denote
the smallest element of an entanglement spectrum. The focus is on the statistics of
−emin, as Gumbel statistics are formulated for the largest element of a set.

Following section 7.3.2, the collection of extreme values obtained from distinct eigen-
states is shifted and scaled such that the distribution has mean 0 and variance 1. As
before, let 〈·〉 denote an average, and let

µ= 〈−emin〉, σ2 = 〈e2
min〉 − 〈emin〉2 (7.39)

denote respectively the estimated mean and variance of the distribution of emin. The
analysis is concerned with the statistics of

ẽmin =
−emin −µp

σ2
, (7.40)

which matches the required values for the mean and variance by construction.

Fig. 7.2 compares the density P{ẽmin = x} of ẽmin for many-body localized eigenstates
with the Gumbel distribution g(x) as given in eq. (7.22) and the standard Gaussian
h(x) as given in eq. (7.23). The lattter is observed when considering the entanglement
spectra of ergodic states, as indicated in section 7.4.2. Good agreement with Gumbel
statistics is observed for the largest system sizes L = 12 and L = 14. Deviations
from Gumbel statistics can presumably be attributed to finite-size effects, as can be
concluded from the observation the agreement becomes better with increasing system
size. Finite-size effects come into play from two sides:

1. With increasing system size, eigenstates become more strongly localized [27].

2. The number N = 2L/2 of elements of an entanglement spectrum increases with
increasing system size. As mentioned above, Gumbel statistics are concerned
with the limit N →∞.

As might be clear intuitively, the rate of convergence of extreme value statistics depends
non-trivially on the parent distribution from which the samples are taken [140].

Fig. 7.3 compares the density P{ẽmin = x} of ẽmin for eigenstates at the largest system
size L = 14 with the Gumbel distribution g(x) as given in eq. (7.22) and the standard
Gaussian h(x) as given in eq. (7.23) for disorder strenghts W = 2, 3, 4, 5. Qualitative
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Fig. 7.2: The distribution of ẽmin for disorder strengths W = 4 (top) and W = 5
(bottom) at system sizes L = 10,12,14, combined with the densities g(x) for the
Gumbel distribution and h(x) for a standard Gaussian as given in eqs. (7.22) and
(7.23), respectively. The probability density is approximated by a histogram with bins
of width 0.05, which is normalized to unit area. Note the logarithmic scales on the
vertical axes.
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Fig. 7.3: The distribution of ẽmin for disorder strengths W = 2,3,4,5 at system size
L = 14, combined with the densities g(x) and h(x) as given in eqs. (7.22) and (7.23),
respectively. The probability density is approximated by a histogram with bins of width
0.05, which is normalized to unit area. Note the logarithmic scales on the vertical axis.

similarities between the density of ẽmin and g(x) can be observed for each of the
disorder strengths.

Based on the results presented above, no conclusions can be drawn on the convergence
of the distribution of ẽmin towards Gumbel statistics with incrasing system size at the
ergodic side of the many-body localization transition (W ® 3.5). In an ergodic phase,
the physical significance of the statistics of ẽmin is arguably limited due to the vanishing
physical weight (given by the corresponding Schmidt coefficient) in the thermodynamic
limit L→∞.

7.7 Discussion and outlook

The observation of Gumbel statistics suggests that the smallest elements of an entan-
glement spectrum obtained from a many-body localized eigenstate can be viewed as
independent (uncorrelated) samples from a single distribution. Short-range correla-
tions can be probed through the spacing statistics discussed in chapter 3. Let the ẽi be
sorted in descending order (i.e. ẽi ≥ ẽi+1), and let

r =min
�

ẽ1 − ẽ2

ẽ2 − ẽ3
,

ẽ2 − ẽ3

ẽ1 − ẽ2

�
. (7.41)

The properties of the distribution of r are investigated in section 3.5.2. Summarizing, in
the absence of short-range correlations, the distribution of r1 obeys Poissonian statistics
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Fig. 7.4: The distribution of r as given in eq. (7.41) for disorder strengths W = 2, 3, 4, 5
at system size L = 14, combined with the distributions for Poissonian and Wigner-Dyson
spacing statistics.

P{r = x}= 2
(1+ x)2

. (7.42)

Because of the level repulsion (see section 7.4.3), ergodic states obey Wigner-Dyson
spacing statistics. For systems with time-reversal symmetry (Dyson index β = 1), the
corresponding density of r is well approximated by

P{r = x} ≈ 27
8

x + x2

(1+ x + x2)5/2
. (7.43)

Fig. 7.4 compares the disribution of r for W = 2,3,4,5 at L = 14 with Poissonian
and Wigner-Dyson spacing statistics. At disorder strengths W = 2,3,4,5 the spacing
statistics are close to Poissonian, indicating the (near) independence of the largest ẽi .

The main open question remaining is the physical mechanism responsible for the
occurence of Gumbel statistics. A possible starting point for further investigations
might be provided by the notion that an entanglement spectrum can be interpreted as
the eigenvalue spectrum of the entanglement Hamiltonian introduced in section 7.4.2.
One might hypothesize that the statistics of the eigenvector associated with emin carry
relevant information.
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A

Matrix model for the Gaussian beta
ensemble

A.1 Introduction

This appendix discusses the matrix model for the Gaussian beta ensemble utilized in
chapter 4. Sections 2 and 3 derive the joint probability distribution for the eigenvalues.
Section 4 shows that the joint probability distribution for β = 1 applies to the Gaussian
orthogonal ensemble, thereby providing a derivation of eq. (3.15). For the original
derivation of the matrix model, the reader is referred to the paper ‘Matrix models for
beta ensembles’ by Dumitriu and Edelman from 2002 [56].

A.2 Tridiagonal matrices

This section covers parts of propositions 1.9.2 and 1.9.3. of the book ‘Log-Gases and
Random Matrices’ by Forrester [41]. Consider a real symmetric tridiagonal matrix T of
the form

T =




aN bN−1
bN−1 aN−1 bN−2

bN−2 aN−2 bN−3
. . .

. . .
. . .

b2 a2 b1
b1 a1




(A.1)

with all blank elements equal to zero. Let the eigenvalues and corresponding eigenvec-
tors of T be given by respectively λi and ~vi (i = 1,2, . . . , N). Next, let qi denote the
first element of ~vi . The observation that

T ~vi = λi~vi , T (−~vi) = λi(−~vi), (A.2)

shows that both ~vi and −~vi are eigenvectors of T with eigenvalue λi . The eigendecom-
position is made unique by specifying that all qi ≥ 0.
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Real symmetric tridiagonal matrices obey a number of special properties, of which
two are utilized in the next section to establish a tridiagonal matrix model for the
eigenvalues of the Gaussian beta ensemble. Consider the change of variables from

~a = (aN , aN−1, . . . , a1), ~b = (bN−1, bN−2, . . . , b1) (A.3)

to
~λ= (λ1,λ2, . . . ,λN ), ~q = (q1, q2, . . . , qN−1). (A.4)

Remark that T is diagonalized by an orthogonal transformation, meaning that the
there are only n− 1 independent qi as the sum of q2

i over i = 1, 2, . . . , N equals 1.

The first property is that the determinant of the Jacobian det(J) for the transformation
of variables from ~a, ~b to ~λ to ~q evaluates to

det(J) =
1

qN

∏N−1
i=1 bi∏N
i=1 qi

, (A.5)

as is shown in ref. [141]. Remark that this expression does not depend on λi . The
second property, derived in ref. [56], is that

∏
i< j

(λi −λ j)
2 =

∏N−1
i=1 b2i

i∏N
i=1 q2

i

. (A.6)

Besides in the references cited above, proofs of eqs. (A.5) and (A.6) can be found in
the book referred to at the beginning of this section.

A.3 Gaussian beta ensemble

This section covers part of proposition 1.9.4 of the book ‘Log-Gases and Random
Matrices’ by Forrester [41]. Consider a matrix T as given in eq. (A.1) above, and let
β > 0 denote a fixed parameter. The elements ai and bi of T are independent random
variables. The ai are sampled from the probability distribution

P(ai) =
1p
2π

e−a2
i /2, (A.7)

representing a Gaussian with mean 0 and variance 1. The bi are sampled from the
probability distribution

P(bi) =

¨
0 if bi ≤ 0,

2
Γ (iβ/2) b

iβ−1
i e−b2

i if bi > 0,
(A.8)

meaning that the bi are χ distributed with the shape parameter given by iβ . Here, Γ
represents the Gamma function. For an integer shape parameter k, samples from the
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χ distribution are given by the square root of the sum of k squared samples from a
Gaussian distribution with mean 0 and variance 1.

The joint probability distribution for T in terms of ~a and ~b is given by

P(~a,~b) =
N∏

i=1

P(ai)
N−1∏
j=1

P(b j) (A.9)

=
2N−1

(2π)N/2

n∏
i=1

e−a2
i /2

N−1∏
j=1

b jβ−1
j e−b2

j

Γ ( jβ/2)
(A.10)

=
2N−1

(2π)N/2

N−1∏
i=1

biβ−1
i

Γ (iβ/2)
e−Tr(T 2)/2 (A.11)

where it is assumed implicitly that all bi > 0. By substituting eq. (A.5), it follows that
the probability distribution in terms of ~λ and ~q is given by

P(~λ, ~q) =
2N−1

(2π)N/2

N−1∏
i=1

1
Γ (iβ/2)

1
qN

∏N−1
j=1 b jβ

j∏N
j=1 q j

e−Tr(T 2)/2 (A.12)

=
2N−1

(2π)N/2

N−1∏
i=1

1
Γ (iβ/2)

1
qN

∏N−1
j=1 b jβ

j∏N
j=1 q j

e−
1
2

∑N
k=1 λ

2
k . (A.13)

From eq. (A.6), it follows directly that

N−1∏
i=1

biβ
i =

∏
i< j

|λi −λ j |β
N∏

k=1

qβk . (A.14)

Substituting eq. (A.14) in eq. (A.13), the expression for P(~λ, ~q) factorizes in parts
P(~λ) and P(~q) only depending on respectively ~λ and ~q with

P(λ1,λ2, . . . ,λN ) =
1

CN ,β
exp

�
− 1

2

N∑
i=1

λ2
i

� ∏
i< j

|λi −λ j |β , (A.15)

where CN ,β is a normalization constant. Notice that this expression matches eq. (3.17).

A.4 Derivation for the Gaussian orthogonal ensemble

Following the steps in section 2.1 of ref. [56], it is shown below that the joint
probability distribution for the eigenvalues of the Gaussian orthogonal ensemble agrees
with eq. (A.15) for β = 1. Similar procedures can be followed for the Gaussian unitary
(β = 2) and symplectic (β = 4) ensembles.
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Consider a N × N matrix A sampled from the Gaussian orthogonal ensemble, mean-
ing that the matrix is symmetrix with the diagonal and upper triangular sampled
independently from the respective probability distributions

P(x) =
1p
2π

e−x2/2, P(x) =
1p
π

e−x2
. (A.16)

One defines the (N − 1)-dimensional vector ~x and the (N − 1)× (N − 1) matrix B as

~x =




A12
A13

...
A1N


 , B =




A22 A23 · · · A2N
A23 A33 · · · A3N

...
...

. . .
...

A2N A3N · · · ANN


 , (A.17)

such that A can be represented as

A=
�

A11 ~x T

~x B

�
. (A.18)

The key step is to define an (N −1)× (n−1) symmetric matrix H obeying H ~x = ||~x || ~e1
with ~e1 = (1, 0,0, . . . , 0)T . Explicitly,




H11 H12 · · · H1(N−1)
H12 H22 · · · H2(N−1)

...
...

. . .
...

H1(N−1) H2(N−1) · · · H(N−1)(N−1)







x1
x2
...

xN−1


= ||x ||




1
0
0
...
0




, (A.19)

where ||x || =
q

x2
1 + x2 + . . .+ x2

N−1. The matrix H is required only to depend on ~x .
Next, it is required to be orthogonal, meaning that for any matrix M the eigenvalues
of HMH−1 are the same as those of M .

Trivially, one has

�
1 0
0 H

��
A11 x T

x B

��
1 0
0 HT

�
=
�

A11 ||x ||eT
1||x ||e1 HBHT

�
. (A.20)

Since the Gaussian orthogonal ensemble is invariant under basis transformations and
~x is independent of H, the sub-matrix HBH−1 is an (N − 1)× (N − 1) sample from the
Gaussian orthogonal ensemble. Next, one observes that

||x ||=
q

x2
1 + x2 + . . .+ x2

N−1 ∼ χN−1. (A.21)

Thus, iteratively repeating the above procedure on the sub-matrices brings A to the
tridiagonal form discussed above for β = 1.
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Computational aspects

B.1 Introduction

This appendix discusses the principles of the algorithms used for the numerical di-
agonalization of matrices. Section 2 discusses the basics of iterative diagonalization.
Section 3 considers the QR diagonalization algorithm, which is utilized in exact diago-
nalization.

B.2 Iterative diagonalization

This section discusses some aspects of iterative methods for numerical eigenvalue
problems, which are used in chapter 4 to determine the eigenvalues of matrices sampled
from the Gaussian beta ensemble.

B.2.1 Power and inverse power methods

The content discussed in this section is covered in sections 6.2 and 6.3 of the book
‘Scientific Computing with MATLAB and Octave’ by Quarteroi, Saleri, and Gervasio [67].
Consider an N × N matrix T with (yet undetermined) non-degenerate eigenvalues λi
(i = 1, 2, . . . , N), without loss of generality labeled such that

|λ1|< |λ2|< |λ3|< . . .< |λN |. (B.1)

The eigenvalue λN having the largest modulus can be found iteratively by using the
power method. Let ~x i denote the eigenvector associated with the eigenvalues λi , and
let ~x (0) be an N -dimensional vector which is non-orthogonal to ~xN . For k ∈ N, let

x (k) = T ~y (k−1), ~y (k) =
~x (k)����~x (k)

���� . (B.2)

It is not difficult to see that the elements of the sequence {~x (k)} become an increasingly
better approximation of ~xN with an increasing value of k. It follows that

lim
k→∞

~x (k) = ~xN , (B.3)
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showing that the eigenvector associated with the largest-modulus eigenvalue can be
obtained iteratively. In practise, the sequence can be truncated at finite k.

The expression of the left-hand side of eq. (B.5) in terms of T and ~x (0) involves a power
of T , which justifies the name of the method. Eigenvectors ~x i with i < N can be found
by taking ~x (0) orthogonal to ~xN , although one should take care of avoiding rounding-off
errors inducing a nonzero overlap with ~xN at higher k. Modern computational software
such as MATLAB typically uses improved algorithms (such as Lanczos or Arnoldi [68])
inspired by the power method.

The inverse T−1 of T shares a common set of eigenvectors ~x i with T . The eigenvalue
µi associated with ~x i is given by µi = 1/λi , where λi is the associated eigenvalue of T .
Analog to the procedure followed above, let ~x (0) be an N -dimensional vector which is
non-orthogonal to ~x1. For k ∈ N let

x (k) = T−1 ~y (k−1), ~y (k) =
~x (k)����~x (k)

���� . (B.4)

In this context, the power method is known as the inverse power method. As before, it
follows that

lim
k→∞

~x (k) = ~x1, (B.5)

indicating that the power method can be used to find the smallest-modulus eigenvalue
too. As discussed below, the inverse power method can be implemented such that no
matrix inversion (in terms of computational costs equivalent to full diagonalization) is
required.

B.2.2 LU factorization method and Thomas algorithm

The content discussed in this section is covered in sections 5.3 (LU factorization
method) and 5.6 (Thomas algorithm) of the book by Quarteroi, Saleri, and Gervasio
[67] cited above. To find the smallest-modulus eigenvector of an N × N matix T using
the inverse power method, either the inverse T−1 has to be computed, or a matrix
equation of the form T ~x = ~y has to be solved at each iteration. The former operation is
comparable to full diagonalization in terms of computational costs. The latter operation
can be performed at relative low computational costs by using the LU factorizaiton
method.

The strategy is to efficiently solve equations of the form T ~x = ~y is to write T in the
factorized form T = LU with L and U being respectively lower and upper triangular as

L =




L11
L21 L22
...

...
. . .

LN1 LN2 · · · LNN


 , U =




U11 U12 · · · U1N
U22 · · · U2N

. . .
...

UNN


 . (B.6)
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Here, entries having value 0 are left blank. A method to compute L and U is discussed
below. Remark that, because T is invertible, the diagonal elements of L and U are
non-zero. The matrix equation T ~x = ~y can be rewritten using an auxiliary vector ~v as

L~v = ~y , U ~x = ~v. (B.7)

The first equation L~v = ~y can be solved by the forward substitutions algorithm. Let
~v = (v1, v2, . . . , vN ) and ~y = (y1, y2, . . . , yN ). Because L is lower triangular, it follows
directly that v1 = y1/L11. The remaining vector elements v2, v3, . . . , vN are obtained
iteratively by the so-called forward substitutions

vi =
1
Lii

 
yi −

i−1∑
j=1

Li j v j

!
. (B.8)

In a similar fashion, the second equation U ~x = ~v can be solved subsequently by using
the backward substitutions algorithm,

xN =
1

UNN
vN , (B.9)

x i =
1

Uii

 
vi −

N∑
j=i+1

Uii x j

!
(i = N − 1, N − 2, . . . , 1). (B.10)

Remark that here first xN is determined. Note that solving the equation T ~x = ~y
requires O (N2) operations.

The LU factorization of a matrix can be accomplished in general by the so-called
pivoting technique, which is not discussed here. For the Gaussian beta ensemble,
matrices T are of the symmetric tridiagonal form

T =




a1 b1
b1 a2 b2

b2 a3 b3
. . .

. . .
. . .

bN−2 aN−1 bN−1
bN−1 aN




, (B.11)

where again entries with value 0 are left blank. Note that, for notational consistency
with the other marices in this appendix, the labeling of entries is different from those in
eq. (A.1). From the structure of T , it follows that the LU factorization yields bidiagonal
matrices of the form

L =




1
β2 1

...
. . .
βN 1


 , U =




γ1 b1

γ2
. . .
. . . bN−1

γN


 , (B.12)
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with coefficients βi (i = 2,3, . . . , N) and γi (i = 1,2, . . . , N). From LU = T , it follows
that the coefficients can be obtained by the recursive relations

γ1 = a1, (B.13)

βi =
b1

αi−1
, γi = ai − βi bi−1 (i = 2, 3, . . . , N). (B.14)

Analog to the above, one can find the elements of ~v = (v1, v2, . . . , vN ) and ~x =
(x1, x2, . . . , xN ) by the iterative relations

v1 = y1, (B.15)

vi = yi − βi vi−1 (i = 2, 3, . . . , N), (B.16)

for L~v = ~y and

xn =
yn

γn
, (B.17)

x i =
yi − bi x i+1

γi
(i = N − 1, N − 2, . . . , 1), (B.18)

for U ~x = ~v, respectively. The procedure outlined here is known as the Thomas algorithm.
In chapter 4, the Thomas algorithm is used in the determination of eigenvalues of
matrices sampled from the Gaussian beta ensemble.

B.3 QR diagonalization

For the full diagonalization of matrices, modern computational software uses a routine
based on the QR algorithm [67]. Full diagonalization is used in this dissertation to
find the eigenvalues (and sometimes, the eigenvectors) of Hamiltonians, one-particle
occupation matrices, and reduced density matrices. This section briefly discusses the
QR algorithm. The content discussed in this section is covered in ref. [70], in which
the algorithm was first proposed.

A matrix T can be factorized as T =QR, where Q is unitary (Q Q−1 = 1) and R is upper
triangular. Computationally, the matrices Q and R are commonly obtained through
the Householder algorithm, discussed in most standard works on linear algebra. The
QR algorithm consider matrices T (i) (i ∈ N) factorized as T (i) =Q(i) R(i) with Q(i) and
R(i) being respectively unitary and upper triangular. The algorithm constructs T (i)

iteratively from T by

T (1) = T (B.19)

T (i) = R(i−1)Q(i−1) (i = 2, 3, . . .). (B.20)

Notice that here the upper triangular matrix appears before the orthogonal one. Since
R(i) = [Q(i)]−1 T (i), it follows that T (i) = [Q(i−1)]−1 T (i−1)Q(i−1), which indicates that
all T (i) have a common set of eigenvalues.
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Under the condition that all eigenvalues of T have a different modulus, one can show
that the the i-th eigenvalue and corresponding eigenvector appears as the i-th diagonal
elements of a matrix T̃ and i-th column of a matrix Q̃ given by

T̃ = lim
i→∞

T (i), Q̃ =
∞∏
i=1

Q(i). (B.21)

Remark that one can omit the calculation of Q̃ when one is only interested in the
eigenvalues, as is the case in for example chapter 4.

B.4 Determinants

The content discussed in this section is covered in section 1,4 of the book by Quarteroi,
Saleri, and Gervasio [67] cited above, as well as the documentation of MATLAB R2017a
[69]. Consider an N × N matrix T ,

T =




T11 T12 · · · T1N
T21 T22 · · · T2N
...

...
. . .

...
TN1 TN2 · · · TNN


 . (B.22)

The goal is to calculate the determinant det(T). The determinant can be calculated
recursively by using the Laplace rule:

det(T ) =





T11 if N = 1,
N∑

j=1

(−1)i+ j Ti j det(T i j) if N ≥ 2, ∀i ∈ {1, 2, . . . , N}, (B.23)

where T i j is the matrix obtained by eliminating the i-th row and the j-th column from
T without further relabeling. The result is independent of i.

Although eq. (B.23) can be implemented numerically in a straightforward way,
the algorithm is computationally much more expensive than neccessary. Aiming to
introduce the algorithm used by modern computational software, consider the lower
and upper-triangular matrices L and U as given in eq. (B.6),

L =




L11
L21 L22
...

...
. . .

LN1 LN2 · · · LNN


 , U =




U11 U12 · · · U1N
U22 · · · U2N

. . .
...

UNN


 . (B.24)

By choosing i to have the lowest (highest) possible value, the determinant of L (U)
follows to be given by the products of the diagonal terms,

det(L) =
N∏

i=1

Lii , det(U) =
L∏

i=1

Uii . (B.25)
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The algorithm to determine the determinant of a generic N × N matrix T works in
2 steps: first, the matrix T is decomposed as T = LU with L and U given above by
using the LU factorization algorithm as discussed in section 2.2 of this appendix above.
Second, the determinant is determined by using the property that for N × N matrices
A, B, and C with A= BC holds that

det(A) = det(B)× det(C), (B.26)

as is discussed in most introductions on linear algebra.
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[75] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quantum chaos challenges many-
body localization, arXiv:1905.06345v2 (2019).

[76] P. Sierant and J. Zakrzewski, Model of level statistics for disordered interacting
quantum many-body systems, Phys. Rev. B 101, 104201 (2020).

[77] J. H. Shirley, Solution of the Schrödinger Equation with a Hamiltonian Periodic
in Time, Phys. Rev. 138, B979 (1965).

[78] P. J. Forrester, B. Jancovici, and D. S. McAnally, Analytic Properties of the Struc-
ture Function for the One-Dimensional One-Component Log-Gas, J. Stat. Phys.
102, 737 (2001).

[79] E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, Phys.
Rev. E 55, 4067 (1997).

[80] J. T. Edwards and D. J. Thouless, Numerical studies of localization in disordered
systems, J. Phys. C: Solid State Phys. 5, 807 (1972).

[81] P. Kos, M. Ljubotina, and T. Prosen, Many-Body Quantum Chaos: Analytic
Connection to Random Matrix Theory, Phys. Rev. X 8, 021062 (2018).

[82] A. Chan, A. De Luca, and J. T. Chalker, Spectral Statistics in Spatially Extended
Chaotic Quantum Many-Body Systems, Phys. Rev. Lett. 121, 060601 (2018).

[83] A. J. Friedman, A. Chan, A. De Luca, and J. T. Chalker, Spectral Statistics
and Many-Body Quantum Chaos with Conserved Charge, Phys. Rev. Lett. 123,
210603 (2019).

[84] P. Sierant, D. Delande, and J. Zakrzewski, Thouless Time Analysis of Anderson
and Many-Body Localization Transitions, Phys. Rev. Lett. 124, 186601 (2020).

[85] L. Zhang, V. Khemani, and D. A. Huse, A Floquet model for the many-body
localization transition, Phys. Rev. B 94, 224202 (2016).

106



Bibliography

[86] T. L. M. Lezama, S. Bera, and J. H. Bardarson, Apparent slow dynamics in
the ergodic phase of a driven many-body localized system without extensive
conserved quantities, Phys. Rev. B 99, 161106 (2019).
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Popular scientific summary

From everyday experience, it is clear that most objects obey the laws of thermal physics.
A famous example is a metal rod of which one side is heated up, while the other one is
cooled down. When the temperature difference is not maintained actively, the rod will
eventually acquire an intermediate temperature homogeneously. Such behaviour is
known to occur when the object obeys some rather generic physical properties.

Many-body localization is a phase of matter that avoids thermalization. In a many-body
localized phase, interacting particles act as being non-interacting due to a quantum-
mechanical interference effect. Many-body localization was discovered around 15
years ago and has been actively investigated ever since. This dissertation discusses a
number of explorations on many-body localization.

The first study (discussed in chapter 4) is concerned with energy levels. The distri-
bution of spacings between energy level provides a convenient probe to discriminate
thermalizing from localized quantum systems. Here, the focus is on the intermediate
statistics for systems that are neither thermal nor many-body localized. These statistics
are shown to be well described by the Gaussian beta ensemble, an interpolating scheme
known from the mathematical discipline random matrix theory.

The second study (discussed in chapter 5) discusses the spectral form factor, which is a
quantity that can be used to discriminate between localized and delocalized systems. It
is argued that the conventional interpretation can be affected by a constraint imposed
by the value of the probability that two energy levels are infintesimally close to each
other. An alternative way of interpreting the spectral form factor is proposed.

The third study (discussed in chapter 6) focuses on eigenstates. Inspired by a previously
initiated line of research, it is investigated how well eigenstates of the system can
be mapped onto eigenstates of a non-interacting system. Many-body localization is
observed in disordered systems for which the disorder is sufficiently strong. The main
result is the observation of signatures of localization at a disorder strength in which
the model is typically considered as thermal.

The last study (discussed in chapter 7) is about entanglement of eigenstates. Loosely
speaking, entanglement defines the degree of ‘quanumness’ of a state. The more
entanglement, the less well a state can be described by classical physics. Entanglement
of a state is fully characterized by the entanglement spectrum. It is shown that the
distribution of the smallest elements – carrying the largest physical weight – obey
Gumbel statistics. These statistics originate from the field of extreme value statistics,
and have been observed for a wide range of physical phenomena.
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Polulair-wetenschappelijke
samenvatting

De thermische fysica is van toepassing op de meeste alledaagse voorwerpen. Een
bekend voorbeeld hiervan is een metalen staaf die aan de ene kant wordt opgewarmt en
aan de andere kant wordt afgekoeld. De staaf zal, wanneer het verschil in temperatuur
niet actief in stand wordt gehouden, na verloop van tijd homogeen dezelfde temperatuur
aannemen. Dit verschijnsel kan worden waargenomen wanneer een object bepaalde,
vrij generieke eigenschappen heeft.

Localisatie van deeltjes met wisselwerking (‘many-body localization’) is een toe-
stand waarin geen themalisatie plaatsvindt. Als gevolg van een kwantummechanisch
interferentie-effect gedragen wisselwerkende deeltjes in een dergelijke fase zich alsof
ze onafhankelijk van elkaar zijn. Localisatie van deeltjes met wisselwerking is circa
15 jaar geleden ontdekt en is sindsdien onderwerp van veelvuldig onderzoek. Dit
proefschrift behandeld een aantal studies naar dit verschijnsel.

Het is bekend dat de verdeling van afstanden tussen energieniveaus indicatief is voor of
een systeem wel of niet thermaliseert. De eerste studie (besproken in hoofdstuk 4) richt
zich op de verdeling voor systemen die noch thermisch, noch gelocaliseerd zijn. Deze
‘tussen-statistiek’ blijkt goed te kunnen worden beschreven door het Gaussische beta-
ensemble, bekend uit de tak van de wiskunde die zich bezighoudt met toevalsmatrices.

De ‘spectral form factor’ is een grootheid die gebruikt kan worden om gelokaliseerde
van gedelocaliseerde systemen te onderscheiden. In de tweede studie (besproken in
hoofdstuk 5) wordt beargumenteerd dat de conventionele interpretatie gevoelig is
voor de kans dat twee energieniveaus zich infintitesimaal dicht bij elkaar bevinden. Er
wordt een alternatieve manier van interpreteren voorgesteld.

De derde studie (besproken in hoofdstuk 6) richt zich op eigentoestanden. Onderzocht
wordt in hoeverre de eigentoestanden van een systeem in een gelocaliseerde toestand
voor deeltjes met wisselwerking kunnen worden beschreven als een gelokaliseerde
toestand voor onafhankelijke deeltjes. Het resultaat hint op het optreden van niet-
triviale verschijnselen voor systemen die noch thermisch, noch gelocaliseerd zijn.

De laatste studie (besproken in hoofdstuk 7) richt zich op de mate waarin eigentoe-
standen verstrengeld zijn, wat wordt beschreven door het ‘entanglement spectrum’.
Deze studie laat zien dat de kleinste (fysisch belangrijkste) elementen van deze spectra
Gumbel-statistiek vertonen. Dit resultaat geeft een kwantitatieve, parameter-vrije
karakterisering van eigentoestanden van gelocaliseerde, wisselwerkende systemen.
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