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Abstract
We show how two techniques from statistical physics can be adapted to solve a variant of the
notorious Unique Games problem, potentially opening new avenues towards the Unique Games
Conjecture. The variant, which we call Count Unique Games, is a promise problem in which the “yes”
case guarantees a certain number of highly satisfiable assignments to the Unique Games instance. In
the standard Unique Games problem, the “yes” case only guarantees at least one such assignment.
We exhibit efficient algorithms for Count Unique Games based on approximating a suitable partition
function for the Unique Games instance via (i) a zero-free region and polynomial interpolation, and
(ii) the cluster expansion. We also show that a modest improvement to the parameters for which we
give results would be strong negative evidence for the truth of the Unique Games Conjecture.
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1 Introduction

Over the last two decades, the Unique Games Problem has emerged as an obstacle to
the approximability of many combinatorial optimization problems. More precisely, the
Unique Games Conjecture (UGC) states that there is no polynomial-time algorithm to
solve the Unique Games Problem within a certain performance guarantee. If the UGC is
true, the current best-known approximation algorithms for many problems such as Min-
2Sat-Deletion [19], Vertex Cover [21], Max-Cut [20] and Non-Uniform Sparsest
Cut [9, 22] are in fact optimal. On the other hand, falsification of the conjecture is likely to
provide powerful new algorithmic techniques that apply to many important computational
problems. The fact that either resolution of the conjecture could be an important advance in
the understanding of approximation algorithms and complexity theory is one reason why the
UGC has played a key role in recent theoretical computer science research.

Our main contribution is a pair of algorithms, each deeply rooted in ideas from statistical
physics, that solve a natural variant of the Unique Games Problem. We give some important
definitions before the statement of these results.

I Definition 1. In a Unique Games problem we are given a constraint graph G = (V,E), a
set of colours [k] = {1, . . . , k} which is referred to as the alphabet, a set of variables {xu}u∈V ,
one for each vertex u, and a set of permutations (also known as constraints) πuv : [k]→ [k],
one for each edge uv ∈ E. We study assignments giving a colour from [k] to each variable
xu, and are interested in the number of satisfied edges (or satisfied constraints) of the form1

πuv(xu) = xv. The value of the assignment is the fraction of satisfied constraints. The
value of the Unique Games instance is the maximum fraction of constraints that can be
simultaneously satisfied.

We denote by UG(k, ε, δ) the promise problem consisting of a Unique Games instance
with alphabet size k and the promise that the instance either has value at least 1− ε, or has
value at most δ. To solve the problem is to correctly determine which of the two cases hold.

When the parameters are unimportant or clear from context they are omitted, and we
will always be interested in ε, δ ≥ 0 with 1 − ε > δ, otherwise the problem is ill-posed or
impossible to solve. The Unique Games Conjecture of Khot [19] can now be stated as follows.

I Conjecture (UGC). For any constants ε, δ > 0 with 1− ε > δ, there is a positive k(ε, δ)
such that for any alphabet size k > k(ε, δ), the problem UG(k, ε, δ) is NP-hard.

We note that in [11, 12] it was shown that for any δ > 0, for all large enough k the
problem UG(k, 1/2− δ, δ) is NP-hard.

Upon translating a Unique Games problem into a form amenable to methods from
statistical physics, which we elaborate upon later, a natural variant of the problem arises.

I Definition 2. Count Unique Games, or CUG(f, k, ε, δ), is the promise problem consisting
of a Unique Games instance with alphabet size k and the promise that the instance either has
at least (fk)|V | colourings with value at least 1− ε, or that every colouring has value at most
δ. To solve the problem is to correctly determine which of the two cases hold, and when the
parameters are clear from context they are omitted.

1 Formally, let G be an oriented graph so each edge has a direction. Then the edge (or constraint) u→ v
is satisfied when πuv(xu) = xv, or equivalently π−1

uv (xv) = xu. Without orientations it is unspecified
whether to use πuv or π−1

uv here. We suppress this detail as in other parts of the paper it is more natural
to consider undirected graphs.
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Note that with f = k−1, CUG(f, k, ε, δ) corresponds exactly to UG(k, ε, δ); and with
f = 1 the problem is easily solvable as the guarantee covers all colourings in both cases. To
solve CUG(1, k, ε, δ) simply requires checking the value of an arbitrary colouring. So via the
parameter f CUG can be smoothly reduced in difficulty from equal to UG to trivial. We can
now state our main results.

I Theorem 3. For ε, δ > 0 with 1−ε > δ and any fixed integer k ≥ 3, there exists ∆0(ε, δ, k)
such that for all ∆ ≥ ∆0 the following holds.

Let G be an n-vertex, ∆-regular CUG(f, k, ε, δ) instance with f ≥ kε+δ− 1
2 . Then there is

a deterministic algorithm that solves CUG for G in time

n exp
(
eO(log2 k) log2 ∆

)
.

I Theorem 4. For ε, δ > 0 with 1 − ε > δ and any k satisfying log k ≥ ∆3/2 log ∆, there
exists ∆0(ε, δ) such that for all ∆ ≥ ∆0 the following holds.

Let G be an n-vertex, ∆-regular CUG(f, k, ε, δ) instance with f ≥ k2ε+2δ−1. Then there
is a deterministic algorithm that solves CUG for G in time knO(1)eO(∆).

To illustrate how close Theorem 4 gets to an algorithm for usual Unique Games, consider
an n-vertex, ∆-regular instance of UG and suppose there exists an assignment of value 1− ε.
Let S be an arbitrary set of εn vertices, and consider all assignments obtained by relabelling
vertices in S. There are at most ε∆n constraints that could be violated by modifying the
labels of vertices in S, hence each such assignment has value at least 1− 3ε. Thus there are
at least kεn assignments of value 1− 3ε, which corresponds to having parameter f = kε−1 as
a CUG instance. In summary, if we were permitted to take f = kε/3−1 in Theorem 4, which
is only slightly smaller than the stated f ≥ k2ε+2δ−1, then we would be able to refute the
Unique Games Conjecture.

The idea at the heart of both Theorem 3 and Theorem 4 is to encode a CUG problem as
the problem of approximating the value of a partition function Z(G;w) which depends on
the instance G, and is a polynomial in w. The partition function is intimately connected to
statistical physics, and we use two techniques recently developed for approximating partition
functions to prove our two main results. Theorem 3 is proved via polynomial interpolation, a
method due to Barvinok (see [4] and references therein) and furthered by Patel and Regts [26]
who improved the running time in many examples. Theorem 4 is proved via the cluster
expansion and methods given in [8]. These techniques have recently been developed and
applied to the problem of approximating the partition function of the Potts model [4, 6, 8, 24],
random cluster model [8], and other models from statistical physics [4, 17, 26]. The main
conceptual advances in this paper are demonstrations that these techniques may be adapted
to UG instances, cleanly handling the constraints assigned to edges that are not present in
the standard Potts model. The main technical advance in this paper is a zero-free region
for (a generalization of) the ferromagnetic Potts model partition function, that may be of
independent interest. See Theorem 10 below.

I Remark 5. We note that in the majority of interesting cases for the Unique Games
conjecture, the degree ∆ of the constraint graphs is not very large (e.g. the hypercube),
so by considering ∆ polylogarithmic in n, we get a quasi-polynomial time algorithm from
Theorem 4.

CCC 2020
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1.1 Paper organization

In the following subsection we summarize related work on the UGC. In Section 2 we define
our partition function and relate it to solving UG problems. This involves stating our
algorithmic results for approximating the partition function, and proving that our main
results follow from these algorithms. In Sections 3 and 4 we discuss approximation algorithms
for our partition function with the polynomial interpolation and cluster expansion methods
respectively. Certain details are deferred to the appendices. Finally, we discuss an important
open problem arising from our work and identify plausible barriers to improving our methods
in Section 5.

1.2 Related work

An intimate connection between the UGC and semidefinite programming (SDP) can be
traced back to a seminal paper by Goemans and Williamson [15] on the Max-Cut problem.
An instance of Max-Cut can be seen as a system of linear equations over Z2, and thus it is a
Unique Games instance with alphabet size two. Goemans and Williamson gave an SDP-based
algorithm for Max-Cut which, on inputs where the maximal cut is of size 1− ε, produces a
cut that satisfies at least a fraction 1− (2/π)

√
ε of the constraints. A matching integrality

gap was found by [18] and [13], and in [20] it was proven that if the UGC is correct, then the
Goemans–Williamson algorithm has the best approximation ratio that a polynomial-time
algorithm for Max-Cut can achieve. Raghavendra [29] proved that for every constraint
satisfaction problem there is a polynomial time, semidefinite programming-based algorithm
which, if the UGC is true, achieves the best possible approximation ratio for the problem.
These results cement the central role of the UGC in the theory of approximation algorithms.

There are also spectral algorithms that give good polynomial-time or quasi-polynomial-
time approximations algorithms for large classes of Unique Games instances. These include
expanders [3, 25], local expanders [2, 30], and more generally, graphs with few large eigen-
values [23]. In [1], the authors gave a general sub-exponential algorithm for Unique Games
based on spectral techniques.

In contrast to previous approaches to refuting the UGC, our methods use techniques from
statistical physics and naturally lead to the consideration of CUG. The strengthened promise
of CUG connects to an active area of research for other computational problems such as Sat.
With no assumptions finding a satisfying assignment for a 3CNF-formula is NP-hard, but
how fast can we find a satisfying assignment under the assumption that many exist? When
a constant fraction of the possible assignments satisfy the formula, simply trying random
assignments performs quite well; and it is an intriguing problem to match this performance
with a deterministic algorithm. Servedio and Tan [31] gave such an algorithm that uses a
deterministic algorithm for approximating the number of satisfying assignments of a formula
as a key building block. We note that deterministic approximate counting is at the heart of
our methods too.

2 Solving a Unique Games problem with a partition function

In this section we define a partition function Z(G;w) and describe how to solve CUG
instances via knowledge of the partition function, leading to proofs of Theorems 3 and 4. We
also observe how CUG naturally arises from UG in this context.
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A partition function is a mathematical object that encodes as a polynomial some weighted
substructures in a graph. The general definition arises in the statistical physics of spin systems,
and important examples include the independence polynomial and matching polynomials of
a graph, see e.g. [4]. Here we will only describe the partition function we define to study
Unique Games instances, which is closely related to the Potts and random cluster models.

I Definition 6. Given a Unique Games instance G = (V,E, π), the partition function
Z(G;w) is a polynomial in a parameter w ∈ C given as a sum of terms wi for each colouring
of the graph with the alphabet [k] that has i satisfied constraints (i.e. that has value i/|E|).
That is,

Z(G;w) :=
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈E,

xv=πuv(xu)

w,

where the sum is over all assignments of colours in [k] to the labels {xu}u∈V .

If the permutations πuv are all the identity, then a satisfied constraint corresponds to
a monochromatic edge: both endpoints of the edge received the same colour. In this case
the above Z(G;w) corresponds to the partition function of the Potts model from statistical
physics. The relevance to Unique Games problems arises from the fact that the cases of the
promise in (C)UG give contrasting bounds on Z(G;w). When w ≥ 1 is real, in the case that
a highly satisfying assignment is guaranteed to exist we have a lower bound, and in the case
that no highly satisfying assignments exist we have an upper bound. When the upper bound
is less than the lower bound, at most one of the bounds can hold for any given instance,
so knowledge of Z(G;w) immediately solves the problem. If the bounds are sufficiently far
apart an approximate value of Z(G;w) suffices.

I Lemma 7. Consider an instance G = (V,E) of CUG(f, k, ε, δ), and let α > 0. Then to
solve the instance it suffices to know any value ξ satisfying e−α ≤ Z(G;w)/ξ ≤ eα for any
real w such that

logw >
|V | log(1/f) + 2α

(1− ε− δ)|E| .

In the case that G has average degree ∆ (so 2|E| = ∆|V |), and α = C|V | this becomes

logw >
2

1− ε− δ
log(1/f) + 2C

∆ .

Proof. Consider any real w ≥ 1. Then if there are (fk)|V | colourings of G with value 1− ε
we have

eαξ ≥ Z(G;w) ≥ (fk)|V |w(1−ε)|E|,

and if every colouring has value at most δ we have

e−αξ ≤ Z(G;w) ≤ k|V |wδ|E|.

Since these bounds go in opposite directions, knowledge of ξ immediately yields a solution to
the problem when the implied intervals for ξ are disjoint. This occurs precisely for w as in
the statement of the lemma. J

CCC 2020
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We now see that increasing f allows CUG instances to be solved via Z(G;w) for smaller
w, and this is how the Count variant of Unique Games naturally arises. We are unable
to approximate Z(G;w) with w large enough to permit f = 1/k (i.e. refute UGC), but by
slightly increasing f we bring w into a range amenable to our methods. In Section 5 we
discuss the problem of how large f can be while CUG(f) is still equivalent to UG, and
identify natural barriers to using algorithms for larger w. To obtain Theorems 3 and 4 we
need a pair of algorithms and some calculations.

I Theorem 8. Let k ∈ N≥3, ∆ ∈ N≥3, and w∗ = 1 + (log k − 1)/∆. Then there exists
a deterministic algorithm which, given α satisfying 0 < α < 2n

e∆e
O(log2 k), and an n-vertex

UG(k) instance G of maximum degree at most ∆, computes a number ξ satisfying e−α ≤
Z(G;w∗)/ξ ≤ eα in time bounded by

n exp
(
eO(log2 k) log

(
n∆
α
eO(log2 k)

)
log(∆

√
k)
)
.

I Theorem 9. Let ∆ ∈ N and let ζ = 8/
√

∆. For k ≥ exp ((18∆ + 4∆ log ∆)/ζ) and
w∗ = exp((2 − ζ) log(k)/∆) there exists an deterministic algorithm, which given α > 0
and an n-vertex UG(k) instance G of maximum degree at most ∆, computes ξ satisfying
e−α ≤ |Z(G;w∗)/ξ| ≤ eα in time bounded by knO(1)(n/α)O(∆).

Note that we write UG(k) above as neither algorithm depends on value or the promise on
the value of the instance (and hence the values of ε and δ are irrelevant). These parameters
feature in the application of these algorithms to prove our main results. The above results
are proved in Sections 3 and 4 respectively. In both cases we define a series for logZ(G;w),
show that it converges, and obtain an additive approximation to it by evaluating a truncation
of the series. Here we give the calculations that show what CUG problems we can solve with
these algorithms.

Proof of Theorem 3. Take w∗ as in Theorem 8. As ∆→∞, and with approximation error
α = Cn for any C < 2eO(log2 k)−1/∆, by Lemma 7 we require

logw∗ = (1− o(1)) log k
∆ >

2
1− ε− δ

log(1/f) + 2C
∆ .

For large enough ∆, C = log(k)/∆ is valid in Theorem 8 and implies the above for any

f ≥ kε+δ− 1
2 . J

We remark that a very similar calculation gives a result for k growing with ∆, but we present
the special case of constant k here as it is instructive of our methods and permits a concise
expression for f and the running time.

Proof of Theorem 4. Take w∗ as in Theorem 9. With ∆ ≥ e9/2, ζ = 8/
√

∆, k ≥ ∆∆3/2 ,
and α = Cn for some C > 0 we choose later, by Lemma 7 we require

logw = (2− ζ) log k
∆ >

2
1− ε− δ

log(1/f) + 2C
∆ ,

which holds when

f > e2Ck−
1
2 (2−ζ)(1−ε−δ).

With ∆ ≥ ∆0(ε, δ) and C ≤ 1
4 (ε+ δ) log k, this holds for f ≥ k2ε+2δ−1. For large enough ∆0

(which makes k sufficiently large) we can take e.g. C = 1/2 and obtain a running time of
knO(1)eO(∆). J
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3 Polynomial interpolation

The proof of Theorem 8 proceeds by an influential method known as polynomial interpolation
introduced by Barvinok, see e.g. [4]. In our application of this method, for some real w∗ > 0
we show that there is a region U ⊂ C containing the interval [1, w∗] on which Z(G;w) 6= 0
for any UG instance G of maximum degree ∆. The region U is a zero-free region, and it
guarantees that a Taylor series for (a suitable modification of) logZ converges inside U . We
then approximate Z by computing the coefficients of a truncation of the Taylor series. We
require that U is independent of the size of the graph G to obtain a good approximation.
The analysis yielding the approximation from U is rather standard, e.g. [4, 5, 26], though
we include it in Appendix A for completeness. The main technical work is in the following
theorem establishing the region U . We write N (S, η) for an open set in C containing the
open ball of radius η around every point in S.

I Theorem 10. Let k ∈ N≥3 and ∆ ∈ N≥3. Then with w∗ = 1 + (log k − 1)/∆ there exists
η = ω( 1

∆ log k ) such that for any w ∈ N ([1, w∗] , η) and any UG(k) instance G of maximum
degree at most ∆, Z(G;w) 6= 0.

Our proof of Theorem 10 is inductive in the style of [6] which gives a zero-free region for
the antiferromagnetic Potts model, though here we have a generalization of the ferromagnetic
Potts model rather than than the antiferromagnetic Potts model that was studied in [6]. We
give a proof sketch here and defer the full details to Appendix B.

Consider an n-vertex UG(k) instance with G = (V,E, π) with maximum degree ∆. In
order to prove our results, we will need to work more generally with the partition function
with boundary conditions. For m > 0 and a list W = w1 . . . wm of distinct vertices of V and
a list L = `1 . . . `m of pre-assigned colours in [k] for the vertices in W the restricted partition
function ZWL (G;w) is defined by

ZWL (G;w) :=
∑

{xu}u∈V ∈[k]V
{xu}u∈V respects (W,L)

∏
(u,v)∈E,

xv=πuv(xu)

w,

where we say that a colour assignment {xu}u∈V respects (W,L) if for all i = 1 . . . ,m we
have xwi = `i. As it does not vary in the steps of the proof, we will omit the parameter
w and write ZWL (G) for ZWL (G;w). We call the vertices w1, . . . , wm fixed and refer to the
remaining vertices in V as free vertices. The length of W (resp. L), written |W | (resp. |L|)
is the length of the list. Given a list of distinct vertices W ′ = w1 . . . wm, and a vertex u
(distinct from w1, . . . , wm) we write W = W ′u for the concatenated list W = w1 . . . wmu

and we use similar notation L′` for concatenation of lists of colours. We write deg(v) for the
degree of a vertex v and we write G \ uv (G− u) for the graph obtained from G by removing
the edge uv (by removing the vertex u).

To prove Theorem 10 we consider the same statement for restricted partition functions
and induct over the number of vertices whose colour is not fixed by the boundary conditions.
With a strengthened induction hypothesis we can argue that unfixing the specified colour
of a single vertex cannot affect the value of the partition function too much and continue
the induction. The main technical difficulties are to bound the change in angle and radius
unfixing a vertex can induce in the value of the partition function (as a complex number).

I Lemma 11. Let ∆ ∈ N≥3 and let k ∈ N≥3. Let c = log k − 1 and α = log k1/2 − 1. Then
there exists constants 0 < ε < θ < π

3∆ with ε, θ = ω(1/∆) and η = ω(1/(∆ log k)) such that
for any w ∈ N ([1, 1 + c/∆], η) and any UG(k) instance G of maximum degree at most ∆ the
following hold.

CCC 2020
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1. For all lists W of distinct vertices of G and all lists of pre-assigned colours L of length
|W |, ZWL (G) 6= 0.

2. For all lists W = W ′u of distinct vertices of G such that u is a leaf and any two lists L′l,
L′l′ of length |W |, the following hold.
a. If the unique neighbour v of u is free,

i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most θ, and

ii. Z
W ′u
L′l (G)

ZW
′u

L′l′ (G)
≤ 1 + α

∆ .

b. If the unique neighbour v of u is fixed,
i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most ε, and

ii. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ 1 + c

∆ .

3. For all lists W = W ′u of distinct vertices of G, and for all lists of pre-assigned colours
L′ of length |W ′|, let d be the number of free neighbours of u, and let b = ∆− d. Then
for any pair of colours l, l′,
a. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most dθ + bε, and

b. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ (1 + α/∆)d(1 + c/∆)∆−d.

Note that Statement 1 withW = L = ∅ is the result we want for Theorem 10, Statement 2
shows that changing the fixed colour of a leaf (degree 1) vertex u affects the angle and length
of the restricted partition function by a small amount (depending on whether the neighbour
of u is itself free or fixed), and Statement 3 is a similar but weaker version for any vertex.
We give the proof of Lemma 11 in Appendix B.

4 Cluster expansion

On the surface our proof of Theorem 9 has a similar flavour to the polynomial interpolation
method: we define a series expansion for logZ(G;w), show that it converges, and approximate
Z(G;w) by computing the coefficients of a truncation of the series. Instead of working with
a Taylor series and a zero-free region, we work with a different formal power series for
logZ called the cluster expansion which expresses logZ as a sum involving weights given
to connected subgraphs of G. This technique was recently applied to approximating the
partition functions of the Potts and random cluster models in [8], where the random cluster
model is a random graph model from statistical physics that generalizes the Ising and Potts
models, and the concept of percolation2. To obtain the result we adapt a standard reduction
to express our partition function Z(G;w) in terms of the random cluster model, and apply
the method of [8] which gives an approximation algorithm via the cluster expansion.

4.1 The random cluster model
The random cluster model, instead of counting graph labellings according to satisfied edges,
counts connected subgraphs according to some weights. We adapt the standard reduction
comparing the Potts model and random cluster model partition functions to our Z(G;w) for
Unique Games instances.

2 Note the distinct uses of the term “cluster” in “cluster expansion” and “random cluster model”, though
there is a common theme of connected subgraphs in both uses.
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We start by rewriting Z(G;w) for a given instance G = (V,E, π). Let (V ′, E′) be a
connected component of G, so that V ′ is a nonempty subset of V and E′ ⊂ E ∩

(
V ′

2
)
. We

consider a singleton vertex {u} to comprise the connected component ({u}, ∅). Define

satπ(V ′, E′) :=
∑

{xu}u∈V ′∈[k]V ′

∏
(u,v)∈E′

1{xv = πuv(xu)},

where 1{P} = 1 if P is true, and 0 otherwise. In other words satπ(V ′, F ′) counts the number
of assignments of value 1 (perfectly satisfying assignments) of the Unique Games instance
restricted to the subgraph (V ′, E′). The definition means that satπ({u}, ∅) = k as there
are no constraints and the empty product is 1. Since we work with (V ′, E′) connected, we
also have

0 ≤ satπ(V ′, E′) ≤ k, (1)

as given any starting colour for an arbitrary first vertex u ∈ V ′, there is at most one
completion of the colouring to a perfectly satisfying assignment obtained by following the
constraints out along the component from u.

We use the notation C(V, F ) for the set of connected components of the graph (V, F ),
taken as pairs (V ′, E′) with E′ ⊂ F . The following lemma gives the reduction from Z(G;w)
to the random cluster model partition function. The simple proof is given in Appendix C.

I Lemma 12. Let G = (V,E, π) be a UG instance and w ∈ C. Then

Z(G;w) =
∑
F⊆E

(w − 1)|F |
∏

(V ′,E′)∈C(V,F )

satπ(V ′, E′).

4.2 The cluster expansion
We closely follow the notation and setup of [8, 17]. Given a UG instance G = (V,E, π),
define a polymer γ to be a connected subgraph of G with at least two vertices. A collection
of polymers is compatible if the polymers contained in it are pairwise vertex disjoint. We
define the incompatibility graph HG on the collection of all polymers as follows: vertices of
HG are the polymers and two polymers are connected by an edge if they are not compatible
(that is if they share a vertex). Write |γ| := |V (γ)|, ‖γ‖ := |E(γ)|, and given w ∈ C, define
the weight of a polymer γ as

wγ := (w − 1)‖γ‖k−|γ| satπ(γ),

where we write satπ(γ) for the more cumbersome satπ(V (γ), E(γ)). Then by Lemma 12 and
the observation that for a single vertex u we have satπ({u}, ∅) = k, we have

Ξ(G) :=
∑

Γ={γ1,...,γt}

t∏
i=1

wγi = k−|V |Z(G;w),

where the sum is over all sets Γ of (pairwise) compatible polymers. Note that Ξ(G) is the
multivariate independence polynomial of the compatibility graph HG.

The cluster expansion is the following formal power series for log Ξ(G):

log Ξ(G) =
∑

Γ⊂V (HG)
HG[Γ] connected

φ(Γ)
∏
γ∈Γ

wγ , (2)
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where φ(Γ) is the Ursell function of the graph HG[Γ] = (Γ, F ), defined as

φ(Γ) := 1
|Γ|!

∑
A⊆F

(Γ,A) connected

(−1)|A|.

For Γ ⊂ V (HG), let ‖Γ‖ be given by ‖Γ‖ :=
∑
γ∈Γ ‖γ‖, and define the truncated cluster

expansion as follows

Tm :=
∑

Γ⊂V (HG), ‖Γ‖<m
HG[Γ]connected

φ(Γ)
∏
γ∈Γ

wγ . (3)

With the definitions and a reduction to the right partition function in place, we can now
state a result essentially proved in [8] that gives convergence of the cluster expansion and an
approximation guarantee.

I Lemma 13 (Borgs et al. [8, Lemma 2.1]). Suppose that polymers are connected subgraphs
containing at least one edge of a graph G of maximum degree ∆ on n vertices, that ‖γ‖ is
the number of edges of the polymer γ, and that

|wγ | ≤ e−(7+log ∆)‖γ‖. (4)

Then the cluster expansion converges absolutely and for any m ∈ N, |Tm− log Ξ(G)| ≤ ne−3m.
To prove Theorem 9 we simply check that these conditions hold, which we state as a

lemma below. The details are in Appendix C.

I Lemma 14. Let ∆ ∈ N≥16, let C = e−9−2 log ∆, and let ζ = 8
√

1/∆. Then if k ≥ C−2∆/ζ

and 1 ≤ w ≤ e(2−ζ) log(k)/∆, Lemma 13 holds for UG(k) instances G of maximum degree ∆.
We deduce the following runtime guarantees from our setup and the analyses of [17, 26].

The truncated series Tm can be computed in time eO(∆m+logn) given an enumeration of all
polymers on fewer than m edges and their weights (see [17]). We can enumerate the polymers
in time O(n2m7(e∆)2m) as they are connected subgraphs of a graph of maximum degree ∆
(see [26]), and compute each weight in time O(km) as all perfectly satisfying assignments on
a connected graph are found by following each of the k assignments of an initial vertex and
propagating along constraints. To get an approximation of the form e−α ≤ Z(G;w∗)/ξ ≤ eα
we take m = log(n/α)/3 which means the entire computation of ξ can be done in time

eO(∆m+logn) +O(km8n2(e∆)2m) = knO(1)(n/α)O(∆).

We see that the number of colours needed to make the lemma work is of the order ∆O(∆3/2).
It would be interesting to get a better dependence on ∆.

5 Conclusions

Lemma 7 shows that a hypothetical polynomial-time algorithm for computing Z(G;w) exactly
when

logw = 2
1− ε− δ

log k
∆

would refute the UGC. This problem is likely #P hard so we resort to approximation, which
we can only do for some range of w. In Theorem 10 we have logw = (1−o(1)) log(k)/∆ when
k is small enough that log k = o(∆), and in Theorem 9 we have logw = (2− o(1)) log(k)/∆
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when k is larger than some ∆poly(∆). This means we must increase f from k−1 to solve
any CUG problems, and the size of w in these results is what gives the bound on f in
Theorems 3 and 4. It is therefore important to determine the threshold f∗ such that CUG(f)
is equivalent to UG when f ≤ f∗. Trivially we have k−1 ≤ f∗ ≤ 1, but if one could show
e.g. that f∗ ≥ k2θ−1 then Theorem 4 would mean the Unique Games problem is in P for
bounded-degree graphs when k is large enough and ε+ δ < θ.

5.1 Phase transitions
In this subsection we focus on the ferromagnetic Potts model, which is the special case of our
partition function Z(G;w) when the constraints on each edge are the identity permutation
and we take w ≥ 1. The behaviour of the Potts model on bounded-degree graphs is strongly
related to the phases of the model on the infinite ∆-regular tree T∆. We will not define
precisely what we mean by a phase or a phase transition here, but as the parameter w varies,
the behaviour of the model undergoes certain changes that seem to affect both zeros of the
partition function and the dynamics of associated Markov chains. Häggström [16] showed
that the uniqueness phase transition on T∆ occurs at w = wu(k,∆), the unique value of w
for which the polynomial

(k − 1)x∆ + (2− w − k)x∆−1 + wx− 1 (5)

has a double root in (0, 1). There is a further ordered/disordered phase transition (see [14]) at

wo(k,∆) := k − 2
(k − 1)1−2/∆ − 1

.

Below we relate the values of w found in Theorems 9 and 10 to these phase transitions.

5.2 Potential barriers to improving Theorem 3
To strengthen Theorem 3 to a result that would refute the UGC, we need roughly a
factor two improvement in the leading constant in logw∗ ∼ log(k)/∆ as k →∞ (provided
log k = o(∆)) from Theorem 10, but there are reasons to believe it may be hard to make
such an improvement.

The authors of [7] analysed a natural Markov chain known as the Glauber dynamics which
walks the set of possible colourings of a graph G, and when this mixes rapidly we expect
an efficient, randomised approximation algorithm for the Potts model partition function to
follow. They showed for the Potts model that Glauber dynamics mixes rapidly on graphs of
maximum degree ∆ when

logw ≤ (1 + o(1)) log k
∆− 1 ,

as k →∞, and that on almost all ∆-regular graphs (for ∆ ≥ 3), Glauber dynamics mixes
slowly when w is just a little larger, satisfying

logw > (1 + o(1)) log k
∆− 1− 1

∆−1
.

These bounds sandwich the phase transition point wu; they also showed that as k →∞,

logwu = log k
∆− 1 +O(1).

Thus it appears that wu is a barrier for approximating Z(G;w) via Glauber dynamics.
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Similarly, we expect that wu is a barrier for the zero-free region. Underpinning Lemma 11
is a complex dynamical system (see [28] for a treatment of the case k = 2), and equation (5)
appears in the analysis of this system. Essentially, the behaviour of a fixed point in the
complex dynamics changes at w = wu in a way which means it is reasonable to expect zeros
of Z(G;w) to accumulate near wu for some G with maximum degree ∆. Thus we suspect
that the method cannot work for w > wu.

5.3 Potential barriers to improving Theorem 4
There are several regimes of interest for the algorithm in Theorem 9 that gives Theorem 4.
When we apply Theorem 9 to solve CUG problems, we only need an approximation with
α = Cn for constant C in which case the running time is bounded by knO(1)eO(∆). Recall
that we also need k ≥ ∆O(∆3/2), and hence when ∆ and k do not grow too fast with n, the
running time is sub-exponential in n. For the hypercube with ∆ = logn and with k as small
as the result allows, the algorithm is quasi-polynomial. In the case where ∆ is constant, to
get an approximation as accurate as α being constant the running time of the algorithm is
polynomial in n. It is interesting to compare this with a paper of Galanis et al. [14] who
show that it is #BIS-hard to approximate the partition function of the Potts model with
k colours on graphs of maximum degree ∆ when w > wo. With ζ = 8/

√
∆, if we take

k = k0 = exp((18∆+4∆ log ∆)/ζ), then Theorem 9 shows that we can approximate the Potts
model partition function on graphs of maximum degree at most ∆ with w = k

(2−ζ)/∆
0 . A

quick calculation shows that, as ∆→∞ (and hence k →∞), wo(k0,∆) ∼ k2/∆
0 . We conclude

that if one assumes that there are no efficient algorithms for approximating #BIS-hard
problems, Theorem 9 is very close to optimal in this regime.

References
1 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique

games and related problems. In FOCS, pages 563–572. IEEE Computer Society, 2010. doi:
10.1109/FOCS.2010.59.

2 Sanjeev Arora, Russell Impagliazzo, William Matthews, and David Steurer. Improved al-
gorithms for unique games via divide and conquer. Electronic Colloquium on Computational
Complexity (ECCC), 17:41, 2010. URL: https://eccc.weizmann.ac.il/report/2010/041/.

3 Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and Nish-
eeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended abstract.
In STOC, pages 21–28. ACM, 2008. doi:10.1145/1374376.1374380.

4 Alexander Barvinok. Combinatorics and complexity of partition functions. Algorithms and
Combinatorics, 2016. doi:10.1007/978-3-319-51829-9.

5 Alexander Barvinok. Approximating real-rooted and stable polynomials, with combinatorial
applications. Online Journal of Analytic Combintaorics, 14, 2019. URL: https://web.math.
rochester.edu/misc/ojac/vol14/186.pdf.

6 Ferenc Bencs, Ewan Davies, Viresh Patel, and Guus Regts. On zero-free regions for the
anti-ferromagnetic Potts model on bounded-degree graphs. arXiv preprint, 2018. arXiv:
1812.07532.

7 Magnus Bordewich, Catherine S. Greenhill, and Viresh Patel. Mixing of the Glauber dynamics
for the ferromagnetic Potts model. Random Struct. Algorithms, 48(1):21–52, 2016. doi:
10.1002/RSA.20569.

8 Christian Borgs, Jennifer Chayes, Tyler Helmuth, Will Perkins, and Prasad Tetali. Efficient
sampling and counting algorithms for the Potts model on Zd at all temperatures. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2020), 2020.
doi:10.1145/3357713.3384271.

https://doi.org/10.1109/FOCS.2010.59
https://doi.org/10.1109/FOCS.2010.59
https://eccc.weizmann.ac.il/report/2010/041/
https://doi.org/10.1145/1374376.1374380
https://doi.org/10.1007/978-3-319-51829-9
https://web.math.rochester.edu/misc/ojac/vol14/186.pdf
https://web.math.rochester.edu/misc/ojac/vol14/186.pdf
http://arxiv.org/abs/1812.07532
http://arxiv.org/abs/1812.07532
https://doi.org/10.1002/RSA.20569
https://doi.org/10.1002/RSA.20569
https://doi.org/10.1145/3357713.3384271


M. Coulson, E. Davies, A. Kolla, V. Patel, and G. Regts 13:13

9 Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the
hardness of approximating multicut and sparsest-cut. In IEEE Conference on Computational
Complexity, pages 144–153. IEEE Computer Society, 2005. doi:10.1109/CCC.2005.20.

10 R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert
W function. Adv. Comput. Math., 5(4):329–359, 1996. doi:10.1007/BF02124750.

11 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally
expanding sets in Grassmann graphs. In STOC, pages 940–951. ACM, 2018. doi:10.1145/
3188745.3188806.

12 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the 2-
to-1 games conjecture? In STOC, pages 376–389. ACM, 2018. doi:10.1145/3188745.3188804.

13 Uriel Feige and Gideon Schechtman. On the optimality of the random hyperplane rounding
technique for MAX CUT. Random Struct. Algorithms, 20(3):403–440, 2002. doi:10.1002/
RSA.10036.

14 Andreas Galanis, Daniel Stefankovic, Eric Vigoda, and Linji Yang. Ferromagnetic Potts model:
Refined #BIS-hardness and related results. SIAM Journal on Computing, 45(6):2004–2065,
2016. doi:10.1137/140997580.

15 Michel X. Goemans and David P. Williamson. .879-approximation algorithms for MAX CUT
and MAX 2SAT. In STOC, pages 422–431. ACM, 1994. doi:10.1145/195058.195216.

16 Olle Häggström. The random-cluster model on a homogeneous tree. Probability Theory and
Related Fields, 104(2):231–253, 1996. doi:10.1007/BF01247839.

17 Tyler Helmuth, Will Perkins, and Guus Regts. Algorithmic Pirogov-Sinai theory. In STOC,
pages 1009–1020. ACM, 2019. doi:10.1145/3313276.3316305.

18 Howard J. Karloff. How good is the Goemans–Williamson MAX CUT algorithm? In STOC,
pages 427–434. ACM, 1996. doi:10.1145/237814.237990.

19 Subhash Khot. On the power of unique 2-prover 1-round games. In STOC, pages 767–775.
ACM, 2002. doi:10.1145/509907.510017.

20 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal Inapproximability
Results for Max-Cut and Other 2-Variable CSPs? In FOCS, pages 146–154. IEEE Computer
Society, 2004. doi:10.1109/FOCS.2004.49.

21 Subhash Khot and Oded Regev. Vertex Cover Might be Hard to Approximate to within 2− ε.
In IEEE Conference on Computational Complexity, pages 379–386. IEEE Computer Society,
2003. doi:10.1109/CCC.2003.1214437.

22 Subhash Khot and Nisheeth K. Vishnoi. The Unique Games Conjecture, Integrality Gap for
Cut Problems and Embeddability of Negative Type Metrics into `1. In FOCS, pages 53–62.
IEEE Computer Society, 2005. doi:10.1109/SFCS.2005.74.

23 Alexandra Kolla. Spectral algorithms for unique games. In IEEE Conference on Computational
Complexity, pages 122–130. IEEE Computer Society, 2010. doi:10.1109/CCC.2010.20.

24 Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. A deterministic algorithm for counting
colorings with 2∆ colors. In IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS 2019), 2019. doi:10.1109/FOCS.2019.00085.

25 Konstantin Makarychev and Yury Makarychev. How to play unique games on expanders. In
WAOA, volume 6534 of Lecture Notes in Computer Science, pages 190–200. Springer, 2010.
doi:10.1007/978-3-642-18318-8_17.

26 Viresh Patel and Guus Regts. Deterministic Polynomial-Time Approximation Algorithms
for Partition Functions and Graph Polynomials. SIAM J. Comput., 46(6):1893–1919, 2017.
doi:10.1137/16M1101003.

27 Viresh Patel and Guus Regts. Computing the number of induced copies of a fixed
graph in a bounded degree graph. Algorithmica, 81(5):1844–1858, 2019. doi:10.1007/
S00453-018-0511-9.

28 Han Peters and Guus Regts. Location of zeros for the partition function of the Ising model
on bounded degree graphs. Journal of the London Mathematical Society, page jlms.12286,
November 2019. doi:10.1112/jlms.12286.

CCC 2020

https://doi.org/10.1109/CCC.2005.20
https://doi.org/10.1007/BF02124750
https://doi.org/10.1145/3188745.3188806
https://doi.org/10.1145/3188745.3188806
https://doi.org/10.1145/3188745.3188804
https://doi.org/10.1002/RSA.10036
https://doi.org/10.1002/RSA.10036
https://doi.org/10.1137/140997580
https://doi.org/10.1145/195058.195216
https://doi.org/10.1007/BF01247839
https://doi.org/10.1145/3313276.3316305
https://doi.org/10.1145/237814.237990
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/FOCS.2004.49
https://doi.org/10.1109/CCC.2003.1214437
https://doi.org/10.1109/SFCS.2005.74
https://doi.org/10.1109/CCC.2010.20
https://doi.org/10.1109/FOCS.2019.00085
https://doi.org/10.1007/978-3-642-18318-8_17
https://doi.org/10.1137/16M1101003
https://doi.org/10.1007/S00453-018-0511-9
https://doi.org/10.1007/S00453-018-0511-9
https://doi.org/10.1112/jlms.12286


13:14 Statistical Physics Approaches to Unique Games

29 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
STOC, pages 245–254. ACM, 2008. doi:10.1145/1374376.1374414.

30 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In STOC, pages 755–764. ACM, 2010. doi:10.1145/1806689.1806792.

31 Rocco A. Servedio and Li-Yang Tan. Deterministic search for CNF satisfying assignments
in almost polynomial time. In FOCS, pages 813–823. IEEE Computer Society, 2017. doi:
10.1109/FOCS.2017.80.

A Details for the proof of Theorem 8

What follows is a rather precise description of results developed by Barvinok in [4, 5], lightly
specialised to our application and notation.

I Definition 15. Let f : C→ C be any function, and m ≥ 0. Then we define the degree-m
Taylor polynomial of f about zero, Tm(f), as the polynomial in z given by

Tm(f)(z) := f(0) +
m∑
k=1

f (k)(0)
k! zk.

I Lemma 16 (see [4, Lemma 2.2.1] or [5, Lemma 2.1]). Let g : Ĉ → Ĉ be a polynomial of
degree at most N , and for β > 1 suppose that g(z) 6= 0 for |z| < β.

Then given a choice of branch for f(z) = log g(z) where |z| < β, we have

|f(1)− Tm(f)(1)| ≤ N

(m+ 1)βm(β − 1) .

I Corollary 17 (cf. [5, Corollary 2.2]). For any c > 0 there exists c′ > 0 such that the following
holds. Suppose that the conditions of Lemma 16 hold, and in addition that β ≤ 1 + c.

Then for any 0 < α < N/e, and for any

m ≥ c′

β − 1 log
(
N

α

)
,

we have |f(1)− Tm(f)(1)| ≤ α.

The only differences from [5, Corollary 2.2] are the relaxation of the assumption α < 1 to
α ≤ N/e, the additional assumption that β is close to 1, and a more precise analysis of m.
In fact one can take c′ = c/ log(1 + c).

Proof. By Lemma 16, we are done if

N

(m+ 1)βm(β − 1) ≤ α

for m as in the statement of the corollary. This holds if and only if

(m+ 1)βm+1 ≥ N

α

β

β − 1 ⇐⇒ (m+ 1) log β ≥W
(
N

α

β log β
β − 1

)
,

where W is the upper real branch of the Lambert W -function, see [10]. We take this branch
because β > 1 so (m+ 1) log β > 0. Since W is increasing and log β

β−1 < 1, this is implied by

m+ 1 ≥ W (Nβ/α)
log β .
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Now we have log x ≥W (x) for all x ≥ e, so since β > 1 and N/α ≥ e this is implied by

m+ 1 ≥ log(Nβ/α)
log β = log(N/α)

log β + 1.

Then it suffices to take m ≥ log(N/α)/ log β. But since log β ∼ β−1 as β → 1 and β < 1 + c,
we can find c′ depending only on c such that c′ log β ≥ β − 1. Then it suffices to take

m ≥ c′

β − 1 log
(
N

α

)
J

Corollary 17 tells us how many terms of a Taylor expansion of log g we need to get an
additive error of at most α, under the condition that g has no roots in the disc {z ∈ C : |z| <
β}. We want to work with a zero-free region of the form N ([0, 1], η), the open set containing
a ball of radius η around each point in [0, 1]. Barvinok [4, 5] also gives constructions that
perform well for this situation which we reproduce below.

I Lemma 18 ([4, Lemma 2.2.3]). For 0 < ρ < 1 there is a polynomial p of degree

Nρ :=
⌊(

1 + 1
ρ

)
e1+ 1

ρ

⌋
≥ 14

such that p(0) = 0, p(1) = 1, and

−ρ ≤ < p(z) ≤ 1 + 2ρ and |= p(z)| ≤ 2ρ

for all z such that |z| ≤ β(ρ) where

βρ := 1− e−1− 1
ρ

1− e−
1
ρ

> 1.

I Corollary 19 (cf. [5, Theorem 1.6]). Suppose that 0 < η < 1, and g is a polynomial of
degree N such that g(z) 6= 0 for all z ∈ N ([0, 1], η). Then given any 0 < α < Ne6/η−1, it
suffices to compute the first

m = e6/η log
(
Ne6/η

α

)
coefficients of g to obtain a number ξ satisfying | log g(1)− ξ| ≤ ε.

Proof. Let ρ = η/
√

8 and βρ, Nρ be given by Lemma 18. Then since η < 1, we note that

Nρ ≤ e6/η and βρ ≥ 1 + 1
2e

1
ρ

≥ 1 + e−4/η.

Now the polynomial p as in Lemma 18 maps {z ∈ C : |z| ≤ βρ} into N ([0, 1], η), so the
polynomial g ◦ p(z) is a degree NNρ ≤ Ne6/η polynomial which is nonzero for all z ∈ C such
that |z| ≤ 1 + e−4/η.

We now apply Corollary 17 to g ◦ p. With f(z) = log(g ◦ p(z)) we have f(1) = log g(1)
since p(1) = 1, and so the Taylor polynomial Tm(1) (as defined in Definition 15) for this f is
the quantity we want for ξ. More precisely, as described in [4, Section 2.2.2], to compute
Tm(log g ◦ p) at z = 0 it suffices to compute Tm(g ◦ p). In turn, to compute Tm(g ◦ p) it
suffices to compute Tm(g) and the truncation pm of p obtained by deleting all monomials of
degree higher than m, and then the composition of polynomials Tm(g) ◦ pm. The final step
is to truncate Tm(g) ◦ pm to be degree m, and to obtain ξ by evaluating this polynomial at
z = 1. This can be done in time O(m), and by Corollary 17 applied to g ◦ p, when we have

m ≥ e6/η log
(
Ne6/η

α

)
,

and α < Ne6/η−1, we have the desired | log g(1)− ξ| ≤ α. J
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We know now how many coefficients are needed for an approximation to a polynomial.
For the complexity of computing these coefficients we refer to Patel and Regts [26, 27].
Our partition function Z(G;w) is an edge-coloured BIGCP in the sense of Patel and Regts’
definition in [27]. Z(G;w) has degree at most ∆n/2 with BIGCP parameters α = 2 and
βi = O(ki) according to [26, Section 6]. Then by [27, Theorem 2.1] there is a deterministic
algorithm to compute the first m coefficients of Z in time

Õ
(
n(4e∆

√
k)2m),

where Õ means that we omit factors polynomial in m.
To prove Theorem 8 we want an approximation for logZ(G;w) with error α = Cn,

and we have a zero-free region surrounding [1, w∗] with w∗ = 1 + (log k − 1)∆ at distance
η = ω(1/(∆ log k)). Then we can transform Z into a polynomial with zero-free region around
[0, 1] of distance η/(w∗ − 1) = ω(1/(log k)2), so we need

C ≤ 2
e∆eO(log2 k),

and

m = eO(log2 k) log
(

∆
2C e

O(log2 k)
)
,

according to Corollary 19.
Then we have a running time of

Õ
(
n(4e∆

√
k)2m) = n exp

(
eO(log2 k) log

(
∆
C
eO(log2 k)

)
log(∆

√
k)
)
.

B Details for the proof of Theorem 10

Lemma 11 directly implies Theorem 10, and we give the proof in this section.

B.1 Preliminaries
First, we state a lemma of Barvinok which is useful for evaluating sums of restricted partition
functions.

I Lemma 20 (Barvinok [4, Lemma 3.6.3]). Let u1, . . . , un ∈ R2 be non-zero vectors such that
the angle between any two vectors ui and uj is at most α for some α ∈ [0, 2π/3). Then the
ui all lie in a cone of angle at most α and∣∣∣∣ n∑

i=1
ui

∣∣∣∣ ≥ cos(α/2)
n∑
i=1
|ui|.

Furthermore the following simple corollary of of the cosine rule will come in handy.

I Lemma 21. Let z, z′ be two complex numbers at an angle of at most π/3, then |z − z′| ≤
max{|z|, |z′|}.

Proof. Recall the cosine rule, for a triangle with sides a, b and c; and angles A, B and C
where side a is not adjacent to angle A, then

|a|2 = |b|2 + |c|2 − 2|b||c| cos(A),
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where |a| is the length of side a. Now consider the triangle with vertices in C at the origin, z
and z′. The sides have length |z|, |z′| and |z − z′| and the angle at the origin is the angle
θ ≤ π/3 between z and z′. As cos(x) ≥ 1/2 for x ≤ π/3,

|z − z′|2 ≤ |z|2 + |z′|2 − |z||z′| ≤ max{|z|2, |z′|2}. J

To prove Lemma 11 we need some definitions and an auxiliary lemma. We define rational
functions (which depend on k and w) in two variables z0, z and respectively k − 1 variables
z0, . . . , zk−2 by

R(z0, z;w, k) := wz0 + (k − 2)z + 1
z0 + (k − 2)z + w

,

Rk(z0, z1, . . . , zk−2;w) := wz0 + z1 + . . .+ zk−2 + 1
z0 + z1 + . . .+ zz−2 + w

.

Consider the cone

C(θ) := {z = reiϑ | r ≥ 0 and |ϑ| ≤ θ},

and define for d = 0, . . . ,∆ and c, α > 0, the region

K(θ, d, c, α, ε) := C(dθ + ∆− ε) ∩{
z :
(

1 + c

∆

)d−∆ (
1 + α

∆

)d
≤ |z| ≤

(
1 + c

∆

)∆−d (
1 + α

∆

)d}
.

I Lemma 22. Let ∆ ∈ N≥3 and let k ∈ N≥3. Define c = log k − 1 and α = log k1/2 − 1.
Then there exists 0 < ε < θ < π/(3∆) and η = ω( 1

∆ ) such that for each d = 0, . . . ,∆,
and any z0, . . . , zk−2 ∈ Kd := K(θ, d, c, α, ε) such that for each i, j, zi/zj ∈ Kd and any
w ∈ N ([1, 1 + c/∆], η) the ratio R = Rk(z0, z1, . . . , zk−2;w) satisfies

(1 + α/∆)−1 < |R| < 1 + α/∆ and | arg(R)| < θ. (6)

In particular the following values suffice,

θ = 1
5∆ , ε = θ

100 log k , η = min
{

∆c
800(∆ + α)2 ,

1
2400(∆ + α) ,

c

800∆

}
.

We will prove this lemma in the next subsection, but we first utilize it to prove Lemma 11,
which we restate here for convenience.

I Lemma 11. Let ∆ ∈ N≥3 and let k ∈ N≥3. Let c = log k − 1 and α = log k1/2 − 1. Then
there exists constants 0 < ε < θ < π

3∆ with ε, θ = ω(1/∆) and η = ω(1/(∆ log k)) such that
for any w ∈ N ([1, 1 + c/∆], η) and any UG(k) instance G of maximum degree at most ∆ the
following hold.
1. For all lists W of distinct vertices of G and all lists of pre-assigned colours L of length
|W |, ZWL (G) 6= 0.

2. For all lists W = W ′u of distinct vertices of G such that u is a leaf and any two lists L′l,
L′l′ of length |W |, the following hold.
a. If the unique neighbour v of u is free,

i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most θ, and

ii. Z
W ′u
L′l (G)

ZW
′u

L′l′ (G)
≤ 1 + α

∆ .

b. If the unique neighbour v of u is fixed,
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i. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most ε, and

ii. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ 1 + c

∆ .

3. For all lists W = W ′u of distinct vertices of G, and for all lists of pre-assigned colours
L′ of length |W ′|, let d be the number of free neighbours of u, and let b = ∆− d. Then
for any pair of colours l, l′,
a. the angle between vectors ZW ′uL′l (G) and ZW ′uL′l′ (G) is at most dθ + bε, and

b. |Z
W ′u
L′l (G)|
|ZW ′uL′l′ (G)|

≤ (1 + α/∆)d(1 + c/∆)∆−d.

Proof. The choice of constants is the same as in Lemma 22 except that we need to choose η
small enough so that each w ∈ N ([1, 1 + c/∆], η) has argument at most ε. It thus suffices to
take η = ω( 1

∆ log(k) ).
We prove the lemma by induction on the number of free vertices of G. For the base

case, we have no free vertices and so every vertex is fixed. Therefore ZWL (G) is a product of
non-zero terms, hence is non-zero, proving 1. Statement 22a is vacuous as there are no free
vertices. Statement 22b follows as the products ZW ′uL′l (G) and ZW ′uL′l′ (G) differ in at most one
term. Thus their ratio is either 1, w or w−1. Similarly we deduce Statement 3 (in which d
must be zero) from the fact that the products ZW ′uL′l (G) and ZW ′uL′l′ (G) differ in at most ∆
terms.

Now, we assume that Statements 1, 2, and 3 hold for graphs with r ≥ 0 free vertices. We
prove the statements for r + 1 free vertices. First, we shall prove 1.

Suppose that u is a free vertex. Note that ZWL (G) =
∑k
j=1 Z

Wu
Lj (G). As each term in

the sum on the right hand side of this expression has one fewer free vertex, we may apply
induction to deduce that all of these terms are non-zero by 1. Furthermore, by 3 each pair
has angle at most dθ + (∆− d)ε where d is the number of free neighbours of u. Lemma 20
tells us that the ZWu

Lj all lie in a cone of angle at most dθ + (∆− d)ε and

|ZWL (G)| =
∣∣∣∣ k∑
j=1

ZWu
Lj (G)

∣∣∣∣ ≥ cos(dθ/2 + (∆− d)ε/2)
k∑
j=1
|ZWu
Lj (G)| 6= 0.

Next, we shall prove 22a so consider the ratios,

Rj,l(G) =
ZW

′u
L′j (G)

ZW
′u

L′` (G)
, Rvj,`(G) =

ZW
′v

L′j (G− u)
ZW

′v
L′` (G− u)

.

As v is the unique neighbour of u and is free, we may write, denoting j∗ for πuv(j) and `∗
for πuv(`),

Rj,l(G) =
∑
i Z

Wuv
Lji (G)∑

i Z
Wuv
L`i (G)

=
wZWv

Lj∗ (G− u)
∑
i/∈{j∗,`∗} Z

Wv
Li (G− u) + ZWv

L`∗ (G− u)
ZWv
Lj∗ (G− u) +

∑
i/∈{j∗,`∗} Z

Wv
Li (G− u) + wZWv

L`∗ (G− u)
.

Dividing both the numerator and denominator by ZWv
L`∗ (G−u) (which by induction is nonzero)

we obtain,

wRvj∗,`∗(G) +
∑
i6=j∗,`∗ R

v
i,`∗(G) + 1

Rvj∗,`∗(G) +
∑
i6=j∗,`∗ R

v
i,l(G) + w

= Rk(Rvj∗,`∗(G), Rv1,`∗(G), . . . , Rvk,`∗(G);w). (7)

Where the function Rk in (7) takes as arguments all Rvi,`∗(G) for i 6= `∗ precisely once (and
so takes precisely k − 1 arguments as expected.)
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Suppose that v has d free neighbours that are not u. Since G − u has one fewer free
vertex than G, we may apply the inductive hypothesis. By 3 we find that for any i 6= `∗, we
have Rvi,`(G) ∈ Kd. However, we also have that for any i, j 6= `∗, that

Rvi,`∗(G)
Rvj,`∗(G) = ZW

′v
L′i (G− u)

ZW
′v

L′j (G− u)
= Rvi,j(G) ∈ Kd.

To prove 22a2(a)i, observe that the angle between ZW ′uL′j and ZW ′uL′l is precisely the angle of
Rj,l(G) from the real axis in C and so is bounded by the absolute value of the argument
of Rj,l(G), which by Lemma 22 bounded by θ as desired. Statement 22a2(a)ii also follows
immediately from Lemma 22.

For the proof of 22b, we note that as v is fixed, then

ZW
′u

L′j (G) ∈ {w−1ZW
′u

L′l (G), ZW
′u

L′l (G), wZW
′u

L′l (G)}

from which both 2(b)i and 2(b)ii follow.
Finally, we prove 3. To do so we consider the graph G ? u which is formed as follows.

Let v1, . . . , vr be the neighbours of u ordered arbitrarily. Let u1, . . . , ur be r new vertices
which will be copies of u. Then G ? u is the graph obtained by deleting u and its incident
edges, adding the vertices u1, . . . , ur and edges u1v1, . . . , urvr. Furthermore, G ? u inherits
any colouring of G and if u is coloured, all of the new vertices inherit this colour. Note that
if u is coloured, then the graph G ? u has the same partition function as G. Also, in this
case G ? u has the same number of free vertices as G. This allows us to prove 3 from 2 by
changing the colour of one copy of u at a time. That is,

ZW
′u

L′j (G)
ZW

′u
L′l (G)

=
ZW

′u1...ur
L′j...j (G ? u)

ZW
′u1...ur

L′l...l (G ? u)
=

r∏
i=1

Z
W ′u1...ui−1ui...ur
L′j...jl...l (G ? u)

Z
W ′u1...uiui+1...ur
L′j...jl...l (G ? u)

(8)

By 2 each of the terms in the product in (8) has angle at most θ and absolute value at most
1 + α/∆ (if ui is free) or angle at most ε and absolute value at most 1 + c/∆ (if ui is fixed).
As u has d free neighbours and at most ∆−d fixed neighbours, this allows us to conclude 33a
and 33b, completing the induction. J

B.2 Proof of Lemma 22
We will require a technical lemma which concerns the real and imaginary parts of the ratios
R(z1, z2;w, k).
I Lemma 23. Let z1, z2 ∈ C be defined as z1 = xeiθx , z2 = yeiθy with x, y ∈ R+ and
θx, θy ∈ [0, 2π) and suppose w ∈ [1, 1 + c

∆ ] is real. Then, the real and imaginary parts of
R(z1, z2;w, k) are as follows where N is a nonzero constant,

<(R(z1, z2;w, k)) = N(wx2 + (w + 1)(k − 2)xy cos(θx − θy) + (k − 2)2y2 (9)
+ (w2 + 1)x cos(θx) + (w + 1)(k − 2)y cos(θy) + w),

=(R(z1, z2;w, k)) = N(w − 1)((k − 2)xy sin(θx − θy) (10)
+ (1 + w)x sin(θx) + (k − 2)y sin(θy)).

I Remark 24. Set θ = max(|θx|, |θy|, |θx − θy|) and assume |θ| ≤ 1. Then as | sin t| ≤ |t| and
cos t ≥ 1− t2/2 for all t, and using w ≥ 1 we obtain the following bounds:

<(R(z1, z2;w, k)) ≥ N(1− θ2/2)(wx2 + (w + 1)(k − 2)xy + (k − 2)2y2

+ (w2 + 1)x+ (w + 1)(k − 2)y + w)
≥ N(1− θ2/2)(x+ (k − 2)y + w)(wx+ (k − 2)y + 1);

and
=(R(z1, z2;w, k)) ≤ N(w − 1)((k − 2)xy|θx − θy|+ (1 + w)x|θx|+ (k − 2)y|θy|).
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Hence∣∣∣∣=(R(z1, z2;w, k))
<(R(z1, z2;w, k))

∣∣∣∣ ≤ (w − 1) ((k − 2)xy|θx − θy|+ (1 + w)x|θx|+ (k − 2)y|θy|)
(1− θ2

2 )(x+ (k − 2)y + w)(wx+ (k − 2)y + 1)
. (11)

Proof. We may write z1 = x cos(θx) + ix sin(θx) and z2 = y cos(θy) + iy sin(θy). Hence,

R(z1, z2;w, k)

= w(x cos(θx) + ix sin(θx)) + (k − 2)(y cos(θy) + iy sin(θy)) + 1
x cos(θx) + ix sin(θx) + (k − 2)(y cos(θy) + iy sin(θy)) + w

= wx cos(θx) + (k − 2)y cos(θy) + 1 + i(wx sin(θx) + (k − 2)y sin(θy))
x cos(θx) + (k − 2)y cos(θy) + w + i(x sin(θx) + (k − 2)y sin(θy)) (12)

Rationalising the denominator in (12), we obtain

R(z1, z2;w, k)

= 1
N

(wx cos(θx) + (k − 2)y cos(θy) + 1 + i(wx sin(θx) + (k − 2)y sin(θy)))

× (x cos(θx) + (k − 2)y cos(θy) + w − i(x sin(θx) + (k − 2)y sin(θy))) (13)

where N = |x cos(θx) + (k − 2)y cos(θy) + w + i(x sin(θx) + (k − 2)y sin(θy))|2. Expanding
the expression in (13), the real and imaginary parts are given by the following expressions in
which we write cx for cos(θx) and similarly define cy, sx and sy to simplify notation.

<(R(z1, z2;w, k)) = N−1(wx2c2x + (w + 1)(k − 2)xycxcy + (k − 2)2c2y

+ wx2s2
x + (w + 1)(k − 2)xysxsy + (k − 2)2s2

y

+ (w2 + 1)xcx + (w + 1)(k − 2)ycy + w)
=(R(z1, z2;w, k)) = N−1((k − 2)xy(cxsy + wsxcy)− (k − 2)xy(wcxsy + sxcy)

+ (w2 − 1)xsx + (w − 1)(k − 2)ysy)

Combining these expressions with the trigonometric identities

cos2(ϑ) + sin2(ϑ) = 1
sin(α− β) = sin(α) cos(β)− sin(β) cos(β)
cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

yields the expressions (9) and (10) as claimed.
By an application of the triangle law combined with an applications of the approximations,

| sin θ| ≤ |θ| and cos θ ≥ 1− θ2/2, we obtain

|=(R(z1, z2;w, k))| ≤ N−1(w − 1) ((k − 2)xy|θx − θy|+ (1 + w)x|θx|+ (k − 2)y|θy|) ,
(14)

<(R(z1, z2;w, k)) ≥ N−1 ((wx+ (k − 2)y + 1)(x+ (k − 2)y + w)
− ((w + 1)(k − 2)(x+ 1)y + (w2 + 1)x)θ2/2

)
. (15)

Dividing (14) by (15), noting that for θ small this is maximised when w = 1 + c
∆ and

regrouping some terms yields the bound (11). J

We can now give a proof of Lemma 22.
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Proof of Lemma 22. We first prove a slightly stronger version of the lemma for w′ real.
That is, we will show that there exist a small constants κ = c/100 and κ′ = 0.02 such that

(1 + (α− κ)/∆)−1 < |R| < 1 + (α− κ)/∆ and | arg(R)| < (1− κ′)θ. (16)

To do so we start by taking a constant δ small enough so that for all k ≥ 3, c and α satisfy
the strict inequality

cec

cos(δ)(ec + k − 1) < α− κ; (17)

for example δ = 1/2 is sufficient.
Fix d ∈ {0, . . . ,∆}. First we observe that we may assume that |R| ≥ 1. Indeed, if |R| < 1,

then

1/R =
z0 +

∑k−2
i=1 zi + w

wz0 +
∑k−2
i=1 zi + 1

=
1 +

∑k−2
i=1 zi/z0 + w/z0

w +
∑k−2
i=1 zi/z0 + 1/z0

and |1/R| > 1. Since for each i, j ≥ 0, the pairs zi/z0 and zj/z0 also satisfy our assumptions
this shows our claim. We start by showing that |R| is bounded by 1 + (α− κ)/∆.

We observe that (setting z = (z1 + · · ·+ zk−2)/k)

|R| = |R(z0, z;w, k)| =
∣∣∣∣1 + (w − 1)z0 + (1− w)

z0 +
∑k−2
i=1 zi + w

∣∣∣∣ ≤ 1 +
c
∆ |z0 − 1|

|z0 +
∑k−2
i=1 zi + w|

. (18)

Lower bounding the denominator of (18) may be done with an application of Barvinok’s
lemma. For the numerator we apply Lemma 21 as the angle between z0 and 1 is certainly
less than π/3. This allows us to deduce that

|R(z0, z;w, k)| ≤ 1 +
c
∆ max{|z0|, 1}

cos(dθ/2 + (∆− d)ε/2))(|z0|+
∑k−2
i=1 |zi|+ 1)

.

We next observe that by symmetry we may assume that |z0| ≤ 1; otherwise we divide the
numerator and the denominator by z0. To maximize the above quantity clearly one should take
each |zi| as small as possible. So we take |zi| = (1+c/∆)d−∆(1+α/∆)−d ≥ (1+c/∆)−∆ ≥ e−c
and noting that θ ≤ δ/∆, we rearrange to deduce that

|R(z0, z;w, k)| < 1 + c/∆
cos(δ)((k − 1)e−c + 1) < 1 + (α− κ)/∆

by (17). This proves the first bound in (16).
For the other bound in (16), recall that z = 1

k−2
∑k−2
i=1 zj so that Rk(z0, z1, . . . , zk−2;w) =

R(z0, z;w, k). Note that z ∈ C(dθ+ (∆− d)ε) by convexity of the cone and so by Lemma 20
we have

cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤ |z| ≤ (1 + c/∆)∆−d(1 + α/∆)d.

To prove the bound on the argument of R(z0, z;w, k) we use the inequality, |β| ≤ | tan(β)|.
It therefore suffices to bound the ratio |=R(z0,z;w,k)|

|<R(z0,z;w,k)| = tan(arg(R(z0, z;w, k))), which by
Lemma 23 and Remark 24 is bounded by

(w − 1) ((k − 2)|z0z||θ0 − θz|+ (1 + w)|z0θ0|+ (k − 2)|zθz|)
(1− θ2

2 )(|z0|+ (k − 2)|z|+ w)(w|z0|+ (k − 2)|z|+ 1)
. (19)
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Now suppose we can prove that

((k − 2)|z0z||θ0 − θz|+ (1 + w)|z0θ0|+ (k − 2)|zθz|)
(|z0|+ (k − 2)|z|+ w)(w|z0|+ (k − 2)|z|+ 1) <

∆τθ
c

(20)

where τ = 7/e2 < 0.96. Then by choosing θ ≤ 0.2 and κ′ < 0.02, we have that ∆τθ/c <
(1− θ2

2 )(w − 1)−1(1− κ′)θ (using w < 1 + c/∆). This together with (20) proves that (19) is
at most θ(1− κ′) and hence | arg(R(z0, z;w, k))| < θ(1− κ′), as desired.

We will now show that (20) holds. So, first note that

((k − 2)|z0z||θ0 − θz|+ (1 + w)|z0θ0|+ (k − 2)|zθz|)
(|z0|+ (k − 2)|z|+ w)(w|z0|+ (k − 2)|z|+ 1)

≤ ((k − 2)|z0z||θ0 − θz|+ 2|z0θ0|+ (k − 2)|zθz|)
(|z0|+ (k − 2)|z|+ 1)2 , (21)

which can be observed by computing the derivative of the left hand side of (20) with respect
to w and noting it is strictly negative for w ≥ 1. Now, we maximize (21), so first we
show that there is a maximum point where exactly two of |θ0 − θz|, |θ0|, |θz| are as large as
possible and one is zero. To see this, first note that clearly at least one of |θ0 − θz|, |θ0|, |θz|
must be as large as possible i.e. equal to dθ + (∆ − d)ε. In fact exactly two of these
must be maximised as the maximization with respect to the θ terms only is of the form
f(θ0, θz) = a|θ0 − θz|+ b|θ0|+ c|θz| for constants a, b, c > 0. So if |θ0 − θz| = dθ + (∆− d)ε
for example, then if b ≥ c we may set θ0 = dθ+ (∆− d)ε, θz = 0 increasing f(θ0, θz). Similar
logic allows one to conclude that two of |θ0 − θz|, |θ0|, |θz| are equal to dθ + (∆ − d)ε and
one is 0 in every other case.

This leaves us with three maximization problems over Rd ⊆ R2 defined by

Rd = {(x, y)|(1 + c/∆)d−∆(1 + α/∆)−d ≤x ≤ (1 + c/∆)∆−d(1 + α/∆)d,
cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤y ≤ (1 + c/∆)∆−d(1 + α/∆)d,
cos(dθ/2 + (∆− d)ε/2)(1 + c/∆)d−∆(1 + α/∆)−d ≤y/x ≤ (1 + c/∆)∆−d(1 + α/∆)d}.

We enlarge the region slightly obtaining the region R̃d ⊆ R2 defined by

R̃d =
{

(x, y)

∣∣∣∣∣ cos(δ)
exp

(
d
∆α+ (1− d

∆ )c
) ≤ x, y, y/x ≤ exp

(
d
∆α+ (1− d

∆ )c
)

cos(δ)

}

=
{

(x, y)

∣∣∣∣∣e cos(δ)
k1− d

2∆
≤ x, y, y/x ≤ k1− d

2∆

e cos(δ)

}
The functions to maximise are

f1(x, y) = (k − 2)(xy + y)
(x+ (k − 2)y + 1)2 , f2(x, y) = (k − 2)xy + 2x

(x+ (k − 2)y + 1)2 ,

f3(x, y) = 2x+ (k − 2)y
(x+ (k − 2)y + 1)2 .

First we look at f1, it has critical points along the line x+ 1 = (k − 2)y where it attains its
maximum value of 1/4. However, note that due to our choice of c and α, this line does not lie
inside of R̃d, hence the maximum must be attained at a boundary point. Furthermore both
f2 and f3 have no critical points strictly inside the first quadrant, so again their maxima
must be attained at a boundary point. This allows us to reduce the problem to eighteen
univariate maximization problems, each of which has maximum at most 3e−1k−

d
2∆ over R̃d

(see Appendix B.3 for details).
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Thus (21) is upper bounded by (dθ + (∆ − d)ε)3e−1k−
d

2∆ . As a function of d, this is
maximised when d = ( 2

log k −
ε
θ−ε )∆, which (if d ≥ 1) gives an upper bound to (21) of

6e−2∆(θ − ε)
log k exp

(
ε

2(θ − ε) log k
)
.

Thus (20) is satisfied provided 6
7 (θ − ε) exp( 1

2 log k ε
θ−ε ) < θ. By taking ε = θx/ log k and

assuming log k ≥ 1, the left hand side is bounded above by 6
7 (1− x) exp(x/2(1− x))θ and

this is at most θ (as required) by taking x = 1/100 as assumed in the statement of the lemma.
If d = 0, then as f1, f2 and f3 are all bounded above by 1, provided ε < θ

100 log(k) , the left
hand side of (20) at most ε∆ < τθ∆/c. This completes the proof of (20) and hence of (16).

We finally extend the proof to the case that w ∈ N ([1, c/∆], η) for η = 1/[800(∆ + α)2]
using continuity. First observe that Rk(w) := Rk(z0, . . . , zk−2;w) satisfies

Rk(w) = z0 + (z0 + (k − 2)z + 1)(1− z0)
z0 + (k − 2)z + w

.

Then

|Rk(w + η)−Rk(w)| =
∣∣∣∣ [z0 + (k − 2)z + 1](1− z0)
(z0 + (k − 2)z + w + η)(z0 + (k − 2)z + w)η

∣∣∣∣ .
The numerator is upper bounded by [|z0|+ (k− 2)|z|+ 1](1 + |z0|)|η|, while the denominator
is lower bounded by

[
(|z0|+ (k − 2)|z|+ |w| − |η| cos−1(∆θ/2))(|z0|+ (k − 2)|z|+ |w|) cos(∆θ/2)

]2
where we use the fact that the angle between any two of w, z0, z is at most ∆θ and so we
can apply Barvinok’s lemma. In the statement of the lemma, we assume ∆θ ≤ π/3 so
cos(∆θ) ≥ 1/2. Then using that (x+ a)/(x+ b) ≤ a/b for x ≥ 0 and a ≥ b and using that
|w| ≥ 1 and that η < 1/4 (so that |w| − |η| cos−1(∆θ/2) > 1/2), we have

|z0|+ (k − 2)|z|+ 1
(|z0|+ (k − 2)|z|+ |w| − |η| cos−1(∆θ)) cos(∆θ) ≤ 4

and

|z0|+ 1
(|z0|+ (k − 2)|z|+ |w|) cos(∆θ) ≤ 2.

Combining the above inequalities we obtain |Rk(w + η) − Rk(w)| ≤ 8η. Recall η ≤
min{∆c/[800(∆ + α)2], 1/[2400(∆ + α)], c/[800∆]}. Then for w ∈ N ([1, c/∆], η), we can
write w = w′ + η with w′ ∈ [1, c∆ ] real. Writing R = R(w), we have

(
1 + α

∆

)−1
≤
(

1 + α− κ
∆

)−1
− 8η ≤ |R(w′)| − 8η < |R|

< |R(w)|+ 8η ≤
(

1 + α− κ
∆

)
+ 8η ≤ 1 + α

∆ ,

where the first and last inequalities follow by our choice of η.
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It follows from simple geometry that if |z1 − z2| ≤ µ for z1, z2 ∈ C and µ ∈ R+ with
µ < |z1|, then | arg(z1)−arg(z2)| < arcsin(µ/|z1|). Using this, and since |R(w′)| > (1+ α

∆ )−1,
we see that

arg(R) < arg(R(w′)) + arcsin
(

8η
(

1 + α

∆

))
= θ(1− κ′) + arcsin

(
8η
(

1 + α

∆

))
< θ;

in order to check the last inequality holds, it is sufficient to check that 8η(1 + α
∆ ) < sin(κ′θ).

Noting that sin x > x− x3/6 > 5x/6 for x ∈ (0, 1), it is sufficient that 8η(1 + α
∆ ) < 5κ′θ/6

(since κ′θ < 1 by our choice of κ′ and θ) and this holds by our choice of η. This completes
the proof of the lemma. J

B.3 Maximization problems

We look at the maximization problems coming from Appendix B.2 and claim that each has
an upper bound of at most 3k− d

2∆ /e. We find eighteen of them, one for each of the three
functions with either x, y, or y/x fixed to one of the two corresponding boundary values.
This allows us to reduce to the univariate maximization problems detailed below. To simplify
the expressions we will let r = k − 2, s = cos(δ)ek d

2∆−1 and t = k1− d
2∆ (e cos(δ))−1.

f1 f2 f3

x = s p1(y) = ry(1+s)
(s+ry+1)2 p2(y) = rsy+2s

(s+ry+1)2 p3(y) = 2s+ry
(s+ry+1)2

x = t p4(y) = ry(1+t)
(t+ry+1)2 p5(y) = rty+2t

(t+ry+1)2 p6(y) = 2t+ry
(t+ry+1)2

y = s p7(x) = rs(1+x)
(x+rs+1)2 p8(x) = rxs+2x

(x+rs+1)2 p9(x) = 2x+rs
(x+rs+1)2

y = t p10(x) = rt(1+x)
(x+rt+1)2 p11(x) = rxt+2x

(x+rt+1)2 p12(x) = 2x+rt
(x+rt+1)2

y/x = s p13(x) = rs(1+x−1)
(x−1+rs+1)2 p14(x) = rs+2x−1

(x−1+rs+1)2 p15(x) = 2x−1+rx−1s
(x−1+rs+1)2

y/x = t p16(x) = rt(1+x−1)
(x−1+rt+1)2 p17(x) = rt+2x−1

(x−1+rt+1)2 p18(x) = 2x−1+rx−1t
(x−1+rt+1)2

To begin the maximization, first observe that under the map x 7→ x−1, each of the
functions pj(x) is the same as some function pl(x) for some 13 ≤ j ≤ 18 and 7 ≤ l ≤ 12.
Furthermore, y = s yields the bounds s ≤ x ≤ 1 and y/x = s gives 1 ≤ x ≤ t. Similarly we
may compare y = t and y/x = t. Thus the ranges for x are identical after inverting x. Hence
we may ignore p13 through p18 leaving us with 12 problems.

Next, consider p10, p11 and p12, each of which can be bounded above by

2rtx
(x+ rt+ 1)2 ≤

2rtx
r2t2

≤ 2
r
,

where the final inequality follows as x ≤ t.
Similarly, we can bound p4, p5 and p6. As it must be the case that y ≥ 1, the numerator

of each is bounded above by 2try. Thus an upper bound for all three is 2t/ry. Furthermore,
r ≥ 2k

3 cos(δ) provided k ≥ 7 and δ small enough. So we are left with an upper bound of
3k− d

2∆ /e.
The remaining problems are similar. The numerators may all be bounded above by

rs(1 + x) ≤ 2rs (or for p1, p2 and p3 by 2ry.) The denominators are all bounded from below
by r2s2 and r2y2 respectively. Thus all six of these are upper bounded by 2/rs which is at
most 3k− d

2∆ /e.
Hence an upper bound on all of the problems p1 through p18 is 3k− d

2∆ /e as claimed.
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B.4 Improvements for small k

When k is small, then the parameter c = log(k) − 1 is also very small. In fact we do not
obtain a better constant than what is known for the Ising model until k ≥ 21. However it is
possible to do better, we can choose different values for α and c which work better in these
cases. In this appendix we will show how to derive such values.

First, we note that we may do the the analysis in an identical way until we find ourselves
with the maximization problems f1, f2 and f3. Now we maximise these more carefully than
in appendix B.3. First, for f1 we apply the AM-GM inequality to the denominator to deduce
that f1(x, y) ≤ 1

4 for any x, y. This allows us to take any c < 4 and as k is small this is all
we need and so we may ignore this constraint. This leaves us to maximise f2 and f3. A
similar argument to the one in the proof of Lemma 22 allows us to deduce that the maxima
are on the boundary of Rd and hence we need only consider the boundary of R̃d.

Now, we proceed as in Appendix B.3 with different choices of s and t where this time we
will take t = ed/∆α+(1−d/∆)c and s = t−1. We start with 12 maximization problems which we
reduce to 8 by symmetry as before. Furthermore, f2 > f3 if and only if x > 1 which allows us
to halve the number of problems left to consider leaving us with 4 problems. More precisely,
we are left with p3, p5, p9 and p11. All of these are of the form f(x) = (a1x+ a2)(x+ a3)−2

which has a maximum at x = a3 − 2a2/a1. See the following table for the maximization of
these 4 functions.

Function a1 a2 a3 x∗ f(x∗)
p3

1
k−2

2s
(k−2)2

s+1
k−2

1−3s
k−2

1
4(1−s)

p5
t

k−2
2t

(k−2)2
t+1
k−2

t−3
k−2 ≤ 1 kt

(t+k−1)2

p9 2 (k − 2)s 1 + (k − 2)s 1 1
(2+(k−2)s)

p11 2 + (k − 2)t 0 1 + (k − 2)t 1 + (k − 2)t > t (k−2)t2+2t

((k−1)t+1)2

Note that in the cases of p5 and p11 the maximum value x∗ is outside the domain which we
are maximising over and thus we maximise at the endpoints of the domain instead.

Now, recall that the maximum values obtained above must also satisfy (17). Also, when
s = e−α it must be the case that (2 + (k− 2)e−α)−1 < c−1 (from p9). Combining these after
rearrangement yields the inequity

cec

ec + k − 1 ≤ α ≤ log
(
k − 2
c− 2

)
(22)

We may solve this inequality computationally for c, and deduce that there is a choice of α, c
which satisfies (22) provided that c ≤ ck for some ck which can be found in the following
table. The corresponding value of αk is also provided. We give both ck and αk rounded to
three decimal places.

k 3 4 5 6 7 8 9 10 11 12
αk 1.767 1.803 1.849 1.896 1.944 1.990 2.034 2.076 2.116 2.154
ck 2.171 2.330 2.472 2.600 2.716 2.820 2.916 3.003 3.084 3.160

Now, we check that these are indeed the maximum values. To do this, we first note that
we have p3 ≤ 1/4 and applying AM-GM to the denominator of the maximum for p5 yields a
result which is smaller than the values from we obtained for the maximum of p9. Finally, for
p11, the denominator is at least (k − 1)(k − 2)t2 + 2t(k − 1). Thus, after cancellations we
are left with p11 ≤ 1/(k − 1) which suffices for k ≥ 4. For k = 3 we can easily check that
(t2 + 2t)(2t+ 1)−2 is maximised when t = 1 and hence is certainly at most 1/3 < 1/2.17.
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Recall when computing the maximum of p9, we took s as large as possible where one
would expect that we should do the opposite to maximise p9. We now justify this choice. So
recall that we must ensure dθp9(x) ≤ ∆θ/c. Furthermore, s may be considered as a function
of d and as such is equal to exp(−d/∆α− (1− d/∆)c). Thus we must ensure that

g(d) = dc/∆
2 + (k − 2)s ≤ 1.

Writing λ for d/∆ gives the following function with domain [0, 1]

G(λ) = λc

2 + (k − 2)e−λα−(1−λ)c .

Differentiating this with respect to λ, we see that either c− α < 1 and G is increasing on
[0, 1] or there is a maximum with λ > 1 which is not inside the domain. Thus, we maximise
G at one of its boundary points and it is easy to see that λ = 1 is the maximum point rather
than λ = 0 where G(λ) = 0.

C Details for the proof of Theorem 9

We collect the proofs of results required to give Theorem 9 here.
First, we show how to transform the partition function in Definition 6 to the partition

function of the random cluster model. Here is the statement again for convenience.

I Lemma 12. Let G = (V,E, π) be a UG instance and w ∈ C. Then

Z(G;w) =
∑
F⊆E

(w − 1)|F |
∏

(V ′,E′)∈C(V,F )

satπ(V ′, E′).

Proof. This follows by writing w = 1 + (w − 1) and expanding the partition function:

Z(G;w) =
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈E,

xv=πuv(xu)

(1 + (w − 1))

=
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈E

(
1 + (w − 1)1{xv = πuv(xu)}

)
=

∑
{xu}u∈V ∈[k]V

∑
F⊂E

∏
(u,v)∈F

(w − 1)1{xv = πuv(xu)}

=
∑
F⊂E

(w − 1)|F |
∑

{xu}u∈V ∈[k]V

∏
(u,v)∈F

1{xv = πuv(xu)},

where the second line follows from writing the product over all edges instead of just satisfied
edges, the third line follows by expanding the product, writing F for the edges for which
the term (w − 1)1{xv = πuv(xu)} is taken, and the final line follows by interchanging the
order of summation. Now if we break the final sum over colour assignments and product
over satisfied edges into a sum and product for each component (V ′, E′) of (V, F ), and recall
the definition of satπ(V ′, E′), we obtain

Z(G;w) =
∑
F⊂E

(w − 1)|F |
∏

(V ′,E′)∈C(V,F )

satπ(V ′, E′). J

The final task is to prove Lemma 14 which, via Lemma 13, shows that the cluster
expansion converges. We restate these lemmas below.
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I Lemma 13 (Borgs et al. [8, Lemma 2.1]). Suppose that polymers are connected subgraphs
containing at least one edge of a graph G of maximum degree ∆ on n vertices, that ‖γ‖ is
the number of edges of the polymer γ, and that

|wγ | ≤ e−(7+log ∆)‖γ‖. (4)

Then the cluster expansion converges absolutely and for any m ∈ N, |Tm− log Ξ(G)| ≤ ne−3m.

I Lemma 14. Let ∆ ∈ N≥16, let C = e−9−2 log ∆, and let ζ = 8
√

1/∆. Then if k ≥ C−2∆/ζ

and 1 ≤ w ≤ e(2−ζ) log(k)/∆, Lemma 13 holds for UG(k) instances G of maximum degree ∆.

Proof of Lemma 14. We proceed in a manner inspired by [8, Theorem 2.4]. First observe
that our polymers are connected subgraphs of G containing at least one edge. Recalling that
C = e−9−2 log ∆, we now show that the conditions k ≥ C−2∆/ζ and 1 ≤ w ≤ e(2−ζ) log(k)/∆

give

|wγ | ≤ C‖γ‖. (23)

We verify (23) in three cases according to the value of s = ‖γ‖. We also recall the
bound (1).
Case 1: s > 2∆/ζ. We use that |γ| ≥ 2‖γ‖/∆. Then

|wγ | = k−|γ|(w − 1)‖γ‖ satπ(γ) ≤ k−|γ|(w − 1)‖γ‖k ≤ k−2‖γ‖/∆(w − 1)‖γ‖k

≤ k−2s/∆ · ks(2−ζ)/∆ · k ≤ k1−sζ/∆ ≤ k−sζ/(2∆),

which is bounded above by C−s since k ≥ C−2∆/ζ .
Case 2: ∆ < s ≤ 2∆/ζ. We use that fact that ‖γ‖ ≤

(|γ|
2
)
and thus

√
2s < |γ|. Then

|wγ | ≤ kk(2−ζ)s/∆k−
√

2s = k1+(2−ζ)s/∆−
√

2s.

Looking at the exponent of k we see by our assumptions on s that

1 + (2− ζ)s/∆−
√

2s ≤ 1 + 4/ζ −
√

2∆ ≤ 1−
√

∆/2 ≤ −1

for ∆ large enough (i.e ∆ ≥ 16 suffices). So since k ≥ C−2∆/ζ we are in business.
Case 3: 1 ≤ s ≤ ∆. If |γ| = 2 we have s = 1 and therefore

|wγ | ≤ k−1k(2−ζ)/∆ ≤ k−1/2

provided ∆ ≥ 4. If |γ| ≥ 3 we have

|wγ | ≤ k−2k(2−ζ) = k−ζ .

So since k ≥ C−2∆/ζ the required bound holds.
This finishes the proof. J
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