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ABSTRACT
Angiogenesis is required in cancer, including gynecological cancers, for the growth 
of primary tumors and secondary metastases. Development of anti-angiogenesis 
therapy in gynecological cancers and improvement of its efficacy have been a major 
focus of fundamental and clinical research. However, survival benefits of current 
anti-angiogenic agents, such as bevacizumab, in patients with gynecological cancer, 
are modest. Therefore, a better understanding of angiogenesis and the tumor 
microenvironment in gynecological cancers is urgently needed to develop more 
effective anti-angiogenic therapies, either or not in combination with other therapeutic 
approaches. We describe the molecular aspects of (tumor) blood vessel formation and 
the tumor microenvironment and provide an extensive clinical overview of current anti-
angiogenic therapies for gynecological cancers. We discuss the different phenotypes 
of angiogenic endothelial cells (ECs) as potential therapeutic targets, strategies aimed 
at intervention in their metabolism, and approaches targeting their (inflammatory) 
tumor microenvironment.

Keywords: angiogenesis, anti-angiogenic therapy, endothelial cells, endothelial cell 
metabolism, gynecological cancer, non-tip cells, tip cells, tumor microenvironment, 
vascular disrupting agents.

1. INTRODUCTION

Gynecological cancers, such as ovarian cancer, cervical cancer, and endometrial cancer, 
have an estimated worldwide incidence of one million cases and an estimated mortality 
rate of 500,000 deaths every year [1]. Each type of these cancers is unique with different 
epidemiologic and genetic risk factors, symptoms, prognoses, and responses to therapy. 
However, what they have in common is that curative options are limited [2-6]. Therefore, 
novel insights at the molecular and cellular level are needed to improve and personalize 
treatment strategies.

The understanding that vascularization is essential for tumor growth has led to the 
development of therapeutic approaches directed against the tumor vasculature [7, 8]. 
Although anti-angiogenic therapy has become part of first-line maintenance treatment 
in several types of human cancers, anti-angiogenic agents in use today are only effective 
in a subset of patients, and many patients who initially respond to these drugs develop 
resistance over time. These disappointing results emphasize the urgent need for new 
insights at the molecular and cellular levels of the effects of the current inhibitors of 
angiogenesis and/or for discovering alternative anti-angiogenic agents.
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The healthy endothelium remains quiescent throughout adulthood and is only activated 
during physiological processes such as wound healing and the female reproductive 
cycle. During angiogenesis, endothelial cells (ECs) rapidly switch to an activated state 
and start to form new blood vessels. This process is tightly regulated by pro-angiogenic 
and anti-angiogenic factors [9, 10]. Angiogenesis is important in the female reproductive 
system to allow monthly ovulation and successful realization of pregnancy, but also 
has a critical role in the pathogenesis of its cancers, by promoting tumor growth and 
metastatic spread. High microvessel density of cancers is often associated with poor 
prognosis and a greater risk of recurrence [11-20]. The female reproductive system and 
its cancers have such an angiogenic molecular signature that anti-angiogenic therapy 
theoretically is promising.

In the current review, we describe the process of angiogenesis and its role in cancer 
in general, the genetic and metabolic regulators of angiogenesis in the context of the 
female reproductive system, and their role in ovarian cancer, cervical cancer, and 
endometrial cancer. We highlight existing and novel therapeutic strategies for targeting 
angiogenesis in these types of cancers and discuss the advantages and drawbacks of 
these approaches.

2. ANGIOGENESIS

2.1 Endothelial cell differentiation: tip cell, stalk cell, and phalanx cell 
phenotypes
Growing tissues become vascularized via different types of angiogenesis [21]. Vessel 
co-option is a type of passive angiogenesis where cells grow along existing vessels [22]. 
Intussusceptive angiogenesis is characterized by splitting of existing blood vessels [23]. 
Sprouting angiogenesis (Fig. 1) is the most efficient type of vascularization [24, 25]. In 
cancer, there is also a tumor cell-organized form of vascularization called vasculogenic 
mimicry, leading to vascular networks made up of transdifferentiated cancer cells that 
have an EC phenotype [26, 27].

Throughout the process of sprouting angiogenesis (Fig. 1), developing capillaries are 
guided by specialized ECs, located at the top of growing vessels, the tip cells [28-30]. 
Tip cells have a low proliferative activity, possess stress fibers with probing filopodia 
and migrate into the extracellular matrix (ECM) (Fig. 1) towards a gradient of angiogenic 
growth factors. Consequently, tip cells assimilate directional cues from the environment 
and thereby determine the direction in which the new sprout grows [28]. Additionally, 
tip cells actively recruit non-vascular cells, including pericytes. In resting vessels, 
pericytes share a basal lamina with the ECs of capillaries and post-capillary venules 
and are involved in the stabilization of the vessel wall and control EC proliferation [10, 

31-34]. However, in sprouting angiogenesis pericytes migrate away from capillaries 
and become ‘extramural’ [35]. Tip cells are followed by stalk cells, which in contrast to 
tip cells are highly proliferative, produce less filopodia, form a vascular lumen (Fig. 1) 
[36-38], and establish adherens and tight junctions to maintain the stability of the new 
sprout [39]. Tubulogenesis, the process of lumen formation by ECs, is an essential step 
of angiogenesis and involves interactions with the ECM and cytoskeletal reorganization 
[10, 32, 40]. The third known specialized ECs are the phalanx cells, which tightly align and 
form a smooth internal monolayer of the newly formed blood vessel. Phalanx cells have 
a more dormant phenotype, they do not proliferate, and survive for many years (Fig. 1). 
These specialized ECs express tight junctions and are involved in the normalization and 
stabilization of the vasculature through increased cell adhesion [41, 42]. Finally, a new 
vascular loop is established by connecting two sprouts of endothelial tip cells, thereby 
forming a continuous lumen, also known as a process called anastomosis [10]. The newly 
formed blood vessel is stabilized by the initiation of blood flow [43], the recruitment of 
‘intramural’ pericytes, and the establishment of a basal lamina [9, 10, 33, 44, 45].

2.2 Genetic control of EC differentiation and new developments in 
sprouting angiogenesis
Quiescent ECs form a monolayer of phalanx cells that is surrounded by pericytes, 
which provide cell-survival factors and anti-proliferative factors (e.g. transforming 
growth factor (TGF)-β) that suppress EC activation and stabilize the quiescent vessel 
[46]. The recruitment and maintenance of pericytes requires growth factors such as 
platelet-derived growth factor (PDGF) and angiopoietin 1 (ANG1) [47]. Phalanx cells 
and pericytes share a lamina basalis consisting of ECM proteins that prevent ECs from 
leaving their position. The need for oxygen and nutrients in surrounding tissues initiates 
sprouting angiogenesis by inciting the production of pro-angiogenic signals, such as 
vascular endothelial growth factor (VEGF), angiopoietin 2 (ANG2), fibroblast growth 
factor (FGF), epidermal growth factor (EGF), and insulin-like growth factor 2 (IGF2) 
[48-50]. In response to these angiogenic cues, the basal lamina of the quiescent EC 
monolayer is degraded by matrix metalloproteases (MMPs), pericytes detach from 
the vessel wall, and ECs of the quiescent vessel loosen their junctions. Detachment of 
pericytes is stimulated by ANG2 that is produced and stored by ECs for rapid release 
when needed [51-54].

Besides their morphological characteristics, tip cells express tip cell-specific genes (Fig. 
1) that are not expressed by the other EC subtypes [30, 49, 63]. Del Toro et al. identified 
tip cell-specific genes by laser-capture analysis of ECs that were isolated from DLL4+/- 
mouse retinas compared to wild-type retinas [64]. Previous studies reported that some 
of these genes are upregulated by VEGF stimulation (Dll4 and endothelial cell-specific 
molecule 1 (Esm1)) [58, 65] and under hypoxic conditions (Esm1, Pdgf-b, and apelin 
(Apln)) [30]. Recombinant ESM1 protein promotes VEGF-induced EC migration and 
proliferation in vitro [65] and induces endothelial tube formation [66]. 
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Fig. 1. Endothelial cell differentiation: tip cell, stalk cell, and phalanx cell phenotypes.
(A) Quiescent ECs form a monolayer of phalanx cells that are surrounded by pericytes, which 
suppress EC activation and stabilize the quiescent vessel. (B) During angiogenesis, a single leading 

tip cell is attracted by microenvironmental signals and (C) breaks down the basal lamina and 
migrates into the extracellular matrix. (D) Tip cells possess stress fibers with probing filopodia and 
are characterized by their low proliferation activity, high migratory capacity, and their ability to 
recruit non-vascular cells. (E) The highly proliferative stalk cells follow the tip cell, form vascular 
lumen, and ensure vessel elongation. (F) Tip cell and stalk cell phenotype regulation involves 
several factors, including growth factors, transcription factors, and metabolism. (G) A new 
vascular loop is established by connecting two sprouts of endothelial tip cells, thereby forming 
a continuous lumen, also known as a process called anastomosis. (H) The phalanx cell phenotype 
is eventually acquired by differentiated ECs once the new vessel is formed. (I) The newly formed 
blood vessel is stabilized by the initiation of blood flow, the recruitment of ‘intramural’ pericytes, 
and the establishment of a basal lamina.

Although ESM1 was previously described to be specifically expressed in tip cells in 
the developing mouse retina [64, 67], in tumor blood vessels ESM1 expression was 
not restricted to sprouting cells, but can be detected throughout the vasculature [68]. 
Recently, it has been shown that the VEGF-activated transcription factor forkhead box 01 
(FOXO1) inhibits tip cell formation by inhibiting DLL4 expression [69]. FOXO1 is activated 
via the protein kinase mammalian sterile 20-like kinase 1 (MST1), a core kinase of the 
hippo pathway, under hypoxia. This results in the nuclear import of FOXO1 in endothelial 
tip cells, thus increasing its transcriptional regulation of genes associated with tip 
cell function and polarity. Consequently, MST1- or FOXO1-deficient mouse models 
showed loss of tip cell polarity and impaired sprouting angiogenesis [70]. Furthermore, 
knockdown of these genes in human umbilical vein endothelial cells (HUVECs) reduced 
migration activity and inhibited the expression of migration-associated genes [70]. Like 
MST1, yes-associated protein (YAP) and its paralog transcriptional co-activator with 
PDZ-binding motif (TAZ) are also core molecules of the hippo pathway [71]. YAP/TAZ acts 
downstream of the hippo pathway and regulates key events in angiogenesis. Yap/Taz 
knockout in mice reduced the number of proliferating ECs and the number of tip cells 
and decreased filopodia density on these cells [72]. In contrast, endothelial YAP/TAZ 
hyperactivation in mice induced excessive filopodia on tip cells at the retinal vascular 
front [73]. These findings suggest that YAP/TAZ is involved in the morphogenesis and 
abundancy of tip cells and in the proliferation of stalk cells during sprouting angiogenesis. 
The 6 CCN family members, secreted matricellular proteins that are associated with the 
ECM [74], are involved in angiogenic processes, such as EC proliferation, migration, and 
differentiation [33, 75]. One of its members, cysteine-rich protein 61 (CYR61, also known 
as CCN1), is a target of the YAP/TAZ signaling molecules [76, 77], and regulates the tip 
cell phenotype through interplay with integrin αvβ3 and VEGFR2 [78].

The sialomucin CD34 is another tip cell marker that has been used to study tip cell 
biology and function in vitro (Fig. 2). CD34+ tip cells are present in all EC cultures and 
show increased abundance of the mRNA of tip cell-specific genes. Genome-wide mRNA 
profiling of these cells demonstrated enrichment for functions related to angiogenesis 
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and migration as compared to CD34- non-tip cells [79]. Furthermore, CD34+ tip cells 
demonstrated a much lower proliferation rate [79] and a higher migratory capacity 
[80] compared to CD34- non-tip cells. Several other tip cell and stalk cell regulators and 
markers have been reviewed recently [49, 81, 82].

3. ANGIOGENESIS IN THE FEMALE 
REPRODUCTIVE SYSTEM

Angiogenesis has physiological functions in the female reproductive system which do 
not occur in other organs. Ovaries and endometrium undergo cyclic changes that are 
associated with angiogenesis and subsequent loss of blood vessels. Therefore, ovaries 
and endometrium produce both pro-angiogenic and anti-angiogenic factors. In fact, 
both basic FGF (bFGF), the first pro-angiogenic growth factor discovered, as well as VEGF, 
were initially characterized in human ovaries [83-85]. ANG2 was the first anti-angiogenic 
factor found to function as an endogenous regulator of blood vessel regression, and 
is highly expressed in the ovarian corpus luteum during luteolysis, a process involved 
in the structural and functional degradation of the corpus luteum and its associated 
vasculature at the end of the ovarian cycle [86, 87]. In the following sections, we 
describe the dynamics of angiogenic processes in the ovary and endometrium. The 
blood supply of the female reproductive system and its histology are shown in Fig. 3.

3.1 Angiogenesis in ovaries
In the ovaries, angiogenesis is one of the most important processes in the development 
of primordial follicles into ovulatory follicles and subsequently into a corpus luteum. 
The cyclic growth and maturation of primordial follicles and luteal regression depend 
on angiogenesis and subsequent breakdown of blood vessels [88, 89]. Primordial 
follicles do not have a vascular network of their own and their maintenance relies on 
blood vessels in the surrounding stroma [90]. As follicles continue to grow, an antrum 
develops in the follicles and ECs of blood vessels in the adjacent stroma are activated 
for sprouting angiogenesis into the thecal layer. A vascular sheath, consisting of two 
capillary networks in the theca interna and externa, is formed. The newly formed 
vessels are separated from the avascular granulosa cells by the membrana granulosa. 
Angiogenesis into the developing follicles increases steadily and the newly-formed 
blood vessels provide oxygen, nutrients, and hormones (e.g., gonadotropins), which are 
essential for the maturation of follicles during the ovarian cycle [91-96]. Angiogenesis 
becomes even more intense after ovulation, during the development of the corpus 
luteum [91, 97]. After enzymatic breakdown of the membrana granulosa, ECs from the 
theca interna rapidly migrate into the avascular granulosa layer, and theca capillaries 
expand by angiogenesis to form a dense sinusoidal capillary network [94, 98-100]

Channel 1:
Perfusion channel

Phaseguide

Phaseguide

Channel 2:
Gel channel

Channel 3: 
Perfusion channel

Fig. 2. CD34+ tip cells in a 3D angiogenic sprouting model. In channel 1 of an OrganoPlate® 
(Mimetas).
Confluent layer of ECs has formed a vessel on an ECM gel containing collagen 1 (channel 2). Out 
of the vessel, sprouts are formed that grow towards channel 3 that contains angiogenic factors. 
Immunofluorescent staining was performed of CD34 (green), F-actin (red) and nuclei (blue). ECs 
in the vessel show a luminal staining of CD34. In addition, CD34 staining was present on the tips 
of EC sprouts that have a tip cell morphology including filopodial extensions. Magnifications are 
shown and indicated in the overview image. Scale bars, overview, 100 µm; higher magnifications, 
50 µm.

Maturation of the transient vascular bed of the corpus luteum is characterized by the 
recruitment of pericytes that cover the capillaries to ensure vessel stabilization [101]. 
Remarkably, the corpus luteum is so well vascularized that ECs are its most abundant 
cell type, with the majority of the parenchymal cells in close contact with one or more 
capillaries [94, 97, 102, 103]. The mature corpus luteum has one of the highest blood 
supplies per unit mass [104]. When fertilization and intra-uterine implantation do not 
occur, the corpus luteum and the newly formed vessels regress at the end of the ovarian 
cycle [95].
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A

B

C D

F

E

Fig. 3. Anatomy, histology and the blood supply of the female reproductive system showing the 
locations where the largest part of gynecological cancers occur: endometrium (A; proliferative 
endometrium and B; secretory endometrium), transformation zone of stratified squamous ep-
ithelium of the exocervix and columnar mucus secreting epithelium of the endocervix (arrows) 
(C and D) and cubic ovarian surface epithelium (OSE; arrows) in E and F. Scale bars, A, B, C, 100 
µm; D, 25 µm; E,F, 50 µm.

3.2 Angiogenesis in the endometrium
In the endometrium, vascular growth starts in the proliferative phase and continues 
throughout the secretory phase of the menstrual cycle [105, 106]. The spiral arteries 
lengthen and have a coiled appearance during the post-ovulatory phase of the menstrual 
cycle [107]. Long straight pre-capillaries connect the coiled spiral arteries with the sub-
epithelial capillary plexus which matures below the epithelium [106, 108]. In the absence 
of an embryo, the functional layer of the endometrium is shed and the superficial layer 
of the remaining basal layer is repaired by angiogenesis [109]. Vascular sprouts have 
not been found in the endometrium whereas proliferating ECs have been identified 
within existing endometrial vessels. In addition, EC proliferation and capillary density 
in the endometrium does not change significantly during the menstrual cycle [110-112]. 
These findings suggest that vascular expansion in the endometrium does not occur as 
sprouting angiogenesis but rather by elongation [113] and intussusceptive angiogenesis 
[108, 114-116]. In contrast to sprouting angiogenesis, intussusceptive angiogenesis 
occurs rapidly within minutes or hours and does not rely on EC proliferation [117].

4. ANGIOGENESIS IN GYNECOLOGICAL 
CANCERS

The growth of primary tumors and secondary metastases depends on angiogenesis 
as solid tumors and their metastases cannot grow beyond 1-2 mm3 without additional 
vasculature, because of the lack of sufficient nutrients and oxygen that are required 
for the growing tumors [118-121]. Furthermore, unlike after physiological angiogenesis, 
tumor blood vessels remain structurally and functionally abnormal. Tumor angiogenesis 
takes place by uncontrolled proliferation of ECs that have a different phenotype than ECs 
in non-cancer physiological conditions [35, 122]. Consequently, the tumor vasculature 
is irregularly shaped, dilated, tortuous, and disorganized [121, 123, 124] which is 
associated with high expression levels of pro-angiogenic factors, including VEGF, bFGF, 
neuropilin 1 (NRP1) [125, 126], TGF-β [127], neurotrophins [128] and microRNAs [129]. 
The density of the capillary network is inversely associated with overall survival and 
progression-free survival of women with gynecological cancers [11-20, 130, 131], at 
least partly due to increased metastatic spread.

4.1 Angiogenesis in ovarian cancer
The majority of ovarian cancers are epithelial ovarian cancers (EOCs), and high grade 
serous carcinoma (HGSC) is the most prevalent subtype (70-80%) [132]. Other subtypes 
of EOCs are low-grade serous carcinoma (<5%), endometrioid carcinoma (10%), clear 
cell carcinoma (10%) and mucinous carcinoma (3%) [133]. Most women with EOC are 
diagnosed in an advanced stage of the disease, when metastases are manifest on the 
peritoneum (also called peritoneal carcinomatosis) (Fig. 4) [134], in lymph nodes and/or 
in other organs [135-137]. The peritoneal cavity has no anatomical barriers and allows 
cancer cells to spread relatively easily. Metastatic spread primarily occurs by shedding of 
the EOC cells from the ovary into the peritoneal cavity. In the peritoneal cavity, EOC cells 
are transported passively by the physiological movements of peritoneal fluid and attach 
to the peritoneal mesenchymal cells to form small superficial tumors [134, 138, 139].

In general, EOC tumors are well vascularized. Besides the intraperitoneal dissemination 
of EOC cells, progression of EOC and its metastases depends on the nature of the 
intra-tumoral stroma. The stromal tumor microenvironment consists of ECM and a 
variety of cell types, including ECs, fibroblasts, pericytes, cancer-associated fibroblasts 
(CAFs), cancer-associated macrophages, mesenchymal stem cells, and other types of 
white blood cells [140-143]. These cells may also be involved in the interactive signaling 
with EOC cells and may promote or inhibit metastasis [144-146]. CAFs often form the 
majority of stromal cells in several types of human cancers and contribute to vascular 
stabilization in EOC and other types of human cancers [146]. CAFs have a different 
gene expression profile than normal fibroblasts, and mediate paracrine or autocrine 
signaling in and between cancer cells and stromal cells [147-150]. Tumor-derived 
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pro-angiogenic growth factors, such as PDGF, bFGF, TGF-β, and VEGF activate CAFs, 
demonstrating a close interaction between CAFs and angiogenesis [151, 152]. On the 
other hand, CAFs promote angiogenesis by recruiting endothelial progenitor cells to 
the tumor stroma, mediated by secretion of stromal cell-derived factor-1α (SDF-1α). In 
addition, CAF-secreted SDF-1α stimulates tumor growth directly by signaling through 
the receptor CXC chemokine receptor type 4 (CXCR4), which is expressed by cancer 
cells [153-155]. The SDF-1α/CXCR4 axis also plays a role in the interactions between 
cancer cells, immune cells and mesenchymal stem cells and in the homing of cancer 
stem cells in their niches [142].

Cancer stem cells (CSCs) have been described in EOC [156-158]. Ovarian CSCs have 
similarities with spermatogonial stem cells in the testis and with hematopoietic stem 
cells in their niches in the bone marrow [159], which in turn are similar to glioma stem 
cells in their niches in human primary brain tumors such as glioblastoma [142, 155, 
160]. Krishnapriya et al. have reported that ovarian CSCs can contribute to angiogenesis 
on the basis of in vitro experiments with the use of human ovarian CSCs harvested 
from ascites and grown in spheroids [156]. Under specific conditions, the spheroids 
gave rise to EC-like cells that expressed EC markers and nitric oxide synthase and 
formed tube-like structures in the spheroids. The anti-VEGF antibody bevacizumab 
inhibited differentiation into EC-like cells in the spheroids. These EC-like cells may be 
transdifferentiated CSCs involved in a process called vascular mimicry [161], which has 
been found frequently in tumors [162]. Vessel co-option also occurs when cancer cells 
are invasive along existing blood vessels [163, 164]. An association between ovarian 
CSCs and angiogenesis, such as similar biomarkers and signaling pathways, was also 
noted by Markowska et al. [165], who  listed clinical trials with anti-angiogenic agents. 
These clinical trials are discussed below. 

4.2 Angiogenesis in cervical cancer
The most common cervical cancers are squamous cell carcinoma and adenocarcinoma 
[4, 166]. Precursor lesions include cervical intraepithelial neoplasia (CIN) in squamous 
epithelium and adenocarcinoma in situ (AIS) in columnar epithelium [167]. High 
grade CIN (or HSIL), AIS and cervical cancer are characterized by a dense capillary 
network [168], and neovascularization and increased capillary density have also been 
demonstrated directly underneath precursor and malignant lesions of the cervix [169-
171]. There is an inverse correlation between the density of the capillary network and 
the prognosis of cervical cancer [172, 173]. More specifically, the density of the capillary 
network correlates inversely with pelvic lymph node metastases, disease-free survival 
and overall survival [20, 174-176]. Expression of VEGF has been found to be
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Fig. 4. Human peritoneum with peritoneal carcinomatosis (PC metastases of epithelial ovarian 
cancer (EOC)).
A Laparoscopy image of the peritoneum of the anterior abdominal wall in a patient with PC of 
EOC. Numerous metastases are present on the peritoneum (red arrows). B Microscopic image 
of (M) showing capillaries running from the normal peritoneal microvasculature towards the 
metastasis (arrows), bar = 500 um. C Differential interference contrast (DIC) microscopical image 
of a metastasis, bar = 50 um. D DIC microscopical image of individual ovarian cancer cells (arrows) 
attached to the peritoneum besides a metastasis, bar = 10 um. E Incident dark field (IDF) image 
of capillaries running from the normal peritoneal microvasculature towards the metastasis (M), 
the image represents a field of view of 1.55 x 1.16 mm. F IDF image of the microvasculature 
of a metastasis, the image represents a field of view of 1.55 x 1.16 mm. Images E and F from 
Kastelein et al. in Clinical Experimental Metastasis [121], with permission under the Creative 
Commons License (http://creativecommons.org/licenses/by/4.0/). No changes were made to 
the original images.
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directly correlated with the density of the capillary network and the degree of dysplasia 
[173, 177]. The oncoproteins E6 and E7 that are encoded by human papillomavirus 
genes play a distinct role in this phenomenon. E6 induces degradation of the tumor 
suppressor protein p53 and E7 activates HIF1α and inactivates retinoblastoma protein 
(pRb), which ultimately leads to upregulation of VEGF expression and consequently 
tumor angiogenesis [178-180]. Furthermore, ANG1 and ANG2 and their Tie receptors 
are upregulated in cervical cancer cells in vitro.

4.3 Angiogenesis in endometrial cancer
Endometrial cancers are broadly classified in two major types based on clinicopathological 
features (type 1 low grade and type 2 high grade) and can be further subdivided into 
POLE ultra-mutated, microsatellite instability hypermutated, copy-number low, and 
copy-number high [181]. High expression levels of pro-angiogenic factors including 
VEGF, platelet-derived EC growth factor (PD-ECGF) and FGF2, have been recognized 
as an essential characteristic of endometrial cancer growth, survival, and metastasis 
and these high levels inversely correlate with survival of patients with endometrial 
cancer [182-187]. The density of the capillary network increases progressively from 
benign to malignant tumors [18]. However, there are conflicting results with respect 
to the prognostic relevance of the expression of VEGF and its receptors in endometrial 
cancer [188-191]. In contrast, the density of the capillary network has been shown to 
be a prognostic factor for endometrial cancer [19, 183, 192]. VEGF expression is high in 
endometrial cancer, whereas it is hardly expressed in healthy endometrium [188]. HIF1α 
and HIF2α are active as transcription factors in endometrial cancer cells and induce 
expression of VEGF [193, 194]. Hypoxia is an important controller of the angiogenic 
switch that is mainly regulated by HIF1α. HIF1α and HIF2α are transcription factors with 
slightly different roles [142] that each activate transcription of a set of key genes that 
are involved in cell survival in hypoxic conditions such as those that are involved in the 
initiation of angiogenesis [195, 196]. Hypoxia is a general phenomenon in solid tumors 
[197, 198] due to their rapid growth, on the one hand, the high interstitial pressure [199], 
and the too large distances between cancer cells and capillaries on the other hand.

5. THERAPEUTIC TARGETING OF 
ANGIOGENESIS IN GYNECOLOGICAL 
CANCERS

5.1 VEGF-targeted therapy in gynecological cancers
Current treatment of gynecological cancers includes surgery, radiotherapy, and 
chemotherapy, and combination therapy with angiogenesis inhibitors [134, 165, 200-
203]. Although in general the treatment of low stage gynecological cancers is often 

successful, with many patients achieving a long term survival, success of treatment 
of advanced or recurrent disease is disappointing. Compensatory mechanisms and/
or escape mechanisms allow cancer cell survival leading to progression of disease and 
recurrence [166]. Recent developments in molecular biology of gynecological cancers 
have led to the development of agents that target signaling pathways of ECs of the 
tumor vasculature.

In contrast to chemotherapy, targeted therapy interferes with specific molecular 
mechanisms and should take advantage of molecular differences between cancer 
cells and non-cancer cells. Targeted therapy can be divided into two major categories: 
monoclonal antibodies and small-molecular compounds. Monoclonal antibodies do 
not enter cells due to their size but target ligands in the extracellular environment of 
tumors or receptors on the surface of cells. Small-molecular compounds can enter cells, 
in particular when they have lipophilic moieties, to interfere specifically with target 
molecules that are essential for cancer cells and preferably not for non-cancer cells 
[204]. Anti-angiogenic therapies are tested in gynecological cancers because of the 
importance of angiogenesis in gynecological cancers and the need for new treatment 
strategies [140, 205].

VEGF has emerged as a major therapeutic target in several types of cancers [144, 
145, 206, 207] and other pathological conditions [31, 208-210]. Currently, three VEGF-
targeting monoclonal antibodies, bevacizumab, ramucirumab, and aflibercept, have 
been approved for the treatment of various types of cancer [211, 212]. Bevacizumab 
is a recombinant antibody that impedes blood vessel formation and the growth of 
tumor tissue by preventing the binding of VEGF-A to its receptors by neutralizing 
circulating VEGF. It has been approved by the Food and Drug Administration (FDA) for 
the treatment of ovarian and cervical cancer [204, 213-215].

For ovarian cancers, bevacizumab treatment in combination with chemotherapy 
(carboplatin/paclitaxel), followed by single-agent bevacizumab, was approved by 
the European Medicines Agency (EMA) in 2011 and by the FDA in 2018 as a first-
line treatment for stage III and IV epithelial ovarian, fallopian tube, and primary 
peritoneal cancers after initial surgical resection. This approval was based on the 
GOG-0218 randomized phase III trial which demonstrated that patients treated with 
this combination have a longer progression-free survival than patients treated with 
chemotherapy alone (14.1 versus 10.3 months) [216]. However, a follow-up study 
showed no differences in overall survival among patients receiving bevacizumab in 
combination with chemotherapy as compared to patients receiving chemotherapy 
alone [217].

In recurrent ovarian cancer, three phase III trials were conducted to evaluate the use 
of bevacizumab. Both the AURELIA study [218], which included platinum-resistant 
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recurrent patients, and the OCEANS study [219], which included platinum-sensitive 
recurrent patients, demonstrated a longer progression-free survival in the groups 
treated with bevacizumab-combined chemotherapy as compared to chemotherapy 
alone (6.7 versus 3.4 months and 12.4 versus 8.4 months, respectively). Again, no 
significant differences in overall survival were found in these studies [218, 219]. 
However, recently, the randomized phase III GOG-0213 trial with platinum-sensitive 
recurrent epithelial ovarian, fallopian tube or primary peritoneal cancers demonstrated 
an improved overall survival in the group of patients treated with bevacizumab in 
combination with chemotherapy as compared to the group of patients treated with 
chemotherapy alone (42.2 versus 37.3 months). Progression-free survival was longer 
with the addition of bevacizumab to chemotherapy than chemotherapy alone (13.8 
versus 10.4 months) [220]. On the basis of these studies, bevacizumab treatment has 
been approved in both primary and recurrent ovarian cancer, although the clinical 
benefit for patients is still modest and overall survival seems unaffected.

In metastatic and recurrent cervical cancer, the combination treatment of bevacizumab 
and chemotherapy was approved by the FDA in 2014 on the basis of the results of 
the Gynecologic Oncology Group (GOG)-240 phase III trial [215, 221]. The GOG-240 
trial demonstrated that patients treated with bevacizumab in combination with 
chemotherapy (topotecan/paclitaxel or cisplatin/paclitaxel) showed an improved 
overall survival (17 versus 13.3 months), progression-free survival (8.2 versus 5.9 
months) and higher response rate (48% versus 36%) as compared to patients treated 
with chemotherapy alone [221].

The clinical trials of bevacizumab to treat ovarian cancer and cervical cancer argued for 
testing of bevacizumab therapy to treat endometrial cancer. Bevacizumab-combined 
chemotherapy or bevacizumab as a single agent therapy for metastatic and recurrent 
endometrial cancer have been tested in phase II studies, but these studies showed only 
modest efficacy. [222-225].

The overall positive effects of anti-VEGF therapy in gynecological cancers are limited 
and subgroups of patients that would benefit most have not yet been defined, as 
biomarkers of response are lacking [214]. The strict inclusion criteria that have been 
applied in the GOG-240 trial [221] would exclude patients with metastatic or recurrent 
cervical cancer from receiving bevacizumab treatment on the basis of the occurrence 
of bleeding, poor renal function or poor performance status [213]. In addition, there 
are still pending issues with respect to side effects, such as hypertension [226, 227] 
and therapy resistance [140, 205]. Adaptive resistance and intrinsic resistance, the 
upregulation of alternative pro-angiogenic pathways and expression of pro-angiogenic 
factors are considered to be mechanisms of bevacizumab resistance [228]. However, 
predictive biomarkers for drug resistance have not yet been identified [229, 230]. 
Because the target cells (ECs) are genetically stable, they were considered not to 

develop bevacizumab resistance. However, the study of Krishnapriya et al (2019) has 
shown that bevacizumab inhibits the differentiation of ovarian CSCs into ECs (vascular 
mimicry as described in chapter 4.1) [156]. As a consequence, it cannot be excluded 
that the therapy-resistance of the ECs of the tumor vasculature is caused by the fact 
that these ECs have the genetic makeup of the ovarian CSCs and are in fact genetically-
instable cancer cells. Identifying alternative anti-angiogenic therapeutic strategies and/
or targeting multiple angiogenic pathways may increase the therapeutic benefit for 
gynecological cancers and may overcome drug resistance by compensatory escape 
mechanisms.

5.2 Targets within the tumor microenvironment: pericyte-endothelial 
interactions in tumor angiogenesis
Cancer cells may become resistant to anti-VEGF therapy because of their genetic 
instability as discussed above, and due to alterations in the microenvironment of cancer 
cells in response to anti-VEGF therapy [228]. Cancer cells do not act alone in tumor 
progression and metastatic spread as these processes require remodeling of their 
microenvironment by communication between cellular and non-cellular components 
[144]. Unlike the heterogeneity of cancer cells, common features are found in the pro-
angiogenic tumor microenvironment that supports vessel formation and maturation 
[228]. Cancer progression creates hypoxia, acidity, and oxidative stress within the tumor 
microenvironment, which increases stiffness of the ECM and induces angiogenesis, and 
a metabolic switch towards aerobic glycolysis [144]. As tumor growth and resistance 
to anti-angiogenic therapy is associated with the (adapting) tumor microenvironment, 
targeting of the tumor microenvironment offers new therapeutic opportunities to treat 
gynecological cancers.

In angiogenesis, stalk cells and phalanx cells of sprouting blood vessels secrete growth 
factors that are chemo-attractants for pericytes which in their mural form are believed 
to play an important role in the final stabilization and maturation of the newly-formed 
vessels [10]. Vascular maturation and pericyte coverage of the tumor vasculature also 
induce resistance to anti-angiogenic therapy [228]. In most tumors, blood vessels are 
covered by high numbers of pericytes [122], which may be ‘extramural’. In the literature, 
there are seemingly conflicting results on pericytes in tumor vasculature, which is 
probably due to the use of different pericyte markers [231]. Anti-VEGF therapy inhibits 
development of new vessels, but vessels that are already covered by mural pericytes 
are mature, functional and not responsive to VEGF anymore. In addition, blocking of 
VEGF signaling in human tumors increases the number of vessels covered with mural 
pericytes [232-234]. Therefore, dual targeting of tumor-associated ECs and pericytes 
may be an attractive approach for the treatment of gynecological cancers.

Recruitment of pericytes to the endothelium and their crosstalk with ECs is mediated 
by multiple ligand-receptor complexes, including PDGF-B/PDGF receptor-β (PDGFR-β), 
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ANG1/Tie2, TGF-β/TGF-β receptor (TGF-βR), and heparin-binding EGF (HB-EGF)/EGF 
receptor (EGFR). During angiogenesis, PDGF-B is released by endothelial stalk cells and 
binds to its receptor PDGFR-β expressed on pericytes. PDGF-B/PDGFR-β interaction is 
essential for vascular maturation, and blocking of either PDGF-B or PDGFR-β induces 
pericyte deficiency and vascular dysfunction [47]. Whereas PDGF-B/PDGFR-β signaling 
is EC-to-pericyte signaling, pericytes-to-EC signaling occurs through the ANG1/Tie2 
system [47, 235]. ANG1 and ANG2 are both ligands for the endothelial Tie2 receptor, 
but have opposite effects on Tie2 activation and signaling. ANG1 is mainly expressed 
by pericytes and is considered to be an agonistic ligand for Tie2, whereas ANG2 is 
predominantly expressed by ECs and is an antagonistic ligand for Tie2 [86, 236, 237]. 
ANG1/Tie2 binding promotes pericyte adhesion and vessel stabilization and is widely 
expressed in adult tissues, whereas ANG2/Tie2 binding disrupts blood vessel formation 
and is only expressed at sites of vascular remodeling [53, 86].

TGF-β signaling induces the differentiation of myeloid progenitor cells into pericytes, 
but is also involved in endothelial stalk cell proliferation and differentiation [238, 
239]. TGF-β signaling is complex [240] which is shown by the fact that both ECs and 
pericytes produce TGF-β and TGF-βR and the effects of TGF-β signaling is a result of the 
interactions between the two cell types [241]. In addition, crosstalk between TGF-β and 
Notch regulates the expression of N-cadherin, a transmembrane protein that mediates 
cell-cell adhesion in junctional adhesion plaques of ECs and pericytes [242, 243].

HB-EGF belongs to the EGF family of growth factors and is expressed in various types 
of cells, including ECs and pericytes [244, 245]. Phosphorylation of EGFR on pericytes 
by EC-derived HB-EGF stimulates pericyte proliferation, motility and recruitment to 
ECs [245, 246]. The observed increased activation of EGFR on pericytes in mouse 
xenografts that acquired resistance to bevacizumab treatment, suggests that HB-EGF/
EGFR signaling plays a role in resistance to anti-VEGF inhibitors [247].

Clinical trials targeting the different axes of pericyte-endothelial combined therapies 
are described in the following sections.

5.3 Clinical anti-angiogenesis trials in ovarian cancer
5.3.1 Targeting the VEGF/VEGFR, PDGF/PDGFR, and EGF/EGFR axes
Several pericyte-endothelial combined targeted therapies in gynecological cancers have 
been evaluated in clinical phase II/III trials. Pazopanib, a non-specific tyrosine kinase 
inhibitor with activity against VEGFR1, VEGFR2, VEGFR3, PDGFR-α, PDGFR-β, and c-Kit 
[248], showed prolonged progression-free survival in women with stages II-IV ovarian, 
fallopian tube, or peritoneal cancer, as compared to patients treated with placebo (17.9 
versus 12.3 months) in the AGO-OVAR 16 phase III trial [249]. Pazopanib in combination 
with paclitaxel treatment showed prolonged progression-free survival in platinum-
resistant ovarian cancer patients as compared to the placebo group (6.4 versus 3.5 

months) in the MITO-11 phase II trial [250]. Overall survival data of the AGO-OVAR 16 
and MITO-11 trials were not different with or without pazopanib treatment. Moreover, 
secondary endpoint measurements in the AGO-OVAR 16 trial did not show differences 
in health-related quality of life of patients treated with pazopanib as compared to the 
placebo group [251]. Clinical trials with erlotinib, a tyrosine kinase inhibitor of EGFR, 
as monotherapy or in combination with bevacizumab did not show effects in patients 
with ovarian cancer [252, 253].

5.3.2 Targeting the ANG/TIE axis
The TRINOVA-1 double-blind phase III clinical trial investigated the combination of 
paclitaxel with placebo or with trebananib, an ANG1- and ANG2-neutralizing peptibody 
that prevents their binding to the Tie2 receptor. A peptibody is the fusion protein of a 
peptide and an antibody to prolong biological activity of the peptide [254]. Treatment of 
patients with recurrent ovarian cancer with the combination of paclitaxel and trebananib 
showed minimal prolonged progression-free survival as compared to patients treated 
with paclitaxel and placebo (7.2 versus 5.4 months), whereas overall survival did not 
differ (19 versus 17.3 months). In the combined paclitaxel/trebananib patient group, 
treatment was discontinued more often and there was a higher incidence of edema 
(17% versus 6% and 64% versus 28%, respectively) [255]. On the other hand, treatment 
with paclitaxel/trebananib did not compromise quality of life of the patients [256].

5.3.3 Targeting the TGF-β/TGF-βR axis
Tasisulam, a TGF-β/TGF-β type I receptor kinase (ALK5) inhibitor, has been tested in two 
phase I clinical trials in patients with refractory or malignant solid tumors, including 
ovarian cancer, to determine the recommended dose for phase II trials [257, 258]. 
Following these trials, the multi-arm phase Ib study determined the maximum tolerated 
dose for safety of tasisulam combined with standard chemotherapy in patients with 
advanced solid tumors. This study included ovarian, cervical, uterine and endometrial 
cancer, which comprised only 6% of the total number of patients [259]. The phase 
II single-arm study of tasisulam in patients with platinum-resistant ovarian cancer 
demonstrated a progression-free survival of 1.9 months and an overall survival of 12.9 
months [260].

Trabedersen, a specific phosphorothioate antisense oligodeoxynucleotide that binds to 
TGF-β2 mRNA and thereby inhibits TGF-β2 protein synthesis, has been studied in phase 
I/II clinical trials in various types of cancers, including brain, prostate, pancreatic, and 
colorectal cancers [261]. To date, trabedersen and several tyrosine kinase inhibitors 
against the TGF-β pathway have been studied only in preclinical ovarian cancer models 
[127, 262].
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5.4 Clinical trials with anti-angiogenesis in cervical cancer
5.4.1 Targeting the VEGF/VEGFR, PDGF/PDGFR, and EGF/EGFR axes
Pazopanib, lapatinib (a tyrosine kinase inhibitor with activity against EGFR and HER2/
neu) or the combination of pazopanib and lapatinib treatment, were studied in the 
VEG105281 phase II open-label study in women with primary stage IVB or recurrent 
cervical cancer. Patients treated with pazopanib showed prolonged progression-free 
survival and significantly improved overall survival as compared to patients treated with 
lapatinib (18.1 versus 17.1 weeks and 50.7 versus 39.1 weeks, respectively). Combined 
therapy of pazopanib and lapatinib was excluded from the analysis because of the 
ineffectiveness and higher toxicity compared to monotherapy [263].

5.4.2 Targeting the ANG/TIE axis
To the best of our knowledge, clinical trials with inhibitors against the ANG/TIE axis 
have not been performed yet in patients with cervical cancer.
5.4.3 Targeting the TGF-β/TGF-βR axis
Tasisulam treatment in cervical cancer was tested in one phase I clinical trial, which 
included only 1 patient with cervical cancer [257], and one phase Ib clinical trial, which 
included 13 patients with ovarian, uterine, endometrial, or cervical cancer. The exact 
number of patients with cervical cancer was not indicated in this study [259]. As far as 
we know, other clinical trials of inhibitors against the TGF-β/TGF-βR axis have not been 
performed in cervical cancer patients.

5.5 Clnical trials in endometrial cancer
5.5.1 Targeting the VEGF/VEGFR, PDGF/PDGFR, and EGF/EGFR axis
Elevated VEGF expression is an independent prognostic factor for poor prognosis in 
endometrial cancer [264, 265]. However, carboplatin-paclitaxel-bevacizumab treatment 
of advanced and recurrent endometrial cancer in a randomized phase II trial (the MITO 
END-2 trial) did not affect progression-free survival significantly in comparison to 
carboplatin-paclitaxel [265, 266]. Only one study of pazopanib monotherapy to treat 
endometrial cancer has been reported so far. This PAZEC phase II non-randomized 
open-label study in chemotherapy-resistant patients or patients with a contraindication 
for chemotherapy, included a case report of a 57-year-old patient with FGF receptor 
2 (FGFR2)-positive recurrent metastatic endometrial cancer demonstrating a positive 
response to pazopanib monotherapy [267]. The patient, who suffered from abdominal 
wall metastasis, was free from metastases of the abdominal wall and intestines after 
pazopanib treatment and was still in complete remission 30 months after pazopanib 
discontinuation [267]. Data of the PAZEC study has not been published yet.

5.5.2 Targeting the ANG/TIE axis
Trebananib treatment has been evaluated in a single-arm clinical trial including 32 
persistent/recurrent endometrial cancer patients. The progression-free survival and 
overall survival were 2.0 and 6.6 months, respectively. One patient showed a partial 

response, 8 patients had stable disease and 5 patients had 6 months event-free survival. 
Unfortunately, trebananib monotherapy was not efficacious enough to warrant further 
studies [268].

5.5.3 Targeting the TGF-β/ TGF-βR axis
Tasisulam treatment of endometrial cancer was tested in only a small number of 
patients with cervical cancer. Tasisulam treatment in endometrial cancer was tested 
in two phase I clinical trials, which included 1 patient with endometrial cancer [257, 
258], and one phase Ib clinical trial, which included 13 patients with ovarian, uterine, 
endometrial, and cervical cancer. The exact number of patients with endometrial cancer 
was not indicated [259]. As far as we know, other trials with inhibitors against the TGF-β/
TGF-βR axis have not been performed in patients with endometrial cancer.

6. TARGETING THE ESTABLISHED 
TUMOR VASCULATURE WITH VASCULAR 
DISRUPTING AGENTS
Vascular disrupting agents (VDAs) are a new class of anti-blood vessel drugs that 
are aimed to target ECs of established tumor vasculature. Structural and functional 
differences between tumor vessels and non-tumor vessels allow selective vascular 
targeting. In contrast to non-tumor vessels, the tumor vasculature is often fragile, leaky, 
and has an abnormal blood flow [121, 269]. Two types of VDAs have been tested [270]. 
The first types are VDAs such as combretastatin A4-phosphatase (CA4P) that disrupt the 
microtubular cytoskeleton and endothelial cell-cell junctions in tumors by targeting the 
colchicine-binding domain of β-tubulin, which leads to rounding up of ECs and a collapse 
of the immature tumor vasculature. This deprives the tumor of oxygen and nutrients 
and ultimately leads to ischemia and necrosis of the tumor mass [271]. Given the fact 
that the cytoskeleton is vital for EC functions such as proliferation, migration, and 
barrier function, treatment with VDAs may be successful in the treatment of (advanced) 
cancers [272-274]. The second type of VDAs are flavonoids [270] that target ECs in 
tumors via DNA-damaging effects and induce EC apoptosis. The exact mechanism of 
action that leads to EC apoptosis is not known [275].

The efficacy of VDA treatment has limitations because mature blood vessels in the 
periphery of tumors are not affected by VDAs. In contrast to immature vessels in the 
center of the tumor mass, ECs of mature vessels in the tumor periphery have a tight 
pericyte coverage, ensuring vessel stabilization [35, 122, 276, 277]. ECs in the periphery 
are less dependent on the tubulin cytoskeleton for their structure and function, but 
are rather dependent on actin filaments to support their cytoskeleton [271, 278]. 
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Consequently, cancer cells in the periphery of tumors are still provided with oxygen 
and nutrients and remain viable after VDA treatment. Several attempts have been made 
to overcome tumor resistance against EC-targeting VDAs. Chen et al. described the 
pericyte-targeting VDA called Z-GP-DAVLBH, which is activated by fibroblast activation 
protein α (FAPα). FAPα is specifically expressed on the plasma membrane of CAFs and 
pericytes of epithelial cancers and has low or undetectable expression in normal adult 
tissues [279, 280]. Z-GP-DAVLBH has been proposed as a VDA that selectively destroys 
the cytoskeleton of FAPα-expressing tumor pericytes, disrupting the blood vessels in 
both center and periphery of tumors. This was confirmed in multiple lines of xenografts 
[281]. In addition, it was shown by Foley et al. that the VDA called (S)-2-amino-N-(2-
methoxy-5-(5-(3,4,5-trimethoxyphenyl)isoxazol-4-yl)phenyl)-3-phenylpropanamide 
hydrochloride (STA-9584), targets vessels in both center and periphery in tumor 
xenografts in vivo, but this study did not have a follow-up yet [282].

Combination treatment of VDAs with anti-angiogenesis compounds, pericyte- and 
EC-targeting VDAs, or of VDAs and conventional chemotherapeutic agents may be an 
efficient treatment option [283]. Combination treatment of VDA and the mammalian 
target of rapamycin (mTOR) inhibitor temsirolimus may be an option to delay tumor 
recurrence after VDA treatment due to upregulation of HIF1α expression as the mTOR 
inhibitor prevents this [284].

Here we describe the human clinical trials of VDAs in ovarian cancer and cervical cancer. 
To date, there are no trials of either type of VDA in endometrial cancer, nor were 
patients with endometrial cancer part of basket trials for solid tumors.

6.1 Clinical trials of VDAs in ovarian cancer
6.1.1 Combination of VDAs and chemotherapy
The safety of combining CA4P with standard doses of carboplatin and paclitaxel was 
tested in a three-arm phase Ib dose escalation and pharmacokinetic study. CA4P is the 
only VDA that has been developed to treat ovarian cancer so far [285]. The combination 
with carboplatin and/or paclitaxel appeared to be safe. Pharmacological interactions 
between these drugs was not found, and 7 out of 18 patients with ovarian, fallopian 
tube, and peritoneal cancer showed a response according to the Response Evaluation 
Criteria In Solid Tumors (RECIST) and/or CA-125 criteria [286]. This study was followed 
by a single-arm phase II trial in which 18 patients with relapsed or platinum-resistant 
ovarian cancer received CA4P at 18-20 h prior to carboplatin and paclitaxel treatment. 
The addition of CA4P to carboplatin and paclitaxel treatment resulted in a response 
rate of 29% of this heterogeneous group of patients according to RECIST and/or CA-125 
criteria [287].

6.1.2 Combination of VDAs with anti-angiogenic compounds
The dose escalation and pharmacokinetic study of CA4P in combination with 
bevacizumab was tested in a single-arm phase I trial in 15 patients with advanced 
cancer, including 4 patients with ovarian cancer. The combination of CA4P with 
bevacizumab was safe and well tolerated. Two patients with ovarian cancer exhibited 
stable disease and 2 patients had progressive disease according to RECIST. Among the 
patients with ovarian cancer, one patient showed a response by CA-125 criteria that 
lasted for over a year. The anti-vascular activity of CA4P in the presence or absence 
of bevacizumab was analyzed with the use of dynamic contrast-enhanced magnetic 
resonance imaging (DCE-MRI). DCE-MRI showed that CA4P alone increased vessel 
density in the tumors whereas anti-vascular effects were found after treatment with 
CA4P in combination with bevacizumab [288]. The GOG-186-I open-label randomized 
phase II trial investigated treatment with the single agent bevacizumab as compared to 
bevacizumab in combination with CA4P in women with persistent or recurrent ovarian, 
fallopian tube, or peritoneal cancer [289]. Patients treated with the combination of 
CA4P and bevacizumab showed prolonged progression-free survival as compared to 
patients treated with bevacizumab monotherapy (7.3 versus 4.8 months). The overall 
response rate was similar in patients treated with bevacizumab alone and with CA4P and 
bevacizumab. However, patients treated with the combination of CA4P and bevacizumab 
developed hypertension more often than patients treated with bevacizumab alone (35% 
versus 20%). [289]. Hypertension and adverse cardiovascular events are side effects 
both of CA4P and other anti-angiogenic therapy [290]. No treatment-related deaths 
were observed in this study.

6.2 Clinical trials of VDAs in cervical cancer
The flavonoid 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is the only VDA 
that has been tested in patients with cervical cancer [291]. The dose escalation, 
pharmacokinetics, and anti-vascular effects of DMXAA were investigated in a single-
arm phase I trial in 63 patients with solid cancers, including 3 patients with cervical 
cancer. Tumor responses were analyzed by plain radiographs every 3 weeks and by 
computer tomography or ultrasound scans every 6 weeks. In general, DMXAA treatment 
showed anti-tumor activity at well-tolerated doses. One patient with metastatic cervical 
cancer showed a partial response after 8 courses (1100 mg/m2) [291]. Other clinical 
trials with (flavonoid) VDAs have not been reported thus far in patients with cervical 
cancer, which does not exclude the existence of unpublished negative studies as was 
indicated recently by Daei Farshchi Adli et al [292].

Novel microtubule inhibitors are being developed, such as WX-132-18B [293], NOV202 
[294], plocabulin [295], vinyl sulfone [296], derivatives of quinaldine and carbazole 
[297], and ethoxy-erianin phosphate [298], but they have not been tested in clinical 
trials yet.
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7. TARGETING THE METABOLISM OF THE 
TUMOR VASCULATURE

7.1 Metabolic adaptation of ECs
Formation of new blood vessels by differentiated endothelial tip cells, stalk cells, and 
phalanx cells during angiogenesis (Fig. 1) is an energy-demanding process. In addition 
to genetic signals, a metabolic switch has been associated with EC differentiation [299]. 
In vitro and in animal models, it has been shown that ECs in general have a relatively 
high glycolytic activity, which is further increased during angiogenesis [299, 300], 
leading to metabolic characteristics similar to proliferative cancer cells [144, 197, 301-
303]. ECs take up glucose via glucose transporters (GLUT), mainly by GLUT-1, and it 
has been shown that VEGF increases GLUT-1 expression via the activation of the PI3K-
AKT signaling pathway [304]. In line with these observations, metabolic inhibitors are 
becoming attractive sensitizers to standard anti-cancer therapy [305-308]. Because 
angiogenesis depends on metabolism in EC, metabolic inhibitors can be regarded as 
anti-angiogenic agents as well.

The main limitation of previous studies on EC metabolism is that the models employed 
in these studies did not allow for appropriate discrimination between tip cells and 
other angiogenic phenotypes [299, 300, 309]. Therefore, the relative contribution and 
regulatory functions of metabolic pathways in tip cells and non-tip cells, respectively, 
could not be determined in these studies. However, metabolism in isolated fractions 
of tip cells and non-tip cells was studied recently in more detail with the use of an in 
vitro approach to identify and isolate CD34+ tip cells from CD34- non-tip cells in EC 
cultures[80, 310]. These studies have shown that both endothelial tip cells and non-tip 
cells use glycolysis as well as mitochondrial respiration for their energy demand, but 
that tip cells are less glycolytic as compared to non-tip cells [80]. Although glycolysis is 
significantly lower in tip cells, glycolysis is essential to maintain the tip cell phenotype 
and for the differentiation of tip cells from non-tip cells [310]. It has been postulated 
that ECs increase their glycolytic flux when switching from quiescence to proliferation 
[309]. However, more recently it was found that glycolysis as well as mitochondrial 
respiration are necessary for the proliferation of non-tip cells [80].

Although ECs are considered to be glycolytic, studies have suggested that mitochondrial 
respiration is essential for homeostasis and angiogenic capacity of the endothelium [311-
313], indicating metabolic flexibility in the pathways to generate adenosine triphosphate 
(ATP) [197, 302, 303, 314]. ECs are able to switch to mitochondrial respiration for their 
energy demand when anaerobic glycolysis is impaired, a condition referred as the 
Crabtree effect [315]. For example, it has been shown that inhibition of glycolysis in ECs 
induces a switch to mitochondrial respiration, inhibits cell proliferation, and enhances 
the oxidation of mitochondrial fuels (pyruvate, fatty acids, amino acids) [80, 310, 315, 

316]. Differentiated ECs and in particular tip cells are known to exhibit metabolic 
flexibility that is characterized by the ability to reversibly shift between substrates and/
or metabolic pathways to respond or adapt to conditional changes during sprouting 
angiogenesis [80, 310, 317, 318].

Hypoxia triggers angiogenesis, but it is also known as a biologically unbalanced status, 
referred as cycling hypoxia [319, 320]. During angiogenesis, migrating tip cells and 
proliferating stalk cells are both exposed to various microenvironmental conditions, 
such as areas with hypoxia or normoxia and areas with or without growth factors. 
In addition, ECs are well-equipped to metabolize mitochondrial-oxidizable substrates 
such as fatty acids and glutamine [321, 322]. Adaptation to such varying conditions 
in the microenvironment of the growing vessel requires the differentiated ECs to 
have a flexible metabolism that can meet such fluctuations, and in vitro studies have 
shown that this is the case [80, 310]. The dynamic nature and the complexity of the 
metabolic networks in differentiated EC types (tip cells, stalk cells, and phalanx cells) 
during sprouting angiogenesis challenge/hamper the development of new effective 
anti-angiogenic therapy-based on targets of the metabolic pathways, either or not in 
combination with standard therapies.

7.2 Therapeutic targeting of tumor metabolism in combination with 
anti-angiogenesis therapy in gynecological cancers
Cancer cells have flexible adaptive responses to hypoxia and limited availability 
of nutrients. Metabolic adaptation of cancer cells is required for both malignant 
transformation and subsequent tumor development. Although aerobic glycolysis has 
been widely accepted as a common feature of metabolic adaptation of cancer cells, 
the so-called Warburg effect, recent studies have shown that mitochondrial respiration 
is also involved in the metabolic adaptation of cancer cells [302, 323]. As the tumor 
microenvironment contributes to adaptation of cancer cell metabolism and tumor 
vessel abnormalities impair the delivery and efficiency of current chemotherapeutic 
agents, targeting of the dysregulated metabolism in combination with anti-angiogenesis 
therapy may be effective to suppress tumor growth and metastasis [324, 325].

8. CONCLUSIONS

Recurrent and advanced epithelial ovarian cancer, cervical cancer, and endometrial 
cancer have a poor prognosis, and current systemic therapies have limited effectivity. 
Alternatively, anti-angiogenic agents have been FDA approved, of which bevacizumab is 
the most widely used drug in gynecological cancers [326]. However, survival benefit for 
patients with ovarian cancer, cervical cancer, and endometrial cancer is disappointing. 
Other strategies, such as dissociating pericytes from the tumor vasculature and targeting 
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both ECs and pericytes to overcome anti-VEGF therapy resistance, show more promising 
results in patients with gynecological cancers. However, these strategies have unwanted 
side effects because limited pericyte coverage of capillaries disrupt systemic endothelial 
integrity, causing vessel leakage, edema, and cancer cells to enter the vascular system 
to metastasize more easily [228]. Unfortunately, predictive biomarkers identifying the 
categories of patients who will benefit from targeted therapy against both ECs and 
pericytes are still missing. Newer anti-angiogenic strategies include tyrosine kinase 
inhibitors (drugs that target mediators of the signaling cascade of biological processes 
like cell growth, differentiation, and metabolism) and VDAs (drugs that target ECs of 
established tumor vasculature). Several tyrosine kinase inhibitors, administered as 
single agents or in combination with chemotherapy, showed only modest efficacy 
in ovarian cancer, cervical cancer, and endometrial cancer as well [327, 328]. VDAs 
targeting established vasculature have been tested in clinical trials for ovarian cancers 
only, in combination with chemotherapy or with other anti-angiogenic compounds. 
Again, patient survival was only modestly prolonged. Therefore, new avenues have to 
be found to render anti-angiogenesis agents including VDA successful. Combination 
therapies with metabolism-targeting therapeutics, ECM-targeting agents, and anti-
inflammatory agents are attractive options that warrant further investigation.
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