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Decision-based model selection

Arnoud V. den Boer∗† Dirk D. Sierag‡

This version: August 13, 2020

Abstract

A key step in data-driven decision making is the choice of a suitable mathematical model.
Complex models that give an accurate description of reality may depend on many parameters that
are difficult to estimate; in addition, the optimization problem corresponding to such models may
be computationally intractable and only approximately solvable. Simple models with only a few
unknown parameters may be misspecified, but also easier to estimate and optimize. With such
different models and some initial data at hand, a decision maker would want to know which model
produces the best decisions. In this paper we propose a decision-based model-selection method
that addresses this question.
Keywords: analytics, model selection, data-driven optimization, decision making under uncertainty

1 Introduction

1.1 Motivation

Model selection is the art of choosing from different mathematical models the one that provides the
best description of a certain real-world phenomenon. Many different model selection criteria have been
proposed, typically based on statistical or information-theoretic notions related to ‘goodness-of-fit’
or ‘explanatory power’, while also (albeit sometimes implicitly) taking into account the number of
parameters present in a model.

Mathematical models play a fundamental role in data-driven optimization problems studied in opera-
tions research and management science. In these problems one is not primarily interested in obtaining
a good description of some aspect of reality, but rather in identifying a good decision that maximizes
a certain objective function. One would therefore expect that the main criterion based upon which
one selects a model in a data-driven optimization problem is its ability to produce good decisions.

Perhaps surprisingly, this is not the case. Models are often selected using ‘classical’ criteria related
to obtaining estimates with small statistical distance (such as mean squared error or Kullback-Leibler
divergence). But, as illustrated in Figure 1, small statistical distance need not at all imply that the
selected model leads to good decisions (and the Appendix of this paper contains an example showing
that the loss of using the ‘wrong’ model selection criterion can in fact be unbounded). A striking
practical example of this phenomenon is given by Feldman et al. (2019), who compare a sophisticated
∗Corresponding author
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machine learning model to a simple multinomial logit (MNL) choice model, in a product display
optimization problem of a large online market place. They conclude:

Our experiments show that despite the lower prediction power of our MNL-based approach,
it generates significantly higher revenue per visit compared to the current machine learning
algorithm with the same set of features.

In addition, Besbes and Zeevi (2015) and Cooper et al. (2015) have shown that misspecified models
may sometimes lead to good or even better decisions than a ‘correct’ model. Thus, in data-driven
optimization problems, the value of a model should solely be judged by the quality of the decisions it
produces, and not by, e.g., ‘goodness-of-fit’. This has also been pointed out by Besbes et al. (2010),
who write:

‘[...] there has long been a recognition within the decision analysis literature that the value
of quantitative modeling should be judged primarily by the quality of the decisions they
support (see, for example, Nickerson and Boyd (1980)). However, there has been a lack of
methodologies for evaluating the adequacy of a particular model from this vantage point.’

Figure 1: Although the objective function estimated by Model 1 is closer to the truth than that of
Model 2 (measured, e.g., by their L2 distance), the optimal decision x(2) corresponding to Model 2
yields a higher objective f(x(2)) than the optimal decision x(1) corresponding to Model 1.

In decision problems, model selection is typically between complex, ‘realistic’ models and ‘simple’ or
simplified models. A complex model, that takes into account many factors that are thought to be
relevant and important for the problem at hand, typically depends on many unknown parameters that
may be difficult to estimate accurately (especially if only limited data is available). In addition, deter-
mining the corresponding optimal decision may be computationally intractable, such that heuristics
or simulations have to be used to find an (approximately) optimal solution. A simple model that
neglects important factors may be misspecified, but it may also involve fewer unknowns that need to
be estimated, and the associated optimization problem may be exactly solvable.

With two such models at hand, an important question is whether the modeling error of the simple
model outweighs the larger estimation and optimization errors associated with the complex model. A
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large variety of model-selection methods exists (discussed in more detail in the next section) based on
statistical or information-theoretic criteria. Although these criteria may perform well when one wants
to derive qualitative insights or make predictions, they are generally not tailored to their use in generic
optimization problems, and thus may select a model based on the ‘wrong’ criterion as illustrated in
Figure 1. This motivates the current study, in which we integrate model selection with data-driven
decision problems, by proposing a concrete and generic decision-based model-selection method.

1.2 Literature

Model selection. The rich field of model selection has produced a wide variety of tools and techniques
to select a model, such as Akaike Information Criterion (AIC; Akaike, 1973), Bayesian information cri-
terion (BIC; Schwarz, 1978), deviance information criterion (DIC; Spiegelhalter et al., 2002), Mallows’
Cp (Mallows, 1973), the Minimum Description Length principle (Rissanen, 1978), Bayesian model
selection and model averaging based on Bayes factors (Jeffreys, 1935, 1961), cross-validation (Stone,
1974, Geisser, 1975), and many more. For reviews and in-depth discussions of these methods we refer
to the books and survey papers by Arlot and Celisse (2010), Burnham and Anderson (2002), Claeskens
and Hjort (2008), Grünwald (2007), Kass and Raftery (1995), Lahiri (2001), Wasserman (2000), and
Zucchini (2000).

These model selection methods are based on statistical or information-theoretic criteria, and generally
are designed with the aim of identifying models with small statistical distance to the underlying ground
truth or a good fit on future (test) data coming from the same source. If the goal of the decision maker
is to use models to derive qualitative insights or make predictions, these criteria may perform quite well.
However, these criteria are not necessarily aligned with the goal of selecting a model that produces
good decisions. This observation, that a model selection method should be aligned with the purpose
for which the model is used, is also made by Claeskens and Hjort (2003):

‘The idea of finding a single satisfactory statistical model for one’s data, perhaps aided by
the model information criteria discussed previously, is a central one in statistics, and carries
with it considerable intellectual and conceptual appeal. The chosen model is fitted to data
and is seen as the statistician’s best approximation to the real data generating mechanism
used by nature, and secures a coherent view of statistical analysis of a dataset. In this
article we carefully extricate ourselves from this classic point of view; that a single model
should be used to explain all aspects of data or to predict all types of future data points
seems to us a little too constrained. Our view is that such a “best model” should depend
on the parameter under focus.’

Claeskens and Hjort (2003) proceed by proposing a method, the Focused Information Criterion (FIC),
aimed at selecting a model that gives good precision for estimating a certain parameter of interest. The
idea of FIC is to estimate the mean squared error of the parameter of interest for each available model,
and then select a model for which this estimate is minimal. The method proposed in the present paper
is different from FIC, but it is inspired by the same philosophy that model selectors should be aligned
with the purpose for which the models are used (in our case: producing good decisions).

Statistical learning theory. Statistical learning theory (Vapnik, 1998, 2000, Bousquet et al., 2004,
Hastie et al., 2009) addresses questions that are closely related to model selection. The main goal in this
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field is to construct a prediction function f̂ : X → Y that provides a good description of the relation
between an input random variable X with support X and an output random variable Y with support
Y. The joint distribution of (X,Y ) is unknown, but data consisting of i.i.d. realizations (xi, yi)1≤i≤n

of (X,Y ) is available. The quality of a predictor f̂ is measured by the risk R(f̂) := E[L(Y, f̂(X))],
where the so-called loss function L : Y2 → [0,∞) quantifies the error between Y and the predicted
f̂(X). As described in Bousquet et al. (2004) and Guyon et al. (2010), the main methods to determine
a good predictor (empirical risk minimization, structural risk minimization, regularization methods)
are based on the idea of minimizing the empirical risk

∑n
i=1 L(yi, f̂(xi)) over some class G ⊂ YX of

predictors, possibly augmented with a term that penalizes the ‘model complexity’ of f̂ . Selecting G
can be seen as a model selection problem.

The framework is quite general - covering, for example, classification, regression, and density estimation
problems - but is in several regards different from the setting considered in this paper. First, we do
not make the assumption that x1, . . . , xn are i.i.d. realizations from a random X. Second, as outlined
in Section 2.1, we are solely interested in estimating a maximizer of the function f(x) := E[r(X,Y ) |
X = x] for some known r : X × Y → R, instead of the ‘full’ relation between X and Y . For many
problems, e.g. the assortment optimization problem considered in Section 4.1, it is unclear if (at all)
it is possible to put this into the framework described above.

Bayesian model averaging. Bayesian model selection techniques share the same drawbacks as fre-
quentists’ approaches, in that they decouple model selection from a particular optimization problem
at hand. Bayesian model averaging (Kass and Raftery, 1995, Wasserman, 2000), however, is an ap-
proach that can connect optimization problems to the availability of different models. The main idea
of Bayesian model averaging is not to select a single model from available alternatives, but to maintain
a probability distribution that each of the given models is correct, and use this probability distribution
in all further derivations.

In data-driven optimization problems, such an approach could look as follows. Let M0, . . . ,MK be
K + 1 models that may have generated a given data set D, let each model Mk have an associated
parameter θk living in a space Θk ⊂ Θ, let X be a space of feasible decisions, and let r : X ×Θ → R
be a reward function. Let p(θk | Mk) be a prior on the parameter θk ∈ Θk, and let p(Mk) be a prior
on the probability that model Mk is correct, for k = 0, . . . ,K. A fully Bayesian approach to maximize
the reward, in the spirit of Bayesian model averaging and thus without first selecting a model, consists
of maximizing the function

x 7→
K+1∑
k=0

∫
θk∈Θk

r(x, θk)p(θk | D,Mk)p(Mk | D)dθk, (x ∈ X ), (1)

where p(θk | D,Mk) = p(D | θk,Mk)p(θk | Mk)/p(D | Mk) is the posterior of θk, p(D | θk,Mk) is the
likelihood of the data given parameter value θk and modelMk, p(D |Mk) =

∫
θk∈Θk

p(D | θk,Mk)p(θk |
Mk)dθk is the evidence for model Mk, and p(Mk | D) = p(D |Mk)p(Mk)/

∑K
l=0 p(D |Ml)p(Ml) is the

posterior probability that model Mk is correct, given data D.

Apart from the computational difficulties that solving (1) could involve (which could introduce further
optimization errors), a main difference between this and our approach is that we do not (implicitly)
assume that each of the available models is ‘correct’ with some (positive) probability. Even if it is
known beforehand that a certain model Mk is incorrect and could never have generated the data, i.e.
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p(Mk) = 0, it still could produce better decisions than a correctly specified model. This aspect is not
captured in this approach.

Somewhat related is the literature on inconsistent (Bayesian) inference with misspecified models (see
Grünwald and van Ommen, 2014, Watson and Holmes, 2016, and the references therein), which blends
Bayesian methods with statistical learning theory. Similar to the statistical learning theory litera-
ture discussed above, these papers differ, among other things, from our framework by assuming i.i.d.
decisions and a different structural form of the loss function.

Bridging model selection and data-driven optimization. Several recent studies in the opera-
tions research and management science literature consider aspects of model selection in conjunction
with data-driven optimization problems. For example, Besbes et al. (2010) design and analyze a hy-
pothesis test to discriminate between models based on the quality of decisions they produce; Chu et al.
(2008), Lim et al. (2006), Liyanage and Shanthikumar (2005), and Ramamurthy et al. (2012) argue for
integrating estimation, optimization, and model uncertainty in data-driven optimization problems; and
Besbes and Zeevi (2015), Cachon and Kök (2007), Cooper and Li (2012), Cooper et al. (2006, 2015),
and Lee et al. (2012) study the quality of decisions under misspecified models in pricing, revenue
management, and inventory optimization problems.

The notion that model selection methods should be aligned with their purpose of producing good de-
cisions is implicitly present in some recent studies. Bastani and Bayati (2016), for example, consider a
linear multi-armed bandit problem with high-dimensional covariates, and adaptively tune the regular-
ization parameter of the LASSO estimator (Tibshirani, 1996) in order to achieve optimal asymptotic
reward. Since this regularization parameter is a measure of model complexity, their method can be
seen as an example of adapting a model selection method to the purpose of generating good decisions.
A similar idea appears in Vahn et al. (2014), who enhance a data-driven portfolio optimization problem
by a regularization parameter that bounds the sample variance of the estimated objective function.
The regularization parameter is optimized by a variant of k-fold cross-validation, where the validation
step is based on a performance metric relevant to investment problems. Although this paper is not
directly about model selection, it can again be seen as an example where model selection techniques
are tuned in order to maximize the objective function of a data-driven optimization problem.

Kao and Van Roy (2014) (cf. Kao and Van Roy, 2013) consider a quadratic optimization problem,
the solution of which depends on an unknown covariance matrix Σ of a Gaussian random variable.
The authors discuss various regularized maximum likelihood estimators with regularization parameter
tuned via cross-validation. In addition, they propose to estimate Σ by maximizing the in-sample
performance of the objective function, subject to a lower-bound on the posterior probability of Σ to
mitigate overfitting. Thus, the estimator of the unknown parameter is adapted to take the decision
objective into account. A similar idea is considered by Kao et al. (2009), who estimate an unknown
parameter of a quadratic function by a convex combination of ordinary least squares and empirical
loss minimization, and who choose this convex combination while taking into account the goal of
maximizing the objective function.
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1.3 Contributions

This paper proposes a model-selection method that evaluates models based on the quality of the deci-
sions they produce. The key idea of the approach, named dbms after decision-based model selection,
is to use a resampling procedure to estimate which of the decisions suggested by different models gives
the highest reward. The method is applicable to a wide class of data-driven decision problems, is not
computationally intensive, and does not depend on some hyper-parameter that is difficult to tune.
Conceptually, it connects the fields of model selection and data-driven optimization. Our numerical
results are encouraging, while also suggesting that there still is room for further improvement.

The main practical insight for managers or practitioners who work with models and data is that one
does not have to confine oneself to using either simple and misspecified or complex and intractable
models: one can (and in fact: should) use both, together with a method such as dbms that predicts
which model produces the best decision given the data set at hand.

Our numerical results also reveal that it is in general quite hard to conclude which model selection
method is ‘the best’. In the assortment optimization problem considered in Section 4.1, dbms is
much better than AIC when model M (1) is clearly misspecified, while AIC is better than dbms when
model M (1) is (near)correct. In the newsvendor optimization problem considered in Section 4.2, a
similar conclusion holds: dbms is better than cross-validation when modelM (1) is clearly misspecified,
while cross-validation is better than dbms when M (1) is correctly specified. From a practical point of
view, conducting numerical simulations or real-life experiments to evaluate the performance of different
models (as in Feldman, Zhang, Liu, and Zhang, 2019) might be insightful. From a theoretical point of
view, it would be useful to derive worst-case performance bounds for different model selection methods,
accompanied by lower bounds on the best achievable performance of any model selection method. Our
analysis in Section 3.1 suggests that a general analysis of this kind might be technically challenging.
However, in particular problem instances (such as newsvendor optimization), deriving informative
upper and lower bounds on the performance of model selection methods might be feasible. This is left
as an interesting direction for future research.

1.4 Organization of the paper

The rest of this paper is organized as follows. Section 2 describes the formal decision-making framework
that we consider, and contains our decision-based model-selection criterion dbms. In Section 3 we
explain the intuition behind dbms, discuss a few alternatives, prove that dbms is reward-consistent,
and comment on several other aspects of dbms. Section 4 contains two numerical illustrations, on
an assortment optimization problem and on the newsvendor problem, and Section 5 ends the paper
with a few concluding remarks. The supplementary material in the appendix shows, by means of an
example, that unbounded losses may be incurred when model selection is not based on optimizing the
objective function.
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2 Decision-based model selection

2.1 Mathematical framework of decision-making

Consider a decision maker who tries to determine a decision or action x in an action space X that
maximizes her expected reward E[r(x, Y (x))], where {Y (x) | x ∈ X} is a collection of (possibly
multivariate) random variables with common support Y, and r : X ×Y → R is a known function called
the reward function. The distributions of Y (x) (x ∈ X ) are unknown to the decision maker, but a data
set d0 = (x1, y1, . . . , xn, yn), n ∈ N, consisting of previously used actions xi ∈ X and realizations yi
of Y (xi) (i = 1, . . . , n) is available. To determine her data-driven decision, the decision maker uses a
model, an estimator, and an optimization algorithm.

A model is a set of the form

M = {Fx,θ ∈ F | x ∈ X , θ ∈ Θ},

where F is the set of cumulative distribution functions (cdfs) on Y, and Θ is a non-empty and possibly
infinite-dimensional set. A model is called correctly specified if there is a unique θ∗ ∈ Θ such that, for
all x ∈ X , Fx,θ∗ is the cdf of Y (x); θ∗ is then called the true parameter. An estimator is a function
τ : (X × Y)n → Θ that maps data to parameter values. An optimization algorithm is a function
χ : Θ → X that maps parameter values to decisions. In data-driven decision problems, χ(θ) typically
maximizes

∫
Y r(x, y)dFx,θ(y) with respect to x ∈ X , for all θ ∈ Θ; in this case χ is called exact. In many

optimization problems, however, maximizing
∫
Y r(x, y)dFx,θ(y) is intractable, and χ is an heuristic or

approximate optimal solution. If a single model M with corresponding estimator τ and optimization
algorithm χ is at hand, then the decision maker uses action χ(τ(d0)).

2.2 Decision-based model-selection criterion

We consider the case where multiple models M (0),M (1), . . . ,M (K) are available (K ∈ N), each of the
form

M (k) = {F (k)
x,θ ∈ F | x ∈ X , θ ∈ Θ(k)}, k = 0, 1, . . . ,K,

and each with corresponding estimator τ (k) and optimization algorithm χ(k). Model M (0) is called
the ‘true model’ and is correctly specified with true (but unknown) parameter θ∗ (For a discussion
about this assumption, see Section 3.4). The other models are considered simplifications, and may be
misspecified. The decision maker knows that model M (0) is correctly specified.

Let x(k) := χ(k)(τ (k)(d0)) denote the decision suggested by model k (k = 0, 1, . . . ,K). The decision
maker needs to determine the model k for which x(k) gives the highest expected reward; i.e. she needs
to estimate

arg max
k∈{0,1,...,K}

r(x(k), θ∗), (2)
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where we write

r(x, θ) :=

∫
Y
r(x, y)dF (0)

x,θ (y)

for the expected reward under model M (0) as function of x and θ.

Observe that simply replacing θ∗ by τ (0)(d0) in (2) is not informative: if χ(0) is exact, then we have
r(x(0), τ (0)(d0)) ≥ r(x(k), τ (0)(d0)) by definition, for all k = 1, . . . ,K.

Our idea is to estimate (2) by a resampling procedure, as follows: construct a new data set dr =

(x1, y
r
1, . . . , xn, y

r
n) - the sub-/superscript ‘r’ refers to ‘resampled’ - with the same covariates xi as in

d0, but with the observations yi replaced by random samples yri drawn according to their estimated
cdf F (0)

xi,τ (0)(d0)
(i = 1, . . . , n). We subsequently estimate (2) by replacing the true parameter θ∗ by its

estimate based on the resampled data:

arg max
k∈{0,1,...,K}

r(x(k), τ (0)(dr)). (dbms)

In case of a tie, we select the maximizer with the smallest k.

3 Discussion and analysis

3.1 Intuition behind dbms

In this section we provide an intuition behind dbms. To this end, we introduce some notation: we
write Y (x, θ) for the random variable with cdf F (0)

x,θ , and D(θ) = (x1, Y (x1, θ), . . . , xn, Y (xn, θ)) for
the random data vector as function of θ. We write θk = τ (k)(D(θ∗)) for the parameter estimate under
model M (k) (viewed as a random variable), and θr = τ (0)(D(θ0)) for the parameter estimate based on
the resampled data set. Note that we can regard the initial data set d0 as a realization of D(θ∗), and
the resampled data set dr as a realization of D(θ0).

We first explain in Section 3.1.1 why misspecified models may yield better decisions than the correct
model. Next, in Section 3.1.2, we study several structural properties of dbms by means of an example
that involves two models. In this example, we show how the probability that the misspecified model
outperforms the correct model, the corresponding expected performance gain, and the probability that
dbms selects the misspecified model are related to the variance of the estimator under M (0) and to
the expected gain or loss under the misspecified model. We also obtain an explicit expression for the
performance of dbms. In Section 3.1.3 we discuss the difficulties of extending these insights to more
general decision problems.

3.1.1 Better decisions by a misspecified model.

For ease of exposition we assume that there are only two models under consideration: a correctly
specified model M (0) and a possibly misspecified model M (1). In addition suppose that X , Θ(0) and
Θ(1) are metric spaces, the function x 7→ r(x, θ∗) is globally Lipschitz continuous on X with unique
maximizer x∗ ∈ X , the algorithm χ(0) is exact, the function χ(1) : Θ(1) → X is globally Lipschitz
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continuous, and there are constants c0 > 0 and ω > 0 such that estimation error and performance loss
of model M (0) are related in the following way:

r(χ(0)(θ∗), θ∗)− r(χ(0)(θ), θ∗) ≥ c0||θ∗ − θ||ω for all θ ∈ Θ(0).

We define the regret under modelM (k), denoted by Regret(k), as the expected performance loss caused
by using decision x(k) instead of the optimal decision x∗. It follows that the regret under model M (k)

satisfies

Regret(k) = E[r(x∗, θ∗)− r(x(0), θ∗)]

≥ c0 E[||θ∗ − θ0||ω], (3)

where the expectation is taken with respect to the distribution of the initial data D(θ∗). Define the
misspecification loss of model M (1) by

∆(1) := min
θ∈Θ(1)

{
r(x∗, θ∗)− r(χ(1)(θ), θ∗)

}
,

and, for ease of exposition, suppose that there is a unique θ̃ ∈ Θ(1) where this minimum is achieved.
The Lipschitz conditions on r and χ(1) imply that there is constant c1 > 0 such that

Regret(k) = E[r(x∗, θ∗)− r(x(1), θ∗)]

= ∆(1) + E[r(χ(1)(θ̃), θ∗)− r(χ(1)(θ1), θ∗)]

≤ ∆(1) + c1E[||θ̃ − θ1||]. (4)

By comparing (3) and (4) it becomes clear why a misspecified model may yield better decisions than a
correctly specified model. In particular, if the estimation error of modelM (0), measured by the expres-
sion on the righthandside of (3), is larger than the sum of the misspecification error and estimation
error of model M (1), measured by the two respective terms in equation (4), then x(1) has lower regret
than x(0) and thus model M (1) is preferable from a decision-making perspective, even if this model is
misspecified. It is worth emphasizing that this discussion assumes that χ(0) is exact. Optimization
errors in the algorithm corresponding to modelM (0) can be another source of why a misspecified model
performs better than a well-specified model.

3.1.2 Properties of dbms in an example.

We now explain key properties of dbms by means of an example. Suppose that X = R, Θ(0) = R,
and r(x, θ) = −(x− θ)2 for all (x, θ) ∈ R2. Data of the form (xi, yi), i = 1, . . . , n, n ∈ N, is available,
where x1, . . . , xn ∈ R are not all zero, yi = θ∗xi + εi (i = 1, . . . , n), θ∗ ∈ R is the true but unknown
parameter, and ε1, . . . , εn are i.i.d. standard normally distributed random variables. The decision
maker again considers two models. In model M (0), she (correctly) assumes that yi ∼ N(θxi, 1), for
some θ ∈ R and all i = 1, . . . , n; she estimates the unknown parameter by ordinary least squares,
i.e. θ0 = (

∑n
i=1 x

2
i )
−1
∑n

i=1 xiyi, and uses the exact algorithm χ(0)(θ) = θ for all θ ∈ R; that is, the
decision x(0) corresponding to model M (0) is given by x(0) := θ0. In the simplified model M (1), the
decision maker simply assumes θ∗ = θ1 for some fixed θ1 ∈ R, with corresponding decision x(1) = θ1,
and Θ(1) := {θ1}. (This represents the situation that θ1 has a much smaller variance than θ0).
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Let v := (
∑n

i=1 x
2
i )
−1, and observe that θ0 is normally distributed with mean θ∗ and variance v. In

what follows, we treat v as a variable and show how v influences the performance of both models M (0)

and M (1), and the performance of dbms. To that end, define the sets

S0 := {θ ∈ Θ(0) : r(x(0), θ) ≥ r(x(1), θ)},

S1 := {θ ∈ Θ(0) : r(x(0), θ) < r(x(1), θ)}.

Observe that these sets are random, since they depend (via θ0) on ε1, . . . , εt. In addition, let

∆0 := E
[
max
x∈X

r(x, θ∗)− r(x(0), θ∗)

]
,

∆1 := E
[
max
x∈X

r(x, θ∗)− r(x(1), θ∗)

]
,

be the regret corresponding to model M (0) and model M (1), and let

∆(v) := E[r(x(1), θ∗)− r(x(0), θ∗)]

be the expected gain of using model M (1) instead of model M (0), as function of v. In what follows, we
write Pv (·) and Ev[·] to denote probabilities and expectations that depend on v. In the example we
consider, ∆0 = v and ∆1 = −(θ1 − θ∗)2.

In this section we prove four propositions with structural properties and the performance of dbms in
this problem. Our first result shows that both the probability that M (1) outperforms M (0), and the
corresponding expected performance gain, are increasing in v, but decreasing in ∆1.
Proposition 1. Both Pv (θ∗ ∈ S1) and ∆(v) are increasing in v but decreasing in ∆1.

Proof. Since ∆1 = (x(1) − θ∗)2, we have

Pv (θ∗ ∈ S1) = Pv
(
r(x(0), θ∗) < r(x(1), θ∗)

)
= Pv

(
(θ0 − θ∗)2 > ∆1

)
= 1−

∫ θ∗+
√

∆1

θ∗−
√

∆1

1√
2πv

exp

(
−(y − θ∗)2

2v

)
dy

= 1−
∫ (θ∗+

√
∆1)/v

(θ∗−
√

∆1)/v

1√
2π

exp

(
−(y − θ∗)2

2

)
dy,

and

∆(v) = Ev[r(x(1), θ∗)− r(x(0), θ∗)]

= −∆1 + Ev[(θ0 − θ∗)2]

= −∆1 + v.

It follows that both Pv (θ∗ ∈ S1) and ∆(v) are increasing in v but decreasing in ∆1.

The resampled data sets that dbms constructs is of the form dr = (xi, y
r
i )1≤i≤n, where yr1, . . . , yrn ∼

N(θ0, 1). As a result, conditionally on θ0, the estimate θr = (
∑n

i=1 x
2
i )
−1
∑n

i=1 xiy
r
i based on resampled

data is normally distributed with mean θ0 and variance v.
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Our next result shows that the probability that dbms selects model M (1) is increasing (and in fact
differentiable) in v.
Proposition 2. The function (0,∞) 3 v 7→ Pv (θr ∈ S1) is increasing and differentiable in v.

Proof. Let Φ and ϕ denote the cdf and pdf of the standard normal distribution. For all t > x(1) it
holds that

Pv (θr ∈ S1|θ0 = t) = Pv
(
−(t− θr)2 < −(x(1) − θr)2 | θ0 = t

)
= Pv

(
t2 − (x(1))2 > 2(t− x(1))θr | θ0 = t

)
= Pv

(
θr < (t+ x(1))/2 | θ0 = t

)
= Φ((x(1) − t)/(2

√
v)), (5)

since (θr − t)/
√
v conditional on θ0 = t is standard normally distributed, and for all t < x(1),

Pv (θr ∈ S1|θ0 = t) = Pv
(
−(t− θr)2 < −(x(1) − θr)2 | θ0 = t

)
= Pv

(
t2 − (x(1))2 > 2(t− x(1))θr | θ0 = t

)
= Pv

(
θr > (t+ x(1))/2 | θ0 = t

)
= 1− Φ((x(1) − t)/(2

√
v)). (6)

As a result,

Pv (θr ∈ S1) =

∫ x(1)

−∞

(
1− Φ

(
x(1) − t

2
√
v

))
· 1√

2πv
exp

(
−(t− θ∗)2

2v

)
dt

+

∫ ∞
x(1)

Φ

(
x(1) − t

2
√
v

)
· 1√

2πv
exp

(
−(t− θ∗)2

2v

)
dt

=

∫ (x(1)−θ∗)/
√
v

−∞

(
1− Φ

(
x(1) − θ∗

2
√
v
− y/2

))
· 1√

2π
exp

(
−y

2

2

)
dy

+

∫ ∞
(x(1)−θ∗)/

√
v

Φ

(
x(1) − θ∗

2
√
v
− y/2

)
· 1√

2π
exp

(
−y

2

2

)
dy,

where we used the variable substitution y = (t − θ∗)/
√
v. Write c := x(1) − θ∗. By Leibniz’s rule for

differentiation under the integral sign, it follows that Pv (θr ∈ S1) is differentiable in v, for v > 0, with
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derivative equal to

d

dv
Pv (θr ∈ S1) = −1

2
cv−3/2 (1− Φ (0)) · 1√

2π
exp

(
− c

2

2v

)
dy

+

∫ c/
√
v

−∞

d

dv

(
1− Φ

(
c

2
√
v
− y/2

))
· 1√

2π
exp

(
−y

2

2

)
dy

+
1

2
cv−3/2Φ(0) · 1√

2π
exp

(
− c

2

2v

)
+

∫ ∞
c/
√
v

d

dv
Φ

(
c

2
√
v
− y/2

)
· 1√

2π
exp

(
−y

2

2

)
dy

=

∫ c/
√
v

−∞
ϕ

(
c

2
√
v
− y/2

)
· c

4
v−3/2 · 1√

2π
exp

(
−y

2

2

)
dy

−
∫ ∞
c/
√
v
ϕ

(
c

2
√
v
− y/2

)
· c

4
v−3/2 · 1√

2π
exp

(
−y

2

2

)
dy.

By application of the following claim, with γ = c/
√
v, ϕ̃ = ϕ, and f̃(y) = 1

4v
−1 1√

2π
exp(−y2/2) for all

y ∈ R, the statement of the proposition follows.

Claim. Let ϕ̃ : R → [0,∞) and f̃ : R → [0,∞) be symmetric unimodal continuous functions with
maximum attained at zero. Then, for all γ ∈ R,

γ

∫ γ

−∞
ϕ̃((γ − y)/2)f̃(y)dy ≥ γ

∫ ∞
γ

ϕ̃((γ − y)/2)f̃(y)dy.

Proof of Claim. Suppose that γ ≥ 0. Then ϕ̃(x/2) = ϕ̃(−x/2) and f̃(γ − x) ≥ f̃(γ + x) for all x ≥ 0.
By substitution of variables, we obtain

γ

∫ γ

−∞
ϕ̃((γ − y)/2)f̃(y)dy = γ

∫ ∞
0

ϕ̃(x/2)f̃(γ − x)dx

≥ γ
∫ ∞

0
ϕ̃(−x/2)f̃(γ + x)dx = γ

∫ ∞
γ

ϕ̃((γ − y)/2)f̃(y)dy.

Now suppose that γ < 0. Then ϕ̃(x/2) = ϕ̃(−x/2) and f̃(γ − x) ≤ f̃(γ + x) for all x ≥ 0. By
substitution of variables, we obtain

γ

∫ γ

−∞
ϕ̃((γ − y)/2)f̃(y)dy = γ

∫ ∞
0

ϕ̃(x/2)f̃(γ − x)dx

≥ γ
∫ ∞

0
ϕ̃(−x/2)f̃(γ + x)dx = γ

∫ ∞
γ

ϕ̃((γ − y)/2)f̃(y)dy.

This completes the proof of the claim.

Propositions 1 and 2 show that both the probability that dbms selects M (1), as well as the expected
corresponding performance gain ∆(v), are increasing in v. Since ∆(v) = v −∆1 is strictly increasing
in v, we can also define the probability of selecting M (1) as a function of the performance gain ∆, as
follows.

p(∆) := P∆−∆1 (θr ∈ S1) , for ∆ ∈ (−∆1,∞).
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Our next result shows that p(∆) is increasing and differentiable in ∆, and provides explicit expressions
for the limiting probabilities as ∆ ↓ −∆1 or ∆→∞.
Proposition 3. The function p is increasing and differentiable on (−∆1,∞). In addition, if ∆1 = 0

then p(∆) = arctan(2)/π for all ∆ ∈ (∆1,∞), and if ∆1 > 0, then

lim
∆↓−∆1

p(∆) = 0, and

lim
∆→∞

p(∆) = arctan(2)/π ≈ 0.3524

Proof. That p(·) is increasing and differentiable on (−∆1,∞) follows immediately from Proposition
2. To prove the other statements of the proposition, let Z1, Z2 be independent standard normally
distributed random variables. For all t > x(1), equation (5) implies

Pv (θr ∈ S1 | θ0 = t) = Pv
(
Z1 ≤ (x(1) − t)/2

√
v
)

= Pv

(
Z1 ≥

∣∣∣∣∣ t− x(1)

2
√
v

∣∣∣∣∣
)

= Pv

(
Z1 ≥

∣∣∣∣∣ t− θ∗2
√
v

+
θ∗ − x(1)

2
√
v

∣∣∣∣∣
)
,

and for all t < x(1), equation (6) implies

Pv (θr ∈ S1 | θ0 = t) = Pv
(
Z1 ≥ (x(1) − t)/2

√
v
)

= Pv

(
Z1 ≥

∣∣∣∣∣ t− x(1)

2
√
v

∣∣∣∣∣
)

= Pv

(
Z1 ≥

∣∣∣∣∣ t− θ∗2
√
v

+
θ∗ − x(1)

2
√
v

∣∣∣∣∣
)
.

Since (θ0 − θ∗)/
√
v is standard normally distributed, it follows that

Pv (θr ∈ S1) = Pv
(
Z1 ≥

∣∣∣∣Z2 + cv
2

∣∣∣∣) ,
where we write

cv :=
θ∗ − x(1)

√
v

.

Suppose ∆1 = 0. Then cv = 0 for all v > 0, and therefore Pv (θr ∈ S1) = Pv (Z1 ≥ |Z2/2|) =

arctan(2)/π for all v > 0.

Now suppose that ∆1 > 0. Then cv 6= 0 for all v > 0, limv↓0 |cv| = ∞ and limv→∞ cv = 0, and hence
limv↓0 Pv (θr ∈ S1) = 0 and limv→∞ Pv (θr ∈ S1) = Pv (Z1 ≥ |Z2/2|) = arctan(2)/π.

Proposition 3 shows that dbms satisfies a key structural property of model selection methods: the
probability of selecting the (potentially misspecified) model M (1) is increasing in the resulting perfor-
mance gain ∆. In addition, when the performance gain is minimal (∆ ↓ −∆1), dbms correctly selects
model M (0) with probability one. Interestingly, if model M (1) happens to be correctly specified, then

13



the probability of selecting model M (1) is independent of v in this example.

Let Z1, Z2 be independent standard normally distributed random variables. The probability that
dbms selects model M (1) can also be written as

Pv (θr ∈ S1) = Pv (Z1 ≥ |(Z2 + cv)/2|) = Pv (Z1 ≥ |(Z2 + |cv|)/2|)

= Pv
(

2Z1 ≥ |Z2 +
√

∆1/∆0|
)
,

where the first equality is shown in the proof of Proposition 3, the second equality follows by Z2
d
= −Z2,

and the third equality follows by ∆0 = Ev[(θ0 − θ∗)2] = v. Observe that Pv (2Z1 ≥ |Z2 + x|) is
differentiable in x, for x > 0, with

d

dx
Pv (2Z1 ≥ |Z2 + x|) =

d

dx

∫ ∞
0

∫ −x+2z1

−x−2z1

ϕ(z2)ϕ(z1)dz2dz1

=

∫ ∞
0
{−ϕ(−x+ 2z1) + ϕ(−x− 2z1)}ϕ(z1)dz1

=

∫ ∞
0
{ϕ(x+ 2z1)− ϕ(x− 2z1)}ϕ(z1)dz1

< 0,

where ϕ is the pdf of the standard normal distribution, and where the third equality follows by
symmetry of ϕ. It follows that the probability that dbms selects model M (1) is a decreasing function
of the ratio ∆1/∆0.

A similar monotonicity property holds for the probability that model M (1) outperforms M (0). From
the proof of Proposition 1 we obtain

Pv (θ∗ ∈ S1) = Pv
(
(θ0 − θ∗)2 > ∆1

)
= Pv

(
Z2

1 > ∆1/v
2
)

= Pv
(
Z2

1 > ∆1/∆
2
0

)
,

which clearly is decreasing in ∆1/∆
2
0. In contrast to Pv (θr ∈ S1), Pv (θ∗ ∈ S1) is monotone in ∆1/∆

2
0

instead of ∆1/∆0.

The next proposition gives an exact expression for the performance of dbms.
Proposition 4. Let x(dbms ) := x(0)1{θr ∈ S0} + x(1)1{θr ∈ S1}. Let Z be a standard normally
distributed random variables, and let Φ denote its cdf. Then

Ev[(x(dbms ) − θ∗)2] = ∆0 · E

[
Z2Φ

(
|Z +

√
∆1/∆0|
2

)]
+ ∆1 · E

[
1− Φ

(
|Z +

√
∆1/∆0|
2

)]
.

Proof. Let Z1, Z2 be standard normally distributed random variables with pdf ϕ and cdf Φ. Let
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cv := (θ∗ − x(1))/
√
v. For all t ∈ R,

Ev[(x(dbms ) − θ∗)2 | θ0 = t]

=Ev[(x(0) − θ∗)2 | θ0 = t, θr ∈ S0] · Pv (θr ∈ S0 | θ0 = t)

+Ev[(x(1) − θ∗)2 | θ0 = t, θr ∈ S1] · Pv (θr ∈ S1 | θ0 = t)

=(t− θ∗)2 · (1− Pv (θr ∈ S1 | θ0 = t)) + (x(1) − θ∗)2 · (Pv (θr ∈ S1 | θ0 = t))

=(t− θ∗)2 · Pv

(
Z1 <

∣∣∣∣∣ t− x(1)

2
√
v

∣∣∣∣∣
)

+ (x(1) − θ∗)2 · Pv

(
Z1 ≥

∣∣∣∣∣ t− x(1)

2
√
v

∣∣∣∣∣
)
.

By integrating,

Ev[(x(dbms ) − θ∗)2]

=

∫ ∞
−∞

(t− θ∗)2 · Pv

(
Z1 <

∣∣∣∣∣ t− x(1)

2
√
v

∣∣∣∣∣
)

1√
2πv

exp

(
−(t− θ∗)2

2v

)
dt

+

∫ ∞
−∞

(x(1) − θ∗)2 · Pv

(
Z1 ≥

∣∣∣∣∣ t− x(1)

2
√
v

∣∣∣∣∣
)

1√
2πv

exp

(
−(t− θ∗)2

2v

)
dt

=∆0 ·
∫ ∞
−∞

y2Pv
(
Z1 <

∣∣∣∣y + cv
2

∣∣∣∣)ϕ(y)dy + ∆1 ·
∫ ∞
−∞

Pv
(
Z1 ≥

∣∣∣∣y + cv
2

∣∣∣∣)ϕ(y)dy

=∆0 · Ev
[
Z2

2Φ(|Z2 + cv|/2)
]

+ ∆1 · Ev [1− Φ(|Z2 + cv|/2)] , (7)

using v = ∆0 and the variable substitution y = (t− θ∗)/
√
v. Now, if cv ≥ 0 then we can replace cv by

|cv| in equation (7). If cv < 0, then Z2
d
= −Z2 and |cv| = −cv, and we can also replace cv by |cv in (7).

Since |cv| =
√

∆1/∆0, it follows that

Ev[(x(dbms ) − θ∗)2]∆0 · E

[
Z2

2Φ

(
|Z2 +

√
∆1/∆0|

2

)]
+ ∆1 · E

[
1− Φ

(
|Z2 +

√
∆1/∆0|

2

)]
.

This proves the proposition.

The results of Proposition 1, 2, 3, and 4 are illustrated in Figure 2 and 3, for θ∗ = 0.5 and x(1) = 0. In
this figure, we write p∗(v) := Pv (θ∗ ∈ S1). Figure 2 illustrates the various monotonicity and limiting
properties stated in Proposition 1, 2, and 3. Figure 3 illustrates that model M (0) is better than model
M (1) when v is small; the figure also shows that, in that case, the performance of dbms is close to that
of M (0). If v is large then model M (1) is better than M (0), and, in that case, dbms is able to reduce
the loss of M (0).

3.1.3 Difficulty of extending these results to more general decision problems.

Propositions 1, 2, 3, and 4 provide detailed insights into the behavior and properties of dbms and its
relation to ∆1 and ∆0. Unfortunately, the proofs of these propositions also reveal that it is difficult
to extend these insights to more general decision problems. The proofs depend on explicit expressions
of the distributions of θ0, θr, and θ1, which in many applications are not available in closed form.
In some problems one might perhaps exploit asymptotic normality of estimators to obtain structural
insights, but since we are primarily interested in understanding the finite-sample behavior of dbms,
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Figure 2: p∗(v), ∆(v), p(v), and p(∆), with θ∗ = 0.5 and x(1) = 0.

Figure 3: Loss of x(0), x(1), and x(dbms), with θ∗ = 0.5 and x(1) = 0.
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such asymptotic normality results then need to be accompanied by a good understanding of the cor-
responding convergence rates. Other complications that arise when one tries to extend these insights
to more general decision problems are that the shapes of the sets S0 and S1 can be highly complex,
which hampers the analysis of terms like P (θr ∈ S1), and that the distribution of the estimators of
different models may depend in a non-trivial way on properties of x1, . . . , xn. Despite these difficulties
to generalize the structural results from Proposition 1, 2, 3, and 4, Section 4 suggests that dbms can
successfully be applied to more complex model selection problems.

3.2 Alternatives to dbms

To appreciate dbms it is useful to consider a few alternatives. A first option is

arg max
k∈{0,1,...,K}

r(x(k), τ (k)(dr)), (8)

which is defined if Θ(k) ⊂ Θ(0) for all k. This method evaluates decision x(k) using the resampled esti-
mate τ (k)(dr) instead of τ (0)(dr). A disadvantage of this approach is the potential lack of consistency:
in general, τ (k)(dr) does not have to converge a.s. to θ∗ as n→∞, even when τ (0)(dr) and τ (0)(d0) do
converge a.s. to θ∗ as n→∞. As a result, this method may structurally overestimate the performance
of one of the simplified models M (k), and thus may select a model whose corresponding decision has a
very poor performance when evaluated under the true reward function.

This drawback might perhaps be mitigated by considering

arg max
k∈{0,1,...,K}

r(x(k), τ (in)(dr)), (9)

for some data-dependent (in)n∈N that satisfies P (in = 0)→ 1 as n→∞. A drawback of this method is
that it is not clear how this sequence (in)n∈N should be chosen. The ‘optimal’ way to do this probably
depends on the unknown parameters, thus creating an additional source of error in the model selection
procedure.

Our model selection method is probabilistic: it is based on a single resampled data set dr, which is a
realization from D(θ0). Alternatively, one could consider

arg max
k∈{0,1,...,K}

E[r(x(k), τ (0)(D(θ0))) | d0]. (10)

This method was considered in an earlier version of this paper. Although this method yields a non-
random model selection method, which perhaps might be preferable for some practitioners, a disadvan-
tage is that it does not work for a large class of problems (including many types of linear programs with
parameter uncertainty). In particular, if the reward function r(x, θ) is linear in θ, τ (0) is an unbiased
estimator, and χ(0) is exact, then E[r(x(k), τ (0)(D(θ0))) | d0] = r(x(k), θ0), and (10) is equivalent to
simply always choosing model M (0).

A completely different approach is to neglect the decisions suggested by the available simplified models
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M (k), k > 0, and to determine the optimal decision by solving

max
x∈X

r(x, τ (0)(dr)), (11)

or

max
x∈X

E[r(x, τ (0)(dr)) | d0]. (12)

At first sight Equation (11) may seem more flexible than dbms: why would one restrict oneself to
{x(0), . . . , x(k)} when one can optimize over the whole decision space X ? The reason is that the decisions
generated by the available models are not just arbitrary numbers: the idea is that the simplified models
improve upon the true model if the variance of θ0 is too high; this mitigates the poor quality of x(0)

caused by a high variance of θ0. This property is lost with methods (11) and (12). The method (12)
has the additional disadvantages that (i) it is just equivalent to the original optimization problem
maxx∈X r(x, θ0) if τ (0) is unbiased and r(x, θ) is linear in θ, and (ii) the expectation operator could
make the problem more difficult to solve numerically (or even computationally intractable), leading to
additional optimization errors.

In the example considered in Section 3.1.2, (11) would imply that decision x = θr is chosen. Since
θr ∼ N(θ0, v) and θ0 ∼ N(θ∗, v), the expected loss of this decision equals

E[max
x∈X

r(x, θ∗)− r(θr, θ∗)] = E[(θr − θ∗)2] = E[E[(θr − θ∗)2 | θ0]] = E[θ2
0 + v − 2θ0θ

∗ + (θ∗)2]

= 2v,

which is twice the loss of the decision x(0) corresponding to model M (0). This shows that (11) is worse
than simply using model M (0). In the same example, decision rule (12) would imply that decision
x = x(0) is chosen, i.e. that model M (0) is always followed, even if its performance is much worse than
that of model M (1).

3.3 Consistency

dbms is reward-consistent: under some conditions, the loss in reward caused by dbms not selecting
the best available model converges in probability to zero as the data size grows large. To formally state
this property, we introduce some notation.

Let (xn)n∈N be an infinite sequence in X , let Dn(θ) := (x1, Y (x1, θ), . . . , xn, Y (xn, θ)) for n ∈ N and
θ ∈ Θ(0), and let || · ||ϑ be a norm on Θ(0). Let θk(n) = τ (k)(Dn(θ∗)) denote the estimate corresponding
to model M (k) based on data Dn(θ∗), and let x(k)(n) := χ(k)(θk(n)) be the optimal decision according
to modelM (k) at stage n, for k = 0, 1, . . . ,K and n ∈ N. Let θr(n) = τ (0)(Dn(θ0(n))) be the resampled
estimator using n data points, and let

k(dbms)(n) := arg max
k∈{0,1,...,K}

r(x(k)(n), θr(n)))

be the model selected by dbms at stage n, with ties decided in favor of the smallest maximizer. Finally,
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let

r(dbms)(n) := r(x(k(dbms)(n)), θ∗)

be the corresponding reward, and let

r∗(n) := max
k∈{0,1,...,K}

r(x(k)(n), θ∗)

be the reward using the best of the available models at stage n.
Proposition 5. Suppose that ||θr(n) − θ∗||ϑ converges in probability to zero, r(·, ·) is continuous in
both variables, and x(k)(n) converges in probability as n→∞, for each k = 0, 1, . . . ,K. Then

|r(dbms)(n)− r∗(n)| P→ 0 as n→∞. (13)

In particular, if x(k)(n) converges in probability to some x∗ ∈ arg max
x∈X

r(x, θ∗) as n → ∞, for some

k ∈ {0, 1, . . . ,K}, then

r(dbms)(n)
P→ r(x∗, θ∗) as n→∞. (14)

Proof. Let ε > 0, and let k∗(n) be the smallest maximizer of r(x(k), θ∗) w.r.t. k.

P
(
|r(dbms)(n)− r∗(n)| > ε

)
=

K∑
k=0

P
(
k(dbms)(n) = k and r(x(k)(n), θ∗) < r(x(k∗(n))(n), θ∗)− ε

)
≤

K∑
k=0

P

(
r(x(k)(n), θr(n)) ≥ r(x(k∗(n))(n), θr(n))

and r(x(k)(n), θ∗) < r(x(k∗(n))(n), θ∗)− ε

)

≤
K∑
k=0

P

 r(x(k)(n), θr(n))− r(x(k)(n), θ∗) + r(x(k)(n), θ∗)

≥ r(x(k∗(n))(n), θr(n))− r(x(k∗(n))(n), θ∗) + r(x(k∗(n))(n), θ∗)

and r(x(k)(n), θ∗) < r(x(k∗(n))(n), θ∗)− ε

 (15)

Fix k ∈ {0, 1, . . . ,K}, and let x(k)(∞) be the limit point of x(k)(n) as n→∞. Since x(k)(n)
P→ x(k)(∞),

||θr(n)− θ∗||ϑ
P→ 0, and r(·, ·) is continuous in both variables, it follows that

r(x(k)(n), θr(n))− r(x(k)(n), θ∗)
P→ 0.

Since

|r(x(k∗(n))(n), θr(n))− r(x(k∗(n))(n), θ∗)| ≤ sup
l∈{0,1,...,K}

|r(x(l)(n), θr(n))− r(x(l)(n), θ∗)|,

this implies that also

|r(x(k∗(n))(n), θr(n))− r(x(k∗(n))(n), θ∗)| P→ 0.
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It follows that (15) converges to

K∑
k=0

P

(
r(x(k)(n), θ∗) ≥ r(x(k∗(n))(n), θ∗) and
r(x(k)(n), θ∗) < r(x(k∗(n))(n), θ∗)− ε

)
= 0.

This implies the first statement of the proposition. The second statement follows from observing that
x(k)(n)

P→ x∗ implies r∗(n)
P→ r(x∗, θ∗), since r(·, ·) is continuous.

Observe that the statement of Proposition 5 is in terms of the rewards, and not in terms of the probabil-
ity that dbms selects the best available model. The reason is that it may happen that r(dbms)(n) < r∗(n)

a.s. for all n ∈ N, while both r(dbms)(n) and r∗(n) converge in probability to r(x∗, θ∗). This can occur
e.g. if both the true model M (0) and one of the simplified models, say M (1), are correctly specified,
and the reward r(x(1)(n), θ∗) converges faster to r(x∗, θ∗) than r(x(0)(n), θ∗). It may then happen that
the probability that dbms selects the best available model (i.e. model M (1)) does not converge to one,
but that the reward using dbms still converges to the optimal reward. Of course, if there is only a
single modelM (k) with r(x(k)(n), θ∗)

P→ r(x∗, θ∗), then Equation (14) implies that the probability that
dbms selects this model does converge to one as n grows large.

Ideally we would like to be able to give a finite-sample performance guarantee for dbms. However, as
already alluded to in Section 3.1, it is very difficult to state such a result in a general setting, without
making further assumptions on the models, estimators, and optimization algorithms. In Section 4 we
provide a numerical study of the finite-sample performance of dbms and two alternative methods, for
two well-known business optimization problems.

3.4 Further remarks

It is worth emphasizing that dbms (and in fact any model selection method) can only be effective if
a simplified model may outperform the true model with some positive probability. If this is not the
case, then always using the true model is better than any model selection method that deviates from
the true model with positive probability. Decision-based model selection is not a magic bullet: its
effectiveness depends not only on the quality of the selection method, but also on the quality of the
simplified models under consideration, in particular their ability to generate better decisions than the
true model for some initial data sets. For example, the fact that a simple multinomial logit (MNL)
model outperforms a sophisticated machine learning model in Feldman et al. (2019) strongly suggests
that the MNL model captures at least some of the essential structure of the problem.

Finally, our analysis of dbms assumes that model M (0) is correctly specified: there is some ‘true’ pa-
rameter θ∗ ∈ Θ(0). The assumption that a posited model is correctly specified for a given data sequence
is standard in the statistics literature and perhaps unavoidable for purposes of analysis; for example,
practically all consistency and convergence-rate results on estimators are only meaningful in practice if
one assumes that the data is generated by the postulated model, or perhaps by a model that, in some
sense, is ‘close’ to the postulated model. In real-life applications, however, it is reasonable to expect
that even M (0) is not correctly specified. Nothing hinders a decision maker to still apply dbms in this
case; even our consistency result in Section 3.3 remains valid (the proof of Proposition 5 uses nowhere
the fact that θ∗ is the ‘true’ parameter). Of course, ‘reward-consistency’ should then not be inter-
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preted as convergence to the ‘optimal reward’ per se, but as convergence to r(χ(0)(θ∗), θ∗), the optimal
reward with respect to model M (0) and parameter θ∗. The quality of the decision χ(0)(θ∗) (compared
to the optimal decision with respect to the ‘true’ data-generating mechanism) depends of course on
how accurate the (now misspecified) model M (0) describes the true data-generating mechanism.

Unfortunately, it is in general not possible to know with certainty whether ones model is correctly
specified: it is possible to construct examples where an adversarial Nature tries to make a decision
maker believe in her model and corresponding optimal decision, whilst at the same time a different,
a better decision is available. This, and related questions about detecting the validity of the most
general model that one has at ones disposal, is outside the scope of this paper.

4 Numerical illustrations

We illustrate the performance of dbms by applying it to two well-known business optimization prob-
lems: assortment optimization and the newsvendor problem. These are two different types of problems.
The first is a discrete optimization problem where the unknown parameter is finite-dimensional, and
where the distributions of the random observations Y (x) depend on the decisions x. The second is a
continuous optimization problem where the unknown parameter is infinite-dimensional, and where the
distributions of Y (x) are independent of x.

4.1 Assortment optimization

Assortment optimization consists of determining which set (‘assortment’) of products a firm should
offer to potential customers in order to maximize expected revenue.

Setting. A seller offers a subset (called an ‘assortment’) of m ∈ N products {1, . . . ,m} for sale to
its potentials customers. Selling a single item of product j gives revenue rj to the firm, for some
r1, . . . , rm > 0. Upon being offered an assortment, a customer either buys nothing, in which case the
firm earns nothing, or buys exactly one of the products, say product j, from the assortment, in which
case the firm earns rj .

A decision corresponds to a nonempty subset x ⊂ {1, . . . ,m}, and the set of feasible decisions X is the
collection of all such subsets. Let Y (x) denote the product that a customer buys when being offered
assortment x ∈ X . For each assortment x, Y (x) is multinomially distributed on x∪{0}; here Y (x) = 0

corresponds to buying nothing. The probability distribution of Y (x) is given by P (Y (x) = j) = θ∗j,x,
for all j ∈ x and x ∈ X , and P (Y (x) = 0) = 1−

∑
j∈x θ

∗
j,x for all x ∈ X , for some unknown parameter

θ∗ = (θ∗j,x | j ∈ x, x ∈ X ) in the parameter space

Θ(0) = {(θj,x | j ∈ x, x ∈ X ) | 0 ≤ θj,x ≤
∑
i∈x

θi,x ≤ 1 for all j ∈ x and x ∈ X}.

We deliberately keep Θ(0) very general, without imposing assumptions such as θj,x ≤ θj,x′ when
j ∈ x′ ⊂ x. The expected reward function r : X ×Θ(0) → R is given by

r(x, θ) =
∑
i∈x

riθi,x.
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The estimator τ (0) maps data d = (x1, y1, . . . , xn, yn) to

τ (0)(d) = (τ
(0)
j,x (d) | j ∈ x, x ∈ X ),

where

τ
(0)
j,x (d) =

∣∣{i ∈ {1, . . . , n} : (xi, yi) = (x, j)}
∣∣+ 1∣∣{i ∈ {1, . . . , n} : xi = x}

∣∣+ 1
.

Here |A| denotes the cardinality of a set A. This is a small modification to the ordinary relative-
frequency estimator |{i ∈ {1, . . . , n} : (xi, yi) = (x, j)}|

/
|{i ∈ {1, . . . , n} : xi = x}|; because this latter

expression is undefined if the denominator equals zero, we add one to the frequency of each alternative
(including the no-purchase option).

The simplified model M (1) assumes that customers choose according to the so-called multinomial logit
model. This is a widely used discrete-choice model that exhibits certain pleasant properties (such as a
concave likelihood function) but is known to be misspecified in several cases (illustrated, for example,
by the infamous ‘red bus / blue bus paradox’). According to the multinomial logit model, Y (x) is
multinomially distributed on x∪ {0}, for all x ∈ X , with choice probabilities Pθ (Y (x) = j) = 0 for all
j /∈ x, and

Pθ (Y (x) = j) =
exp(θj)

1 +
∑

k∈x exp(θk)
, Pθ (Y (x) = 0) =

1

1 +
∑

k∈x exp(θk)
, (16)

for all j ∈ x. The unknown parameter θ = (θ1, . . . , θm) is assumed to lie in Θ(1) = Rm, and is estimated
with maximum likelihood estimation.

For both the true model M (0) and the simplified model M (1), optimization is exact and is done by
comparing the revenues of all possible assortments. (Note that this is only computationally tractable
if m is not too large).

Numerical experiments. For each number of products m ∈ {3, 5, 10} and each size of the initial
data set n ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000} we run 10000 simulations.
In each simulation we run three experiments:

• in experiment A, the choice probabilities θ are drawn uniformly at random, as follows: for each
l ∈ {1, . . . ,m} and for each assortment x consisting of exactly l products, the choice probabilities
{θj,x | j ∈ x∪{0}} are drawn uniformly at random from the (l+ 1)-dimensional simplex ∆l+1 :=

{(z1, . . . , zl+1) ∈ Rl+1 |
∑l+1

j=1 zj = 1, z1, . . . , zl+1 ≥ 0}.

• in experiment B, the choice probabilities θ follow a parsimonious Generalized Attraction Model
(Gallego et al., 2015): we draw random η, v1, . . . , vm from the uniform distribution on (0, 1), and
set

θj,x =
vj

1 +
∑

i∈x vi + η
∑

i/∈x vi
, (j ∈ x, x ∈ X ).

• in experiment C, the choice probabilities θ follow a multinomial logit model: we draw random
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v1, . . . , vm from the uniform distribution on (0, 1), and set

θj,x =
vj

1 +
∑

i∈x vi
, (j ∈ x, x ∈ X ).

In experiment A, the multinomial logit modelM (1) is almost surely misspecified, whereas in experiment
C it is always correctly specified. Experiment B is somewhat in between: the multinomial logit model
is misspecified, but, especially if η is small, the choice probabilities are almost of the form (16). This
suggests that, for sufficiently small n, modelM (1) may produce good decisions in experiment B, despite
the fact that the model is misspecified.

The revenues corresponding to the individual products are set to ri = 100 · i/m, i = 1, . . . ,m. The
assortments x1, . . . , xn in the initial data d0 are chosen uniformly at random from X .

For each experiment we determine the optimal revenue under full information (Opt), under model
M (0), model M (1), and under dbms. We also test two alternative model-selection methods: Akaike
Information Criterion (AIC), and 5-fold Cross-Validation (CV) on the estimated reward function. In
particular, AIC chooses the model that minimizes AIC(k), k ∈ {0, 1}, where ties are decided in favor
of model M (0), and where

AIC(0) := −2
n∑
i=1

log τ (0)
yi,xi(d0) + 2m2m−1, (17)

AIC(1) := −2
n∑
i=1

logPτ (1)(d0) (Y (xi) = yi) + 2m; (18)

here τ (1)(d0) is the maximum likelihood estimator of the unknown parameters in model M (1). Regard-
ing (17), note that the number of free parameters in model M (0) is equal to

∑m
i=1 i

(
m
i

)
= m2m−1.

CV chooses the model that minimizes CV(k), k ∈ {0, 1}, where ties are decided in favor of modelM (0),
and where

CV(k) :=
1

5

5∑
l=1

√∑
i∈dl

(
r̂(k)(xi; d0\dl)− ryi

)2
; (19)

here

r̂(0)(x; d) :=
∑
j∈x

rjτ
(0)
j,x (d),

r̂(1)(x; d) :=
∑
j∈x

rjPτ (1)(d) (Y (x) = j) ,

are the estimated reward functions under model M (0) and M (1) respectively, based on a data set d;
r0 := 0, and dl := {(xi, yi) | i = 1 + (l− 1)n/5, . . . , ln/5}, l = 1, . . . , 5, is a decomposition of the initial
data set d0 in five mutually disjoint sets of equal size.

The average rewards in the simulations are reported in Table 1, 2, and 3. All standard errors are
smaller than 0.18.

Outcomes. In experiment A, model M (0) outperforms model M (1) for all tested value of n and m.
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The average reward under model M (0) converges to the optimal average reward as n grows large, but
the average reward under model M (1) appears to converge to a strictly lower value. The average loss
due to using model M (1) instead of model M (0) can be more than 20 percent (if n ≥ 2000 and m = 5,
or if n = 50000 and m = 10). dbms is at most 2.5 percent (m = 5, n = 100) away from the average
performance of M (0), and, for sufficiently large n (n ≥ 200 in case m = 3, n ≥ 1000 in case m = 5,
and n ≥ 20000 in case m = 10), dbms is within 1.0 percent of the average reward under model M (0).
Interestingly, dbms may yield a larger average reward than bothM (0) andM (1); this occurs form = 10

and n = 10, 100, 200.

All three model selection criteria dbms, AIC, and CV outperform the other two of these criteria in
some instances: dbms for m = 3, n = 50, 100 and m = 5, n = 10, 20, 200 and m = 10, n ≤ 2000; AIC
for m = 3, n = 200, 500, 1000, 2000 and m = 5, n = 500, 1000; and CV for m = 3, n = 10, 20 and
m = 5, n = 50, 100 and m = 10, n = 5000, 10000, 20000. For all other combinations of m and n there
is no single best model selection method among these three.

AIC can lose up to 13.2 percent of the reward of dbms (m = 10, n = 10000), but dbms loses never
more than 1.0 percent of the reward obtained by AIC (m = 10, n = 20000). The performance of CV
and dbms are closer to each other: CV is at most 1.7 percent worse than dbms (m = 10, n = 10), and
dbms is at most 1.8 percent worse than CV (m = 10, n = 10000).

In experiment B, model M (1) may outperform model M (0). This occurs if m = 3 and n ≤ 200, m = 5

and n ≤ 2000, or m = 10 and n is any of the tested values. For all other pairs m,n, model M (0) is
better than M (1). The loss of using model M (0) instead of model M (1) can be more than 30 percent
(m = 10, n = 1000, 2000), and conversely, the loss due to using model M (1) instead of model M (0) can
be up to 3.2 percent (m = 3, n = 50000).

In the cases that M (1) is better than M (0), dbms can improve upon M (0) by more than 8 percent
(m = 10, n = 1000, 2000). In the cases that model M (0) is better than M (1), dbms loses never more
than 0.2 percent of the average reward of M (0). Again we see that dbms may yield a larger average
reward than both M (0) and M (1); this occurs for m = 3, n = 500 and m = 5, n = 5000.

Again all three model selection criteria dbms, AIC, and CV outperform the other two of these criteria
in some instances: dbms for m = 3, n = 500, 1000; AIC for m = 3, n /∈ {500, 1000} and m = 5,
n ≤ 1000 or n = 50000, and m = 10, n ≤ 1000; and CV for m = 5, n = 2000, 5000, 10000. For all
other combinations of m and n there is no single best model selection method.

AIC seems to be the winner in this experiment: dbms can lose up to 17.7 percent (m = 10, n = 500)
and CV up to 3.5 percent (m = 5, n = 20), compared to AIC, whereas AIC loses up to 0.3 percent
compared to dbms (m = 5, n = 5000) and 0.6 percent compared to CV (m = 5, n = 5000).

In experiment C, the multinomial logit model M (1) is correctly specified, and outperforms model M (0)

in all instances. Both the average reward of M (0) and M (1) converge to the optimum as n grows large,
but the reward of M (1) appears to converge faster than that of M (0). The average loss due to using
model M (0) instead of model M (1) can be more than 10 percent (m = 10, n = 2000, 5000). dbms

always outperforms M (0); the relative improvement can be up to 4.8 percent (m = 10, n = 2000).

AIC is the clear winner in this experiment: for all pairs m, n except m = 10, n = 10, the average
reward under AIC is larger than or equal to the average reward under AIC or CV. The reason is that
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AIC almost always selects model M (1), which outperforms M (0) in all instances: for m = 3, AIC has
average reward within 0.2 percent of that ofM (1), and for m = 5, 10, AIC has exactly the same average
reward as M (1).

An overall conclusion from these three experiments is that there is no clear winner between dbms, AIC,
and CV. In the most general case considered in experiment A, both dbms and CV have a somewhat
similar performance, with sometimes one outperforming the other and sometimes the other way around.
Both outperform AIC by a (sometimes) large margin. In experiments B and C, where the multinomial
logit model is correctly specified or ‘almost’ correctly specified, AIC performs better than dbms and
CV.

Regarding dbms, we observe that the largest relative amount that dbms loses compared to M (0) (i.e.
2.6 percent in experiment A and 0.2 percent in experiment B) is a magnitude smaller than the largest
relative amount that dbms can improve upon M (0) (i.e. more than 8 percent in experiment B, and 4.8
percent in experiment C).

Regarding AIC, we observe a ‘sudden’ jump in the average reward in experiment A if m = 5 and n
is between 200 and 500, and even more pronounced if m = 10 and n is between 10000 and 20000.
AIC almost behaves like an indicator function: if n is smaller than a certain critical value it selects
model M (1) with high probability, and if n is larger than this value then it selects model M (0) with
high probability. This behavior is illustrated in Figure 4, where we repeat experiment A for m = 10

products and n = 17000, 17100, 17200, . . . , 20000 (and with an increased number of simulations of
80000 instead of 10000 for each n, because of the finer granularity of n). The figure shows the relative
frequency that dbms, AIC, and CV select model M (0), together with the ‘optimal’ model selector that
always selects the best of the two. It turns out that, for these values of n, model M (0) is preferable
to M (1) in about 89 to 91 percent of the cases; dbms is close but slightly underestimates this with
approximately two percentage points, and CV structurally overestimates this fraction to 1.0. However,
AIC hardly ever selects model M (0) if n ≤ 17000, and almost always selects model M (0) if n ≥ 20000.
This sudden change may explain the poor performance of AIC in Experiment A, compared to dbms

or CV.

Figure 4: Relative frequency of selecting model M (0), as function of n

25



n Opt M (0) M (1) dbms AIC CV
10 68.98 59.60 55.46 58.59 55.46 58.67
20 68.98 61.73 55.93 60.34 55.96 60.51
50 68.98 64.63 56.37 63.40 60.55 63.29
100 68.98 66.37 56.39 65.60 65.40 65.52
200 68.98 67.52 56.36 67.07 67.38 67.18
500 68.98 68.36 56.34 68.15 68.36 68.31
1000 68.98 68.67 56.26 68.57 68.67 68.66
2000 68.98 68.82 56.28 68.76 68.82 68.82
5000 68.98 68.92 56.31 68.90 68.92 68.92
10000 68.98 68.95 56.29 68.94 68.95 68.95
20000 68.98 68.97 56.31 68.96 68.97 68.97
50000 68.98 68.98 56.31 68.98 68.98 68.98

(a) Experiment A: general choice model
n Opt M (0) M (1) dbms AIC CV
10 38.97 33.66 36.95 34.81 36.95 35.93
20 38.97 34.26 37.45 35.56 37.45 36.53
50 38.97 35.39 37.67 36.22 37.66 37.22
100 38.97 36.33 37.69 36.84 37.67 37.52
200 38.97 37.11 37.70 37.38 37.70 37.65
500 38.97 37.89 37.71 37.96 37.89 37.93
1000 38.97 38.29 37.70 38.25 38.18 38.18
2000 38.97 38.55 37.69 38.49 38.51 38.48
5000 38.97 38.76 37.69 38.71 38.77 38.76
10000 38.97 38.86 37.69 38.82 38.87 38.86
20000 38.97 38.90 37.69 38.88 38.91 38.90
50000 38.97 38.94 37.69 38.93 38.94 38.94

(b) Experiment B: generalized attraction model
n Opt M (0) M (1) dbms AIC CV
10 40.44 37.11 39.51 38.19 39.51 38.29
20 40.44 37.21 39.96 38.38 39.96 38.84
50 40.44 37.73 40.27 38.66 40.25 39.57
100 40.44 38.15 40.37 38.90 40.31 39.89
200 40.44 38.63 40.40 39.19 40.32 40.06
500 40.44 39.23 40.43 39.58 40.35 40.19
1000 40.44 39.59 40.43 39.84 40.38 40.27
2000 40.44 39.87 40.43 40.04 40.41 40.33
5000 40.44 40.13 40.44 40.22 40.42 40.37
10000 40.44 40.26 40.44 40.31 40.43 40.40
20000 40.44 40.34 40.44 40.37 40.43 40.42
50000 40.44 40.40 40.44 40.41 40.44 40.43

(c) Experiment C: multinomial logit model

Table 1: Average reward, 3 products
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n Opt M (0) M (1) dbms AIC CV
10 77.70 61.41 58.43 60.78 58.43 60.28
20 77.70 62.47 59.75 61.61 59.75 61.60
50 77.70 64.96 60.42 63.53 60.42 63.71
100 77.70 67.67 60.50 65.95 60.95 66.00
200 77.70 70.67 60.61 69.12 60.63 69.08
500 77.70 74.04 60.70 73.29 73.88 73.72
1000 77.70 75.83 60.81 75.38 75.83 75.82
2000 77.70 76.75 60.86 76.53 76.75 76.75
5000 77.70 77.32 60.93 77.24 77.32 77.32
10000 77.70 77.51 60.90 77.49 77.51 77.51
20000 77.70 77.61 60.88 77.59 77.61 77.61
50000 77.70 77.66 60.93 77.66 77.66 77.66

(a) Experiment A: general choice model
n Opt M (0) M (1) dbms AIC CV
10 43.14 36.91 40.28 37.63 40.28 39.17
20 43.14 35.89 41.02 37.27 41.02 39.57
50 43.14 35.41 41.46 37.63 41.46 40.61
100 43.14 36.20 41.57 38.32 41.57 41.14
200 43.14 37.52 41.66 39.04 41.66 41.49
500 43.14 39.36 41.71 40.07 41.71 41.65
1000 43.14 40.48 41.72 40.89 41.72 41.70
2000 43.14 41.30 41.73 41.46 41.73 41.78
5000 43.14 42.07 41.75 42.08 41.95 42.22
10000 43.14 42.46 41.76 42.43 42.5 42.59
20000 43.14 42.71 41.76 42.65 42.78 42.78
50000 43.14 42.92 41.75 42.88 42.95 42.95

(b) Experiment B: generalized attraction model
n Opt M (0) M (1) dbms AIC CV
10 46.83 44.23 45.32 44.83 45.32 44.36
20 46.83 43.11 46.12 44.34 46.12 44.37
50 46.83 42.20 46.58 44.14 46.58 45.26
100 46.83 42.16 46.71 44.10 46.71 45.86
200 46.83 42.59 46.78 44.13 46.78 46.49
500 46.83 43.54 46.81 44.53 46.81 46.73
1000 46.83 44.28 46.82 44.98 46.82 46.80
2000 46.83 44.97 46.83 45.48 46.83 46.81
5000 46.83 45.68 46.83 45.99 46.83 46.82
10000 46.83 46.06 46.83 46.28 46.83 46.83
20000 46.83 46.35 46.83 46.49 46.83 46.83
50000 46.83 46.57 46.83 46.65 46.83 46.83

(c) Experiment C: multinomial logit model

Table 2: Average reward, 5 products
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n Opt M (0) M (1) dbms AIC CV
10 86.64 68.05 64.66 68.05 64.66 66.87
20 86.64 68.05 66.41 68.00 66.41 67.51
50 86.64 68.01 67.47 67.99 67.47 67.80
100 86.64 67.97 67.68 68.03 67.68 67.84
200 86.64 67.90 67.77 68.05 67.77 67.76
500 86.64 68.91 67.95 68.77 67.95 68.50
1000 86.64 70.09 68.01 69.37 68.01 69.20
2000 86.64 72.21 68.08 70.87 68.08 70.65
5000 86.64 76.23 68.06 74.55 68.06 75.12
10000 86.64 79.93 68.07 78.45 68.07 79.91
20000 86.64 82.96 68.07 82.17 82.96 82.96
50000 86.64 85.12 68.07 84.94 85.12 85.12

(a) Experiment A: general choice model
n Opt M (0) M (1) dbms AIC CV
10 48.08 38.25 44.01 38.30 44.01 42.65
20 48.08 38.15 45.17 38.29 45.17 44.19
50 48.08 37.84 45.72 38.21 45.72 45.41
100 48.08 37.36 45.85 38.14 45.85 45.73
200 48.08 36.62 45.94 37.91 45.94 45.90
500 48.08 35.59 45.98 37.87 45.98 45.97
1000 48.08 35.14 46.00 38.02 46.00 46.00
2000 48.08 35.37 46.00 38.51 46.00 46.00
5000 48.08 37.49 46.00 40.12 46.00 46.00
10000 48.08 40.01 45.99 41.75 45.99 45.99
20000 48.08 42.44 45.99 43.27 45.99 45.99
50000 48.08 44.73 45.99 45.02 45.99 45.99

(b) Experiment B: generalized attraction model
n Opt M (0) M (1) dbms AIC CV
10 56.42 55.26 53.99 55.30 53.99 54.70
20 56.42 55.08 55.43 55.22 55.43 55.25
50 56.42 54.59 56.08 54.97 56.08 55.56
100 56.42 53.93 56.25 54.60 56.25 55.75
200 56.42 52.90 56.34 54.09 56.34 55.92
500 56.42 51.52 56.38 53.32 56.38 56.23
1000 56.42 50.82 56.40 53.07 56.40 56.35
2000 56.42 50.40 56.41 52.81 56.41 56.41
5000 56.42 50.60 56.41 52.75 56.41 56.41
10000 56.42 51.30 56.42 52.90 56.42 56.42
20000 56.42 52.20 56.42 53.27 56.42 56.42
50000 56.42 53.46 56.42 54.07 56.42 56.42

(c) Experiment C: multinomial logit model

Table 3: Average reward, 10 products
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4.2 Newsvendor problem

Our second numerical illustration applies dbms to the newsvendor problem, an archetypal optimization
problem in inventory management. The problem consists of determining an order quantity that opti-
mally balances between the costs of stock-outs (‘backorder’ costs) and overstocking (‘holding’ costs).
The newsvendor problem has been studied in many variants; we consider the most basic version.

Setting. The decision to take is an order quantity x from the nonnegative reals X = [0,∞). After
selecting x, an observation of demand Y (x) is observed. The distribution of Y (x) is independent of
the decision x, and we write Y = Y (x). The unknown cumulative distribution function (cdf) of Y
is denoted by θ∗, and lies in the collection Θ(0) of cdfs of nonnegative random variables with finite
expectation:

Θ(0) =

{
all cdfs θ : (−∞,∞)→ [0, 1] with lim

y↑0
θ(y) = 0 and

∫ ∞
0

y dθ(y) <∞
}
.

The expected cost function c : X ×Θ(0) → [0,∞) is defined as

c(x, θ) = h

∫ x

y=0
(x− y) dθ(y) + b

∫ ∞
y=x

(y − x) dθ(y), (20)

for some known holding costs h > 0 and backorder costs b > 0. Note that this problem is about costs
minimization instead of reward maximization. We can still use dbms by applying it to the reward
function r(x, θ) := −c(x, θ).

The demand distribution is estimated by the empirical distribution function: τ (0) maps a data sequence
(x1, y1, . . . , xn, yn) to the distribution function

y 7→ 1

n

n∑
i=1

1{yi ≤ y}. (21)

Optimization is exact: for each θ ∈ Θ(0), (20) is minimized by

χ(0)(θ) := inf

{
z ≥ 0 : θ(z) ≥ b

b+ h

}
. (22)

If θ has an inverse θ−1 then χ(0)(θ) = θ−1(b/(b+ h)).

The simplified model M (1) assumes that demand Y (x) is exponentially distributed with mean θ, for
all x ∈ X and some θ ∈ Θ(1) := [0,∞). The estimator τ (1) maps data (x1, y1, . . . , xn, yn) to the sample
mean (y1 + . . . + yn)/n, and optimization is again exact; for exponential distributions with mean θ,
Equation (22) equals χ(1)(θ) = −θ log(h/(b+ h)).

Numerical experiments. Fix h = 1. For each backorder costs b ∈ {2.0, 1.5, 1.0, 0.5} and each size
of the initial data set n ∈ {10, 50, 100, 500, 1000} we run 10000 simulations. In each simulation we run
three experiments:

• in experiment A, we let Y be lognormally distributed with mean m and variance v, where we
draw m uniformly at random from [0, 5] and v uniformly at random from [0, 25];

29



• in experiment B, we let Y be lognormally distributed with mean m and variance m2, where we
draw m uniformly at random from [0, 5];

• in experiment C, we let Y be exponentially distributed with meanm, where we drawm uniformly
at random from [0, 5].

In experiment A the exponential-demand model M (1) is almost surely misspecified, whereas in ex-
periment C it is always correctly specified. Experiment B is somewhat in between: the exponential-
demand model is misspecified, but our requirement Var(Y ) = E[Y ]2 on Y is satisfied by exponentially
distributed demand. Thus, in experiment B, the distribution of Y is, in some sense, closer to an
exponentially distributed random variable than in experiment A, which might imply that model M (1)

sometimes outperforms the true model for sufficiently small n.

The decisions x1, . . . , xn in the initial data set are drawn uniformly at random from the interval [0, 5].
Note that these quantities are only needed to apply cross-validation, and are not used by dbms.

For each experiment we determine the optimal costs under full information (Opt), under model M (0),
model M (1), and under dbms. We also test 5-fold cross-validation (CV), which chooses the model that
minimizes CV(k), k ∈ {0, 1}, where ties are decided in favor of model M (0), and where

CV(k) :=
1

5

5∑
l=1

√∑
i∈dl

(
ĉ(k)(xi, d0\dl)− ci

)2
; (23)

here

ĉ(0)(x; d̃) :=
1

ñ

ñ∑
i=1

h(x− ỹi)+ + b(ỹi − x)+,

ĉ(1)(x; d̃) := h

∫ x

y=0
(x− y)e−y/ȳ/ȳ dy + b

∫ ∞
y=x

(y − x)e−y/ȳ/ȳ dy

= h(x+ (exp(−x/ȳ)− 1)ȳ) + b exp(−x/ȳ)ȳ,

are the estimated cost functions under model M (0) and M (1) respectively, based on a data set d̃ =

(x̃i, ỹi)1≤i≤ñ; ȳ = 1
ñ

∑ñ
i=1 yi, ci = h(xi− yi)+ + b(yi−xi)+ are the observed costs associated to (xi, yi),

for i = 1, . . . , n, and dl := {(xi, yi) | i = 1 + (l − 1)n/5, . . . , ln/5}, l = 1, . . . , 5, is a decomposition of
the initial d0 in five mutually disjoint sets of equal size. We omit comparing dbms to AIC, since the
true model is infinite-dimensional.

The average costs in the simulations are reported in Tables 4, 5, and 6. All standard errors are smaller
than 0.02.

Outcomes. In experiment A, model M (0) outperforms model M (1) in all instances of b and n. The
average costs under model M (1) can be more than 10 percent higher than that of M (0) (b = 0.5,
n ≥ 50). The average costs under dbms are close to that of model M (0): never more than 0.6 percent
higher (b = 1.0, n = 10), and for n ≥ 50 the difference is never more than 0.3 percent (b = 1.5,
n = 50). Cross-validation performs worse than dbms in all instances of b and n. It loses up to 3.9
percent compared to M (0) (b = 1.0, n = 10), and up to 2.0 percent if we only consider n ≥ 50 (b = 1.5,
n = 50).
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In experiment B, modelM (1) sometimes outperforms modelM (0). The average costs under modelM (0)

can be more than 1.2 percent higher than under M (1) (b = 0.5, n = 10), and conversely, the average
costs under model M (1) can be more than 1.5 percent higher than under M (0) (b = 0.5, n = 1000).
dbms is always within 0.7 percent of the best performing model (b = 0.5, n = 10), CV is always
within 0.9 percent (b = 0.5, n = 50). There is no clear winner between dbms and CV: both sometimes
outperform the other, but never by a large margin. The costs under dbms can be up to 0.2 percent
higher than under CV (b = 1.5, n = 10), and the costs under CV can be up to 0.7 percent higher than
under dbms (b = 0.5, n = 50).

In experiment C, model M (1) outperforms model M (0) in all instances of b and n; the average costs
under M (0) can be up to 4.7 percent (b = 0.5, n = 10) higher than under M (1). dbms improves
upon M (0) in all instances, by up to 1.4 percent (b = 0.5, n = 10). CV does better than dbms in all
instances, and can improve upon M (0) by up to 3.6 percent (b = 0.5, n = 10).

An overall conclusion from these three experiments is that sticking to a single model M (0) or M (1)

may induce losses up to 10 percent. The costs under dbms stay close to that of M (0) in case M (1)

is misspecified, but if M (1) is better than M (0), then part of the potential gain is captured by dbms.
Cross-validation performs worse than dbms in experiment A, comparable to dbms in experiment B,
and better than dbms in experiment C. The largest observed gain of CV compared to M (0) is 3.6
percent, and the largest loss 3.9 percent. For dbms these values are 1.4 percent and 0.6 percent. Thus,
in some sense, dbms is closer to M (0) and CV is closer to M (1): both the highest gains and the largest
losses of dbms compared to the true model are smaller than the gains and losses of CV compared to
M (0).

n Opt M (0) M (1) dbms CV
10 2.42 2.59 2.66 2.59 2.67
50 2.42 2.46 2.52 2.46 2.51
100 2.42 2.44 2.51 2.45 2.48
500 2.42 2.43 2.49 2.43 2.44
1000 2.42 2.43 2.49 2.43 2.43

(a) b = 2.0

n Opt M (0) M (1) dbms CV
10 1.98 2.09 2.17 2.10 2.16
50 1.98 2.00 2.07 2.01 2.04

100 1.98 1.99 2.05 1.99 2.02
500 1.98 1.98 2.04 1.98 1.98
1000 1.98 1.98 2.04 1.98 1.98

(b) b = 1.5

n Opt M (0) M (1) dbms CV
10 1.46 1.53 1.62 1.54 1.59
50 1.46 1.47 1.56 1.48 1.50
100 1.46 1.46 1.55 1.47 1.48
500 1.46 1.46 1.54 1.46 1.46
1000 1.46 1.46 1.54 1.46 1.46

(c) b = 1.0

n Opt M (0) M (1) dbms CV
10 0.83 0.88 0.96 0.89 0.90
50 0.83 0.84 0.93 0.84 0.85
100 0.83 0.84 0.93 0.84 0.84
500 0.83 0.83 0.92 0.83 0.83
1000 0.83 0.83 0.92 0.83 0.83

(d) b = 0.5

Table 4: Average costs in experiment A. Y ∼ lognormal(m, v)
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n Opt M (0) M (1) dbms CV
10 2.42 2.60 2.58 2.59 2.59
50 2.42 2.46 2.46 2.46 2.46
100 2.42 2.44 2.45 2.44 2.44
500 2.42 2.42 2.43 2.42 2.42
1000 2.42 2.42 2.43 2.42 2.42

(a) b = 2.0

n Opt M (0) M (1) dbms CV
10 1.99 2.12 2.11 2.11 2.11
50 1.99 2.02 2.02 2.02 2.02

100 1.99 2.00 2.01 2.01 2.00
500 1.99 1.99 2.00 1.99 1.99
1000 1.99 1.99 2.00 1.99 1.99

(b) b = 1.5

n Opt M (0) M (1) dbms CV
10 1.49 1.57 1.56 1.57 1.57
50 1.49 1.50 1.50 1.50 1.50
100 1.49 1.50 1.49 1.50 1.50
500 1.49 1.49 1.49 1.49 1.49
1000 1.49 1.49 1.49 1.49 1.49

(c) b = 1.0

n Opt M (0) M (1) dbms CV
10 0.86 0.92 0.90 0.91 0.91
50 0.86 0.87 0.88 0.87 0.88
100 0.86 0.87 0.88 0.87 0.87
500 0.86 0.86 0.88 0.86 0.86
1000 0.86 0.86 0.88 0.86 0.86

(d) b = 0.5

Table 5: Average costs in experiment B. Y ∼ lognormal(m,m2)

n Opt M (0) M (1) dbms CV
10 2.75 2.97 2.89 2.94 2.92
50 2.75 2.80 2.78 2.79 2.78
100 2.75 2.77 2.76 2.77 2.76
500 2.75 2.75 2.75 2.75 2.75
1000 2.75 2.75 2.75 2.75 2.75

(a) b = 2.0

n Opt M (0) M (1) dbms CV
10 2.29 2.45 2.39 2.43 2.41
50 2.29 2.33 2.31 2.32 2.32

100 2.29 2.31 2.30 2.31 2.30
500 2.29 2.29 2.29 2.29 2.29
1000 2.29 2.29 2.29 2.29 2.29

(b) b = 1.5

n Opt M (0) M (1) dbms CV
10 1.73 1.84 1.79 1.83 1.81
50 1.73 1.76 1.75 1.75 1.75
100 1.73 1.75 1.74 1.74 1.74
500 1.73 1.74 1.73 1.74 1.73
1000 1.73 1.74 1.73 1.73 1.73

(c) b = 1.0

n Opt M (0) M (1) dbms CV
10 1.01 1.08 1.03 1.07 1.04
50 1.01 1.03 1.02 1.02 1.02
100 1.01 1.02 1.02 1.02 1.02
500 1.01 1.02 1.01 1.01 1.01
1000 1.01 1.01 1.01 1.01 1.01

(d) b = 0.5

Table 6: Average costs in experiment C. Y ∼ exponential with mean m
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5 Concluding remarks

Data-driven decision making revolves around mathematical models, statistical estimators, and opti-
mization algorithms. While the properties of estimators and optimization algorithms have been studied
extensively in a wide variety of contexts, the question how to select a proper mathematical model from
a decision-making viewpoint has received little attention in the literature. In many situations, for
example, there is a choice between a simple model and more complex model. Determining which of
these models leads to the best decision is a very relevant question, but the existing literature does not
describe a generic method to answer it. An extensive model-selection apparatus has been developed
in the past decades, but these methods either do not take quality-of-decisions as the discriminating
factor between models (and thus, in a sense, decouple model selection from optimization), or can only
be applied to a subset of the class of decision-problems that we consider.

This paper aims to take a step in the direction of connecting model-selection with data-driven decision
making. To this end, we propose a generic decision-based model selection method, named dbms, that
judges the quality of a model by the (estimated) quality of the decision it supports. The method is
applicable to a wide class of decision-problems. It is easy to use in practice, does not require large
computation times, and does not depend on hyper-parameters that are difficult to tune. Under some
conditions, the method is reward-consistent (meaning that the reward using dbms converges to the
optimal reward). Our numerical illustrations show that dbms is frequently on par and sometimes
better than existing model-selection methods; this suggests that dbms is a step in the right direction,
but that there also still is room for further improvement and fine-tuning of the method.

The main practical insight of this work is that decision-makers who have to select a model for a
data-driven decision problem should not confine themselves to a single model; instead, they can select
multiple models with different degrees of complexity, and use a decision-based model-selection method
such as the one proposed in this paper to determine, for each data set at hand, which model is expected
to produce the best decision.

Whilst the focus of this paper is on static problems, we expect that decision-based model selection
can be a powerful tool in dynamic decision problems under uncertainty (so-called multi-armed bandit
problems). In the majority of these problems, the model is fixed throughout the whole time horizon. As
an alternative, we suggest to incorporate decision-based model selection into the multi-armed bandit
framework, such that the complexity of the model upon which decisions are based grows with the
size and richness of the data that is available. In other words, the complexity of the used model
should be ‘justified’ by what the data can support, and when the data set is growing, the complexity
of the model should be growing as well. Integrating decision-based model selection method in such
dynamic decision making problems may lead to significant improved performance in a wide variety
of contexts. In several of such applications, dynamic model selection can only be implemented if its
computation times are sufficiently small. Because the method proposed in this paper scores well on
this aspect - compared, for example, to cross-validation - it may lend itself very well for such dynamic
decision-making applications.
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Appendix: loss incurred by suboptimal model selection criteria

In this supplementary section we show by an example that model selection based on assessing the
quality of the estimated parameters or of the estimated reward function, instead of the quality of
decisions, may induce unbounded losses. To this end, consider the linear program

max r(x, θ) := max (θ − α)x s.t. 0 ≤ x ≤ 1,

for α ≥ 0, θ ∈ R, which is maximized by x∗ := 1{θ − α > 0}. The value of α is known, the value
of θ is unknown, but it can be estimated from data of the form (xi, yi)1≤i≤n, where n is an integer,
x1, . . . , xn ∈ [0, 1] are nonrandom and not all zero, yi = θxi+ εi for i = 1, . . . , n, and ε1, . . . , εn are i.i.d.
normally distributed random variables with mean zero and (unknown) variance σ2 > 0. The ordinary
least squares estimates of θ and σ2 are θ̂0 := (

∑n
i=1 x

2
i )
−1
∑n

i=1 xiyi and σ̂
2
0 := n−1

∑n
i=1(yi − θ̂0xi)

2,
the corresponding estimated objective function is r̂0 : x 7→ (θ̂0−α)x, and the corresponding estimated
optimal decision is x̂∗0 := 1{θ̂0 − α > 0}. These quantities correspond to what we call the ‘true’
model. We also consider a simplified model, where the decision maker assumes θ = 0. In this case, she
estimates θ and σ2 by θ̂1 := 0 and σ̂2

1 := n−1
∑n

i=1 y
2
i , the objective function r by r̂1 : x 7→ (0 − α)x,

and the corresponding optimal decision by x̂∗1 := 0, the maximizer of r̂1.

Now, consider the following three model-selection criteria:

(i) the quality of the estimated optimal decision x̂∗k, measured by

Regret(x̂∗k) := r(x∗)− r(x̂∗k), k ∈ {0, 1};

(ii) the quality of the estimated reward function r̂k, measured by its L2 distance to the true reward
function:

||r̂k − r||2 :=

(∫ 1

0
(r̂k(x)− r(x))2dx

)1/2

, k ∈ {0, 1};

(iii) the quality of the estimated parameters θ̂k, σ̂2
k, measured by the expected KL-divergence between

the true and estimated distribution of y at a randomly selected x:

KL(θ̂k, σ̂
2
k) :=

∫ 1

0

∫ ∞
−∞

φ(y | θx, σ2) log

(
φ(y | θx, σ2)

φ(y | θ̂kx, σ̂2
k)

)
dy dx, k ∈ {0, 1};

here φ(y | µ, ς2) is the pdf of a N(µ, ς2) distributed random variable, evaluated at y.

Let

kRegret := arg min
k∈{0,1}

Regret(x̂∗k),

kL2 := arg min
k∈{0,1}

||r̂k − r||2 ,

kKL := arg min
k∈{0,1}

KL(θ̂k, σ̂
2
k),

36



be the best models according to these three criteria, with ties decided in favor of model k = 0. The
expected regret under these criteria is given by

E[Regret(xkRegret)] =

{
(θ − α)P

(
θ̂0 ≤ α

)
if θ > α

0 if θ ≤ α
(24)

E[Regret(xkL2
)] = (θ − α)

(
P
(
θ̂0 ≤ α

)
+ P

(
θ̂0 > α and (θ̂0 − θ)2 > θ2

))
if θ > α

(α− θ)P
(
θ̂0 > α and (θ̂0 − θ)2 ≤ θ2

)
if θ ≤ α

(25)

and

E[Regret(xkKL)] = (θ − α)
(
P
(
θ̂0 ≤ α

)
+ P

(
θ̂0 > α and KL(θ̂0, σ̂

2
0) > KL(θ̂1, σ̂

2
1)
))

if θ > α

(α− θ)P
(
θ̂0 > α and KL(θ̂0, σ̂

2
0) ≤ KL(θ̂1, σ̂

2
1)
)

if θ ≤ α
(26)

If σ2/
∑n

i=1 x
2
i = θ2 and α = θ + 0.75

√
θ, for some θ > 0, then E[Regret(xkL2

)] can be made arbitrary
large by choosing θ large, while E[Regret(xkRegret)] remains zero.

If
∑n

i=1 x
2
i = c1n, θ = σ2 = c2

2c1n, and α = θ+0.75c2, for some 0 < c1 < 1 < c2, then, as n grows large,
P
(
KL(θ̂0, σ̂

2
0) ≤ KL(θ̂1, σ̂

2
1)
)
converges to one, E[Regret(xkKL)] converges to 0.75c2P (N(0, 1) > 0.75) ≈

0.17c2, whereas E[Regret(xkRegret)] = 0 for all n. The difference in expected regret can be arbitrarily
large by choosing c2 large.

Note that the model-selection criteria in this example depend on the unknown parameters. They still
need to be estimated from data before they can be applied. Cross-validation and AIC are often used
to estimate kL2 and kKL, and dbms is an estimator of kRegret. The purpose of this example is not to
compare the performance of dbms with AIC or CV, but to argue that, in a decision-making context,
it makes sense to design model-selection procedures that estimate kRegret, i.e. the quality of decisions,
instead of kL2 , kKL, or other criteria not connected to the decision problem at hand.
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