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Summary

The financial crisis of 2008, which led to a near collapse of the banking system and caused
enormous losses and damage to billions of people, challenged financial institutions, reg-
ulators, and researchers to offer more comprehensive explanations of its causes by re-
visiting their conventional approach. In the post-crisis era, there has been increasing
interest in using ideas from complexity theory to achieve a better understanding of finan-
cial markets. Concepts, such as regime shifts, interconnectedness, contagion, feedback,
and resilience, have entered the financial vocabulary, but the actual use of models and
results from complexity is still at an early stage. Moreover, while recent studies offer po-
tential for better monitoring and supervision of the financial system, little work has been
done on incorporating complexity tools in the pricing and risk management of individual
portfolios.

The dynamics of complex systems such as financial markets is recorded in time series
of activity of their constituting elements. One of the striking effects exhibited by financial
time series is sudden changes of behaviour, with the new behaviour often persisting for
several periods after the change. These regime shifts - prevalent in stocks, foreign ex-
change and interest rates, as well as in the behaviour of many macroeconomic variables
- may lead to dramatic changes in the market interactions and risk measures. Thus, the
identification of regime transitions is of great importance. In an attempt to account for
these phenomena, we propose a model for the evolution of exchange rates were drift and
volatility are allowed to switch between regimes. We use this model to generate scenar-
ios for counterparty exposure and evaluate the conceptual soundness by carrying out a
rigorous backtesting experiment against realised time series for a number of exchange
rates. The impact of using a regime-switching model on counterparty exposure is shown
to be profound for derivatives with non-linear payoffs.

A central role in understanding and modelling complex systems is played by net-
work science. Complex interactions between different assets and entities, which can be
extracted from financial time series or other data, are of great interest with regards to
risk management, as shocks may be amplified through strong cascading effects. One of
the key contributions of this thesis is the incorporation of contagion effects in portfolio
credit risk models using network theory. Systematic risk factors are augmented with a
contagious default mechanism which affects the entire universe of credits. Credit stress
propagation networks are constructed and contagion parameters are calibrated for in-
fectious defaults. The resulting framework is implemented on synthetic test portfolios
wherein the contagion effect is shown to have a significant impact on the tails of the loss
distributions. At a later stage we learn Bayesian networks of interactions between issuers,
and estimate the contagion effects following a systemic default. Different techniques to
learn the structure and parameters of Bayesian networks are studied and evaluated, with
the results confirming that the structures are robust. In order to investigate the impact
of these effects on credit losses, we carry out simulations and calculate the percentiles of

xi



xii Summary

the loss distribution in the presence of contagion.

One of the most important characteristics of networks is community structure, i.e.,
the occurrence of nodes that are more densely interconnected locally than with the rest
of the network. Communities reveal the intermediate organisation of nodes, and their
detection is crucial in the study of complex systems. We discuss a recent community
detection method for empirical correlation matrices and apply it to real time series data
on credit default swap spreads. We examine the emergent community structure and
investigate its evolution over time. A range of dependencies is uncovered which are
not immediately obvious from the standard sector and region taxonomy. We argue that
this result can be particularly relevant for optimisation and risk management of real
portfolios.



Samenvatting

De financiéle crisis van 2008, waarbij het bankensysteem bijna ineenstortte en miljarden
mensen de consequenties ervaarden, heeft instellingen, toezichthouders en onderzoe-
kers uitgedaagd om diepgaandere verklaringen te vinden voor de oorzaak ervan en om
de huidige methodes te herzien. In de periode na de crisis is de belangstelling voor het
gebruiken van ideeén afkomstig uit de theorie van complexe systemen om de financi-
éle markten beter te begrijpen erg toegenomen. Begrippen als regimeverschuivingen,
onderlinge verbondenheid, besmetting, feedback en veerkrachtigheid zijn al onderdeel
geworden van het financiéle vocabulaire, maar de daadwerkelijke toepassing van model-
len en resultaten uit de complexiteitsleer staat vooralsnog in zijn kinderschoenen. Daar
komt bij dat, hoewel recente studies de potentie bieden om het financiéle systeem beter
te monitoren en te controleren, er nog weinig werk is verricht om onderdelen uit de com-
plexiteitsleer te verwerken in de waardering en het risicobeheer van losse portefeuilles.
De dynamiek van complexe systemen, zoals de financiéle markten, is te observeren
in tijdsreeksen van de onderliggende elementen. Opvallende effecten die zijn terug te
vinden in deze financiéle tijdsreeksen, zijn plotselinge gedragsveranderingen, waarbij
het nieuwe gedrag meestal een langere periode na de verandering aanhoudt. Deze re-
gimeverschuivingen - veel voorkomend bij aandelen, wisselkoersen en rentes, maar ook
bij het gedrag van vele macro-economische variabelen - kunnen leiden tot heftige veran-
deringen in de interacties tussen markten en de te nemen risicomaatregelen. Zodoende
is het identificeren van regimeverschuivingen van groot belang. In een poging om deze
fenomenen te verklaren, introduceren we een model voor de ontwikkeling van wissel-
koersen waarin de drift en de volatiliteit van toestand kunnen wisselen. We gebruiken dit
model om scenarios te generen voor de blootstelling aan tegenpartijrisico en toetsen de
conceptuele correctheid door een rigoureuze backtest ten opzichte van daadwerkelijke
tijdreeksen van meerdere wisselkoersen uit te voeren. Het gebruik van een regimever-
schuivingsmodel blijkt vergaande gevolgen te hebben op de gemodelleerde blootstelling
aan tegenpartijrisico van derivaten met een niet-lineaire intrinsieke waarde.
Netwerkwetenschap speelt een centrale rol in het begrijpen en modelleren van com-
plexe systemen. Complexe interacties tussen activa en instellingen, welke kunnen wor-
den onttrokken aan financiéle tijdsreeksen of andere gegevens, zijn met het oog op ri-
sicomanagement zeer interessant, aangezien economische schokken versterkt kunnen
worden door een sterk domino-effect. Een belangrijke bijdrage van dit proefschrift is
de verwerking van besmettingseffecten in kredietrisico modellen voor portefeuilles, met
behulp van netwerktheorie. Systematische risico-factoren worden uitgebreid met een
overdraagbaar default mechanisme dat invloed heeft op het volledige universum van
kredieten. Krediet-stress-propagatie netwerken zijn gecreéerd en besmettingsparame-
ters zijn gekalibreerd voor overdraagbare defaults. Het raamwerk dat hieruit voortkomt
is geimplementeerd op kunstmatige test portefeuilles waarbij is aangetoond dat het be-
smettingseffect een significante impact heeft op de staarten van de verliesverdeling. In
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een later stadium trainen we Bayesiaanse netwerken op basis van de interacties tussen
uitgevende instellingen en maken we een inschatting van de besmettingseffecten die
volgen op een systematische default. Verschillende technieken om de structuur en de pa-
rameters van een Bayesiaans netwerk te leren zijn bestudeerd en geévalueerd, waarbij de
resultaten de robuustheid van de structuren bevestigen. Om de impact van deze effecten
op kredietverliezen te onderzoeken, doen we simulaties en berekenen we de percentielen
van de verliesverdeling waarbij sprake is van besmetting.

Een van de belangrijkste eigenschappen van netwerken is de clustervorming, dat
wil zeggen, de aanwezigheid van knopen die lokaal dichter met elkaar verbonden zijn
dan met de rest van het netwerk. Clusters onthullen de organisatorische structuur van
knopen op mesoscopische schaal en de detectie daarvan is cruciaal in de studie van
complexe systemen. We bespreken een recente cluster-detectie methode voor empiri-
sche correlatie matrices en passen dit toe op bestaande gegevens van tijdsreeksen voor
credit-default swap spreads. We onderzoeken de cluster structuur die hierbij ontstaat en
haar ontwikkeling als functie van de tijd. Meerdere afthankelijkheden zijn aangetoond
die niet direct voor de hand liggend zijn vanuit een standaard sector- of regiotaxono-
mie. Wij stellen dat dit resultaat in het bijzonder relevant is voor de optimalisatie en het
risicomanagement van echte portefeuilles.



Introduction

The global financial crisis laid bare the significant drawbacks of traditional economic
and financial models, as these were unable to explain the events that took place in the
economy and financial markets in a plausible and realistic manner. In November 2010
Jean-Claude Trichet, then President of the European Central Bank (ECB), pointed out the
following during his opening address at the ECB Central Banking Conference:

When the crisis came, the serious limitations of existing economic and fi-
nancial models immediately became apparent. As a policy-maker during the
crisis, I found the available models of limited help. In fact, I would go further:
in the face of the crisis, we felt abandoned by conventional tools.

At the same speech, Trichet challenged the scientific community by highlighting the
need to introduce drastically innovative tools in order to complement the existing mod-
elling approaches, tapping into the progress made by scientists developing techniques
for the study of complex dynamic systems. Almost a decade later, complexity related
concepts such as tipping points, networks, and contagion have entered the financial and
regulatory dictionary [1]. However, the effort for incorporating techniques from com-
plexity theory into models used for pricing and risk management of individual portfolios
remains challenging.

The purpose of this thesis is to take up this challenge and develop novel risk manage-
ment models which would view financial markets as complex systems prone to sudden
and major changes while consisting of many interacting nodes. A question that remains
central to this thesis is the amount of capital that a bank needs to hold to remain solvent.
Capital acts as a loss-absorbing cushion that covers losses related to a range of risk types.
Figure 1.1 illustrates how adequate capital prevents liabilities from exceeding assets. In-
sufficient capital buffers translate to a crisis-prone financial system, which would be in
need for regular bail-outs. A During the 2007-2009 crisis it became apparent that capital
buffers where not adequate for many banks. As a result, after suffering large losses, banks
were unable to extend credit, and thus a powerful feedback loop was created between
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Liabilities
Assets

Equity capital

Figure 1.1: A company is considered solvent at a particular time if the value of assets exceeds the value of its
liabilities. One of the key roles of risk management is to determine the amount of capital a bank is required to
hold as a buffer for future unexpected losses to ensure that it will remain solvent.

banking stress and the real economy. As Lord Turner, former Chairman of the UK Finan-
cial Services Authority, highlights in his review on the Global Banking Crisis ([2]): “ When
the crisis broke, banks did not have sufficient capital buffers to absorb losses, creating
the danger of a self-reinforcing feedback loop between weak lending capacity, economic
recession, and credit losses.” It is therefore critical to ensure that banking risks are suf-
ficiently capitalised for the protection of individual customers, as well as the society as
awhole. In response to the crisis, regulators have introduced a thorough and extensive
reinforcement of global bank standards, most notably through the Basel III and Basel
IV frameworks. Nevertheless, despite the numerous crucial improvements, the revised
capital framework still relies heavily on conventional modelling approaches.

In the present thesis, we develop techniques and tools that go beyond the current
practice. New tools from time-series and network theory are used along with a range
of real-world datasets to implement an integrated complex systems approach for risk
modelling and the calculation of capital buffers. This includes new methods of empiri-
cal analysis, and the development of new mathematical and computational tools. Our
effort is guided by emerging new conceptual paradigms such as network theory and data-
driven methods. By merging these ideas into practical simulation and risk measurement
tools, our aim is to build the foundations of a new paradigm within risk management.

1.1. The complex systems approach

In 1948 the mathematician Warren Weaver published an influential paper [3] in which
he introduced three notions of complexity to characterise natural systems: organised
simplicity, disorganised complexity, and organised complexity. Organised simplicity is
a property of the systems adequately described by a small number of degrees of free-
dom, the relationship between which can be described by simple, typically deterministic
functions; best example of such systems is the systems dealt with in classical mechan-
ics. These systems are usually analytically tractable, but when the number of degrees of
freedom exceeds exceeds a very small number, they become intractable. Disorganised
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complexity on the other hand characterises systems involving a very large number of
degrees of freedom which do not follow deterministic rules, such as the systems encoun-
tered in statistical mechanics. Within this class, simplification can be achieved through
the transition from the microscopic to the macroscopic level; description can overlook
single particle motion and instead focus on a small number of statistical averages. Indi-
vidual trajectories do not contribute to the description of the system and, in fact, can be
replaced by random variables following a distribution of possible trajectories.

Between these two extremes, Weaver identified a third notion which he called or-
ganised complexity. Systems characterised by organised complexity typically involve a
moderate to large number of degrees of freedom, by the interactions between which or-
der emerges spontaneously. The macroscopic properties of these systems cannot be seen
as averages over the properties of their individual degrees of freedom. As such, individual
elements may contribute far beyond their proportion to the behaviour at the aggregate
level of the system. This results in situations of diverse order or ordered heterogeneity,
where the system is amenable to neither analytical nor statistical treatment and different
approaches are necessary.

More than seventy years after the publications of Weaver’s paper, significant steps
have been taken towards the understanding of complex systems, the study of which
has emerged as a scientific field often termed complexity science. However, despite
the considerable progress, it remains challenging for scientists to agree upon a single
definition that captures all aspects of complexity. The inspired categorisation of Weaver
still appears to be the best definition of the purview of complexity science. Some widely
known examples of complex systems consisting of dynamic, interacting elements with
robust collective properties are ecological systems, brains, and cities.

The first one to conceive the economy as a complex system is thought to be Adam
Smith, who described the collective wealth and shared benefits of society as a process
emerging from the self-organised behaviour of individuals [4]. Early contributions on
complex systems in economics include [5, 6]. The majority of social and economic sys-
tems such as traffic flows, crowd behaviour, and financial markets can be viewed as
complex systems. Some groundbreaking publications on complex systems in social and
economic context can be found in (7, 8].

Complex systems are characterised by tipping points and regime transitions such
as epidemic spreading, power blackouts, and the collapse of financial markets. Sudden
changes of behaviour are one of the striking effects exhibited by financial time series, with
the new behaviour often persisting for several periods after the change. These regime
shifts - prevalent in stocks, foreign exchange and interest rates, as well as in the behaviour
of many macroeconomic variables - may lead to dramatic changes in portfolio losses and
risk measures. In addition, the frequency of extreme events observed in complex systems
is much higher than what is suggested by the Gaussian distribution assumed by many
standard models. The distribution of earthquakes, material failures, epileptic seizures,
and financial returns is distinctly non-normal. This further emphasises the importance
of the development of models that can account for these extremes for a complete risk
management framework.

The study of complex systems requires methods that span beyond the conventional
risk manager’s toolbox, such as data mining, non-linear dynamics, theory of critical tran-
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sitions, network theory, and agent-based modelling. In this thesis, much of the emphasis
in extending quantitative risk management is on network theory, considering that finan-
cial markets consist of interacting nodes such as companies and governments, each of
which is acting in the context of networks in which the behaviour of the node is not fixed,
but evolves in response to the behaviour of others. Network theory can provide us with
tools and insights that enable us to make sense of the complex interconnected nature
of financial systems. Following the global financial crisis crisis, network-based models
have been frequently used to study contagion phenomena [9-14] and measure systemic
risk [15-18]. However, despite the growing literature on network models in finance, their
actual use for risk management remains at a very early stage.

One of the most relevant features encountered in many complex systems is hierar-
chical structure. In his influential paper “The architecture of complexity" [5], Herbert A.
Simon argues that hierarchy is one of the main structural schemes used by the architect
of complexity. Simon defines as hierarchical system a system consisting of sub-systems
that are complex systems which in turn consist of complex systems themselves. Resolv-
ing the organisation of a complex system’s constituting units at the mesoscale, i.e. at an
intermediate level between the microscopic dynamics of individual units and the macro-
scopic dynamics of the system as a whole is an active topic in complex systems research.
In network representations this amounts to identifying groups of nodes which are tightly
connected to each other inside the group and loosely connected to the rest of the nodes
in the network. A large interdisciplinary community of scientists has been working on
solving this very hard problem over the past few years; a review of the most methods
developed can be found in [19]. In risk management, where we often have to deal with
high-dimensional vectors of risk factors, resolving the structure of financial markets can
provide valuable insights.

1.2. Quantitative risk management
In the Concise Oxford English Dictionary risk is defined as “hazard, a chance of bad
consequences, loss or exposure to mischance”. With financial risk in mind, McNeil, Frey,
and Embrechts [20] find the definitions “any event or action that may adversely affect
an organisation’s ability to achieve its objectives and execute its strategies” and “the
quantifiable likelihood of loss or less-than-expected returns” relevant. Although all these
definitions cover certain of the key elements of risk, it is impossible to capture all of its
aspects in a single one-sentence definition. However, it is clear that risk is strongly related
to uncertainty about future events.

This thesis is concerned about methods and techniques to measure and model finan-
cial risk, which is part of the risk management process. In an attempt to explain what risk
management is really about, H. Felix Kloman [21] writes:

What is risk management? To many analysts, politicians, and academics it
is the management of environmental and nuclear risks, those technology
generated macro-risks that appear to threaten our existence. To bankers and
financial officers it is the sophisticated use of such techniques as currency
hedging and interest-rate swaps. To insurance buyers or sellers it is coordi-
nation of insurable risks and the reduction of insurance costs. To hospital
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administrators it may mean “quality assurance”. To safety professionals it is
reducing accidents and injuries.

According to Kloman, risk management as the range of techniques that we are be-
ginning to use to manage our lives and organisations more efficiently in the face of
“unprecedented uncertainty”. In short, risk management is a discipline for ensuring
resilience to future events that may cause adverse effects. It is important to note that
financial institutions are not passive towards risk. In fact they are actively pursuing risk
in order to generate returns, since risk is what drives returns. As such, risk management
is a fundamental competence of financial institutions.

The focus of this thesis is on credit risk, one of the most important types of financial
risk. Credit risk is the risk of losses arising from the failure of a borrower or a counterparty
to fulfil its contractual obligations. This includes both default risk and the risk of losses
due to the downgrade of a counterparty in a rating system. Default is the actual failure
of a borrower or counterparty to fulfil their obligation, for example to repay their loan or
pay interest on a loan or bond.

Credit risk is ubiquitous in bank portfolios. It is clear that instruments such as loans
and bonds are subject to credit risk. It may be less clear, but over-the-counter (OTC)
derivatives such as forwards and interest rate swaps1 are also subject to credit risk, since
default of one of the contracted parties may significantly affect the payoff of the transac-
tion. In addition, there is a dedicated market for credit derivatives such as credit default
swaps, which will be introduced later in the thesis.

The management of credit risk involves a range of activities. First and foremost, banks
need to determine the amount of capital they require in order to absorb credit-risk related
losses. Apart from capital calculations, it is important for banks to diversify and optimise
their portfolios of credit-risky instruments with risk-return considerations. As far as
credit derivatives are concerned, banks need credit risk management to price and hedge
their trades as well as to manage collateral. Finally, the global financial crisis highlighted
the significance of counterparty credit risk management in the OTC derivatives portfolios.
Some of the banks heavily involved in OTC derivative transactions realised huge losses or
—in the case of Lehman Brothers— even collapse. Counterparty credit risk management
is now a key focus for all banks and at the centre of many recent regulatory developments.

1.2.1. Credit risk variables
A challenge inherent in credit risk modelling is that default events are rare and they
occur unexpectedly. When they do occur, however, defaults lead to major losses, the size
of which is not known beforehand. The main focus of risk management within banks
lies in the possibility of these extreme losses, rather than on traditional financial risk
measurement.

When measuring the risk of losses over a fixed time horizon, typically one year, we
are mainly concerned with the probability that an issuer? or a counterparty will default
by the time horizon, a quantity known as probability of default or PD. The probability of

A forward is a non-standardised contract between two parties to buy or sell an asset at a certain future time
for a certain price. An interest rate swap is a contract involving exchange of interest payments between two
parties. For more details see [22]

2An issuer is a legal entity that develops, registers and sells securities to finance its operations.
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Figure 1.2: In order to determine the exposure for an OTC derivative transaction typically one has to simulate the
future state of all underlying risk factors, and evaluate the value of the transaction on that state. By doing this for
alarge number of paths and time points, a future exposure distribution is obtained. The figure shows simulated
Monte Carlo paths from time ¢ = f that are transformed into an exposures by calculating the transaction value
at all the simulated states.

default is strongly related to the credit quality and its measurement is often the first step
in credit risk management. In cases where the loss depends on the exact time that default
takes place, such as OTC derivatives, it is necessary to consider the entire distribution of
default times rather than just the probability of default occurring within a fixed period

When a bank is offering a loan or buying a bond, it is quite straightforward to de-
termine its exposure, since this consists mainly of the principal with some additional
uncertainty stemming from the possibility of missed interest payments. For OTC deriva-
tives however, determining the exposure is far more involved, since it is a stochastic
variable depending on the evolution of a range of factors and the exact time at which
default takes place. For the exposure to be determined typically one has to simulate the
future state of all underlying risk factors, and evaluate the value of the transaction on that
state, as illustrated in Figure 1.2. In practice the concept used is exposure-at-default or
EAD, which represents the extent to which the bank is exposed in the event of and at the
time of default.

Default does not necessarily imply that the entire exposure is lost. In case a residential
mortgage holder defaults, for example, the lender can sell the property that was used as
collateral and recover part of the exposure. Similarly, if a bond issuer defaults, the bond
holders are partly compensated for their losses by the sale of the issuer’s assets. The
percentage of loss incurred over the total exposure is known as loss-given-default or LGD.

EAD, PD and LGD are not independent quantities. For example, in a period of eco-
nomic distress when many residential mortgage holders default, house prices are also
likely to be low and, as a result, LGDs are likely to be correspondingly high. This is an
example of positive correlation between PDs and LGDs. Nevertheless, this dependence



1.2. Quantitative risk management 7

Frequency

EL UL Potential Losses

Figure 1.3: Potential losses are typically distinguished in Expected Losses (EL) which are relatively predictable
and covered by provisions, and Unexpected Losses (UL) which are less predictable and are covered by capital.
To determine how much capital is required to cover UL, risk managers usually apply a tail risk measure such as
Value-at-Risk (VaR) at a given confidence level « to the loss distribution obtained using a credit risk model.

not in the scope of this thesis.

1.2.2. Credit risk models
Credit risk models have two main uses: the analysis of instruments subject to credit
risk and the management of credit portfolios. For credit-risky instruments such as OTC
derivatives, the payoff of the transaction depends on the exact time of default. It is
therefore necessary to use dynamic models that study the evolution of risk as a stochastic
process over time. On the other hand, when credit risk models are used for portfolio
management the focus is mainly on determining the portfolio loss distribution for a fixed
period of time and computing the corresponding risk measures and capital on the basis
of this distribution. As a result, static distributional models are often sufficient.

Regardless of being static or dynamic, credit risk models can be classified in struc-
tural or firm-value on the one hand and reduced-form on the other hand. Structural
models originate from the model of Merton [23] and are concerned with the mechanism
by which default takes place. In Merton’s model default of a firm takes place if at the
end of a given period the value of its assets falls below the value of its liabilities. More
broadly, in structural models default takes place when a stochastic variable falls below a
critical threshold. Because of that structural models are often termed threshold models.
Reduced-form models leave the mechanism unspecified and model directly the time to
default.

With credit risk in mind, it is important to distinguish potential losses in Expected
Losses (EL) and Unexpected Losses (UL). Expected losses are relatively predictable and



8 1. Introduction

—— Independent defaults
—— Dependent defaults

o o o
o - -
[e3) o N

Frequency
°
o
[}

0.02

0.00

0 10 20 30 40 50 60
Number of defaults

Figure 1.4: The figure shows the loss distributions for two homogeneous portfolios consisting of one thousand
issuers with probability of default equal to 0.01. The blue line represents the distribution of defaults when inde-
pendence is assumed, while the distribution represented by the orange line is generated using the Asymptotic
Single Risk Factor Model ([24]) and assuming a correlation of 0.1. It can be seen that even when relatively low
correlation is introduced, the impact on losses can be dramatic.

their management is therefore straightforward. Banks typically cover expected losses
with provisions in their balance sheet. The focus of risk managers is mainly on losses that
exceed EL, as these pose a serious threat to capital. To determine how much capital is
required to cover UL, usually a risk measure is applied to the loss distribution obtained
using a credit risk model. The focus is on risk measure relating to the tail of the loss distri-
bution such as Value-at-Risk (VaR). VaR at a confidence level « is defined in such a way
such that the probability of a loss greater than VaR is at most a while the probability of a
loss less than VaR is at least 1 — . In other words, VaR at a confidence level « can be seen
as the (1 — a)-quantile of the loss distribution. Figure 1.3 provides a visual representation
of EL and UL for a stylised loss distribution.

A major concern in credit risk management is the occurrence of disproportionately
many defaults of different issuers in a particular period of time. As a result, the depen-
dence structure of the default events is a major issue in credit risk management. The
impact of default dependence in a loss distribution for a credit portfolio is critical. In
particular, increasing dependence is reflected in the loss distribution by a shift of the
distribution to the left and a longer right tail. This is illustrated by Figure 1.4, where the
loss distribution of a homogeneous portfolio consisting of one thousand independent
issuers is compared to the loss distribution of an otherwise similar portfolio where there
is dependence between defaults. As a result, modelling default dependence is a key issue.

It is important to note are two distinct sources of dependence between defaults. On
the one hand, performance of different issuers depends on certain common underlying
factors, such as interest rates or economic growth. These factors drive the evolution
of a company’s financial success, which is measured in terms of its rating class or the
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probability of default. On the other hand, default of an issuer may, too, have a direct
impact on the probability of default of a second dependent issuer, a phenomenon known
as contagion. Through contagion, economic distress initially affecting only one issuer
can spread to a significant part of the portfolio or even the entire system. An example of
such a transmission of pressure is the Russian crisis of 1998-1999 which saw the defaults
of corporate and sub-sovereign issuers heavily clustered following the sovereign default
[25].

1.3. Challenges that we attempt to tackle

The techniques and tools developed in this thesis go beyond current practice and address
some of the key challenges in risk management that have been raised repeatedly by critics.
In the following we elaborate on these issues, as they where outlined by McNeil, Frey, and
Embrechts [20].

Extremes matter. A paramount challenge in risk management is the need to handle
unexpected, abnormal or extreme outcomes, rather than the expected, normal or average
outcomes in contrast with many traditional applications. In financial markets, as in other
complex systems, extreme values occur much more frequently than what normal models
would suggest. This is in line with the view expressed by the former Chair of the Federal
Reserve of the United States, Alan Greenspan, during the Joint Central Bank Research
Conference in 1995:

From the point of view of the risk manager, inappropriate use of the normal
distribution can lead to an understatement of risk, which must be balanced
against the significant advantage of simplification. From the central bank’s
corner, the consequences are even more serious because we often need to
concentrate on the left tail of the distribution in formulating lender-of-last-
resort policies. Improving the characterisation of the distribution of extreme
values is of paramount importance.

More than a decade after Greenspan, Lord Turner expressed a similar view in his
review of the global banking crisis [2]:

Price movements during the crisis have often been of a size whose probabil-
ity was calculated by models (even using longer term inputs) to be almost
infinitesimally small. This suggests that the models systematically under-
estimated the chances of small probability high impact events. Models fre-
quently assume that the full distribution of possible events, from which the
observed price movements are assumed to be a random sample, is normal
in shape. But there is no clearly robust justification for this assumption and
it is possible that financial market movements are inherently characterised
by fat-tail distributions.

The largest part of this thesis is dedicated to the development of models that depart
from the Gaussian framework and account for phenomena such as heavy tails, volatility,
and extreme values. This effort is taking place whether the concern is the distribution of
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individual risk factors for counterparty credit risk or the distribution oflosses in a credit
portfolio.

The interdependence of risks. Another major challenge is introduced by the multivari-
ate nature of risk. In general, we are concerned about some expression of total risk that
is dependent on high-dimensional vectors of underlying risk factors such as individual
credit spreads or counterparty default indicators. In this multivariate modelling set-up,
what presents a particular challenge is the ability to accommodate for situations where
extreme outcomes are dependent. In other words, it is essential to account for scenarios
where many of these factors move against us concurrently, for instance multiple issuers
default at a given period of time. In connection to this the below quote is found in Busi-
ness Week, September 1998.

Extreme, synchronised rises and falls in financial markets occur infrequently
but they do occur. The problem with the models is that they did not assign a
high enough chance of occurrence to the scenario in which many things go
wrong at the same time — the “perfect storm” scenario.

State-of-the-art models used in industry assume a Gaussian dependence structure
which underestimates the probability of joint large movements of risk factors. This under-
estimation may have tremendous implications for the performance of risk-management.
Practitioners have considered alternative copulas with more extreme tail-dependence in
order to obtain more heavy-tailed loss distributions. In this case however, the joint dis-
tribution is defined a priori by the choice of the copula function. In this thesis we argue
that instead of considering an alternative copula, it is necessary to consider an entirely
different channel of dependence known as contagion and view portfolios as networks.

More than a decade ago, in his speech “Why banks failed the stress-test”, Bank of
England banker Andrew G. Haldane expressed the view that regulatory requirements
need to adjust for network considerations:

Any asset portfolio is, in essence, a financial network. So the balance sheet of
alarge financial institution is a network, with nodes defined by the assets and
links defined by the correlations among those assets. The financial system
is similarly a network, with nodes defined by the financial institutions and
links defined by the financial interconnections between these institutions.
Evaluating risk within these networks is a complex science; indeed, it is the
science of complexity. When assessing nodal risk, it is not enough to know
your counterparty; you need to know your counterparty’s counterparty too.
In other words, there are network externalities.

In financial networks, these externalities are often referred to as contagion
or spillovers. There have been many examples of such spillover during this
crisis, with Lehman Brothers’ failure a particularly painful one. That is why
there have been recent calls to calibrate regulatory requirements to these risk
externalities.

The network externalities mentioned by Haldane were also identified as one of the rea-
sons that contributed to the global financial crisis by Lord Turner:
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The models used implicitly assume that the actions of the individual firm,
reacting to market price movements, are both sufficiently small in scale as
not themselves to affect the market equilibriums, and independent of the
actions of other firms. But this is a deeply misleading assumption if it is
possible that developments in markets will induce similar and simultaneous
behaviour by numerous players.

Today, more than a decade after the crisis, little progress has been made in incorpo-
rating network effects in models for capital calculations.

The problem of scale. A further important challenge is the scale of the considered port-
folios. In many cases, it is likely that the considered portfolios contain the entire position
of a bank in credit-risky instruments. This renders the calibration of comprehensive
models for all the considered risk factors nearly impossible with dimension reduction
the only plausible approach. In order to achieve this dimension reduction, one must be
able to identify the key risk drivers in an efficient manner and focus on modelling these.

In other words, an across-the-board approach needs to be adopted. In the context
of portfolio credit risk models, the interest lies in capturing the dependence between
defaults rather than identifying the mechanism by which each individual default takes
place. It is common practice to start from financial return time-series and attempt to
calibrate a parsimonious factor model which captures the same dependence structure.
These factors, however, in most industry models are not statistical but rather assigned
by economic arguments such as geography and industry sector. This raises the ques-
tion of how much confidence can be placed in the model parameters derived in such a
way and how confident can one be on the weight of the systematic risk component, i.e.
the risk influencing all issuers. In other model specifications, statistical factors are de-
rived using principal component analysis (PCA), a dimensionality reduction technique.
However, PCA does not directly address the objective of identifying certain unobservable
factors accounting for the correlation structure between the observed variables; at best,
it provides an approximation to the required factors ([26, Section 7.3]). In this thesis, we
use the community structure of the credit market to obtain representative factors that
capture dependencies beyond the standard industry sector and geographic region factor
specifications.

1.4. Outline of the thesis

In Chapter 2 the main focus in on the challenge presented by the presence of extreme
outcomes in the evolution of foreign exchange rates which are among the most impor-
tant risk factors for counterparty exposure. The widely used Geometric Brownian Motion
(GBM) is not able to capture stylised facts of financial time series such as volatility clus-
tering and heavy-tailedness in the returns distribution. Instead of using a process with
jumps or stochastic volatility for the modelling of exchange rates, we propose a data-
driven approach where the volatility and drift are able to switch between regimes, more
specifically they are governed by an unobservable Markov chain. Hence, exchange rates
are modelled as a hidden Markov models (HMMs) and scenarios for counterparty expo-
sure are generated using this approach. Backtesting results are presented for a number
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of exchange rates. The use of a regime-switching model is found to have a significant
impact on capital for derivatives with non-linear payoff.

Chapters 3 and 4 are concerned with the challenge presented by the interdependence
of risks. Chapter 3 presents a portfolio credit risk model that can account for default con-
tagion. State-of-the-art portfolio credit risk models assume that dependence between
defaults is fully captured by dependence on common underlying factors. This assump-
tion however has been questioned repeatedly in light of empirical evidence. As a result,
practitioners have traditionally relied on models with alternative copulas with more ex-
treme tail dependence or stressed correlations. A different approach is adopted here;
systematic risk factors are augmented with a contagious default mechanism which af-
fects the entire universe of credits. Stress propagation networks are constructed using
real credit spread data in order to estimate contagion effects. The resulting framework is
implemented on synthetic tests portfolios and the contagion effect is shown to increase
markedly the capital required to cover unexpected losses.

Chapter 4 extends the work presented in Chapter 3 by using Bayesian network meth-
ods to uncover the direct and indirect relationships between issuers and estimate con-
tagion effects. A range of techniques to learn the structure and parameters of financial
networks from real credit default swaps data are studied and evaluated. The methods are
demonstrated in detail in a stylised portfolio and the impact on standard risk metrics is
estimated. The impact on capital is found to be in line with the results of Chapter 3.

The mesoscale structure of the credit market is studied in Chapter 5, where the main
challenge addressed is the problem of scale. With credit default swap time-series data
as a starting point, a principled community detection technique for correlation matrices
is used to resolve the market community structure. The communities identified have
similarities that cannot be traced back to the standard “industry sector” or “geographic
region” taxonomies. The obtained groups are used as factors for capturing the depen-
dence structure in a model for capitalising risk from trading activities.

The results of the work presented in this thesis are summarised and discussed in
Chapter 6



Risk factor evolution for
counterparty credit risk under a
hidden Markov model

One of the key components of counterparty credit risk (CCR) measurement is generating
scenarios for the evolution of the underlying risk factors such as interest and exchange
rates, equity and commodity prices, and credit spreads. The geometric Brownian motion
(GBM) is a widely used method for modelling the evolution of exchange rates. An important
limitation of the GBM is that, due to the assumption of constant drift and volatility, stylised
facts of financial time series such as volatility clustering and heavy-tailedness in the returns
distribution cannot be captured. We propose a model where the volatility and drift are able
to switch between regimes, more specifically they are governed by an unobservable Markov
chain. Hence, we model exchange rates as a hidden Markov models (HMMs) and generate
scenarios for counterparty exposure using this approach. A numerical study is carried out
and backtesting results for a number of exchange rates are presented. The impact of using a
regime-switching model on counterparty exposure is found to be profound for derivatives
with non-linear payoff.

2.1. Introduction
One of the main factors that amplified the financial crisis of 2007-2008 was the failure to
capture major risks associated with over-the-counter (OTC) derivative-related exposures
[27]. Counterparty exposure, at any future time, is the amount that would be lost in
the event that a counterparty to a derivative transaction would default, assuming zero
recovery at that time. Banks are required to hold regulatory capital against their current
and future exposures to all counterparties in OTC derivative transactions.

A key component of the counterparty exposure framework is modelling the evolution

Parts of this chapter have been published in Risks 7, 66 (2019) [P1]
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of underlying risk factors, such as interest and exchange rates, equity and commodity
prices, and credit spreads. Risk Factor Evolution (RFE) models are, arguably, the most
important part of counterparty exposure modelling, since small changes in the under-
lying risk factors may have a profound impact on the exposure and, as a result, on the
regulatory and economic capital buffers. It is, therefore, crucial for financial institutions
to put significant effort in the design and calibration of RFE models and, in addition, have
a sound framework in place in order to assess the forecasting capability of the model.

Although the Basel Committee on Banking Supervision has stressed the importance
of the ongoing validation of internal models method (IMM) for counterparty exposure
[28], there are no strict guidelines on the specifics of this validation process. As a result,
there is some degree of ambiguity regarding the regulatory requirements that financial
institutions are expected to meet. In an attempt to reduce this ambiguity, [29] introduced
a complete framework for counterparty credit risk (CCR) model backtesting which is
compliant with Basel III and the new Capital Requirements Directives (CRD IV). A de-
tailed backtesting framework for CCR models was also introduced by [30], who expanded
the corresponding framework for Value-at-Risk (VaR) models by the Basel Committee
(31].

The most ubiquitous model for the evolution of exchange rates is the geometric Brow-
nian motion (GBM). Under GBM, the exchange rate dynamics are assumed to follow a
continuous-time stochastic process, in which the returns are log-normally distributed.
Although simplicity and tractability render GBM a particularly popular modelling choice,
it is generally accepted that it cannot adequately describe the empirical facts exhibited
by real exchange rate returns [32]. More specifically, exchange rate returns can be lep-
tokurtic, exhibiting tails that exceed those of the normal distribution. As a result, a
scenario-generation framework based on GBM may assign unrealistically low probabili-
ties to extreme scenarios, leading to the under-estimation of counterparty exposure and,
consequently, regulatory and economic capital buffers.

The main reason for the inability of GBM to produce return distributions with re-
alistically heavy tails is the assumption of constant drift and volatility parameters. In
this chapter, we present a way to address this limitation without entirely departing from
the convenient GBM framework. We propose a model where the GBM parameters are
allowed to switch between different states, governed by an unobservable Markov pro-
cess. Thus, we model exchange rates with a hidden Markov model (HMM) and generate
scenarios for counterparty exposure using this approach.

A HMM is a mathematical model in which the system being modelled is assumed
to follow a Markov chain whose states are hidden from the observer. HMMs have a
broad range of applications, in speech recognition [33], computational biology [34], ges-
ture recognition [35], and in other areas of artificial intelligence and pattern recognition
[36]. HMMs have gained significant popularity in the mathematical and computational
finance fields. The application of HMMs in financial and economic time-series was
pioneered by Hamilton in Hamilton (1988, 1989). Since then, a significant amount of lit-
erature has been published, focusing on the ability of HMMs to reproduce stylised facts
of asset returns [39-41], asset allocation [42-44], and option pricing [45-47].

Our work expands the counterparty exposure literature by introducing a hidden
Markov model for the evolution of exchange rates. We provide a detailed description
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of HMMs and their estimation process. In our numerical experiments, we use GBM and
HMM to generate scenarios for the Euro against two major and two emerging currencies.
We perform a thorough backtesting exercise, based on the framework proposed by [30],
and find similar performances for GBM and a two-state HMM. Finally, we use the gen-
erated scenarios to calculate credit exposure for foreign exchange (FX) options, and find
significant differences between the two models, which are even more pronounced for
deep out-of-the-money instruments.

The remainder of the chapter is organised as follows. Section 2.2 provides the fun-
damentals of HMMs, along with the algorithms for determining their parameters from
data. Section 2.3 gives background information on modelling the evolution of exchange
rates. Section 2.4 outlines the framework for performance evaluation of RFE models. A
numerical study is presented in Section 2.5. Finally, in Section 2.6, we draw conclusions
and discuss future research directions.

2.2, An introduction to hidden Markov models

The hidden Markov model (HMM) is a statistical model in which a sequence of obser-
vations is generated by a sequence of unobserved states. The hidden state transitions
are assumed to follow a first-order Markov chain. The theory of hidden Markov models
(HMMs) originates from the work of Baum et al. in the late 1960s ([48], [49]). In the rest of
this section, we introduce the theory of hidden Markov models (HMMs), following [50].

2.2.1. Formal definition of an HMM
In order to formally define a hidden Markov model (HMM), the following elements are
required:

1. N, the number of hidden states. Even though the states are not directly observed, in
many practical applications they have some physical interpretation. For instance,
in financial time-series, hidden states may correspond to different phases of the
business cycle, such as prosperity and depression. We denote the states by X =
{X1, X2, ..., Xn}, and the state at time ¢ by ¢q;.

2. M, the number of distinct observation symbols per state. These symbols repre-
sent the physical output of the system being modelled. The individual symbols are
denoted by V = {v;, vy, ..., Up}.

3. The transition probability distribution between hidden states, A = {a;}, where

aij=P|qi=Xjlgi=Xi], 1=i,j<N. @2.1)

4. The observation symbol probability distribution in state j, B = {b;(k)}, where

bj(k)=Plvattlg;=X;], 1<j<N,1<k<M. (2.2)

5.  The initial distribution of the hidden states, = = {7;}, where

ni=P[q1=Xi], 1<is<N. (2.3)
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The parameter set of the model is denoted by A = (A, B, 7). A graphical representation
of a hidden Markov model with two states and three discrete observations is given by
Figure 2.1.

Figure 2.1: A hidden Markov model (HMM) with two states and three discrete observations, where a; j is the
probability of transition from state X; to state X; and b; (k) is the emission probability for symbol vy in state

Xj.

In the case where there are an infinite amount of symbols for each hidden state, vy is
omitted and the observation probability b (k), conditional on the hidden state X, can
be replaced by

b;j(Oy) = P(O¢lg: = Xj).
If the observation symbol probability distributions are Gaussian, then

where ¢(-) is the Gaussian probability density function, and u; and o are the mean
and standard deviation of the corresponding state X;, respectively. In that case, the
parameter set of the model is A = (A, u,0,7), where u and o are vectors of means and
standard deviations, respectively.

2.2.2. The three basic problems for HMMs
The idea that HMMs should be characterised by three fundamental problems originates
from the seminal paper of Rabiner [50]. These three problems are the following:

Problem 1 (Likelihood). Given the observation sequence O = O;0,...07 and a model A =
(A, B, ), how do we compute the conditional probability P(O|A) in an efficient manner?

Problem 2 (Decoding). Given the observation sequence O = 010-...07 and a model A,
how do we determine the state sequence Q = ¢; g>...g7 which optimally explains the
observations?

Problem 3 (Learning). How do we select model parameters A = (A, B, ) that maximise
P(OIA)?

2.2.3. Solutions to the three basic problems
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Likelihood

Our objective is to calculate the likelihood of a particular observation sequence, O =
0,0, --- Or, given the model A. The most intuitive way of doing this is by summing the
joint probability of O and Q for all possible state sequences Q oflength T

P(OIA) = )_ P(OIQ,A)-P(QIA). (2.5)
allQ

The probability of a particular observation sequence O, given a state sequence Q =
MGz~ qr,is

T
[1PO:lg: M)

=1

b, (01) b, (02) -+ by (O1), 2.6)

P(OIQ, 1)

as we have assumed that the observations are independent. The probability of a state
sequence Q can be written as

PQIN) = T Aqiq2 Aqoqs " Aqr1qr- 2.7)

The joint probability of O and Q is the product of the above two terms; that is,

P(O,QIN) =P(0IQ, ) - P(QIA). (2.8)

Although the calculation of P(O|1) using the above definition is rather straightfor-
ward, the associated computational cost is huge.

Thankfully, a dynamic programming approach, called the Forward Algorithm, can be
used instead.

Consider the forward variable «; (1), defined as

a;(i)=P(0102--- Oy, q; = X;i|A). (2.9)

We can solve for a,(i) inductively using Algorithm 1.
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Algorithm 1 The Forward Algorithm

1. Initialisation:

a1()) =m;b;(01), 1<i<N. (2.10)
2. Induction:
N
ar1(j) = Za[(i)aij bj(0t+1), 1 = =T-1
i=1
1 < j<N (2.11)
3. Termination:
N
POV =) ar(). (2.12)
i=1
Correspondingly, we can define a backward variable B, (i) as
B1(i) =P(O410¢42---O7lq, = Xi, A). (2.13)
Again, we can solve for (i) inductively using Algorithm 2.
Algorithm 2 The Backward Algorithm
1. Initialisation:
Bri)=1, l1<isN. (2.14)
2. Induction:
N
Be()=) aijbjO)Bri1(j), t = T-1,T-2,.,1
j=1
1 = isN. (2.15)

Decoding
In order to identify the best sequence Q = {g; g2 - g} for the given observation sequence
0 ={0,0;---Or}, we need to define the quantity
0:i)= max P(qige---q;=1,0102---O(A). (2.16)
41,492, qr-1

vvvvvv

By induction, we have

O0r+1(j) = [ml?’-X6t(i)aij “bj(O¢41). (2.17)
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To actually retrieve the state sequence, it is necessary to keep track of the argument
which maximises Equation 2.17, for each ¢ and j. We do so via the array ¥;(j). The
complete procedure for finding the best state sequence is presented in Algorithm 3.

Algorithm 3 Viterbi algorithm

1. Initialisation:

01(0)
w1 (i)

7m;b;i(01), 1<i<N (2.18)
0. (2.19)

2. Recursion:

01()) = max [0-1(Daij] bj(0n),  2=<t=<T

<i

1<sj<sN (2.20)
W (j) = argmax [§,-1 (D) a; ] 2<t<T
1<isN
1<j<N. (2.21)
3. Termination:
P* = max [67(i)]
1<i<N
qr = argmin[d7(i)]. (2.22)
1<isN
4. Sequence back-tracking:
q;‘k :wt+l(q:+1)y = T_lr T_z)"')l- (223)

Learning

The model which maximises the probability of an observation sequence O, given a model
A= (A, B,m), cannot be determined analytically. However, a local maximum can be
found using an iterative algorithm, such as the Baum-Welch method or the expectation-
maximization (EM) method [51]. In order to describe the iterative procedure of obtaining
the HMM parameters, we need to define ¢(i, j), the probability of being at the state X;
at time £, and the state X; at time 7 + 1, given the model and observation sequence; that
is,

§e(Q, ) = P(qr = Xi, gr+1 = Xj10,A). (2.24)
Using the earlier defined forward and backward variables, ¢, (i, j) can be rewritten as

. ai(Daijbj(Op1)frer ()
Et(lr])_ P(O|A)

(2.25)
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We define

N
ye(@) =) &0, ) (2.26)
Jj=i

as the probability of being in state X; at time . It is clear that

T-1
Z Y:(i) = expected number of transitions from X;, and (2.27)
=i
T-1
¢:(i,j) = expected number of transitions from X; to X;. (2.28)

t=1

Using these formulas, the parameters of a HMM can be estimated, in an iterative man-
ner, as follows:

3
[

71 (i) = expected number of times in state X; at time ¢ = 1; (2.29)
T-1

Y &L ))

=i

T-1
Yy
t=i

expected number of transitions from X; to X; 2.30)
a expected number of transitions from X; ' ’

T
> Lo=u7:())

=1
T
2 v
t=1

_ expected number of times in state j and observing symbol vy 2.31)
B expected number of times in state j T

bj(k)

If A = (A, B, ) is the current model and A = (A, B, #) is the re-estimated one, then it
has been shown, by [48, 49], that P(OI)AL) > P(O|A).

In case the observation probabilities are Gaussian, the following formulas are used to
update the model parameters z and o

T
> vi(HO;
a = S 2.32)

T
2 ve))
=1

T
Y yi()NO,—u))?
6; = |[= : (2.33)

T
Y v
=1
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2.3. Modelling the evolution of exchange rates

As discussed in the introduction, the first step in calculating the future distribution of
counterparty exposure is the generation of scenarios using the models that represent
the evolution of the underlying market factors. These factors typically include interest
and exchange rates, equity and commodity prices, and credit spreads. This chapter is
concerned with the modelling of exchange rates.

2.3.1. Geometric Brownian motion
In mathematical finance, the geometric Brownian motion (GBM) model is the stochastic
process which is usually assumed for the evolution of stock prices [22]. Due to its sim-
plicity and tractability, GBM is also a widely used model for the evolution of exchange
rates.

A stochastic process, Sy, is said to follow a GBM if it satisfies the following stochastic
differential equation:

dStzuStdt+UStth, (2.34)

where W; is a Wiener process, and p and o are constants representing the drift and
volatility, respectively.
The analytical solution of Equation (2.34) is given by:

2
St:SOexp((u—%) t+UWt). (2.35)

With this expression in hand, and knowing that W; ~ N(0, 7), one can generate sce-
narios simply by generating standard normal random numbers.

2.3.2. A hidden Markov model for drift and volatility

One of the main shortcomings of the GBM model is that, due to the assumption of con-
stant drift and volatility, some important characteristics of financial time-series, such as
volatility clustering and heavy-tailedness in the return distribution, cannot be captured.
To address these limitations, we consider a model with an additional stochastic process.
The observations of the exchange rates are assumed to be generated by a discretised GBM,
in which both the drift and volatility parameters are able to switch, according to the state
of an unobservable process which satisfies the Markov property. In other words, the con-
ditional probability distribution of future states depends solely upon the current state,
not on the sequence of states that preceded it. The observations also satisfy a Markov
property with respect to the states (i.e., given the current state, they are independent of
the history).

Thus, we consider a hidden Markov model with Gaussian emissions A = (A, u, o0, 1),
as was presented in Section 2.2.1. We denote the hidden states by X = {X;, X, ..., Xn},
and the state at time ¢ as ¢g;. The unobservable Markov process governs the distribution
of the log-return process Y = {Y», ..., Y7}, where Y; = logS—t, t=2,..,T. The dynamics

-1
of Y are then as follows:

Yy =ul(q) +o(q)Zs, (2.36)
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a>(qy)
2

where u(q;) = (u(qt) - ) and Z; ~ N(0,1) are independent standard normal ran-

dom numbers.

The transition probabilities of the hidden process, as well as the drift and volatility
of the GBM, can be estimated from a series of observations, using the algorithms pre-
sented in Section 2.2. The number of hidden states has to be specified in advance. In
many practical applications, the number of hidden states can be determined based on
intuition. For example, stock markets are often characterised as “bull” or “bear”, based
on whether they are appreciating or depreciating in value. A bull market occurs when
returns are positive and volatility is low. On the other hand, a bear market occurs when
returns are negative and volatility is high. It would, therefore, be in line with intuition to
assume that stock market observations are driven by a two-state process. The number
of states can also be determined empirically; for example, using the Akaike information
criterion (AIC) or the Bayesian information criterion (BIC). Once the model parameters
have been estimated, scenarios can be generated by generating the hidden Markov chain
and sampling the log-returns from the corresponding distributions.

2.4. RFE model performance evaluation

2.4.1. Backtesting
In this sub-section, we give a brief overview of a framework for the backtesting of RFE
models. For a more detailed description, the reader is referred to [30]. Backtesting is
the process of comparing the distributions given by the RFE models with the realised
history of the corresponding risk factors. In accordance with regulatory requirements,
RFE models have to be backtested at multiple forecasting horizons, making use of various
distributional tests [28].

To test whether a set of realisations can reasonably be modelled as arising from a
specific distribution, we use the Probability Integral Transform (PIT) (see [52]), defined
as

Flxp) = f " fwdu, 2.37)

where x;, is the realisation of a random variable and f'(:) is its predicted density. Note that,
if one applies PIT using the true density of x,, to construct a set of values, it follows that
the distribution of the constructed set will simply be %/ (0,1). As a result, one is able to
evaluate the quality of the model f(-) for x,,, simply by measuring the distance between
the distribution of the constructed set and % (0, 1).

For a given set of realisations x;, of the risk factor to be tested, we set a starting
point fs;4-r and an ending point z,,4. The size of the backtesting window is then T}, =
tend — tstar:- 1f the time horizon over which we want to test our model is A, we proceed
as follows:

1.  Weset t = f5:4r:. We, then, calculate the PIT F(x;,4+4) of the realised value at ; + A
using the model risk factor distribution for that point. If an analytical expression is
not available, the distribution can be approximated numerically. This yields a value
Fi.
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2. We, then, move forward to f, = £ + A. We calculate F(x;,+A) using the model risk
factor distribution at £, + A and obtain a value F.

3. Werepeat the above, until t; + A = t,,,4.

This exercise yields a set {F,-}lK= » Where K is the number of steps taken. As mentioned

previously, if the empirical distribution of the realisations is the same as the predicted
distribution, then the constructed set {Fi}f: will be uniformly distributed.

In order to measure the distance d between the distribution of the constructed set
and % (0, 1) we can use a number of metrics, such as:

The Anderson-Darling metric:

dap f (Fe(x) = F(x))* w(F(x))dF (x)

1
w(x) = m, (2.38)

the Cramer-von Mises metric:

f (Fe(x) - F(x)* w(F(x))dF (x)

dcvm

w(x) = 1,or (2.39)
the Kolmogorov-Smirnov metric:

dis =sup|Fe(x) — F(x)|, (2.40)

where F, is the empirical and F is the theoretical cumulative distribution function. Note
that each of these metrics provides a single distance value d between the distribution of
the realised set and % (0,1). To obtain an understanding of whether this distance is ac-
ceptable, we simulate time-series using the model being tested. Although the simulated
time-series will follow the model by definition, there will still be some distance, d, due to
numerical noise. By repeating this experiment a sufficiently large number of times (say,
M), we can obtain a set {di}?’:’ , and approximate, numerically, its cgmulative distrib}ltion
function y(d). With w(d) in hand, we can assess the distance d, as follows: If d falls
in a range with high probability with respect to y(d), then the probability of the model
being accurate is high. By defining d), and d; as the 95th and the 99.99th percentiles,
respectively, we can obtain three colour bands for model performance:

¢ Greenband: d € [0,d,);
e Yellowband: de ldy,d;); and
o Red band: d € [d,,00).

An example of the three-colour scoring scheme is shown in Figure 2.2. The backtest-
ing process can be carried out for a set of time horizons, and for every horizon a single
result can be produced, in terms of a probability 1 (d) and a colour band.
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2.4.2. Long-term percentiles of distribution cones

Backtesting provides a statistical judgement of the performance of the model for rela-
tively short-term forecast horizons. Assessing the distribution cones of the risk factor
evolution provides insight into the behaviour of the model for long forecast horizons.
The high and low percentiles of the distribution cones need to be compared to the long-
term percentiles of the observed risk factor data. Please note that assessing the long-term
percentiles needs expert judgement to some extent, as it is difficult to statistically unam-
biguously state what the long-term percentile of a distribution cone should be.

Anderson-Darling Cramer-von Mises
800 800
> 600 oy 600
c c
UJ U.)
3 =}
o o
2 400 2 400
fr frg
200 --d 200 - d
95-percentile 95-percentile
-- 99.99-percentile -- 99.99-percentile
0 — 0
0 2 4 6 8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
dap devm

Frequency

0.05 0.10 0.15 0.20 0.25 0.30 0.35
dks

Figure 2.2: Examples of the three-colour scoring scheme. The model in the example receives yellow scores for
all three metrics, as dy < d < d.

2.5. Numerical experiments

2.5.1. Overview of data selections

In order to evaluate the performance of the HMM approach, we used the foreign ex-
change rates of the Euro against two G10 and two emerging-market currencies. We used
daily observations, between 1 January 2004 and 31 December 2016, for the following FX
rates:

e USD/EUR,
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° GBP/EUR,
. RUB/EUR, and
° MXN/EUR.

2.5.2. Selection of the number of hidden states
Choosing the appropriate number of hidden states fora HMM is not a trivial task. Two com-
monly used criteria for model comparison are the Akaike information criterion (AIC):

AIC = —2logL+2p, (2.41)
and the Bayesian information criterion (BIC):
BIC = -2logL+ plogT, (2.42)

where L is the likelihood of the fitted model, p is the number of free parameters in the
model, and T denotes the number of observations [53]. The number of free parameters
in a HMM with a Gaussian distribution for each hidden state is:

p=N*+2N-1, (2.43)

where N is the number of hidden states. Thus, in both criteria, the second term is a
penalty term which increases with increasing N. Compared to the AIC, the penalty term
of the BIC has more weight when T > e? and, therefore, the BIC often favours models
with fewer parameters than the AIC does.

A bank that uses internal models to measure exposure for capital purposes must use
at least three years of historical data for calibration, where the parameters have to be
updated quarterly or more frequently, if market conditions warrant. During the course
of backtesting, re-calibration of the RFE model parameters needs to be done at the same
frequency as for production to make the re-calibration effects visible [28]. Consequently,
in the backtesting exercise that follows (in Section 2.5.3), we use calibration blocks of three
years and move the block forward by one quarter every time.

To choose the appropriate number of hidden states, we calibrate HMMs with 2-5
states for each of the three-year blocks and calculate the AIC and BIC. The results are
shown in Figures 2.3-2.6. Based on the AIC results, the performance of HMMs with 2,
3, 4, or 5 states is almost the same for the emerging-market currencies. For USD/EUR,
models with higher number of hidden states seem to perform better while, for GBP/EUR,
the two-state model is preferable. However, based on the BIC, the HMM with two states
is the best candidate for all four currency pairs. Therefore, we focus on the HMM with
two states for the rest of our numerical experiments.

2.5.3. Model backtesting

We applied the backtesting algorithm (presented in Section 2.4) using observations be-
tween 1 January 2004 and 31 December 2016 for the selected FX rates. We used a calibra-
tion window T of three years with quarterly re-calibration (6. = 3 months). The length
of the backtesting window was T}, = 10 years and we tested model performance for time
horizons A of length 1 week, 2 weeks, 1 month, and 3 months.
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Figure 2.3: AIC and BIC for HMMs calibrated using USD/EUR time series.
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Figure 2.4: AIC and BIC for HMMs calibrated using GBP/EUR time series.

In order to generate scenarios of length A, the following steps were taken. At every
time point ¢ with 1 < ¢ < A and, given the current hidden state q; = X;, the next hidden
state g;+1 = Xj was chosen using the transition probability matrix A. The observation O,
was then generated, according to the corresponding emission probability distribution b;.
The initial hidden state gy was assumed to be the most probable state at the end of the
learning procedure.

Itis important to note that the backtesting procedure provides a statistical assessment
of the model performance for relatively short-term forecast horizons. For instance, a
backtesting window Tj, of 10 years and a time horizon A = 1 year would translate to only
10 independent points. As a result, the statistical relevance of the backtesting exercise
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Figure 2.5: AIC and BIC for HMMs calibrated using RUB/EUR time series.
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Figure 2.6: AIC and BIC for HMMs calibrated using MXN/EUR time series.

would be limited. In order to gain an insight into model behaviour for longer forecast

horizons, we consider the distribution cones of the risk factor evolution. The high and

the low percentiles of the distribution cones are compared to observed risk factor data.
In the following, we discuss the results obtained for each of the FX rates.

USD/EUR

Table 2.1 summarises the results of the backtesting exercise for USD/EUR, in terms of
probabilities as well as colour bands. When the forecasting horizon was 1 week, both the
GBM and the two-state HMM scored yellow under the Anderson-Darling and the Cramer—
von Mises metrics, and green under the Kolmogorov-Smirnov metric. For the two-week
forecasting horizon, both models obtained a yellow score under all three metrics. Finally,
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for the longer horizons (1 and 3 months), both models performed significantly better,
with green scores under all metrics. The backtesting results do not indicate any notable
difference in performance between the HMM and the GBM.

Table 2.1: Backtesting results for USD/EUR with calibration window T, = 3 years, frequency of re-calibration
6 =3 months, and backtesting window 7}, = 10 years. GBM, geometric Brownian motion.

. . GBM HMM2
Time Horizon
AD CVM KS AD CVM KS
1w 0.9783 0.9709 0.9192 0.9884 0.9846 0.9189
2W 0.9553 0.9507 0.9831 0.9744 0.9662 0.9890
1M 0.4849 0.5829 0.5620 0.6486 0.6957 0.6023
3M 0.3476 0.2130 0.1156 0.6145 0.4968 0.3397

In order to gain an insight into the performance of the models for longer time hori-
zons, we present, in Figure 2.7, the 5th and 95th percentiles of the forecast distributions
for a horizon of 7 years, between 2011 and end of 2016. It can be seen that the HMM gave
slightly more conservative forecasts, compared to the GBM, but the realised time-series
fell within the 90% probability region under both models, at the end of the 7 year period.

1.1

1.0

0.9

0.8 Realized
s & GBM 95%ile
g 0.7 —— GBM 5%ile
2 0 —— HMM2 95%ile

HMM2 5%ile

5\ 9 5 B 5 o
28> 29> 28> 29> 28> 20>
Year

Figure 2.7: Percentiles of long-term distribution cones for USD/EUR under GBM and HMM with two states.

GBP/EUR

The backtesting results for GBP/EUR are summarised in Table 2.2. The two models
achieved similar performance when the time horizon was 2 weeks or longer. When the
forecasting horizon was 2 weeks, both models scored yellow. In the 1-month horizon,
both models had green scores under the Anderson-Darling and Cramer—von Mises met-
rics, and a yellow score under the Kolmogorov-Smirnov metric. The scores were green
for both models under all metrics when the time horizon was 3 months. The greatest
difference between the two models was observed for the 1-week forecasting horizon,



2.5. Numerical experiments 29

where the two-state model performed significantly better, scoring green under all three
metrics, while the corresponding scores for GBM were yellow.

Table 2.2: Backtesting results for GBP/EUR with calibration window T, = 3 years, frequency of re-calibration
d¢ = 3 months, and backtesting window T}, = 10 years.

. . GBM HMM2
Time Horizon
AD CVM KS AD CVM KS
1w 0.9861 0.9816 0.9820 0.8698 0.9280 0.6391
2W 0.9936 0.9919 0.9964 0.9934 0.9920 0.9952
1M 0.9085 0.8965 0.9594 0.9299 0.9140 0.9726
3M 0.8702 0.8273 0.8716 0.8573 0.8014 0.8535

Figure 2.8 shows the 5th and 95th percentiles of the forecast distributions between
2011 and end of 2016. Similarly to the results for USD/EUR, HMM gave slightly more
conservative forecasts and the realised time-series fell within the 90% probability region
under both models, at the end of the 7 year period. However, in 2016, the realised time-
series fell outside the 95th percentile of the GBM distribution, while it was still within this
bound for the HMM.
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Figure 2.8: Percentiles of long-term distribution cones for GBP/EUR under GBM and HMM with two states.

RUB/EUR

Table 2.3 presents the results of the backtesting exercise for RUB/EUR. It can be seen
that both GBM and HMM did not perform very well when the forecasting horizon was
1 week, with HMM having yellow scores under every metric. The results were similar
for the 2 week forecasting horizon. In the longer time horizons, however, both models
performed better. HMM outperformed the one-state model GBM, achieving green scores
in the 1-month horizon. The scores were green for both models when the forecasting
horizon was 3 months.
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Table 2.3: Backtesting results for RUB/EUR with calibration window T, = 3 years, frequency of re-calibration
6 =3 months, and backtesting window T}, = 10 years.

. . GBM HMM2
Time Horizon
AD CVM KS AD CVM KS
1w 0.9991 0.9988 0.9988 0.9997 0.9996 0.9996
2W 0.9992 0.9989 0.9992 0.9996 0.9996 0.9988
1M 0.9830 0.9809 0.9446 0.9485 0.9457 0.8898
3M 0.5526 0.1406 0.0651 0.4399 0.3394 0.1624

Figure 2.9 shows the percentiles of the long-term distribution cones for RUB/EUR.
It is clear that the difference between GBM and HMM was more pronounced, with the
HMM vyielding significantly more conservative forecasts. The realised time-series was
close to the 95th percentile of the GBM distribution until mid-2014, exceeding it on a
number of occasions in 2011 and in 2013. Despite a sharp decline in 2015, the realised
time-series remained above the 5th percentile for both models throughout the 7 year
period.
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Figure 2.9: Percentiles of long-term distribution cones for RUB/EUR under GBM and HMM with two states.

MXN/EUR

Table 2.4 summarises the results of the backtesting exercise for MXN/EUR, in terms of
scores as well as colour bands. Both HMM and GBM had yellow scores for the shorter
time horizons (1 and 2 weeks), under all metrics. The models performed better for the
longer time horizons (1 and 3 months), achieving green scores. Figure 2.10 shows the
long-term distribution cones. Similar to the GBP/EUR case, we do not observe a clear
difference in performance between GBM and HMM with two states.
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Table 2.4: Backtesting results for MXN/EUR, with a 3-year calibration window, quarterly re-calibration, and
a 10-year backtesting window.

. . GBM HMM2
Time Horizon
AD CVM KS AD CVM KS
1w 0.9967 0.9955 0.995 0.9967 0.9956 0.9938
2W 0.9895 0.9864 0.9677 0.9841 0.9768 0.9742
1M 0.5185 0.5963 0.7136 0.5501 0.6071 0.6225
3M 0.7124 0.6643 0.4422 0.7045 0.7373 0.6563
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Figure 2.10: Percentiles of long-term distribution cones for MXN/EUR under GBM and HMM with two states.

2.5.4. Impact on credit exposure: a case study for FX options
Exposure at default (EAD)
Prior to presenting the case study on FX options, we provide a brief introduction to credit
exposure calculation. For a more detailed description, the reader is referred to [54] and
[55].

When a financial institution is permitted to use the IMM to calculate credit exposure,
the following steps need to be taken:

1.  Scenario Generation. Market scenarios are simulated for a fixed set of exposure
dates {tk}fcvzl in the future, using the RFE models.

2. Instrument Valuation. Instrument valuation is performed for each exposure date
and for each simulated scenario.

The outcome of this process is a set of realisations of credit exposure at each exposure
date in the future. One can then estimate the expected exposure EE; as the average
exposure at future date i, where the average is taken across all simulated scenarios of
the relevant risk factors.
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The Expected Positive Exposure (EPE) is defined as the weighted average of the EE
over the first year
min(1 year, maturity)
EPE = > EE; x Aty, (2.44)
k=1
where the weights A;, = 1. — t;._; are the proportion that an individual expected exposure
represents over the entire one-year time horizon.

In order to account for potential non-conservative ageing effects, a modification is
necessary. First, an Effective EE profile is obtained from the EE profile by adding the
non-decreasing constraint for maturities below one year. Effective EE can be calculated,
recursively, as follows:

Effective EE; = max {Effective EE;_;, EE;}, (2.45)

where the current date is denoted as ty and EE( equals the current exposure.
Effective EPE can, then, be calculated from the Effective EE profile, in the same way
that EPE is calculated from the EE profile:

min(l year, maturity)
Effective EPE = > Effective EE; x Aty. (2.46)
k=1
Finally, the Exposure at Default (EAD) is the product of a multiplier @ and the Effective
EPE
EAD = a x Effective EPE. (2.47)

The multiplier «, introduced by [56], is a correction coefficient that accounts for
wrong-way risk. Under the IMM, « is fixed at a rather conservative level of 1.4. How-
ever, banks using the IMM have an option to use their own estimate of @, with the prior
approval of the supervisor and a floor of 1.2.

Results

In order to study the impact of using a two-state HMM, instead of a GBM, on regulatory
and economic capital, we consider the case of FX call options on the RUB/EUR rate. The
rationale behind this choice was that the Russian currency suffered a crisis in 2014, which
will be included in our calibration data set.

Our starting date was 2 January 2016. We estimated the parameters of a GBM and a
two-state HMM, using three years of data (between January 2013 and December 2015).
Following the methodology presented in Section 2.5.4, we generated market scenarios
for the following set of future exposure dates:

{tk}?c:1 = {1 week, 2 weeks, 3 weeks, 4 weeks, 2 months, 3 months, 6 months, 9 months, 1 year}.
(2.48)
For each generated scenario and each exposure date, option valuation was performed
using the Garman-Kohlhagen model ([57]).
The value of a call option at time ¢ is given by the analytical formula

C,=S;e T T ONx+oVT-1)-Ke T IN(x), (2.49)

where



2.5. Numerical experiments 33

In(S;/K) + (ra—rp—(0%12))(T - 1)
ovT—t '

X

S; it the spot price of the deliverable currency at time ¢ (domestic units per foreign
unit),

K is the strike price of the option (domestic units per foreign unit),

T — t is the time to maturity,

r, is the domestic risk-free interest rate,

rristhe foreign risk-free interest rate,

o is the volatility of the spot currency price, and

N(-) = cumulative normal distribution function.

Note that, in the formula, both spot and strike price are quoted in units of domestic
currency per unit of foreign currency. As a result, the option price will be in the same
units, as well. In order to obtain the market value of a position in such an option, it is
necessary to multiply by a notional amount A in the foreign currency.

In our example, the foreign and domestic currencies are RUB and EUR, respectively.
In order to achieve a candid comparison of the two RFE models for the exchange rate,
we do not consider interest rate and volatility as risk factors for FX options. Instead, we
make the simplistic assumptions of ry = r¢ = 0 and constant volatility o = 0.15 (equal to
the supervisory volatility for foreign exchange options in the standardised approach, see
[58]). The notional amount A is set to RUB 100,000,000. The spot RUB/EUR exchange
rate on 2 January 2016 was Sp = 0.01263.

The credit exposure values for out-of-the-money (OTM) call options on the RUB/EUR
exchange rate, for a range of strike prices, are illustrated in Figure 2.11a. The impact of
using a two-state HMM, instead of a GBM, is shown in Figure 2.11b. These results are
summarised in Table 2.5. It is clear that exposure values under HMM exceeded the ex-
posure values under GBM markedly for deep-out-the-money options. This difference
would have a direct impact on how these positions would be capitalised against counter-
party default, with a difference that could exceed 400% for the strike price K = 0.023. It
is also important to note that, given the exchange rate movements over recent years, it is
not unrealistic for the moneyness of such options to change dramatically, leading to large
unexpected losses. For in-the-money call options, the two models produced identical
exposure values. Thus, these results are omitted from this chapter.
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Table 2.5: Credit exposure values for out-of-the-money (OTM) options on the RUB/EUR exchange rate.

Credit Exposure

Strike K Impact (%)
GBM HMM2
0.014 29,507.54 29,013.22 -1.68
0.015 13,684.44 12,838.95 —-6.18
0.016 5981.10 5939.89 -0.69
0.017 2598.64 3199.17 23.11
0.018 1207.04 1740.47 44.19
0.019 580.34 973.64 67.77
0.020 285.70 595.99 108.61
0.021 143.08 401.04 180.29
0.022 70.20 269.96 284.60
0.023 31.87 165.56 419.47
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Figure 2.11: Credit exposure values for out-of-the-money (OTM) call options on the RUB/EUR exchange rate
(a) and the impact of using a two-state HMM, instead of a GBM (b).

2.6. Concluding remarks

In this chapter, we presented a hidden Markov model for the evolution of exchange rates
with regards to counterparty exposure. In the proposed model, the observations of the ex-
change rates were assumed to be generated by a discretised GBM, in which both the drift
and volatility parameters are able to switch, according to the state of a hidden Markov
process. The main motivation of using such a model is the fact that GBM can assign
unrealistically low probabilities to extreme scenarios, leading to the under-estimation
of counterparty exposure and the corresponding capital buffers. The proposed model
is able to produce distributions with heavier tails and capture extreme movements in
exchange rates without entirely departing from the convenient GBM framework.

We generated exchange rate scenarios for four currency pairs: USD/EUR, GBP/EUR,
RUB/EUR, and MXN/EUR. A risk factor evolution model backtesting exercise was per-
formed, in line with Basel III requirements, and the percentiles of the long-term distribu-
tion cones were obtained. The performances of the one-state and two-state models (GBM
and the two-state HMM, respectively) were found to be very similar, with the two-state
model HMM being slightly more conservative. However, when the generated scenar-
ios were used to calculate exposure profiles for options on the RUB/EUR exchange rate,
we found significant differences between the results of the two models. These differences
were even more pronounced for deep out-of-the-money options.

Our study highlights some of the limitations of backtesting as a tool for comparing the
performance of RFE models. Backtesting can be a useful way to objectively assess model
performance. However, it can only be performed over short time horizons; with our
available data, we could perform a statistically sound test of modelling assumptions for
a time horizon of maximum length three months. It is, therefore, important to put effort
into the interpretation of backtesting results, before they are translated into conclusions
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about model performance. Our results show how two models with similar performances
in a backtesting exercise can result in very different exposure values and, consequently,
in very different regulatory and economic capital buffers. This can lead to regulatory
arbitrage and potentially weaken financial stability and, further, turn into a systemic risk.

The research presented in this chapter can be extended in a number of ways, such as
considering the evolution of risk factors other than exchange rates. Another topic worthy
of investigation is the enhancement of the backtesting framework presented by [30], by
considering statistical tests similar to the ones presented by [59] and [60]. Finally, an in-
teresting research direction is the development of an agent-based simulation model with
heterogeneous modelling approaches, with regards to the RFE models. This model could
potentially give valuable insights into the impact of heterogeneous models in financial
stability.



Incorporating contagion in
portfolio credit risk models using
network theory

Portfolio credit risk models estimate the range of potential losses due to defaults or deterio-
rations in credit quality. Most of these models perceive default correlation as fully captured
by the dependence on a set of common underlying risk factors. In light of empirical evi-
dence, the ability of such a conditional independence framework to accommodate for the
occasional default clustering has been questioned repeatedly. Thus, financial institutions
have relied on stressed correlations or alternative copulas with more extreme tail depen-
dence. In this chapter, we propose a different remedy - augmenting systematic risk factors
with a contagious default mechanism which affects the entire universe of credits. We con-
struct credit stress propagation networks and calibrate contagion parameters for infectious
defaults. The resulting framework is implemented on synthetic test portfolios wherein the
contagion effect is shown to have a significant impact on the tails of the loss distributions.

3.1. Introduction

One of the main challenges in measuring the risk of a bank’s portfolio is modelling the
dependence between default events. Joint defaults of many issuers over a fixed period of
time may lead to extreme losses; therefore, understanding the structure and the impact
of default dependence is essential. To address this problem, one has to take into consid-
eration the existence of two distinct sources of default dependence. On the one hand,
performance of different issuers depends on certain common underlying factors, such as
interest rates or economic growth. These factors drive the evolution of a company’s finan-
cial success, which is measured in terms of its rating class or the probability of default.
On the other hand, default of an issuer may, too, have a direct impact on the probability

Parts of this chapter have been published in Complexity 2018 (2018) [P2]
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of default of a second dependent issuer, a phenomenon known as contagion. Through
contagion, economic distress initially affecting only one issuer can spread to a significant
part of the portfolio or even the entire system. A good example of such a transmission
of pressure is the Russian crisis of 1998-1999 which saw the defaults of corporate and
sub-sovereign issuers heavily clustered following the sovereign default [25].

Most portfolio credit risk models used by financial institutions neglect contagion and
rely on the conditional independence assumption according to which, conditional on a
set of common underlying factors, defaults occur independently. Examples of this ap-
proach include the Asymptotic Single Risk Factor (ASRF) model [24], industry extensions
of the model presented by Merton [23] such as the KMV [61, 62] and CreditMetrics [63]
models, and the two-factor model proposed recently by Basel Committee on Banking
Supervision for the calculation of Default Risk Charge (DRC) to capture the default risk
of trading book exposures [64]. A considerable amount of literature has been published
on the conditional independence framework in standard portfolio models, see, e.g. [65]
and [20].

Although conditional independence is a statistically and computationally convenient
property, its empirical validity has been questioned on a number of occasions, where re-
searchers investigated whether dependence on common factors can sufficiently explain
the default clustering which occurs from time to time. Schonbucher and Schubert [66]
suggest the default correlations that can be achieved with this approach are typically too
low in comparison with empirical default correlations, although this problem becomes
less severe when dealing with large diversified portfolios. Das et. al. [67] use data on
U.S. corporations from 1979-2004 and reject the hypothesis that factor correlations can
sufficiently explain the empirically observed default correlations in the presence of con-
tagion. Since a realistic credit risk model is required to put the appropriate weight on
scenarios where many joint defaults occur, one may choose to use alternative copulas
with tail dependence which have the tendency to generate large losses simultaneously
[68]. In that case, however, the probability distribution of large losses is specified a priori
by the chosen copula, which seems rather unintuitive [69].

One of the first models to consider contagion in credit portfolios was developed by
Davis and Lo [70]. They suggest a way of modelling default dependence through infec-
tion in a static framework. The main idea is that any defaulting issuer may infect any
other issuer in the portfolio. Giesecke and Weber [71] propose a reduced-form model for
contagion phenomena, assuming that they are due to the local interaction of companies
in a business partner network. The authors provide an explicit Gaussian approximation
of the distribution of portfolio losses and find that, typically, contagion processes have a
second-order effect on portfolio losses. Lando and Nielsen [72] use a dynamic model in
continuous time based on the notion of mutually exciting point processes. Apart from
reduced form models for contagion, which aim to capture the influence of infectious
defaults to the default intensities of other issuers, structural models were developed as
well. Jarrow and Yu [73] generalise existing models to include issuer-specific counterparty
risks and illustrate their effect on the pricing of defaultable bonds and credit derivatives.
Eggloff et. al. [74] use network-like connections between issuers that allow for a vari-
ety of infections between firms. However, their structural approach requires a detailed
microeconomic knowledge of debt structure, making the application of this model in
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practice more difficult than that of Davis and Lo’s simple model. In general, since the
interdependencies between borrowers and lenders are complicated, structural analysis
has mostly been applied to a small number of individual risks only.

Network theory can provide us with tools and insights that enable us to make sense of
the complex interconnected nature of financial systems. Hence, following the 2008 crisis,
network-based models have been frequently used to measure systemic risk in finance.
Among the first papers to study contagion using network models was [9], where Allen
and Gale show that a fully connected and homogeneous financial network results in
an increased system stability. Contagion effects using network models have also been
investigated in a number of related articles, see, e.g. [10-14]. The issue of too-central-
to-fail was shown to be possibly more important than too-big-to-fail by Battiston et.
al. in [15], where DebtRank, a metric for the systemic impact of financial institutions
was introduced. DebtRank was further extended in a series of articles, see e.g. [16-18].
The need for development of complexity-based tools in order to complement existing
financial modelling approaches was emphasised by Battiston et. al. [1], who called for a
more integrated approach among academics from multiple disciplines, regulators, and
practitioners.

Despite substantial literature on portfolio credit risk models and contagion in finance,
specifying models which take into account both common factors and contagion while
distinguishing between the two effects clearly, still proves challenging. Moreover, most of
the studies on contagion using network models focus on systemic risk and the resilience
of the financial system to shocks. The qualitative nature of this line of research can hardly
provide quantitative risk metrics that can be applied to models for measuring the risk of
individual portfolios. The aforementioned drawback is perceived as an opportunity for
expanding the current body of research by contributing a model that would account for
common factors and contagion in networks alike. Given the wide use of factor models for
calculating regulatory and economic capital, as well as for rating and analysing structured
credit products, an extended model that can also accommodate for infectious default
events seems crucial.

In this chapter we take up this challenge by introducing a portfolio credit risk model
that can account for two channels of default dependence: common underlying factors
and financial distress propagated from sovereigns to corporates and sub-sovereigns. We
augment systematic factors with a contagion mechanism affecting the entire universe
of credits, where the default probabilities of issuers in the portfolio are immediately
affected by the default of the country where they are registered and operating. Our model
allows for extreme scenarios with realistic numbers of joint defaults, while ensuring that
the portfolio risk characteristics and the average loss remain unchanged. To estimate the
contagion effect, we construct a network using credit default swaps (CDS) time series. We
then use CountryRank, a network-based metric, introduced in [75] to quantify the impact
of a sovereign default event on the credit quality of corporate issuers in the portfolio.
In order to investigate the impact of our model on credit losses, we use synthetic test
portfolios for which we generate loss distributions and study the effect of contagion on
the associated risk measures. Finally, we analyse the sensitivity of the contagion impact to
rating levels and CountryRank. Our analysis shows that credit losses increase significantly
in the presence of contagion. Our contribution in this chapter is thus threefold: First,



40 3. Incorporating contagion in portfolio credit risk models using network theory

we introduce a portfolio credit risk model which incorporates both common factors and
contagion. Second, we use a credit stress propagation network constructed from real data
to quantify the impact of deterioration of credit quality of the sovereigns on corporates.
Third, we present the impact of accounting for contagion which can be useful for banks
and regulators to quantify credit, model, or concentration risk in their portfolios.

The rest of the chapter is organised as follows. Section 3.2 provides an overview of
the general modelling framework. Section 3.3 presents the portfolio model with default
contagion and illustrates the network model for the estimation of contagion effects. In
Section 3.4 we present empirical analysis of two synthetic portfolios. Finally, in Section
3.5 we summarise our findings and draw conclusions.

3.2. Merton-type models for portfolio credit risk

Most financial institutions use models that are based on some form of the conditional
independence assumption, according to which issuers depend on a set of common un-
derlying factors. Factor models based on the Merton model are particularly popular for
portfolio credit risk. Our model extends the multi-factor Merton model to allow for credit
contagion. In this section we present the basic portfolio modelling setup, outline the
model of Merton, and explain how it can be specified as a factor model. A more detailed
presentation of the multivariate Merton model is provided by [20].

3.2.1. Basic setup and notations

This subsection introduces the basic notation and terminology that will be used through-
out this chapter. In addition, we define the main risk characteristics for portfolio credit
risk.

The uncertainty of whether an issuer will fail to meet its financial obligations or not is
measured by its probability of default. For comparison reasons, this is usually specified
with respect to a fixed time interval, most commonly one year. The probability of default
then describes the probability of a default occurring in the particular time interval. The
exposure at default is a measure of the extent to which one is exposed to an issuer in
the event of, and at the time of, that issuer’s default. The default of an issuer does not
necessarily imply that the creditor receives nothing from the issuer. The percentage of
loss incurred over the overall exposure in the event of default is given by the loss given
default. Typical values lie between 45% and 80%.

Consider a portfolio of m issuers, indexed by i = 1, ..., m, and a fixed time horizon of
T =1 year. Denote by e; the exposure at default of issuer i and by p; its probability of
default. Let g; be the loss given default of issuer i. Denote by Y; the default indicator, in
the time period [0, T]. All issuers are assumed to be in a non-default state at time ¢ = 0.
The default indicator Y; is then a random variable defined by

i=

1 ifissuer iifissuer defaults
(3.1

0 otherwise

which clearly satisfies P(Y; = 1) = p;. The overall portfolio loss is defined as the random
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variable

m
L:=) gie;Y; (3.2)
i=1
With credit risk in mind, it is useful to distinguish potential losses in expected losses,
which are relatively predictable and thus can easily be managed, and unexpected losses,
which are more complicated to measure. Risk managers are more concerned with unex-
pected losses and focus on risk measures relating to the tail of the distribution of L.

3.2.2. The model of Merton

Credit risk models are typically distinguished in structural and reduced-form models,
according to their methodology. Structural models try to explain the mechanism by
which default takes place, using variables such as asset and debt values. The model
presented by Merton in [23] serves as the foundation for all these models. Consider an
issuer whose asset value follows a stochastic process (V;);>o. The issuer finances itself
with equity and debt. No dividends are paid and no new debt can be issued. In Merton’s
model the issuer’s debt consists of a single zero-coupon bond with face value B and
maturity 7. The value at time ¢ of equity and debt are denoted by S; and B; and the
issuer’s asset value is simply the sum of these, i.e.

Vi=S8:+B;, tel0,T] (3.3)

Default occurs if the issuer misses a payment to its debtholders, which can happen only
at the bond’s maturity 7. At time T there are only two possible scenarios:

(i) V7 > B: the value of the issuer’s assets is higher than its debt. In this scenario the
debtholders receive By = B, the shareholders receive the remainder Sy = Vy — B,
and there is no default.

(ii) V7 < B: the value of the issuer’s assets is less than its debt. Hence, the issuer cannot
meet its financial obligations and defaults. In that case, shareholders hand over
control to the bondholders, who liquidate the assets and receive the liquidation
value in lieu of the debt. Shareholders pay nothing and receive nothing, therefore
we obtain By = Vg, ST =0.

For these simple observations we obtain the below relations

St =max(Vy—B,0)=(Vr—B)* (3.4)
Br=min(Vy,B)=B—-(B-Vp)* (3.5)

Equation 3.5 implies that the issuer’s equity at maturity 7 can be determined as the price
of a European call option on the asset value V; with strike price B and maturity T, while
3.5 implies that the value of debt at T is the sum of a default-free bond that guarantees
payment of B plus a short European put option on the issuer’s assets with strike price B.

It is assumed that under the physical probability measure P the process (V;) ;s fol-
lows a geometric Brownian motion of the form

avi=uyVidt+oyVidWy, te(0,T] (3.6)
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where py € R is the mean rate of return on the assets, oy > 0 is the asset volatility and
(Wy) =0 is a Wiener process. The unique solution at time 7T of the stochastic differential
equation 3.6 with initial value Vj is given by

Vr=Vyexp ((,uv—O'%//Z) T+oyWr) (3.7

which implies that
InVr ~ A (InVp + (uy —0%/2) T,0% T) (3.8)
Hence, the real-world probability of default at time T', measured at time ¢ = 0, is given by

P(Vy<B) = P(nVr<InB)
© In(B/Vp) - (uv —0%/2) T
Uvﬁ

A core assumption of Merton’s model is that asset returns are lognormally distributed,
as can be seen in Equation 3.8. It is widely acknowledged, however, that empirical dis-
tributions of asset returns tend to have heavier tails; thus, Equation 3.9 may not be an
accurate description of empirically observed default rates.

3.9)

3.2.3. The multivariate Merton model

The model presented in 3.2.2 is concerned with the default of a single issuer. In order to
estimate credit risk at a portfolio level, a multivariate version of the model is necessary.
A multivariate geometric Brownian motion with drift vector gy = (uy, ..., 4m)’, vector of
volatilities oy = (071, ...,0,) and correlation matrix X, is assumed for the dynamics of the
multivariate asset-value process (V;) ;o with V; = (V¢ 1, ..., Vi)', so that for all i

1
Vri= Vo,iexp((/,ti—Ea?)T+aiWTyi) (3.10)

where the multivariate random vector Wy with W = (Wrp, ..., Wr,,,,)' is satisfying Wy ~
N, (0, TY). Default takes place if V7; < B; where B; is the debt of company i. It is clear
that the default probability in the model remains unchanged under simultaneous strictly
increasing transformations of Vr; and B;. Thus, one may define

InVy,; —InVy,; — (i — 309 T

X = (3.11)
' (Tl'\/?
InB;—InVy; — (u; — 262 T
d;i = ! 017 Hi7 29, (3.12)
O‘iﬁ

and then default equivalently occurs if and only if X; < d;. Notice that X; is the standard-
ised asset-value log-return In Vr; —In 'V} ;. It can be easily shown that the transformed
variables satisfy (X1, ..., X;n) ~ N, (0,%) and their copula is the Gaussian copula. Thus,
the probability of default for issuer i is satisfying p; = @(d;), where ®(-) denotes the
cumulative distribution function of the standard normal distribution. A graphical repre-
sentation of Merton’s model is shown in Figure 3.1. In most practical implementations
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A non-default path

Standardised asset returns

T=1year
Time

------- Default threshold d;

Figure 3.1: In Merton’s model, default of issuer i occurs if at time T asset value Vr,; falls bellow debt value B;,
or equivalently if X; := (InVg; —InVp ; — (u; — %0?) T)/o;V'T falls below the critical threshold d; := (InBT; -

InVp; — (u; — %U?) T)/o;V/T. Since X; ~ .4 (0,1), i’s default probability, represented by the shaded area in the
distribution plot, is satisfying p; = ®(d;). Note that default can only take place at time 7" does not depend on
the path of the asset value process.

of the model, portfolio losses are modelled by directly considering an m-dimensional
random vector X = (X, ..., X;;,)" with X ~ N;,;(0, Z) containing the standardised asset re-
turns, and a deterministic vector d = (d, ..., d;;) containing the critical thresholds with
d; = @1 (p;) for given default probabilities p;, i = 1,..., m. The default probabilities are
usually estimated by historical default experience using external ratings by agencies or
model-based approaches.

3.2.4. Merton model as a factor model

The number of parameters contained in the correlation matrix £ grows polynomially in
m, and thus, for large portfolios it is essential to have a more parsimonious parametri-
sation which is accomplished using a factor model. Additionally, factor models are par-
ticularly attractive due to the fact that they offer an intuitive interpretation of credit risk
in relation to the performance of industry, region, global economy, or any other relevant
indexes that may affect issuers in a systematic way. In the following we show how Mer-
ton’s model can be understood as a factor model. In the factor model approach, asset
returns are linearly dependent on a vector F of p < m common underlying factors sat-
isfying F ~ N, (0,Q). Issuer i’s standardised asset return is assumed to be driven by a
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issuer-specific combination F; = a«F of the systematic factors

Xi=\/BiFi+1/1-piei (3.13)

where F; and €y,...,¢;, are independent standard normal variables, and €; represents
the idiosyncratic risk. Consequently, §; can be seen as a measure of sensitivity of X; to
systematic risk, as it represents the proportion of the X; variation that is explained by the
systematic factors. The correlations between asset returns are given by

‘D(Xl',Xj) = COV[Xi,Xj]
= (1= Bi) Lii=jy +/ BiBjCovIF;, F] (3.14)

= (1-Bi) Lii=jy +/BiBj @} Qe;

since F; and €y, ...,e,,, are independent and standard normal and var(X;) = 1.

3.3. A model for credit contagion

In the multi-factor Merton model specified in 3.2.4, the standardised asset returns Xj,
i =1,..., m, are assumed to be driven by a set of common underlying systematic factors,
and the critical thresholds d;, i = 1,..., m, are satisfying d; = ®~(p;) for all i. The only
source of default dependence in such a framework is the dependence on the systematic
factors. In the model we propose, we assume that in the event of a sovereign default,
contagion will spread to the corporate issuers in the portfolio that are registered and op-
erating in that country, causing default probability to be equal to their CountryRank. In
Subsection 3.3.1 we demonstrate how to calibrate the critical thresholds so that each cor-
porate’s probability of default conditional on the default of the corresponding sovereign
equals its CountryRank, while its unconditional default probability remains unchanged.
In Subsection 3.3.2 we show how to construct a credit stress propagation network and
estimate the CountryRank parameter.

3.3.1. Incorporating contagion in factor models

Consider a corporate issuer C;, and its country of operation S. Denote by pc, the probabil-
ity of default of C;. Under the standard Merton model, default occurs if C;’s standardised
asset return X, falls below its default threshold d, . The critical threshold dc, is assumed
to be equal to ®~!( pc;) and is independent of the state of the country of operation S. In
the proposed model, a corporate is subject to shocks from its country of operation; its
corresponding state is described by a binary state variable. The state is considered to
be stressed in the event of sovereign default. In this case, the issuer’s default threshold
increases, causing it more likely to default, as the contagion effect suggests. In case the
corresponding sovereign does not default, the corporates liquidity state is considered
stable. We replace the default threshold dc, with da, where

ds?  if the corresponding sovereign defaults
dg. :{ Ci P 8 8 (3.15)

dg?d otherwise
1
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or equivalently
da_ = l{YS:I}dé? + l{yszo}dgfd (3.16)

We denote by ps the probability of default of the country of operation, and by yc, the
CountryRank parameter which indicates the increased probability of default of C; given
the default of S. An example of the new default thresholds is shown in Figure 3.2. Our
objective is to calibrate dé‘j and dgisd in such way that the overall default rate remains
unchanged and P(Y¢, = 1|Ys = 1) = y¢,. Denote by

o, i) = —ex ( x4y -2pxy 3.17)
2 ,y,P L o /—l—pz p 2(1_‘02) .
h k
Dy (h, k; p) :=f f G2 (x,y;0)dydx (3.18)
—00 J—00

the density and distribution function of the bivariate standard normal distribution with
correlation parameter p € (—1,1). Note that da (w) = dé‘f forwe{Ye, =1,Ys=1} c
{Ys =1}, and da (w) = dgisd forw e {Yc, =1,Y; =0} c {Ys = 0}. We rewrite P(Y¢, =1|Ys =
1) in the following way

1
P(Yc. =1Ys=1) = —P(Y,=1,Ys=1 3.19
(Ye, =11Ys=1) Ps= D) (Y¢, s=1) (3.19)
1
= —P[Xc <df, Xs < ds| (3.20)
ps !
— i sd g .
= @y (dc,, ds; psc;) 3.21)
ps

Using the above representation and given ds = ®~! (ps) and psc, one can solve the equa-
tion

P(Yc, =1lYs=1)=yg; (3.22)

over dé‘?. We proceed to the derivation of dg?d in such way that the overall default proba-
1 1

bility remains equal to p;. This constraint is important, since contagion is assumed to

have no impact on the average loss. Clearly,

pc, = Pl¥g =1 (3.23)
= P(Yg=1Ys=1)+P(Y;,=1Ys=0) (3.24)
= P(Y,=1lY;=1)P(Ys=1)+P(Yc,=1,Ys=0) (3.25)
and thus
P(Y¢;=1,Ys=0)=pc, —vc, Ps (3.26)

The left-hand side of the above equation can be represented as follows

P(corp.def nnosov.def) = P[Xci<dgisd,X3>ds] (3.27)

P [xci <apd

- P[Xg, <did Xs<ds| (3.28)

= O(dEh) - a(dE, ds; psc,) (3.29)
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Default thresholds for issuer C;
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Figure 3.2: Under the standard Merton model, the default threshold d; for corporate issuer C; is set to be equal

to d~1( pc;)- Under the proposed model, the threshold increases in the event of sovereign default, making C;’s
default more likely as the contagion effect suggests.

By use of the above and given ds = ®~! (ps) and psc, one can solve the previous equation
over dgfd.

3.3.2. Estimation of CountryRank

In this section, we elaborate on the estimation of the CountryRank parameter [75], which
serves as the probability of default of the corporate conditional on the default of the
sovereign. In addition, we provide details on the construction of the credit stress propa-
gation network.

CountryRank

In order to estimate contagion effects in a network of issuers, an algorithm such as Deb-
tRank [76], is necessary. In the DebtRank calculation process, stress propagates even in
the absence of defaults and each node can propagate stress only once before becoming
inactive. The level of distress for a previously undistressed node is given by the sum of
incoming stress from its neighbours with a maximum value of 1. Summing up the in-
coming stress from neighbouring nodes seems reasonable when trying to estimate the
impact of one node or a set of nodes to a network of interconnected balance sheets where
links represent lending relationships. However, when trying to quantify the probability
of default of a corporate node given the infectious default of a sovereign node, one has to
consider that there is significant overlap in terms of common stress, and thus, by sum-
ming we may be accounting for the same effect more than once. This effect is amplified
in dense networks constructed from CDS data. Therefore, we introduce CountryRank as
an alternative measure which is suited for our contagion model.
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We assume that we have a hypothetical credit stress propagation network, where the
nodes correspond to the issuers, including the sovereign, and the edges correspond to the
impact of credit quality of one issuer on the other. The details of the network construction
will be presented in Section 3.3.2. Given such a network, the CountryRank of the nodes
can be defined recursively as follows:

» First, we stress the sovereign node and as result its CountryRank is 1.

* Let ys be the CountryRank of the sovereign and e(; k) denote the edge weight be-
tween nodes j and k. Given anode C;, let p = SC; C,...C;_1C; be a path without
cycles from the sovereign node S, to the node C;. The weight of the path p is
defined as:

w(p) =vseq,....€i-1,i (3.30)

where e(j i) are the respective edge weights between nodes j and k for j € {1,...,i—
1}and k€ {2,...,i}. Let py,..., pm be the set of all acyclic paths from the sovereign
node to the corporate node C; and w(py), ..., w(pm,) be the corresponding weights.
Then the CountryRank of node C; is defined as

(3.31)

In order to compute the conditional probability of default of a corporate given the
sovereign default analytically, we would need the joint distribution of probabilities of
default of the nodes, which has an exponential computational complexity, and it is there-
fore intractable. Thus, we approximate the conditional probability by choosing the path
with the maximum weight in the above definition for CountryRank.

The example below in Figure 3.3 illustrates calculation of CountryRank for a hy-
pothetical network. The network consists of a sovereign node S and corporate nodes
C;,Cy, C3,Cy. The edge labels indicate weights in network between two nodes. We ini-
tially stress the sovereign node which results in a CountryRank of 1 for node S. In the
next step, the stress propagates to nodes C; and as a result its CountryRank is 0.9. Then,
node C, gets stressed giving it a CountryRank value 0.8. For node Cs, there are two paths
from node S, so we pick the path through node C, having a higher weight of 0.48. Finally,
there are three paths from node S to node Cy4, and the path with maximum weight is 0.27.

Network construction

Credit default swap spreads are market-implied indicators of probability of default of an
entity. A credit default swap is a financial contract in which a protection seller A insures a
protection buyer B against the default of a third party C. More precisely, regular coupon
payments with respect to a contractual notional N and a fixed rate s, the CDS spread, are
swapped with a payment of N(1 — RR) in the case of the default of C, where RR, the so-
called recovery rate, is a contract parameter which represents the fraction of investment
which is assumed be recovered in the case of default of C.
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Figure 3.3: Illustration of the CountryRank parameter using a hypothetical network. The subfigures (a) - (e)
show the propagation of stress in the network starting from the sovereign node to corporate nodes. At each
step, the stress spreads to a node using the path with the maximum weight from the sovereign node.
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Figure 3.4: Time series of CDS spreads of Russian issuers.
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Figure 3.5: A modified e-drawup is defined as an upward movement in the time series at a local minimum, in
which the amplitude of the movement is greater than a threshold e. The € parameter at time ¢ is set to be the
standard deviation in the time series between days ¢ — n and ¢, where 7 is chosen to be 10 days. In the above
example, the first green minimum is recorded as a modified e -drawup, while the second is not.

Modified e-drawup. We would like to measure to what extent changes in CDS spreads
of different issuers occur simultaneously. For this, we use the notion of a modified e-
drawup to quantify the impact of deterioration of credit quality of one issuer on the other.
Modified e- drawup is an alteration of the e-drawups notion which is introduced in [77].
In that article, the authors use the notion of e-drawups to construct a network which
models the conditional probabilities of spike-like co-movements among pairs of CDS
spreads. A modified e-drawup is defined as an upward movement in the time series in
which the amplitude of the movement, that is the difference between the subsequent
local maximum and current local minimum, is greater than a threshold e. We record such
local minima as the modified e-drawups. The € parameter for a local minimum at time
t is set to be the standard deviation in the time series between days ¢ — n and ¢, where n
is chosen to be 10 days. An illustration of the modified e-drawup definition is shown in
Figure 3.5. Figure 3.6 shows the time series of Russian Federation CDS with the calibrated
modified e-drawups using a history of 10 days for calibration.

Filtering market impact. Since we would like to measure the co-movement of the time
series i and j, we exclude the effect of the external market on these nodes as follows. We
calibrate the e-drawups for the CDS time series of an index that does not represent the
region in question, for instance for Russian issuers we choose the iTraxx index which
is the composite CDS index of 125 CDS referencing European investment grade credit.
Then, we filter out those e-drawups of node i which are the same as the e-drawups of the
iTraxx index including a time lag 7. That is, if iTraxx has a modified e-drawup on day ¢,
then we remove the modified e-drawups of node i on days ¢,t+1,..., ¢+ 7. We choose a
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Figure 3.6: Time series for Russian Federation with local minima, local maxima and modified e-drawups.

time lag of 3 days for our calibration based on the input data which is consistent with the
choice in [77].

Edges. After identifying the e-drawups for all the issuers and filtering out the market
impact, the edges in our network are constructed as follows. The weight of an edge in the
credit stress propagation network from node i to node j is the conditional probability
that if node i has an epsilon draw-up on day ¢ then node j also has an epsilon draw-up
ondays t,t+1,...,t+ 1, where 7 is the time lag. More precisely, let N; be the number of
e-drawups of node i after filtering using iTraxx index and N;; epsilon draw-ups of node
i which are also epsilon draw-ups for node j with the time lag 7. Then, the edge weight
w;j between nodes i and j is defined as w;; = N;/Nj;. Figure 3.7 shows the minimum
spanning tree of the credit stress propagation network constructed using the CDS spread
time series data of Russian issuers.

Uncertainty in CountryRank. We test the robustness of our CountryRank calibration
by varying the number of days used for e-parameter. Figure A.3 in Appendix A.2 shows
that the e-parameter for Russian Federation CDS time series remains stable when we
vary the number of days. We initially obtain time series of e-parameters by calculating
standard deviation in the last n = 10,15 and 20 days on all local minima indices of Rus-
sian Federation CDS. Subsequently, we calculate the mean of the absolute differences
between the epsilon time series calculated and express this in units of the mean of Rus-
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Figure 3.7: Minimum spanning tree for Russian issuers.

sian Federation CDS time series. The percentage difference is 1.38% between the 10 day
€ parameter is 1.38% and 15 day € parameter, and 2.22% between the 10 day and 20 day €
parameters.

Further, we quantify the uncertainty in CountryRank parameter as follows. For an
corporate node, we calculate the absolute difference in CountryRank calculated using
n = 15,20 days with CountryRank using n = 10 days for the ¢ parameter. We then cal-
culate this difference as a percentage of the CountryRank calculated using 10 days for
€ parameter for all corporates and then compute their mean. The mean difference be-
tween CountryRank calibrated using n = 15 days and n = 10 days is 6.84%, and n = 20
days and n = 10 days is 9.73% for the Russian CDS data set.

3.4. Numerical experiments

We implement the framework presented in Section 3.3 to synthetic test portfolios and
discuss the corresponding risk metrics. Further, we perform a set of sensitivity studies
and explore the results.

3.4.1. Factor model

We first set up a multi-factor Merton model, as it was described in Section 3.2. We define
a set of systematic factors that will represent region and sector effects. We choose 6
region and 6 sector factors, for which we select appropriate indexes, as shown in Table
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3.1. We then use 10 years of index time series to derive the region and sector returns Fpjy,
j=1,..,6 and Fs), k = 1,...,6 respectively, and obtain an estimate of the correlation
matrix , shown in Figure 3.8. Subsequently, we map all issuers to one region and one
sector factor, Fr(;) and Fg; respectively. For instance, a Dutch bank will be associated
with Europe and Financial factors. As a proxy of individual asset returns we use 10 years
of equity or CDS time series, depending on the data availability for each issuer. Finally, we
standardise the individual returns time series (X;,;) and perform the following Ordinary
Least Squares regression against the systematic factor returns

Xit = ari)Fre, e + @siyFsq),r +€ir (3.32)

to obtain dr(;), &s(;), and ,3 ; = R?, where R? is the coefficient of determination, and it is
higher for issuers whose returns are largely affected by the performance of the systematic
factors.

Factor Index

Europe MSCI EUROPE

Asia MSCI AC ASIA

North America MSCI NORTH AMERICA

Latin America MSCI EM LATIN AMERICA
Middle East and Africa MSCI FM AFRICA

Pacific MSCI PACIFIC

Materials MSCI WRLD/MATERIALS
Consumer products MSCI WRLD/CONSUMER DISCR
Services MSCI WRLD/CONSUMER SVC
Financial MSCI WRLD/FINANCIALS
Industrial MSCI WRLD/INDUSTRIALS
Government ITRAXX SOVX GLOBAL LIQUID INVESTMENT GRADE

Table 3.1: Systematic factor - Index mapping.

3.4.2. Synthetic test portfolios

To investigate the properties of the contagion model, we set up 2 test portfolios. For
these portfolios, the resulting risk measures are compared to those of the standard latent
variable model with no contagion. Portfolio A consists of 1 Russian government bond
and 17 bonds issued by corporations registered and operating in the Russian Federation.
As it is illustrated in Table 3.2, the issuers are of medium and low credit quality. Portfo-
lio B represents a similar but more diversified setup with 4 sovereign bonds issued by
Germany, Italy, the Netherlands, and Spain, and 76 corporate bonds by issuers from the
aforementioned countries. The sectors represented in portfolios A and B are shown in
Table 3.3. Both portfolios are assumed to be equally weighted with a total notional of €10
million.
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Figure 3.8: Estimated systematic factor correlation matrix €.

. Portfolio A Portfolio B
Rating
Issuers % Issuers %
AAA - 0.00% 3 3.75%
AA - 0.00% 3 3.75%
A - 0.00% 22 27.50%
BBB 1 5.56% 39 48.75%
BB 15 83.33% 9 11.25%
B 2 11.11% 3 3.75%
CCC/C - 0.00% 1 1.25%

Table 3.2: Rating classification for the test portfolios.

3.4.3. Credit stress propagation network

We use credit default swap data to construct the stress propagation network network. The
CDS raw data set consists of daily CDS liquid spreads for different maturities from 1 May
2014 to 31 March 2015 for Portfolio A and 1 July 2014 to 31 December 2015 for Portfolio B.
These are averaged quotes from contributors rather than exercisable quotes. In addition,
the data set also provides information on the names of the underlying reference entities,
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Portfolio A Portfolio B
Sector

Issuers % Issuers %
Materials 5 27.78% 12 15.00%
Consumer products - 0.00% 12 15.00%
Services 3 16.67% 19 23.75%
Financial 7 38.89% 25 31.25%
Industrial - 0.00% 6 7.50%
Government 3 16.67% 6 7.50%

Table 3.3: Sector classification for the test portfolios.

recovery rates, number of quote contributors, region, sector, average of the ratings from
Standard & Poor’s, Moody’s, and Fitch Group of each entity and currency of the quote.
We use the normalised CDS spreads of entities for the 5 year tenor for our analysis. The
CDS spreads time series of Russian issuers are illustrated in Figure 3.4.

3.4.4. Simulation study

In order to generate portfolio loss distributions and derive the associated risk measures
we perform Monte Carlo simulations. This process entails generating joint realisations
of the systematic and idiosyncratic risk factors, and comparing the resulting critical vari-
ables with the corresponding default thresholds. By this comparison we obtain the de-
fault indicator Y; for each issuer and this enables us to calculate the overall portfolio loss
for this trial. The only difference between the standard and the contagion model is that
in the contagion model we first obtain the default indicators for the sovereigns, and their
values determine which default thresholds are going to be used for the corporate issuers.
The quantiles of the generated loss distributions as well as the percentage increase due to
contagion are illustrated in Table 3.4. A liquidity horizon of 1 year is assumed throughout
and the figures are based on a simulation with 106 samples.

For Portfolio A, the 99.90% quantile of the loss distribution under the standard factor
model is €2, 258,857, which corresponds to approximately 23% of the total notional. This
figure jumps to €4, 968,393 (almost 50% of the notional) under the model with contagion.
As shown in Panel 1, contagion has a minimal effect on the 99% quantile, while at 99.5%,
99.90% and 99.99% it results to an increase of 108%, 120%, and 61% respectively. This
is to be expected as the probability of default for Russian Federation is less than 1%
and thus, in more than 99.9% of our trials default will not take place and contagion
will not be triggered. For Portfolio B, the 99.90% quantile is considerably lower under
both the standard and the contagion model, at €775,773 or 8% of the total notional
and €1,009,426 or 10% of the total notional respectively, reflecting lower default risk.
One can observe that the model with contagion yields low additional losses at 99% and
99.5% quantiles, with a more significant impact at 99.90% and 99.99% (30% and 37%
respectively). An illustration of the additional losses due to contagion is given by Figure
3.9.
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Panel 1: Portfolio A.

Quantile Loss - standard model  Loss - contagion model = Contagion impact

99% 1,115,153 1,162,329 47,176 4%
99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%

average loss 71,807 71,691

Panel 2: Portfolio B.

Quantile Loss - standard model Loss - contagion model Contagion impact

99% 373,013 379,929 6,915 2%
99.50% 471,497 520,467 48,971 10%
99.90% 775,773 1,009,426 233,653 30%
99.99% 1,350,279 1,847,795 497,516 37%

average loss 44,850 44,872

Table 3.4: Portfolio losses for the test portfolios and additional risk due to contagion.
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Figure 3.9: Additional losses due to contagion for Portfolios A and B.

3.4.5. Sensitivity analysis

In the following we present a series of sensitivity studies and discuss the results. To
achieve a candid comparison, we choose to perform this analysis on the single-sovereign
portfolio A. We vary the ratings of sovereign and corporates, as well as the CountryRank
parameter, to draw conclusions about their impact on the loss distribution and verify the

model properties.
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Sovereign rating

We start by exploring the impact of the credit quality of the sovereign. Table 3.5 shows the
quantiles of the generated loss distributions under the standard latent variable model
and the contagion model when the rating of the Russian Federation is 1 and 2 notches
higher than the original rating (BB). It can be seen that the contagion effect appears
less strong when the sovereign rating is higher. At the 99.9% quantile, the contagion
impact drops from 120% to 62% for an upgraded sovereign rating of BBB. The drop is
even higher, when upgrading the sovereign rating to A, with only 11% additional losses
due to contagion. Apart from having a less significant impact at the 99.9% quantile, it is
clear that, with a sovereign rating of A, the contagion impact is zero at the 99% and 99.5%
levels, where the results of the contagion model match those of the standard model. This
is to be expected since a rating of A corresponds to a probability of default less than 0.01%,
and as explained in 3.4.4, when sovereign default occurs seldom, the contagion effect can
hardly be observed.

Sovereign . Loss Loss Contagion
. Quantile . -
rating standard model contagion model impact

99% 1,115,153 1,162,329 47,176 4%

BB 99.50% 1,443,579 3,003,949 1,560,370 108%

99.90% 2,258,857 4,968,393 2,709,536 120%

99.99% 3,543,441 5,713,486 2,170,045 61%

99% 1,115,153 1,115,153 - 0%

BBB 99.50% 1,443,009 1,490,755 47,746 3%

99.90% 2,229,742 3,613,625 1,383,883 62%

99.99% 3,496,264 5,432,236 1,935,972  55%

99% 1,114,583 1,114,583 - 0%

A 99.50% 1,443,009 1,443,009 - 0%

99.90% 2,229,737 2,469,922 240,185 11%

99.99% 3,455,199 5,056,639 1,601,439 46%

Table 3.5: Varying the sovereign rating.

Corporate default probabilities

In the next test, the impact of corporate credit quality is investigated. As Table 3.6 il-
lustrates, contagion has smaller impact when the corporate default probabilities are
increased by 5%, which is in line with intuition since the autonomous (not sovereign in-
duced) default probabilities are quite high, meaning that they are likely to default whether
the corresponding sovereign default or not. For the same reason, the impact is even less
significant when the corporate default probabilities are stressed by 10%.

CountryRank
In the last test, the sensitivity of the contagion impact to changes in the CountryRank is
investigated. In Table 3.7 we test the contagion impact when CountryRank is stressed
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Corporate . Loss Loss Contagion
default Quantile . .
s standard model contagion model impact
probabilities

99% 1,115,153 1,162,329 47,176 4%

Unstressed 99.50% 1,443,579 3,003,949 1,560,370 108%

99.90% 2,258,857 4,968,393 2,709,536 120%

99.99% 3,543,441 5,713,486 2,170,045 61%

99% 1,115,153 1,250,570 135,417 12%

Stressed 99.50% 1,443,579 3,003,949 1,560,370 108%

by 5% 99.90% 2,333,935 4,968,393 2,634,458 113%

99.99% 3,584,506 5,713,486 2,128,979  59%

99% 1,162,329 1,260,422 98,093 8%

Stressed 99.50% 1,503,348 3,003,949 1,500,602 100%

by 10% 99.90% 2,375,570 4,968,393 2,592,823 109%

99.99% 3,642,099 5,713,486 2,071,387  57%

Table 3.6: Varying corporate default probabilities.

by 15% and 10% respectively. The results are in line with intuition, with a milder conta-
gion effect for lower CountryRank values and a stronger effect in case the parameter is
increased.

. Loss Loss Contagion
Rank til . .
CountryRank — Quantile standard model contagion model impact
99% 1,115,153 1,162,329 47,176 4%
Unstressed 99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%
99% 1,115,153 1,162,329 47,176 4%
Stressed by 99.50% 1,443,579 3,196,958 1,753,379 121%
5% 99.90% 2,258,857 5,056,634 2,797,777 124%
99.99% 3,543,441 5,713,495 2,170,054 61%
99% 1,115,153 1,162,329 47,176 4%
Stressed by 99.50% 1,443,579 3,389,398 1,945,818 135%
10% 99.90% 2,258,857 5,296,249 3,037,392 134%
99.99% 3,543,441 5,801,727 2,258,286  64%

Table 3.7: Varying CountryRank.
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3.5. Concluding remarks

In this chapter, we present an extended factor model for portfolio credit risk which offers
a breadth of possible applications to regulatory and economic capital calculations, as
well as to the analysis of structured credit products. In the proposed framework, sys-
tematic risk factors are augmented with an infectious default mechanism which affects
the entire portfolio. Unlike models based on copulas with more extreme tail behaviour,
where the dependence structure of defaults is specified in advance, our model provides
an intuitive approach, by first specifying the way sovereign defaults may affect the de-
fault probabilities of corporate issuers, and then deriving the joint default distribution.
The impact of sovereign defaults is quantified using a credit stress propagation network
constructed from real data. Under this framework, we generate loss distributions for
synthetic test portfolios and show that the contagion effect may have a profound impact
on the upper tails.

Our model provides a first step towards incorporating network effects in portfolio
credit risk models. The model can be extended in a number of ways such as, for instance,
accounting for stress propagation from a sovereign to corporates even without sovereign
default, or taking into consideration contagion between sovereigns. Another interesting
topic for future research is characterising the joint default distribution of issuers in credit
stress propagation networks using Bayesian network methodologies, which may facilitate
an improved approximation of the conditional default probabilities in comparison to the
maximum weight path in the current definition of CountryRank. This research direction
is explored in Chapter 4. Finally, a conjecture worthy of further investigation is that a
more connected structure for the credit stress propagation network leads to increased
values for the CountryRank parameter, and, as a result, to higher additional losses due to
contagion.






Contagious defaults in a credit
portfolio: a Bayesian network
approach

The robustness of credit portfolio models is of great interest for financial institutions and
regulators, since misspecified models translate to insufficient capital buffers and a crisis-
prone financial system. In this chapter, we propose a method to enhance credit portfolio
models based on the model of Merton by incorporating contagion effects. While in most
models the risks related to financial interconnectedness are neglected, we use Bayesian
network methods to uncover the direct and indirect relationships between credits, while
maintaining the convenient representation of factor models. A range of techniques to learn
the structure and parameters of financial networks from real credit default swaps data are
studied and evaluated. Our approach is demonstrated in detail in a stylised portfolio and
the impact on standard risk metrics is estimated.

4.1. Introduction
In recent years, there has been an increasing interest in modelling credit risk by practi-
tioners as well as academics (see e.g., [78-83]). Portfolio credit risk models are concerned
with the occurrence of large losses due to defaults or deteriorations in credit quality. In
practice, these models have a wide range of applications, such as regulatory and eco-
nomic capital measurements, portfolio management, and risk-adjusted pricing. The
robustness of such models is of great interest both for financial institutions and regula-
tors, since misspecified models could lead to insufficient capital buffers, which in turn
would result in a crisis-prone financial system and the need for regular bail-outs.

The key challenge in portfolio credit risk modelling is the incorporation of default
dependence. Joint defaults of many issuers to which a portfolio is exposed to may lead
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to extreme losses. Therefore, understanding the relationship between default events is
crucial. In most portfolio credit risk models existing in the literature, defaults of individ-
ual issuers depend on a set of common underlying risk factors; these describe the state
of a sector, region, or the economy as a whole. Notable examples of this approach are the
Asymptotic Single Risk Factor (ASRF) model ([24]) in the Basel regulations and industrial
adaptations of Merton model ([23]) such as the CreditMetrics ([63]) and KMV models
([61, 62]).

Many researchers have challenged the claim that default dependence can be fully ex-
plained by dependence on common underlying factors, on the grounds that such models
often fail to capture default clustering that does occur from time to time. [66] suggest
that in most cases the default correlations that can be achieved with common factors are
not as high as the ones in empirical data. [67] perform statistical tests and reject the hy-
pothesis that factor correlations can sufficiently explain the empirically observed default
correlations. Thus, it becomes evident that an additional channel of default dependence
needs to be considered.

Besides dependence on common factors, joint defaults might occur as a result of
direct links between issuers, a phenomenon known as contagion. [70] were among the
first to introduce contagion in credit risk models by considering that any default might
infect another issuer in the portfolio. [73] tried to generalise already existing models,
included particular specifications of the issuers and focused on their effect on bonds
and credit derivatives. [74] introduced network theory to allow for a variety of infections,
however the model required detailed information making its application more difficult
than expected.

Following the financial crisis, there has been a significant interest in using network-
based methods for financial stability and systemic risk (see e.g., [1, 14, 76, 84-86]). Next
to network models, there is a growing literature on particle systems with mean-field
interaction, considered, e.g., in [87-91]. Nevertheless, the use of these methods for val-
uation and measurement of risk charges such as capital is limited. In Chapter 3 we
introduced a portfolio credit risk model that can account for both channels of default
dependence: common underlying factors and contagion from sovereigns to corporates
and sub-sovereigns. We augmented systematic risk factors with a contagious default
mechanism where the default probabilities of issuers in the portfolio are immediately
affected by a sovereign default. To estimate the contagion effect we used a network con-
structed from CDS time series and introduced CountryRank, a network based metric that
approximates the probability of default of a node conditional on the infectious default of
a sovereign. The chapter presents a thorough approach of how contagion effects can be
introduced to portfolio credit risk modes using complex networks. However, the under-
lying network in Chapter 3 is based on one-to-one relationships between issuers. While
this can capture the direct relationships effectively, it is well-known that the associations
between entities might be indirect and often mediated through others. In this chapter
we use Probabilistic Graphical Models (PGM) to learn the network using the data in a
holistic manner. This extends the one-to-one approach and provides a more natural and
accurate representation of the network. Moreover, we can efficiently approximate the
joint default probability distribution of the issuers in a PGM.

PGMs are a powerful framework for representing complex relationships using prob-
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ability distributions. Their ability to model associations in complex datasets has proven
them particularly useful for a wide range of machine learning problems, including nat-
ural language processing ([92]), medical diagnosis ([93]), and genetic linkage analysis
([94]). One of the most important classes of PGMs is Bayesian networks (BNs). More
recently, there have been attempts to utilise BNs for solving financial problems. In par-
ticular, [95] presented a method to calculate portfolio losses in the presence of stress
events using BNs. Nevertheless, his approach, relies on the ability of the risk manager
to identify causal links and subjectively assign probabilities. [96] developed a structural
default model for interconnected financial institutions, but the need for balance sheet
data makes its applicability limited. [97] used credit default swaps (CDS) data to learn the
structure of interbank networks, which would enable policy makers to make decisions
on the too-big-to-fail problem. In order to learn the BN, the author uses the log of CDS
spreads under the assumption of normality. However, this strong assumption is barely
supported by empirical evidence.

In this chapter, we overcome the need for making assumptions about the distribution
of CDS spreads by introducing a discretisation method based on the notion of modified
e-drawups (see Section 3.3.2). This transformation enables us to utilise algorithms for
structure and parameter learning that assume discrete random variables, without having
to sacrifice the interpretability of the resulting models. We use the discretised CDS time
series to learn a BN of interactions between issuers, and to estimate the contagion effects
following a sovereign default. Different techniques to learn the structure and parame-
ters of financial networks are studied and evaluated, with the results confirming that the
structures are robust. In order to investigate the impact of these effects on credit losses,
we carry out simulations and calculate the quantiles of the loss distribution in the pres-
ence of contagion. Finally, we perform a comparative analysis with the results obtained
in Chapter 3.

The rest of the chapter is organised as follows. Section 4.2 presents BNs and outlines
the methods for learning their structure and parameters. Section 4.3 demonstrates a
method to learn BNs for CDS data. In Section 4.4, we present empirical analysis on
a synthetic test portfolio. Finally, in Section 4.5 we summarise and draw conclusions.
Additional information is included in the Appendices.

4.2. Bayesian networks

A Bayesian network (BN) is a graphical model that allows us to represent and reason
about an uncertain domain. The nodes in a BN represent random variables, and the
edges represent the direct dependencies between variables [98].

The graphical structure ¢ = (¥, &) of a BN is a directed acyclic graph (DAG), where 7 =
{X1,..., Xy} is a finite vertex set and & < {(i, j) : X;, Xj € ¥, i # j} is a set of edges without
any self-loops. The DAG defines a factorisation of the joint probability distribution of
¥, into a set of local probability distributions, one for each variable. The form of the
factorisation states that every random variable X; directly depends only on its parents
Pay;:

i=

n
P(Xy,...,Xn) = | | P(X;IPax,) (4.1)
=1



64 4. Contagious defaults in a credit portfolio: a Bayesian network approach

P(C)=0.80

C | P®S)
F | .50

Figure 4.1: A Bayesian network with Conditional Probability Tables (CPTs).

BNs have a useful property of conditional independence that allows us to represent a joint
distribution in a tractable manner. For example, even if the random variables Xj,..., X,
follow a binomial distribution, we would need 2" — 1 probabilities to represent their joint
distribution. With a BN, the order of representation of joint distribution is linear in the
number of variables.

In order to demonstrate this representation, we provide a commonly used example
from [99], illustrated in Figure 4.1. We consider that the grass can appear wet in the
morning either because the sprinkler was on during the night or because it rained. Note
that these events are not mutually exclusive: it is possible that the sprinkler was on
and it rained at the same time. Thus, we have two binary-valued random variables,
Sprinkler (S) and Rain (R). In addition, we have two binary-valued variables, Cloudy (C)
and Wet (W), which are correlated to both Sprinkler and Rain. The strength of these
relationships is shown in the Conditional Probability Tables (CPTs). For example, we
see that P(W|S, R) = 0.99, and thus, P(-W|S,R) =1-0.99 = 0.01. Since the C node has
no parents, its CPT specifies the prior probability that it is cloudy, which in this case is
equal to 0.5. Overall, our probability space has 2* = 16 values which correspond to all the
possible assignments of these four variables. By the chain rule of probability, the joint
probability of all the nodes in the graph is:

P(C,S,R,W)=P(C)P(SIC)P(RIC,S)P(WI|C,S,R). (4.2)
By using conditional independence relationships, this can be rewritten as:
P(C,S,R,W) =P(C)P(SIC)P(RIC)P(WIS,R), (4.3)

where it was possible to simplify the third term because Rain is independent of Sprinkler
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given its parent Cloudy, and the last term because Wet is independent of Cloudy given its
parents Season and Rain. Thus, it is clear that the conditional independence relationships
allow for a more compact representation of the joint probability distribution.

Although, in theory, there are many possible options for the distributions of the ran-
dom variables in a BN, the literature has mainly focused on two cases [100]:

* Multinomial variables: this representation is used for discrete/categorical data and
is often referred to as the discrete case. This assumption is the most common in the
literature, and its corresponding Bayesian networks are called discrete Bayesian
networks.

* Multivariate normal variables: this representation is used for continuous data and
therefore referred to as the continuous case. These Bayesian networks are referred
to as Gaussian Bayesian networks.

In this work, the nodes in BNs represent random variables characterising issuers of
debt and the edges how these issuers influence each other. More specifically, the random
variables of interest are the probabilities of default. It should be noted that, since BNs
are DAGs, the existence of cycles or loops is neglected in our analysis. It can be argued,
however, that the magnitude of such second order effects may be negligible as far as the
contagion process is concerned!. To learn the structure and parameters of the BNs we
use time series of CDS spreads. The rest of this section describes the process of learning
the structure and parameters of a BN from data.

4.2.1. Learning

In order to estimate the joint probability distribution from a BN, we first need to learn
both the structure and the parameters of the network from data. We will explain the
parameter learning followed by structure learning. The reason for this order is the use of
some parameter estimation techniques in the latter.

Parameter learning. Suppose we have a collection of n random variables Xj,...,X,
such that the number of states of the random variable X; are 1,2,..., r; and the number of
configurations of parents of X; are 1,2,..., g;. The parameters which have to be estimated
in this case are:

Gijkzp(XizijaXi =k), ie{l,...,n},je{l,...,r;i}and ke {1,...,q;}.

We use g = {Hijk liefl,...,n}, je{l,...,ri}, ke{l,...,q;}} to denote the parameter vec-
tor.

Iseveral contributions in the contagion literature, for instance [101-104], take advantage of conditional inde-
pendence relationships in order to approximate the probability of contagion with a closed-form expression.
The authors of the above papers test their approximations to the contagion probability when applied to finite
networks that entail cycles by performing numerical simulations, and show that the analytic approximations
work surprisingly well. These results can be seen as a test on the actual relevance of second order, cycle effects
in contagion processes. Taking this into consideration, we believe that we can neglect the existence of cycles
in our financial networks without compromising our contagion analysis.
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Let us assume that we know the structure of a BN. There are two different methods
for learning the parameters: Maximum Likelihood Estimation (MLE) and Bayesian esti-
mation. MLE is based on choosing the parameters which maximise the likelihood of the
data. Given a data set &, the MLE method chooses parameters égg such that:

Oy = arg max L(0y : D) = arg max P(2:0y) = arg max | | P(E[m] : Og),
= arg max LBy :9) =arg max P(P:0q) = arg max 1;[ QUOHC
where O is the space of possible values of O, ¢[m] is the m-th instance of 2.

The alternative Bayesian estimation method is based on assuming a prior distribution
over the parameters P(fy), and updating it with each instance of the data to obtain the
posterior distribution, P(6¢ | 2) using the Bayes rule as follows:

P(S[1],...,6[M]|0) P(O)

POy I¢I1],...,E[M]) PEM),....cM]) ) (4.4)
where the denominator is a normalising factor and P (¢[1],...,¢{[M]]|60) is the likelihood.
The choice of the prior distribution is key for the Bayesian estimation procedure.
From Equation 4.4, we can see that the posterior distribution is proportional to the prod-
uct of the likelihood and the prior. Therefore, we need to choose the prior in such a way
that it can be updated easily after each new sample, while maintaining the form of the
posterior distribution. It is well-known that the Dirichlet distribution is the conjugate
prior for the multinomial distribution ([105, Section 17.3.2]), which means that if the
prior distribution of the multinomial parameters is Dirichlet then the posterior distribu-
tion is also a Dirichlet distribution. Since we deal with multinomial variables in our case,

we choose a Dirichlet distribution as the prior for our experiments.

Structure learning. The structure learning for a BN is essentially an optimisation prob-
lem where we minimise a score over the search space of possible configurations of the
network. The score measures how likely a particular structure is based on the data, and
is divided into two categories: likelihood scores and Bayesian scores.

The likelihood scores rely mainly on the likelihood function, which is the probability
of sampling the data given the structure, L(¢4 |2) = P(2|%). The notation (¢4, 0) denotes
a BN, where ¥ represents the structure and 0y the parameters of the network. The
structure of the network is chosen so as to maximise the likelihood score, using the MLE
parameters.

max L((¥,0q) :9) =max |maxL((¥,0q):9D)| = maxL(((ﬁ,ég) 1 9D).
4,04 G | 0y 7

The Bayesian scores have a similar approach as the Bayesian estimation for the pa-
rameters. First, we define a prior distribution over the structure P(%) and a conditional
prior over the parameters P (0 |%). Then, we obtain the posterior distribution P(¥¢|2)
using the Bayes rule. Similar to the Bayesian estimation for the parameters, the denom-
inator is a normalising factor and it remains the same for all the structures. Then, the
score can be defined by taking the logarithm of the numerator:

scorep(¥:9) =1logP(2|¥9) +1ogP(¥9),
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where the second term, the prior, makes no significant difference in the score (see, e.g.
[105, Section 18.3.2]). The first term, called marginal likelihood, is the average over all
the possible choices of 84 based on the conditional probability provided before:

P(@I%):f P(2104,9)P0g|9)d0g. (4.5)

Oy

The average over all the possible parameters makes the model more conservative, and
hence it tries to avoid overfitting as we take into account the sensitivity to the values of
the parameters.

Finally, we briefly describe the search space and the optimisation procedure for struc-
ture learning. The search space is a network itself where each of the nodes is a candidate
structure ¢. Given a node ¥ corresponding to a structure in the search space network,
the neighbours of ¢ are structures obtained by either adding an edge, deleting an edge
or reversing an edge. The Hill-Climbing algorithm follows the steps below:

1. Set initial BN structure to a network without edges 4.
2. Compute its score.

3. Consider all the neighbours of ¢, obtained by either adding, deleting or reversing
an edge in 4.

4. Choose the neighbour % which leads to the best improvement in the score.
5. Set ¥ — %est and repeat until no further improvement to the score is possible.

Some improvements can be made to this algorithm: ([105, Section 18.4.3], [106]).

4.3. Learning Bayesian networks from CDS data

As mentioned in Section 4.2, the BN literature has mostly focused on multinomial and
multivariate normal data. In [97], the authors make the assumption that the residuals of
the regressions on the log returns of the CDS spreads are normally distributed which is
not supported by empirical data. In this work, we choose to work with discrete Bayesian
networks. Therefore, we transform the continuous CDS time series data into a discrete
distribution.

4.3.1. CDS dataset

The data used for the construction of the network are credit default swaps (CDS) spreads
for different maturities obtained from Markit. These consist of daily CDS liquid spreads
of Russian issuers from September 14" 2010 until August 15" 2015. This period is of
particular interest because of the financial crisis in Russia in 2014-2015, which followed a
sharp depreciation of the Russian ruble. Apart from the spreads, the dataset also includes
information about the recovery rates, region, sector and average of the ratings from Stan-
dard & Poor’s, Moody’s, and Fitch Ratings for each issuer. We use the CDS spreads of
issuers for the 5 year tenor for our analysis, since they are the most liquid quotes. Since
recovery rates are not the same for all issuers, we have to normalise CDS spreads to do a
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Figure 4.2: Normalised five year CDS spread of Russian issuers.

consistent analysis. The normalisation of CDS spreads for the recovery rate RR is done
as follows:

S= sﬁ, (4.6)
(1-RR)

where S denotes the normalised CDS spread, which corresponds to a recovery rate of
40%. The choice of normalising the CDS spreads using a recovery rate of 40% is based on
the literature (see e.g., [107]) where the recovery rate is often assumed to be a constant.
We use the normalised CDS spread of the five year tenor in our analysis. Figure 4.2 shows
the normalised spreads for the Russian issuers in the portfolio.
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4.3.2. Discretisation of CDS data

We use the notion of modified e-drawups to transform the continuous CDS time series
data into a discrete distribution. Modified e-drawups build up on the notion of e-drawups
([77, 108]) and can detect instances in the time series where significant upward jumps are
present. For a more detailed definition of modified e-drawups, the reader is refereed to
Section 3.3.2. Note that, in the context of CDS spreads, upward jumps translate to rapid
deteriorations in credit quality.

The CDS data can be transformed into a discrete distribution for learning the BN as
follows. Firstly, we compute the modified e-drawups for each of the time series. The €
parameter at time ¢ is set to be the standard deviation in the time series between days
t—n and ¢, where n is chosen to be 10 days consistent with Chapter 3. Thus, each
issuer i will either have either a modified e-drawup at time ¢ or nothing. We define a
binary random variable Xit corresponding to the issuer 7 such that Xl.‘ =1, ifissuer i has
a modified e-drawup on day ¢, and 0, otherwise. Note that an issuer cannot have two
modified e-drawups on consecutive days by definition.

An additional step which is necessary to prepare the CDS data for learning the co-
dependence of defaults is to introduce the concept of time-lag. This allows us to capture
the fact that issuers can impact each other with a slight delay. For time-lag, we introduce
a new categorical value, 0.5, in the following way. Let a company i have a modified e-
drawup on day ¢, so X lt = 1. If a different company j has a modified e-drawup on at least
one of the following three days, £+ 1, £ +2 or £ + 3, and not on day ¢, then we set Xt=0.5.
Hence, the number of modified e-drawups in the time series remains unchanged which
ensures that the marginal probability of having a modified e-drawup remains unchanged.

4.3.3. Bayesian network learning

To learn the structure of the network we use the Hill-Climbing algorithm based on two
different scores: Bayesian Information Criterion (BIC) ([109]) which is a likelihood score,
and Bayesian Dirichlet Sparse (BDs) ([110]), which is a Bayesian score. We refer to Section
B.1 in the Appendix for details on the two scores.

To learn the network, we also applied a bootstrapping technique for ensuring the
robustness of results ([111]). For the structure learning, we obtain the structure 1000
times and then we compute the average structure by including the edges which appear
in at least 50% of the networks. The data set 2 used at iteration k is obtained by uniform
sampling of |2] instances from the original training data 2.

Once the BN is learnt, we can evaluate the queries for conditional probabilities
P(Q|E), of events Q given evidence?E. To perform these queries, we use the logic sam-
pling algorithm [112] which has the following steps. First, it orders the variables in the
topological order implied by the structure ¢. This means that the variables with no par-
ents appear first followed by their children. Next, we set the counters ng = 0 and ng,g = 0.
Afterwards we generate a sufficiently large number of samples M where each sample
consists of a vector of instances of all the random variables in the network. Note that
generating the instance for X; only requires the values of Pay,. Then, for each sample if
itincludes E, set ng = np + 1, and, if it includes both Q and E, set ng g = ng g + 1. Finally,

2An event in the BN terminology refers to a (some) random variable(s) taking a particular value(s). An evidence
is mathematically the same as an event with the difference that it is known.
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we can estimate P(Q|E) by ng g/ng. This method is based on a Monte Carlo simulation,
therefore a sufficiently large number of simulations is needed to assure a reliable result.

4.4. Numerical study

In this section we describe the setup of the problem and the results obtained in the
calibrations and simulations.

4.4.1. Bayesian network learning and robustness

We use CDS data as described in Section 4.3 to learn the structure and the parameters
of the BN. The bnlearn ([113]) library in R is used for the Hill-Climbing procedure. The
numerical experiments were performed using two scores: BDs and BIC. Both scores
resulted in similar structure of the network as shown in Figure 4.3, except for one edge:
GAZPRU.Gneft — AKT which is present in the network learnt with BIC, whereas with BDs
it is substituted by CITMOS — AKT, as we can see in Figure 4.3.

After learning the network, the next step is to estimate the conditional probability
of default of an issuer, conditional on the default of the sovereign. In order to estimate
these probabilities we run a Monte Carlo simulation of 100 iterations. For each of these
iterations, we calculate the conditional probability using 4 x 10° samples. Finally, we take
the mean of the Monte Carlo simulations as an estimate for conditional probabilities. We
compare the probabilities for both BIC and BDs scores including mean, standard devia-
tion and absolute difference in Table 4.1. Figure 4.4 shows the structure, with the nodes
coloured according to their probability of default given sovereign default. The darker the
colour of the node, the higher is the probability of default of the node conditional on
sovereign default. We see that Gazprom and Gazprom Neft, the two nodes connected
to the sovereign, are the ones more affected and the issuers which are further from the
sovereign have relatively lower conditional default probabilities.

We observe that the standard deviation of the conditional probabilities estimates
is quite small for all the issuers, ranging between 0.002 and 0.0035. This implies that
the estimates are quite robust, and gives us a strong confidence on the reliability of the
results. Moreover, we notice that the absolute difference of the probabilities from the two
scores is smaller than the standard deviation except in two cases.

The main difference we note in the table has to do with Transneft, whose probability
of default conditional on sovereign default decreases by more than 0.07 when changing
the score from BIC to BDs. This is caused by the change in the structure, which directly
affects this issuer. For the BIC score, Gazprom Neft is a parent of Transneft whereas City
Moscow is not, and using BDs score it is the other way around. We see that with both
scores Gazprom Neft is more affected by the sovereign default than City Moscow. This is
also a confirmation of the fact that the stress spreads faster from one issuer to another
if they are directly connected. The second difference in conditional probability has to
do with MDM Bank. If we look at the structures, we see that MDM has only one parent,
which is Transneft. As the parent (Transneft) is less affected in the structure learnt by
BDs, its child also being less affected is in line with intuition. This causes a small but still
noticeable difference in the conditional probabilities.



“JUIIIJIP
JBY] JOU ST 2INIONIIS 3 JBY) S[edAdl uondadsur aso[o Inq 1o7d oY) SULIOLITUI ST W9)SAS UOTIBSI[BNSIA ) JBY) 9]0N 'SII09S JUSISJJIP 9} YIIM PuUTeIqo aI1monns ¢y amsig

*91028 S UM 21nonns (q) *9109$ DI YIIM 2INONNS ()
f\ . .




72 4. Contagious defaults in a credit portfolio: a Bayesian network approach

4.4.2. Comparative analysis

To investigate the impact of the contagion effects estimated using BNs on credit losses,
we use the multi-factor Merton model described in Sections 3.2 and 3.3. We perform
our numerical experiments for a Portfolio A from Chapter 3, consisting of 1 Russian
government bond and 17 bonds issued by corporations registered and operating in the
Russian Federation. The resulting risk measures for this portfolio are compared to those
of the standard latent variable model with no contagion. Details on the credit quality of
the issuers in the portfolio can be found in Table 3.2. The sectors represented are shown
in table 3.3. The portfolio is assumed to be equally weighted with a total notional of €10
million.

In order to generate portfolio loss distributions and derive the associated risk mea-
sures we perform Monte Carlo simulations. This process entails generating joint realisa-
tions of the systematic and idiosyncratic risk factors, and comparing the resulting critical
variables with the corresponding default thresholds. By this comparison we obtain the
default indicator Y; for each issuer and this enables us to calculate the overall portfolio
loss for this trial. The only difference between the standard and the contagion model is
that in the contagion model we first obtain the default indicators for the sovereigns, and
their values determine which default thresholds are going to be used for the corporate
issuers. A liquidity horizon of 1 year is assumed throughout and the figures are based on
a simulation with 108 samples. Moreover, for the results shown we used the probabilities
of default computed with the structure learnt via the BIC score. However, this choice
does not make any notable difference in the quantiles of the loss distribution because
the probabilities were almost the same and such tiny difference would not cause a large
disturbance.

We compared the BN model with the CountryRank model of Chapter 3. In Table 4.2
we can observe the differences between the probabilities obtained with both methods,
using the same data, and same parameters: 10 days to compute the standard deviation
and 3 days as time lag. Following the sensitivity analysis in Chapter 3 we can expect that
the 15% increase of the mean will not have a substantial impact on the quantiles of the
loss distribution. This hypothesis can be confirmed by the results shown in Table 4.3 and
the graph depicted in Figure 4.5.

4.5. Concluding remarks

In this chapter, we presented a novel method of estimating contagion effects from CDS
data using BNs. Rather than assuming a certain distribution for CDS spreads, we intro-
duced a method for learning BNs using e-drawups. Different techniques to learn the
structure and parameters of financial networks were studied and evaluated. We used
CDS spreads of issuers in a stylised portfolio and incorporated the conditional probabil-
ities in the credit portfolio model presented in Chapter 3. Simulations were carried out
for a stylised portfolio and the impact on standard risk metrics was estimated. Contagion
was shown to have a significant impact in the tails of the credit loss distribution, with the
results being in line with results obtained by using the CountryRank metric.
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Figure 4.4: Bayesian network learnt with BIC with coloured nodes according to its probability of default given
sovereign default. Note that having a darker colour means that the node has a higher conditional probability of

default.

Order Issuer BIC BDs Abs diff
Yc s.d. Yc s.d.
1 JSC Gazprom 0.7824 0.0030 0.7809 0.0028 0.0015
2 JSC Gazprom Neft 0.7024 0.0026 0.7018 0.0028  0.0006
3 Sberbank 0.6260 0.0034 0.6261 0.0032  0.0001
4 Russian Agriculture Bank 0.6165 0.0032 0.6167 0.0030  0.0002
5 Oil Transporting JSC Transneft  0.5754 0.0025 0.4983 0.0026  0.0771
6 Lukoil Company 0.5417 0.0024 0.5410 0.0023  0.0007
7 Open JSC Rosneft  0.5394 0.0030 0.5407 0.0025 0.0013
8 JSC Russian Railways 0.5186 0.0029 0.5189 0.0025 0.0003
9 JSCVTB Bank 0.4913 0.0027 0.4911 0.0030  0.0002
10 Vnesheconombank 0.4583 0.0028 0.4583 0.0024 <1074
11 Bank of Moscow  0.4576 0.0027 0.4572 0.0025  0.0004
12 City Moscow  0.4377 0.0031 0.4375 0.0025 0.0002
13 MDM Bank Open JSC 0.4251 0.0026 0.4028 0.0032  0.0223
14 Alrosa C.L. 0.3890 0.0025 0.3885 0.0028 0.0005
15 Mobile Telesystems 0.3542 0.0025 0.3540 0.0023  0.0002
16 Open]JSCVimpelCom Limited 0.3523 0.0022 0.3524 0.0023  0.0001
17 JSC Russian Standard Bank  0.3290 0.0024 0.3296 0.0021  0.0006

Table 4.1: Probabilities of default given sovereign default with BIC and BDs score.
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Order Issuer BN CountryRank Diff
1 JSC Gazprom  0.7824 0.6220 0.1585
2 JSC Gazprom Neft 0.7024 0.5610 0.1415
3 Sberbank 0.6260 0.5854 0.0406
4 Russian Agric Bank  0.6165 0.5854 0.0312
5 Oil Transporting JSC Transneft  0.5754 0.5732 0.0022
6 Lukoil Company 0.5417 0.3381 0.2036
7 Open JSC Rosneft  0.5394 0.5244 0.0150
8 JSC Russian Railways  0.5186 0.5427 -0.0241
9 JSCVTBBk 0.4913 0.6098 -0.1184
10 Vnesheconombank  0.4583 0.3339 0.1244
11 Bank of Moscow  0.4576 0.5305 -0.0729
12 City Moscow  0.4377 0.5122 -0.0745
13 MDM Bk Open JSC  0.4251 0.3131 0.1120
14 Alrosa C.L.  0.3890 0.2293 0.1596
15 Mobile Telesystems  0.3542 0.2446 0.1096
16 OpenJSC VimpelCom Limited 0.3523 0.2964 0.0559
17 JSC Russian Standard Bank  0.3290 0.0869 0.2420
Mean 0.5056 0.4405 0.0651

Table 4.2: Comparison of y¢ using BN and CountryRank model.

Quantiles of the Loss distribution

Loss (millions)
w

99 99.5 99.9 99.99
Quantile (%)
B Standard model [ CountryRank model [l BN model

Figure 4.5: Quantiles of the Loss distribution without and with contagion with the BN and the CountryRank
model.
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. BN model CountryRank model
Quantile .. L
Contagion impact  Contagion impact
99% 117,341 11% 124,903 11%
99.5% 1,054,844 73% 769,694 53%
99.9% 2,302,667 99% 1,930,166 83%
99.99% 2,198,517 63% 1,883,240 54%

Table 4.3: Comparison of the contagion impact using Bayesian networks and CountryRank model.

The results presented are a first step in the application of BNs on portfolio credit risk
models. However, the BN framework we developed is flexible enough to allow for wider
applications. For instance, one can extend the contagion so that stress originates from
any issuer and not only at the sovereign. Moreover, one can test scenarios where multiple
issuers default. Two examples of such scenarios can be found in the Appendix B.2. These
applications can be particularly useful for risk managers, who are often interested in
building scenarios for catastrophic risks and testing the resilience of their portfolios to
such scenarios.

In order to extend our analysis, we plan to further investigate applications of the
developed probabilistic framework in problems beyond credit portfolio modelling. A
promising direction looks to be using our framework in order to identify systemically
important nodes in the financial system and measure systemic risk. This could be done
by considering, in a recursive manner, the fact that a node is more systemically important
if it impacts many systemically important nodes. Another interesting direction is the
modelling of wrong-way risk (WWR) arising in the case of a sovereign default in the
pricing of Credit Valuation Adjustment (CVA) and Funding Valuation Adjustment (FVA)
for interest-rate and foreign exchange derivatives.






Community structure of the
credit default swap market and
portfolio default risk

One of the most challenging aspects in the analysis and modelling of financial markets,
including Credit Default Swap (CDS) markets, is the presence of an emergent, intermediate
level of structure standing in between the microscopic dynamics of individual financial
entities and the macroscopic dynamics of the market as a whole. This elusive, mesoscopic
level of organisation is often sought for via factor models that ultimately decompose the
market according to geographic regions and economic industries. However, at a more gen-
eral level the presence of mesoscopic structure might be revealed in an entirely data-driven
approach, looking for a modular and possibly hierarchical organisation of the empirical
correlation matrix between financial time series. The crucial ingredient in such an ap-
proach is the definition of an appropriate null model for the correlation matrix. Recent
research showed that community detection techniques developed for networks become in-
trinsically biased when applied to correlation matrices. For this reason, a method based
on Random Matrix Theory has been developed, which identifies the optimal hierarchical
decomposition of the system into internally correlated and mutually anti-correlated com-
munities. Building upon this technique, here we resolve the mesoscopic structure of the
CDS market and identify groups of issuers that cannot be traced back to standard indus-
trylregion taxonomies, thereby being inaccessible to standard factor models. We use this
decomposition to introduce a novel default risk model that is shown to outperform more
traditional alternatives.

Parts of this chapter are based on [P4]
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5.1. Introduction

The financial crisis of 2007-08 laid bare the downside of a highly interconnected financial
system by evidencing that each link constitutes a channel through which shocks can
propagate rapidly across markets and asset classes. This has been popularised by the too-
interconnected-to-fail motto, stressing the impact that the failure of a highly central node
would have on the rest of the network. Capturing financial complexity within models has
been a major challenge since, for financial institutions and regulators alike.

Complexity-inspired models rest upon the evidence that economic and financial sys-
tems have many of the key properties characterising natural complex systems: they are
composed by many heterogeneous units that interact with each other in a non-linear
fashion, usually in the presence of feedback ([114, 115]). A tractable framework for the
quantitative analysis of many complex systems is provided by networks. Techniques from
network theory have been used to study a variety of financial assets, including equities
([115-117]), exchange rates ([118, 119]), commodities ([120]), bonds ([121]) and interest
rates ([122]); however, despite the growing literature on networks in finance, the effort for
incorporating these techniques in models used for the pricing and risk management of
individual portfolios has remained at a very early stage, as seen in the previous chapters.

In addition to the complexity of the financial system, the global financial crisis uncov-
ered the significant weaknesses of the regulatory framework for capitalising risks from
trading activities. Since the onset of the crisis, a major source of losses and of the build
up of leverage transpired in the trading book: an instrumental factor was that the existing
capital framework for market risk, based on the 1996 Amendment to the Capital Accord
to incorporate market risks ([123]), was not able to capture some key risks. In 2009, the
Basel Committee on Banking Supervision introduced a set of revisions to the market risk
framework to address the most crucial shortcomings, commonly referred to as the Basel
2.5 package of reforms ([124, 125]). These reforms included requirements for the banks
to hold additional capital against default risk and rating migration risk, known as the
Incremental Risk Charge (IRC). The IRC is calculated using a value-at-risk (VaR) model
at the 99.9% confidence level over a one-year time horizon.

Although Basel 2.5 was an important improvement, some of the structural flaws of
the market risk framework remained unaddressed. To this end, the Committee initiated a
fundamental review of the trading book (FRTB) to enhance the design and coherence of
the market risk capital standard, in line with the lessons learned from the global financial
crisis ([64]). In FRTB the IRC is replaced with a Default Risk Charge (DRC) model. As an
autonomous modelled approach, the IRC effectively dismisses diversification effects be-
tween credit-related risks and other risks. Moreover, the more complex IRC models were
identified as source of undesired variability in the market risk weighted assets. Under
the revised framework, the DRC models will measure the trading portfolio’s default risk
separate from all market risks. As an additional constraint, the DRC places limitations
on the types of risk factors and correlations that can be used within the model. More
specifically, banks must use a default simulation model with multiple systematic risk
factors of two different types and default correlations must be based on credit spreads or
on listed equity prices, covering a period of 10 years which includes a period of stress.

In order to meet the requirement of two different types of systematic factors for the
default model, [126] proposed to use principal components analysis (PCA) to identify
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the common systematic factors that drive issuer returns. While the factors obtained
using this approach are explanatory in a statistical sense, they usually lack of an obvi-
ous economic meaning. Moreover, the stability of such factors over time might prove
insufficient. A more common approach among practitioners is employing observable
economic factors, representing the overall state of the economy or effects related to par-
ticular geographic regions or industry sectors. An example of this approach is described
in [127].

Motivated by the absence of models encoding complexity-based ‘inputs’, in this chap-
ter we take up the challenge by focusing on one of the key aspects of complex systems, i.e.
the presence of a community structure. Detecting the presence of communities means
individuating clusters of units sharing some kind of similarity: when considering finan-
cial systems, this usually boils down at identifying sets of stocks sharing similar price
dynamics. We focus on credit default swap (CDS) spread time series with the aim of in-
dividuating clusters whose similarities cannot trace back to the standard, region- and
sector-wise ones. To achieve this goal, we employ a recently-proposed community de-
tection method that take as input the empirical correlation matrix induced by a given
set of CDS time series ([128, 129]) and, then, we employ the output of such a method
to identify communities of issuers and define a novel default risk model. The variant
we propose is shown to outperform more traditional versions. Our contributions in this
chapter are, therefore, threefold. First, to the best of our knowledge our study is the first
one that detects mesoscopic communities of issuers by applying the approach based
on Random Matrix Theory (RMT) on CDS time series. Second, on the basis of the de-
tected communities we derive factors and develop a portfolio credit risk model that is in
line with regulatory requirements for DRC calculations. Third, we set up four synthetic
test portfolios and present the impact of considering different systematic factors on the
quantiles of the generated loss distributions.

The remainder of the chapter is organised as follows. In Section 5.2 we provide a
brief definition of CDS contracts and an overview of the dataset used for the present
analysis. In Section 5.3 we describe the theoretical principles upon which the community
detection method for correlation matrices employed here is based and analyse the results
obtained using the data described in Section 5.2. Section 5.4 is, instead, dedicated to the
description of our novel default risk model whose key ingredient is represented by a
previously-ignored factor, i.e. the community-driven one, as well as a simulation study
on synthetic test portfolios. Finally, in Section 5.5 we summarise our findings and draw
conclusions.

5.2. Preliminary definitions

5.2.1. Credit default swaps

A credit default swap (CDS) is a financial contract in which a protection buyer, A, buys
insurance from a protection seller, B, against the default of a reference entity, C. More
specifically, regular coupon payments with respect to a contractual notional and a fixed
rate, the CDS spread, are swapped with a payment of in the event of default of C, where
RR, known as the recovery rate, is a contract parameter representing the fraction of
investment which is assumed be recovered in the event of default of C.
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CDS spreads reflect the market participants’ view on probability of default. Thus,
practitioners often rely on them to obtain market-implied parameters which are key
inputs to their models. For instance, in the case of credit valuation adjustment (CVA)!,
the default probabilities are obtained from CDS spreads. Apart from derivatives valuation,
CDS spreads are used extensively for estimating correlations in market risk and capital
models ([64]).

5.2.2. Description of the data-set

The raw CDS data-set is provided by Markit and consists of daily CDS spreads for a range
of maturities covering the period between 1 January 2007 and 31 December 2016. Markit
maintains a network of market makers who contribute quotes from their official books
and records for thousands of entities on a daily basis. Using the contributed quotes, the
daily CDS spreads for each entity, as well as the daily recovery rates used to price the
contracts, are calculated. In addition, the data-set contains information on the names
of the underlying reference entities, recovery rates, seniority of the debt on which the
contract is priced on, restructuring type, number of quote contributors, region, sector,
average of the ratings from Standard & Poor’s, Moody’s, Fitch Group of each entity and
currency of the quote.

Since Markit data are characterised by a number of attributes, it is possible to have
multiple CDS data series for the same issuer. In order to obtain unique, representative
time series, we apply a set of selection criteria. First, we select the CDS spreads of enti-
ties for the five-year tenor for our analysis; it is observed that Markit’s raw data is more
complete for this tenor, since five-year CDS contracts are the most liquid. For the same
reason, we select senior unsecured debt for corporates and foreign debt for sovereigns.
Finally, we set up a hierarchy for the document clause/restructuring type which defines
what constitutes a credit event and select the series denominated in Euro for the Euro-
pean issuers and in U.S. dollar for issuers from the rest of the world. Besides the above
steps, we apply a couple of additional filtering steps to the CDS data to retain the most
liquid quotes. After applying these pre-processing steps, we are left with a total of 786
entities and 2608 trading days. The distribution of issuers across regions and sectors is
shown in Table 5.1.

5.3. Community detection on CDS correlation matrices
5.3.1. Methods

Basic notation. In this subsection we introduce the basic notation and describe the
community-detection method for time series introduced in [128]. Financial markets are
represented as a set of time series Xj ... X, each one encoding the temporally ordered
activity of the i-th unit of the system over, say, T time-steps, i.e.

Xi={x;1)...x; (D)}, Y i. (5.1)

In our case i is a credit issuer. The mutual interactions between the series considered

1CVA is the difference between the risk-free portfolio value and the actual portfolio market value that takes
into account the risk of a counterparty’s default. Its magnitude depends on the probability of default of the
counterparty, the future exposures of the underlying derivative or portfolio, and the loss given default.



5.3. Community detection on CDS correlation matrices 81

Table 5.1: Distribution of 786 entities across regions and sectors.

Region N  Sector N
Africa 5 Basic materials 51
Asia 132 Consumer goods 104
Eastern Europe 14  Consumer services 94
Europe 239 Energy 51
India 7 Financials 164
Latin America 13 Government 63
Middle East 9 Health Care 33
North America 342 Industrials 85
Oceania 25 Technology 30

Telecommunication services 42

Utilities 69

above are summed up by an X x N correlation matrix, i.e. a matrix C whose generic entry
C;j reads
COV[X,', Xj]

Cij= Yi,j (5.2)
I N varxg)

i.e. the Pearson coefficient between series i and j, with

Cov[X;, Xj1=X; - X; - X; - Xj, Vi, ] (5.3)

and o )
Var([X;] =Xl.2—Xl- VY i (5.4)

in the above equations, the bar is assumed to denote a temporal average, i.e.

T
— i (L
X; = %,VL (5.5)
— t
X2 = Lo lx(),Vi, (5.6)
T
. T_ . t . . l’
X;-X; M Vi,j. (5.7)

As frequently done in order to filter out the inherent heterogeneity of time series, each
series X; has been standardised by subtracting the temporal average X; and dividing the
result by the standard deviation o; = v/Var[X;]; in other words, X; has been redefined as
(X; — X;)/o; in asuch a way to ensure that X; =0, Var[X;] = 1 and Cij = CovlX;, X;] =
Xi- Xj.

One of most challenging problems in the field of complex systems is that of extracting
information from the matrix C. As we are considering financial markets, we would be
interested in individuating sets of issuers sharing a similar CDS spread dynamics. More
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formally, this amounts at inspecting the community structure of the considered set of
issuers, i.e. the presence of (internally cohesive) modules of issuers.

Over the past years, several techniques to retrieve information regarding the modu-
larity of multiple time series have been proposed (see [128] and references therein). One
of the most promising approach is that of applying community detection techniques
to empirical correlation matrices: however, as existing methods are tailored on graphs,
they suffer from statistical bias whenever applied ‘as they are’ to correlation matrices (see
[128] and references therein).

Recently, a method based on Random Matrix Theory (RMT) ([130, 131]) has been
proposed ([128]): when applied to financial time series, this algorithm has been proven
to be able to capture the dynamical modularity of real markets, by identifying clusters
of stocks which are positively correlated internally but anti-correlated with each other.
In what follows, we will provide a brief explanation of the method. More details can be
found in the original reference [128].

Spectral analysis of random correlation matrices. Let us start by inspecting the prop-
erties of random correlation matrices. The latter are constructed by considering N com-
pletely random time series of length T (more precisely, time series whose entries are
independent, identically distributed random variables with zero mean and finite vari-
ance): the matrix encoding the correlations of this set of series is a N x N Wishart matrix,
whose eigenvalues follow (in the limits N — +oo and T — +oo with 1 < T/N < +o00) the
so-called Marcenko-Pastur distribution ([132]), reading

pM):% (M"gﬁa"AJ it A_sAs<A, (5.8)

and p(A1) = 0 otherwise, with A, and A_ being, respectively, the maximum and the mini-
mum eigenvalue:

N

T (5.9)

/li:

The method we are going to describe implements the idea that, while the eigenvalues
of an empirical correlation matrix falling within these boundaries can be attributed to
random noise, any eigenvalue smaller than A_ and larger than 1, is to be considered
as representing some meaningful structure in the data. The result above leads to the
possibility of expressing any empirical correlation matrix as the sum of two components,
ie.

c=Cc"”+c® (5.10)

where C”) is the tensor random component, induced by the eigenvalues in the random
bulk (i.e. ¥ i such that 1; € [A_, 1. ]) and reading

cC”= Y NilviXwil (5.11)

i
A_=A;=Ay)
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Figure 5.1: Left panel: smoothed eigenvalue density of the correlation matrix extracted from the CDS spreads of
N =786 issuers during the period 2007-2016 (T = 2608); for comparison we have plotted the Marcenko-Pastur
density function (5.8) coming from N uncorrelated series of duration 7. Inset: same plot, but including the
highest eigenvalue corresponding to the ‘market’. Right panel: eigenvalues density distribution of randomised
CDS data. The figure shows the agreement between empirical (in blue) and random (in red) distributions once
the original data are shuffled.

and C“ is the tensor structural component, aggregated from the remaining eigenvalues.
The structural component C can be further subdivided, upon considering the exis-
tence of the so called market mode. As it has been shown in a number of previous studies
([128, 129, 132]), a representative characteristic of the spectrum of empirical correlation
matrices is the existence of an eigenvalue A,, which is orders of magnitude larger that the
remaining ones; in case financial stocks are considered, such a leading eigenvalue em-
bodies the common factor driving all the constituents of a given market. As the effect of
Am is that of pushing all nodes into the same community, we need to properly discount it,
by focusing on the ‘reduced’ portion of the structured spectrum defined by the condition
Ai € (A4, A). This leads to a further decomposition of the correlation matrix, i.e.

c=c”+c® +cm (5.12)

where
C" = A V) (V] (5.13)

represents the tensor portion induced by the market mode and

c®= Y Alviwil (5.14)

i
A4 <Ai<Am)

represents the tensor portion filtered from both the random noise and the common factor.
As a consequence, the correlations encoded in C'® are neither at the individual level nor
at the level of the entire market but at the level of groups of stocks (i.e. at the mesoscale in
the network jargon). Remarkably, the eigenvectors contributing to C¢) have alternating
signs, allowing for the detection of groups affected in a similar manner by some (other)
common factors ([128, 130]).

In Figure 5.1 we plot the eigenvalue density distribution characterising the empirical
correlation matrix of N =786 CDS spreads (corresponding to 7' = 2608 daily log-returns
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for the period 2007-2016) together with the Marcenko-Pastur distribution coming from
N totally uncorrelated series of duration 7 (shown in red). The maximum expected eigen-
value amounts at approximately 1, = 1.27. The inset is the fully zoomed-out version of
the plot, illustrating that the empirical correlation matrix has a maximum eigenvalue
of about 1,, = 216 (i.e. the market mode), in addition to a few other eigenvalues lying
between A, and A,,. The eigenvector |v,,) corresponding to 1,, has all positive signs.
We also inspect whether the system follows the Marcenko-Pastur distribution once the
original data re shuffled. To this aim, we, first, randomly permute the entries of each
time series separately, thus destroying the daily correlations; then, we check if the eigen-
values of the correlation matrix of the shuffled set of series follow the Marcenko-Pastur
distribution: as fig. 5.1 shows, this is indeed the case.

Community detection on filtered correlation matrices. Community detection is an
active field of research within network theory. Among the many proposed approaches,
the most popular one is based on the maximisation of the quantity known as modularity,
ascore function measuring the optimality of a given partition by comparing the empirical
pattern of interconnections with the one predicted by a properly-defined benchmark
model. It is defined as

N

1
Q)=—= > laij—(aip]6(0;,0)) (5.15)
Al 524

where a;; is the generic entry of the network adjacency matrix A, (a; ;) is the probabil-
ity that nodes i and j establish a connection according to the chosen benchmark (i.e.
the expectation of whether a link exists or not under some suitable null hypothesis), o
is the N-dimensional vector encoding the information carried by a given partition (the
i-th component, o;, denotes the module to which node i is assigned) and the Kronecker
delta 6(0;,0;) ensures that only the nodes within the same modules provide a posi-
tive contribution to the sum. The normalisation factor || A|| = Z?] =1 @ij guarantees that
—1 = Q(o) =1 (when undirected networks are considered, it equals twice the number of
connections).

Much of the previous research in community detection for financial time series has
explored the approach of considering the empirical correlation matrix C as a weighted
network and searching for communities by using the weighted extension of the modular-
ity, defined by posing a;; = C;; and

SiSj ..
(@ijy =(Cij) =55 Vi j (5.16)

withs; =YX ¥, Ci; = Cov[X;, X0 and W = ¥V j=1 Cij = Var[X;o;] (having defined xyo¢(f) =
Zthl x;(1)). According to [128], however, this approach may lead to biased results. As a
consequence, a null model encoding the spectral properties of correlation matrices has
been proposed, i.e.

(@ip)y =(Cip) =C{ +C{", Vi, j (5.17)
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Figure 5.2: CDS market community structure. The figure shows the communities detected on CDS spread data
for 786 issuers during the period 1 January 2007-31 December 2016. The communities were generated by the
modified Louvain algorithm ([128]) using daily log-returns. Individual communities are labelled A, B, C and
the pie charts represent the relative breakdown of each community with respect to the sector (left panel) and
region (right panel) of the component entities.

(@) (b)

in turn leading to the following redefinition of modularity

_1 & (" 4 ~m)
Qo) = m P2 [Cij — (Cij + Cij )] 5(0’,’,0‘]') (5.18)

(with ||C]| = Zﬁvj:l Cij), a ‘novel’ quantity whose maximisation outputs a partition of a
given set of time series upon filtering out the random noise and the market component.

5.3.2. Results
Community detection. We now proceed with the application of the methodology de-
scribed in Section 5.3.1. Figure 5.2 shows the output of the Louvain algorithm when
applied to the daily CDS spread data of 786 issuers, covering the period between 1 Jan-
uary 2007 and 31 December 2016. The algorithm is making use of the modularity defined
in Equation (5.18), which is able to discount random as well as market-wide effects. With
the CDS data, we obtain three mesoscopic communities, labelled A, B and C, charac-
terised (as explained in the previous sections) by positive correlations within them and
negative correlations between them. The pie charts represent the composition of each
community according to the industry and region of the constituent issuers for Figure 5.2a
and Figure 5.2b respectively. The colour legends can be found in Tables 5.2 and 5.3.
From the data in Figure 5.2a, it is apparent that every community contains a range
of issuers from all industry sectors: no pattern of association between sector and com-
munity structure is immediately evident. For Community A, it can be seen that over a
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Table 5.2: The 11 industry sectors with the colour representation used to highlight the sectors in the following
figures.

Basic materials: B Health care:

Consumer goods: m  Industrials:

Consumer services: Technology: [ ]
Energy: Telecommunication services
Financials: B Utilities:

Government

Table 5.3: The 9 regions with the colour representation used to highlight the sectors in the following figures.

Africa: Latin America: ®
Asia: B Middle East: [ |
Eastern Europe: ™ North America:
Europe: Oceania

India:

quarter of issuers are classified as Financials (M), while another quarter of the commu-
nity comprises issuers from the Consumer Goods (M) and Consumer Services (i) sectors;
the rest of the industry sectors are represented with lower percentages, ranging from
slightly less than 10% for Utilities () to approximately 3% for Technology (M). Issuers
from Financials (M) are slightly less frequent in Community B, accounting for approxi-
mately 15% of the total issuers, while consumer Goods (®), Consumer Services (), and
Industrials () sectors follow with similar percentages; the rest of the community consists
of issuers from all sectors with lower percentages, such as Energy () and Utilities (™)
with slightly less than 10% each. Almost 40% of Community C consists of Financials (M)
and Government () issuers: interestingly, the proportion of Government (%) issuers in
Community C is significantly higher than the corresponding proportion in Communities
A and B and almost twice as high as the one in the full sample of 786 issuers; issuers from
the Consumer Goods (M) and Industrials (' ) sectors are also quite frequent, constituting
approximately a quarter of Community C.

We now turn to the relative breakdown of the issuers of each community according
to region. As Figure 5.2b demonstrates, the identified communities display a high degree
of overlap with region classification. Communities A and B are dominated by the regions
Europe () and North America () respectively. On the other hand, Community C con-
tains the bulk of issuers from Asia (M), while issuers from Oceania (' ) and India ( ) are
represented exclusively in this community. It is interesting, however, that a considerable
amount of issuers from Europe () and North America (%) can be found in Community C,
meaning that over the course of the ten-year period under analysis they were more cor-
related with issuers from Asia (M) or Oceania (' ) than with most of the issuers located in
their own region. A possible explanation is that some issuers such as international banks
registered in Europe and North America have considerable exposure to Asia-Pacific.
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Hierarchical community structure. The methodology described in Section 5.3.1 can
be applied iteratively, to individuate smaller subcommunities which may be nested in-
side larger communities. As the leading eigenvalue of the correlation matrix represents
something that all issuers in the market have in common, the leading eigenvalue of the
correlation matrix restricted to a specific individual community can be interpreted as
something that all issuers in that community have in common: by washing out the ef-
fects of this ‘community mode’, one can detect the ‘residual’ modular structure (internal
to each community). Naturally, subcommunities within each parent community are
anticorrelated with each other while being positively correlated internally.

The results of a single iteration over the communities A, B, and C (summarised in
Figure 5.2) are illustrated in Figures 5.3 and 5.4. It can be seen from the graph that the
degree of overlap with the sector-based classification is higher for subcommunities than
for communities. Moreover, the overlap with the region-based classification is even more
pronounced.

Community A is divided is four subcommunities labelled A1 through A4. Al and A3
contain a range of issuers from all sectors, while A2 is dominated by Financials (#) and
three quarters of A4 is constituted by Energy (') and Utilities (). In all four subcommu-
nities, Europe (%) is the leading region and there is a small percentage of issuers from
North America (¥); moreover, Middle East (®), Eastern Europe () and Africa (') are
represented exclusively in Al while issuers from Asia (M) can be found exclusively in A3.

Community B is split in five subcommunities. B1 is quite heterogeneous, including
issuers from all different industry sectors. B2 includes issuers from the Energy (') and
Utilities () sectors. Approximately half of B3 and B4 include are constituted by Con-
sumer Goods (M) and Consumer Services () issuers, with Industrials (' ) and Health
Care () accounting for another quarter of B4. Finally, B5 is dominated by Financials
(m) and Government (). From a geographic perspective, subcommunities of B are all
dominated by North America (), with some issuers from Europe () being present in B1
and to a lesser extent in B3 and B5. B2 contains issuers only from North America () and,
with very few exceptions, the same holds for B3 and B4 as well. Most of the issuers from
Latin America (M) can be found in B5 with almost a third of this subcommunity being
from that region.

Moving to the four subcommunities of Community C, almost half of the issuers in
subcommunity C1 are equally split among Consumer Goods (®) and Industrials (" ). Is-
suers from the Government (#) and Financials (M) sectors constitute more than half of
subcommunities C2 and C4. Financials (M) are frequent in subcommunity C3 as well,
followed by Consumer Services (%), i.e. the second most frequent industry sector. In
terms of regional classification, although Community C is more heterogeneous than A
and B, its subcommunities reveal that issuers from Asia (M are concentrated in subcom-
munities C1 and C4, with C4 containing almost all the issuers from India (' ). C3 consists
of issuers from Oceania (' ), with a small number of issuers from Europe (7). The bulk of
the European issuers in community C is concentrated in C2, making up almost 50% of
the subcommunity. The rest of C2 consists of issuers from Eastern Europe () and North
America () with about 15% each, and Middle East (M) with slightly over 10%.

In summary, these results provide important insights into the structure of the CDS
market. It is suggested that the three communities initially detected are quite hetero-
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Figure 5.3: Subcommunity structure of the three communities of the CDS market by sector. Although at first
glance the subcommunities seem quite heterogeneous with respect to sector, after close inspection it can be
seen that some of them are dominated by certain sectors, for example A2 and B5 are dominated by Financials
(M) and Government (), while A4 and B2 are dominated by Energy (' ) and Utilities ().
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Figure 5.4: Subcommunity structure of the three communities of the CDS market by region. The overlap
between region and subcommunities is better than the one between sectors and subcommunities.
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Figure 5.5: Left panel (5.5a): Divergence from original community structure for the five data sets of different
sampling frequencies. It can be seen that the VI is increasing steadily when moving from the finest to the
coarsest resolution but does not exceed 10%, indicating a high level of similarity between partitions. Right
panel (5.5b): Heat map illustrating the value of VI between each pair of the five data sets of different sampling
frequencies. From the heat map, it is apparent that there is a considerable degree of consistency across sampling
frequencies, but the similarity degrades steadily when moving from the finest to the coarsest resolution.

geneous as far as industry sectors are concerned, while they overlap to a greater extent
when considering a regional-based classification of issuers. Interestingly, although Com-
munities A and B are dominated by Europe () and North America (), some European
and North American issuers are clustered with issuers from Asia (M) and Oceania ()
in Community C. At the second iteration of the method, some of the obtained subcom-
munities are dominated by certain sectors: for instance, A2 and B5 are dominated by
Financials (@) and Government (#), while A4 and B2 are dominated by Energy (' ) and
Utilities (/). The overlap between regions and subcommunities is even better than the
one between sectors and subcommunities. These results have implications for the man-
agement of portfolios of credit risky instruments, demonstrating that after global effects
have been filtered out, default risk dependence is related to regional effects to a larger ex-
tent than to sectoral effects. This seems to be in line with previous evidence from equity
markets ([133]), indicating that industry-specific effects are less significant than region
effects. In addition, as far as default risk is concerned, it appears that neither diversifica-
tion over regions alone nor diversification over industries alone can achieve the optimal
diversification benefits, a result that is aligned with [134].

Community detection: a temporal multiresolution analysis. Once the mesoscopic or-
ganisation of the CDS market has been detected, one may wonder how stable (i.e. ‘robust
over time’) this organisation is. This amounts at investigating the presence of discrepan-
cies from the original community structure once the log-returns constituting the time
series are sampled at different frequencies, e.g. weekly or monthly. For consistency with
the results presented so far, the same period of ten years is considered but our analysis is
now focused on the set of time series induced by the following array of time resolutions
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A; € {1 day, 2 days, 1 week, 2 weeks, 1 month}. (5.19)

To measure the effects of the temporal resolution, we employ the index known as
variation of information (V I), an information-theoretic measure quantifying the differ-
ence between any two partitions. Two different partitions can be represented by two
N-dimensional vectors 7 and 6> whose i-th component o; denotes the module to
which node i belongs. The (normalised) variation of information is defined as

VIG 6 =1- 10102 (5.20)
IIU71:01)

where (0 : 0%2) is the mutual information, which is defined as follows

po},0%)

N N
I(61:62)= ) ) ploj,a)log (5.21)
i=1j=1

p@hp?)

(with p(oll.) being the probability for a node to belong to o; in partition 1, p(o?) being
the probability for a node to belong to ¢; in partition 2 and p(a},ai) being the joint
probability distribution for a node to belong to ¢; in partition 1 and to ¢ ; in partition 2)
and H(d' : d) is the joint entropy, which is defined as follows

N N
H@:62) =) Y plot,odlog|p(a},0?)]. (5.22)
i=1j=1

Notice that, unlike mutual information, the variation of information is a true metrics
since it satisfies the triangle inequality. The divergence from the community structure
presented in Section 5.3.2, for each additional set of time series is depicted by Figure 5.5a.
From the chart, it is apparent that VI is increasing steadily when moving from the finest
to the coarsest resolution but does not exceed 10% in any case, indicating a high level
of similarity between partitions. The value of the VI between each pair of data-sets is,
instead, shown in Figure 5.5b. This result provides some support for the conceptual
premise that community structure does not (strongly) depend on the level of temporal
resolution at which our data-set is considered.

The VI-based analysis contributes to our understanding of the robustness of the
community structure with respect to different temporal resolutions; however, we would
like to extend this kind of analysis at the issuer level, by assessing how robust is the
assignment of issuers to communities by measuring the frequency with which any two
issuers are assigned to the same community over different temporal partitions. The
results of this analysis are presented in Figure 5.6. The heat map shows how frequently
issuers co-occur within the same communities across the time resolutions considered
here. In case two issuers are found within the same community for each time resolution,
the entry corresponding to the considered pair of issuers in the heat map is drawn in
white, while if they are never found within the same community the entry is drawn in
black. As the heat map shows, three ‘hard cores’ of issuers appear, indicating that the
issuers belonging to them are assigned to the same community for the vast majority of
the temporal resolutions; in addition, there are also few ‘soft issuers’ who move across
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Figure 5.6: Multifrequency heat map showing the normalised co-occurrence of different pairs of issuers within
the same community, for the same time period but over various temporal resolutions of the original time series.
The issuers have been ordered using hierarchical clustering with average linkage to position issuers with a high
degree of co-occurrence next to each other.

communities for different time resolutions, offering an explanation for the small variation
observed in Figure 5.5.

Community detection: temporal stability. One of the major challenges that managers
measuring portfolio risk face is that of determining the appropriate period of history to
use when estimating correlations to be used in their models. According to [135], using
arelatively short period of data might be dangerous: in case the employed period is un-
characteristically stable, in fact, the estimated correlations may be lower than average,
leading to excessive risk taking; on the other hand, if the used interval is relatively volatile,
the resulting correlations can be unrealistically high, leading to excessive risk aversion.
However, choosing a longer time series is not guaranteed to produce more reliable esti-
mates: the ever-evolving nature of financial markets deems undesirable to rely on data
from the distant past. In order to be confident that the results presented in Section 5.3.2
can provide useful insights for risk managers, it is required to study the time dynamics of
the detected communities.

To analyse the stability of communities over the course of time, we employ a non-
overlapping sliding window of six months. Figure 5.7a illustrates the divergence from the
community structure detected using the first six-month window throughout the years.
It can be seen that there are no significant fluctuations, with VI not exceeding 10% for
any of the six-month periods. To further improve our understanding on the community
coherence, in Figure 5.7b we provide a heat map showing the mutual VI between every
two pairs of six-month windows. Each square in the matrix represents the value of VI
between the i-th and j-th six-month period, while the last row and column represent
the value of VI between each six-month period and the partition obtained using the full
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Figure 5.7: Left panel (5.7a): Divergence from initial community structure for the ensuing six-month windows.
The values of VI do not exceed 10% for any of the six-month windows, while no particular trend can be observed.
Right panel (5.7b): The heat map illustrates the value of VI between every pair of six-month time windows, as
well as the VI between each window and the total ten-year period (rightmost column and bottom row). It can
be seen that there is a high degree of community coherence over time.

ten-year sample. The results indicate that there was little movement of issuers between
communities during the ten-year period. In addition, it can be seen that there is little
difference between these periods and the community structure obtained when we using
the entire ten-year period.

Finally, having determined that the communities do not exhibit significant fluctua-
tions over time, we use the same sliding window to examine the stability of communities
over time at the issuer level. In a similar fashion to the temporal multiresolution anal-
ysis, we plot a heat map containing the frequency with which each pair of issuers can
be found within the same community over the course of the ten-year time frame. As
Figure 5.8 shows, pairs of issuers appearing to be in the same community for all the six-
month windows have white entries in the heat-map, while the entries corresponding to
pairs of issuers never appearing within the same community are drawn in black. After
a closer inspection, it can be seen that the three communities detected by using the full
ten-year history appear to be tight-knit and unwavering, thus maintaining a high degree
of coherence over the course of time. A small number of issuers moving fluidly from one
community to another can still be appreciated.

5.4. Default risk charge model

5.4.1. Model specification

Consider a portfolio of m issuers, indexed by i = 1,2...m and a fixed time horizon of T =1
year. The overall portfolio loss is modelled by a random variable L, defined as the sum of
the individual losses on issuers’ default, i.e. L=Y7" L;, with

Li=gqje;Y; (5.23)
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Figure 5.8: Coherence of communities over time. The heat map shows the frequency of co-occurrence of
different pairs of issuers within the same community over time. The communities appear to be tight-knit and
unwavering, maintaining coherence over the course of the ten-year time frame. The issuers have been ordered
using hierarchical clustering with average linkage to position issuers with a high degree of co-occurrence next
to each other.

where L; = g;e;Y; denotes the loss on issuer i, with e; and g; being, respectively, the
exposure at default and the loss given default of issuer i and Y; being the random default
indicator taking the value 1 if issuer i defaults before time T and 0 otherwise. In order
to define the probability distributions of L;’s, as well as their dependence structure, we
rely on a factor model approach, descending from the structural model of Merton ([23]),
which is widely used for portfolio default risk modelling by regulators and financial in-
stitutions alike. Notable examples of this approach include the Asymptotic Single Risk
Factor (ASRF) model ([24]), which is at the heart of Basel II credit risk capital charge, as
well as industrial adaptations of Merton model such as the CreditMetrics ([63]) and KMV
models ([61, 62]).

Let us introduce a random variable X; representing issuer i’s creditworthiness. In the
same spirit of Merton’s structural model, we specify that default occurs before time T if
the value of X; lies below a threshold d;, or equivalently:

Yi= 1 oo,q; (Xi), (5.24)

where 14(-) is the indicator function of set A. Hence, modelling Y;’s boils down to model
the creditworthiness indices X; with i = 1...m, which are linearly dependent on a vector
F of p < m systematic factors satisfying F ~ N, (0,Q). Issuer i’s creditworthiness index
is assumed to be driven by an issuer-specific combination F; = «F of the systematic
factors:

Xi:\/aﬁi"'\/l_ﬁiei) (5.25)
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where F; and €...€;, are independent, standard normal variables (i.e. F; ~ N(0,1), Vi
and €; ~ N(0,1), V i) and the latter ones model the idiosyncratic risk. The coefficient
Bi can be seen as a measure of sensitivity of X; to systematic risk, as it represents the
proportion of the X; variation that is explained by the systematic factors. The assumption
that Var[F;] = 1 implies that a’iQai =1 for all i. The correlations between asset returns
are given by

p(Xi, Xj) = Cov([X;, X;]
= (1= i) Lyi=jy +/BiB;CovlF;, Fj] (5.26)

=(1-Bi) Ly=jy +/BiBj@;Qa;

(since F; and €...;, are independent, standard normal variables and Var[X;] = 1). In
order to set up the model we need to determine «; and §; for each issuer and Q (while
ensuring that &’ Qa; = 1).

We choose d; such that P(Y; = 1) = p;, where p; is the marginal probability of default
of issuer i. As aresult, d; = F;(il (pi), with Fy, (-) being the cumulative distribution func-
tion of X;. Given the normality of Xj, it follows that d; = @1 (pi), with o 1) denoting
the standard normal cumulative distribution function. The portfolio loss can, then, be
written as follows:

L= _Zmlql'eil[—oo,qﬂ(p,»)] (\/Eﬁﬁ \ 1—ﬁi€i)- (5.27)
i

For p = 1, the specification above is equivalent to the ASRF model. In this model, the
single systematic factor affecting all issuers is usually interpreted as the state of the econ-
omy and the correlation coefficients are regulatory prescribed. In multi-factor models
(p = 2), latent or observable factors encompassing regional or industry characteristics
are typically used by modellers to capture the portfolios correlation structure.

5.4.2. Model calibration
Models used by banks for DRC calculations are required to account for systematic risk
via multiple systematic factors of two different types [64, Paragraph 186(b)]. For the first
systematic factor, we consider a global factor that is common to all issuers, reflecting the
overall state of the economy. We adopt this approach due to relevant literature suggesting
strong dependence of changes in default risk on global effects ([134]). For the second
systematic factor we consider factors representing industry and region effects, as well as
community and subcommunity effects. Even though a model with three types of system-
atic factors would not be in line with the regulatory requirements for the calculation of
DRC, for comparison purposes we also consider a model with global, industry, and region
systematic factors, an approach commonly adopted in the industry for the calculation of
IRC.

In addition to the types of systematic factors, the regulatory rule-set specifies that
correlations must be calibrated using credit spreads or listed equity prices over a period
of at least ten years that includes a period of stress. We calibrate the model presented
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in Section 5.4.1 using CDS spreads covering the period between 1 January 2007-31 De-
cember 2016 which includes the ‘stressed’ period between 2007 and 2009. In our model
setting, the liquidity horizon is set as one year and, as a result, the correlations should be
measured over the same horizon. However, non-overlapping annual log-returns from ten
years history contain only nine points, which is not sufficient to yield a reliable correla-
tion estimate. If overlapping log-returns are considered alternatively, the sample size can
be sufficiently big, but the linear relation between the data series can be distorted. More-
over, certain bias can be introduced into the correlation estimate via auto-correlation,
which usually leads to over-estimations. Instead of using overlapping annual returns,
we chose to use to monthly non-overlapping returns over the ten-year period. This ap-
proach leads to a sufficient number of data points for correlation estimation and can be
seen as a reasonable compromise. The implied hypothesis is that correlations measured
over monthly and annual horizons are interchangeable and can be used as a predictor for
future one-year correlations. According to [127], this assumption can be questioned, but,
itis hard to reject from a statistical point of view, if one takes into account the uncertainty
of the correlation measurement itself.

We start by scaling each individual time series to have zero mean and unit variance.
At each time point, global (Xg ), industry (Xjj),¢), region (Xpg(),;), community (Xc),)
and subcommunity (Xs(,),/) returns are derived from the corresponding cross-section of
the issuer returns. All the resulting factor time series have zero mean. The dependence of
the region, industry, community and subcommunity factors on global returns is explored
by running the following linear regression models

X1yt =Y1hXG,e + €16, 1>

XR(k),t = YRk XG,t T ERK), 15 (5.28)

Xew,t =Yew X6, +E€cu,b
Xsm),r =YsumXG,t + €t

where y1(j), Yrik), Ycwy and ys are coefficients weighing the global factor and &/g;y,,
ERM), 1 €c),r and €s(y),; are the industry-, region-, community- and subcommunity-
specific residuals, respectively. The full regression results on the basis of Equation (5.28)
for the period between January 2007 to December 2016 can be found in Table C.1 in Ap-
pendix C.1. The majority of the factor returns move in line with the global returns, with
coefficients not significantly different from one. In addition, the proportion of variance
explained by the global returns is high (as indicated by the values of R?, between 63%
and 96%), highlighting the leading role of the global factor.

Turning now to the case of a single issuer, it is important to note that by regressing
the industry (Xp(j)), region (Xg(x)), community (X¢(;) and subcommunity (Xs()) returns
against the global returns (X), we have essentially orthogonalised the rest of the factors
relative to the global factor. Hence, in addition to the global returns (X;), we use the
residuals €(j), €r), €1y, and eg() from eq. (5.28) as explanatory factors for the returns
of a single issuer, representing industry, region, community, and subcommunity effects
respectively. In the following we discuss the calibration of a model with a global and
a subcommunity factor; calibration of other model variants should then be straightfor-
ward. Recall that issuer i’s creditworthiness index X; follows the dynamics presented in
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Table 5.4: The table provides the statistics for the R2 between the individual issuers and systematic factor(s).
The model estimation is based on the following settings: global factor only (Model 1); global and industry
factors (Model 2); global and region factors (Model 3); global, region, and industry factors (Model 4); global and
community factors (Model 5); and global and subcommunity factors (Model 6). Industry, region, community,
and subcommunity factors are defined as cross-sectional averages at each time point and taken as already
decomposed into a global factor and residuals. The estimation is based on non-overlapping monthly log-
returns and conducted from January 2007 to December 2016, which was identified as a recent 10-year period
which included the ‘stressed’ period between 2007 and 2009.

Individual R> Model 1: Model 2: Model 3: Model 4: Model 5: Model 6:
versus Global Globaland Globaland Global, region, Global and Global and
systematic factor industry region and industry community subcommunity

factors only factors factors factors factors factors
Average 48.1% 54.5% 54.2% 58.1% 55.4% 58.2%
SD 15.8% 16.4% 17.6% 17.5% 16.7% 18.0%
Minimum 0.0% 0.6% 0.0% 1.4% 1.4% 0.8%
Maximum 0.82% 84.1% 96.3% 96.5% 88.4% 92.6%

Section 5.4.1. In our case, F; := agiXg + asi€es(), where the coefficients ag(;) and a g
have been rescaled so that F; ~ N(0,1), i.e.

ac(i) sy
agh) = —, as) = (5.29)
G(i) v, S(i) ¥,
with @¢,; and ds,; being the factor loadings of the regression model
Xi 1= aci)XG,t + Asi)€ES(i),t + Eir (5.30)

and ¥; = 0 [dg) XG + Asgi€es |- Thus, we calibrate the factor loadings @) and @) by
running the above regression. If we collect X and €g(;) into a matrix F;, then the least
squares estimator &; equalises the two sides of the following equation:

X, = F,a, (5.31)

or, in other words, &;, V i represent estimates of the coefficients appearing in Equa-
tion (5.30):

@; = (FjF;) N (FX)). (5.32)

Finally, the coefficient 8; from Section 5.4.1 is the R? of this regression, representing the
proportion of variance for X; explained by the systematic factors.

We estimate the parameters of six model variants on the basis of the calibration
process described previously: global factor only (Model 1); global and industry factors
(Model 2); global and region factors (Model 3); global, region, and industry factors (Model
4); global and community factors (Model 5) and global and subcommunity factors (Model
6). The statistics for the individual R? versus systematic factors are compared in Table 5.4.
As it can be seen from the table, not surprisingly, the model based only on the global fac-
tor provides the worst fit to the data with an average R? of 48.2%. After the introduction of
the industry factor the average R? increases to 54.5%. A comparable value (54.2%) is ob-
tained if instead of the industry factor we introduce a region factor. The model based on
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Figure 5.9: The figure shows the distribution of the differences between the model-implied and empirical
(pairwise) correlations. As for the model, the six variants (global factor only, global/industry, global/region,
global/industry/region, global/community, global/subcommunity factors) are explored.

global and community factors (Model 5) provides a slightly better fit than the other two-
factor models with an average R? of 55.4%. The best fit is achieved by the model based on
global and subcommunity factors (Model 6) with an average R? of 58.2%, outperforming
even the three-factor model based on global, region, and industry factors. This result is
particularly interesting since the difference in the average R? between Model 6 and the
other two-factor models is comparable to the difference between the other two-factor
models and the model based only on the global factor.

Having estimated the factor loadings and covariance matrices for the six model vari-
ants, we are able to obtain the distribution of the differences between the model-implied
and empirical (pairwise) correlations (shown in Figure 5.9): after close inspection, it
becomes evident that the distributions of the correlation errors based on Model 4 and
Model 6 are heavier around zero and have thinner tails. The distribution of the actual
empirical correlations is shown in Figure C.1 in Appendix C.2.

5.4.3. Numerical experiments
In order to study the properties of the framework presented in Section 5.4 we set up four
synthetic test portfolios:

 Portfolio A: Long-only portfolio consisting of 36 sovereign issuers from the iTraxx
SovX index family.

* Portfolio B: Long-only portfolio consisting of 89 corporate issuers (Financials and
Non-Financials) from the iTraxx Europe index.
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Table 5.5: The table provides the historical default rates per rating. Source [136, 137]

Corporates  Sovereigns

Rating — 1981.2018)  (1975-2018)
AAA 0.00 0.00
AA 0.02 0.00
A 0.06 0.00
BBB 0.17 0.00
BB 0.65 0.49
B 3.44 2.82
ccelc 26.63 41.56

¢ Portfolio C: Long-only consisting of 125 issuers from Portfolio and Portfolio B com-
bined.

¢ Portfolio D: Long-short portfolio consisting of 22 long positions on issuers from
Financials and 22 short positions on issuers from Non-Financials from the iTraxx
Europe index selected such that the average default probability between the two
groups is the same.

For the purposes of our numerical experiments, we use historical default rates per
rating from [136] and [137] as probabilities of default. The historical defaults rates per
rating are shown in Table 5.5. In accordance with regulatory requirements [64, Paragraph
186(b)], probabilities of default are subject to a floor of 3 bps. The detailed composition
of the synthetic portfolios in terms of rating, as well as the mean and standard deviation
of the corresponding probabilities of default are shown in Table 5.6.

As far as the exposure at default is concerned, for the long-only portfolios we consider
a constant and equally weighted exposure for each issuer such that e; = 1/m for all i =
l..mand ¥.* | = 1. For the long-short portfolio we consider e;crinanciars = 1/22 and
€i¢Financials = —1/22, and as aresult }_I" | e; = 0. Finally, for the sake of simplicity, the
loss given default parameter is set to 1 for all issuers, i.e. g; =1, i =1..m.

We, then, generate portfolio loss distributions and derive the associated risk measures
by means of Monte Carlo simulations. This process entails generating joint realizations of
the systematic and idiosyncratic risk factors and comparing the resulting critical variables
with the corresponding default thresholds. By this comparison, we obtain the default

Table 5.6: The table provides the composition of the synthetic test portfolios in terms of rating, as well as the
mean and standard deviation for the corresponding probabilities of default.

AAA AA A BBB BB AveragePD SDPD

Portfolio A 4 7 6 14 5 0.09% 0.16%
Portfolio B - 6 32 51 - 0.12% 0.05%
Portfolio C 4 13 38 65 5 0.11% 0.10%

Portfolio D - 6 30 8 - 0.08% 0.05%
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Table 5.7: The table provides the quantiles of the loss distribution for the corresponding portfolios and for each
of the six model configurations.

Model 1: Model 2: Model 3: Model 4: Model 5: Model 6:
Global  Globaland Globaland Global, region, Global and Global and
factor industry region and industry ~ community subcommunity
only factors factors factors factors factors
Portfolio A: 0.99 2.8% 2.8% 2.8% 2.8% 2.8% 2.8%
Sovereign bonds,  0.995 2.8% 5.6% 5.6% 5.6% 2.8% 2.8%
long position 0.999 8.3% 11.1% 11.1% 11.1% 8.3% 11.1%
Portfolio B: 0.99 3.4% 3.4% 2.2% 2.2% 3.4% 3.4%
Corporate bonds,  0.995 5.6% 5.6% 5.6% 5.6% 5.6% 5.6%
long position 0.999 14.6% 14.6% 16.9% 16.9% 15.7% 16.9%
Portfolio C: 0.99 2.4% 2.4% 2.4% 2.4% 2.4% 2.4%
Combination of 0.995 4.8% 4.8% 4.8% 4.8% 4.8% 4.8%
portfoliosAandB  0.999  12.8% 12.8% 13.6% 13.6% 12.8% 13.6%
Portfolio D: 0.99 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Corporate bonds,  0.995 4.5% 4.5% 4.5% 0.0% 4.5% 4.5%
long/short position  0.999 9.1% 13.6% 9.1% 9.1% 13.6% 13.6%

indicator Y; for each issuer and this enables us to calculate the overall portfolio loss for
this trial. A liquidity horizon of 1 year is assumed throughout and the results are based
on calibrations according to Section 5.4.2 and simulations with ten million sample paths
each. For a given confidence level « € [0, 1], the VaR,, is defined as the a-quantile of the
loss distribution:

VaRy (L) =inf{le R:P(L< ) = a)}. (5.33)

Since both IRC in Basel 2.5 and DRC in FRTB are calculated based on a 99.9% VaR over
a capital horizon of one year, we rely on this risk measure in order to compare the impact
of different correlation model configurations on portfolio risk. We calculate VaR, (L) for
selected confidence levels a € {0.99,0.995,0.999}, including the 0.999 which corresponds
to DRC, for each of the six model configurations and the synthetic test portfolios. The
results are illustrated in Table 5.7 and Figure 5.10.

For Portfolio A, consisting of long positions on sovereign issuers, Model 1 and Model
5 yield a DRC figure of 8.3%, while the other model variants yield a slightly more con-
servative figure at 11.1%. For Porfolio B, consisting of long positions on corporates, the
values are higher and more variable, with Model 1 and Model 2 producing a DRC at 14.6%,
Model 5 at 15.7%, and the rest of the models at 16.9%. For the more diversified Portfolio
C, models 1,2, and 5 produce a DRC of 12.8%, while models 3,4,6 produce slightly higher
figures at 13.6%. Finally, for the long/short Portfolio D, models 1,3, and 4 yield a DRC of
9.1%, while models 2,5, and 6 yield a more conservative 13.6%.

In general, different model variants produce less variable losses for lower quantiles.
Furthermore, although it is not straightforward to draw solid conclusions on one model
being consistently more conservative, it seems that model based on global and subcom-
munity factors (Model 6) is among the most conservative models for all four portfolios,
while the one-factor model (Model 1) is consistently among the least conservative. In ad-
dition, the DRC values produced by models 3 and 4 are in agreement for all the portfolios.
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Figure 5.10: Quantiles of the loss distributions obtained from the six model variants (global factor only,
global/industry, global/region, global/industry/region, global/community, global/subcommunity factors) for
the four synthetic test portfolios.

Another noteworthy observation has to do with the tails of the generated loss distri-
butions. By analysing the relationship between the quantiles presented in Table 5.7, it
can be seen that all model variants seem to produce distributions with heavier tails than
the standard normal distribution. For instance, the ratio between the 0.999 and the 0.99
quantile for Portfolio A is 2.96 for Model 1 and Model 5, and 3.96 for all the other model
variants, compared to 1.33 for the standard normal distribution. Similar tail behaviour
can be observed for all the portfolios.

5.5. Concluding remarks

One of the most challenging problems in the study of complex systems is that of identi-
fying the mesoscopic organisation of the constituting units. This amounts to detecting
groups of units which are more densely connected internally than with the rest of the
system. In case the units are represented by time series, a common approach is to regard
correlation matrices as weighted networks and employ standard network community
detection methods. Since such an approach can introduce biases, in this chapter we
adopt a principled approach based on Random Matrix Theory, leading to an algorithm
that is able to identify internally correlated and mutually anti-correlated communities,
in a multiresolution fashion.

Our methods are applied to the analysis of CDS time series with the aim of identify-
ing mesoscopic groups of issuers whose similarities cannot be traced back to industry
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sectors or geographical regions. We use ten years of data including the stressed period
between 2007 and 2009. The analysis reveals several interesting results with regards to
the community structure. In addition, our results show that different time resolutions
yield similar community structures and that these structures are stable over time; this
renders the obtained communities useful for risk models.

Based on the detected communities, we derive factors and build a model for port-
folio credit risk that is in line with regulatory requirements for the calculation of DRC.
This model is then compared with industry-standard models based on global, country,
and region factors. The models based on global, communities, and subcommunities
factors provide a better fit to the data and lower error between the model-implied and
the empirical pairwise correlations compared to the other two-factor models.

To further explore the properties of the obtained factor models we set up four syn-
thetic portfolios and generate loss distributions via Monte Carlo simulations. The results
show that the model based on global and subcommunity factors is consistently among
the most conservative. As a more general observation, all models produce distributions
with heavy tails and the variability is higher in the higher quantiles, including the 0.999
which is of particular interest for DRC.

The present work represents a first step towards incorporating community detection
in risk models that can be used in a realistic set up. Further research could usefully
explore applications in portfolio optimisation and hedging of credit sensitive instruments.
An interesting avenue for further study that would establish the value of our findings for
portfolio construction could be a rigorous analysis of the diversification potential for
portfolios of risky instruments across communities and subcommunities, similar to the
one conducted by [134] for country and industry factors.



Conclusion

The aim of this thesis was to develop novel risk management models which would be able
to capture financial markets as complex systems prone to sudden and major changes
and consisting of many interacting nodes. The techniques and tools developed here
should provide an innovative approach to risk modelling and the calculation of capital
buffers. The encompassing body of work includes new methods for empirical analysis, as
well as computational and mathematical tools, which were used in combination with a
range of real-world datasets to develop an integrated complex systems framework for risk
models. By merging new conceptual paradigms such as network theory and data-driven
methods into practical simulation and risk measurement tools, we penned the outline of
the upcoming paradigm shift within risk management.

The thesis was faced with three key challenges, namely the importance of extremes,
the interdependence of risks, and the problem of scale. Firstly, in financial markets, as
in other complex systems, extreme values occur much more frequently than what nor-
mal models would suggest. In this thesis, we considered models that depart from the
Gaussian framework and account for extreme phenomena in a data-driven manner and
without the use of jump processes or stochastic volatility. Secondly, the ability to accom-
modate for situations where many extreme outcomes occur simultaneously presents a
particular challenge in the multivariate modelling set-up of portfolio credit risk. State-
of-the-art models often underestimate the probability of joint large movements of risk
factors. In the work presented here, we argued about the importance of considering an
alternative channel of default dependence and incorporating network effects in stan-
dard credit models. Thirdly, the scale of most realistic portfolios poses a problem due
to the fact that, often, portfolios in question may contain the entire position of a bank
in credit-risky instruments. Dimension reduction is the only plausible option and it is
often achieved by the calibration of factor models that ultimately decompose the mar-
ket according to geographic regions and economic industries. In this thesis we chose a
different path by adopting an entirely data-driven approach, looking for a modular and
possibly hierarchical organisation of the empirical correlation matrix between financial
time series.
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In Chapter 2, a hidden Markov model (HMM) for the evolution of exchange rates was
presented. In contrast to the widely used geometric Brownian motion (GBM), the pro-
posed model can account for extreme behaviour that may persist for several periods, and
thus prevent underestimation of counterparty exposure and the corresponding capital
buffers. In our numerical experiments, scenarios were generated for a range of exchange
rates and a rigorous backtesting exercise was performed. The performances of GBM and
HMM were found to be very similar, with HMM being slightly more conservative. How-
ever, when the generated scenarios were used to calculate exposure profiles for foreign
exchange options, we found significant differences between the results of the two mod-
els, especially for deep out-of-the-money options. In addition, our study highlighted the
necessity for careful interpretation as far as backtesting results are concerned.

Chapters 3 and 4 were concerned with the interdependence of risks. An extended
factor model for portfolio credit risk which offers a breadth of possible applications to
capital calculations, as well as to the analysis of structured credit products, was presented
in Chapter 3. In the proposed framework, systematic risk factors were augmented with
an infectious default mechanism which affects the entire portfolio. Unlike models based
on copulas with more extreme tail behaviour, where the dependence structure of de-
faults is specified a priori, our approach is more intuitive. First the way sovereign defaults
may affect the default probabilities of corporate issuers is specified and then the joint
default distribution is derived. The impact of sovereign defaults was quantified using a
credit stress propagation network constructed from real data. Under this framework, loss
distributions for synthetic test portfolios were generated and the contagion effect was
shown to have a profound impact on the upper tails. In an attempt to obtain an improved
approximation of the joint default distribution of issuers in credit stress propagation net-
works, in Chapter 4 we presented a novel method of estimating contagion effects from
CDS data using Bayesian networks (BNs). Rather than assuming a certain distribution
for CDS spreads, we introduced a method for learning BNs using e-drawups. A range of
techniques to learn the structure and parameters of financial networks was studied and
evaluated. We used CDS spreads of issuers in a stylised portfolio and incorporated the
conditional probabilities in the credit portfolio model presented in Chapter 3. Simula-
tions were carried out and the impact on standard risk metrics was estimated. Contagion
was shown to have a significant impact in the tails of the credit loss distribution, with the
results being in line with those obtained by using the CountryRank metric in Chapter 3.

Finally, in Chapter 5 the focus was on identifying the mesocoscopic structure of the
CDS market in an entirely data-driven manner, looking for a modular and possibly hi-
erarchical organisation of the empirical correlation matrix between CDS time series. A
recently developed method based on Random Matrix Theory was used to identify the
optimal hierarchical decomposition of the system into internally correlated and mutu-
ally anti-correlated communities. Building upon this technique, we identified groups
of issuers that cannot be traced back to standard industry/region taxonomies, thereby
being inaccessible to standard factor models. We used this decomposition to introduce a
novel credit risk model that was shown to outperform more traditional alternatives. Syn-
thetic portfolios were set up and loss distributions were generated to further explore the
properties of the obtained factor models. The results showed that the proposed model
was consistently among the most conservative in terms of capital requirements.
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The main conclusion of this thesis is that in order for quantitative risk management
to be able to cope with the complex, interconnected nature of modern financial systems,
a paradigm shift is inevitable. Complexity-inspired models, in combination with more
traditional modelling and simulation frameworks, can open up new avenues for risk man-
agement and fill some of the gaps and inadequacies of regulatory frameworks revealed
by the global financial crisis. The proposed methods were built on this assumption and
showed that, by using models that account for characteristics of complex systems such
as regime shifts and contagion, the impact on capital requirements may be significant.

This study lays the groundwork for further research into complex systems approaches
for quantitative risk management and the calculation of capital buffers. A number of
questions still remains to be answered. Future research could usefully explore whether
the quantitative results of the models presented in this thesis are sensitive to specific
parametrisation assumptions. In Chapter 3 we touched upon the sensitivity of the con-
tagion impact by stressing a set of chosen parameters to assess their influence on the
results. Even though such an approach is widely used in the financial industry to evalu-
ate the sensitivity of model results, it suffers from the fact that it is only local, and thus
highly dependent on the chosen parameter values. In addition, local sensitivity analyses
do not take into consideration possible interactions between parameters and non-linear
relationships that are frequently encountered in risk models. In recent decades, global
sensitivity analysis methods have been developed in the applied mathematics and engi-
neering fields as part of the more broad area of uncertainty quantification. While in local
methods of sensitivity analysis only small parameter uncertainties around a few selected
reference points are considered, global methods provide a quantitative characterisation
of the uncertainty across a wide range of parameter space and propagate it through the
model to evaluate the importance of each parameter along with interactions between pa-
rameters. A greater focus on global sensitivity analysis could produce interesting findings
that could contribute to the credibility of the models presented in this thesis but also to
the general advancement of quantitative risk management as a field.

A natural progression of the work presented in this thesis is to further investigate the
relation between the credit stress propagation networks constructed from market data
and causality. The questions asked here were, from a formal perspective, of a probabilistic
nature and without the necessity to interpret networks as causal models whose edges
carry some causal significance. For instance, in Chapter 4 the BN structures may be
directed, but it is not required for the directions of the edges to have some causal meaning.
All things considered, if a network structure can provide a correct representation of the
underlying joint distribution, the answers that we obtain to probabilistic queries are the
same, regardless of whether the network structure corresponds to some notion of causal
influence. On the other hand, in situations where intervention is necessary, for example
when a government needs to decide whether it is willing to bail out a financial institution
or not, it is essential to understand the causal relationships in our models. The issue of
causality is thus an intriguing one and could be a fruitful area to explore.

Finally, a challenge that remains to be tackled involves further research to assess the
impact of using the models described in this thesis on financial stability and systemic
risk. From the point of view of an individual banlk, it is clear that the methods developed
here may result in increased capital requirements. A rigorous study is required to de-
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termine the impact of using such models to the risk and profitability of the industry as
a whole. This could be achieved by setting up agent-based simulations, wherein each
bank represents an agent using one of the models presented here to calculate their cap-
ital requirements. In this fashion, one could examine whether using a particular model
improves the stability of the financial system. A simulation of this nature would enable
regulators and financial institutions to test policies and strategies for better capital man-
agement.



Chapter 3 CDS spread data and
stability of the ¢ parameter

A.1. CDS spread data

The data used to calibrate the credit stress propagation network for European issuers is
the CDS spread data of Dutch, German, Italian and Spanish issuers as shown in Figures
A.land A.2.

A.2. Stability of the € parameter
The plot in Figure A.3 shows the time series of the epsilon parameter for different number
days used for e-drawup calibration.
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Figure A.1: Time series of CDS spreads of Dutch and German entities.
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Figure A.2: Time series of CDS spreads of Spanish and Italian entities.
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Figure A.3: Stability of € parameter for Russian Federation CDS.



Bayesian network scores and
stress scenarios

B.1. Scores

We briefly describe the two scores namely the BIC and BDs used for BN learning. For
details, we refer to [105, Section 18.3]. BIC is a likelihood score defined as:

1
scoreprc(¥:9) =logL(¥Y:9) - ElfﬁllogN,

where |¢| is the complexity of the network, the number of independent parameters in
the network. This score penalises explicitly the score with the number of independent
parameters, hence assigning higher scores to sparser structures.

The following expression is the closed-form derived for the marginal-likelihood of
the structure score:

Tlax; k)

i 1T (@ + M, kD)
P(@lg) HHF(C(X|]C+M[IC U

r(aﬂk)

) (B.1)

where ax, i = Z] 1%k

BDs is derived from a different score, BDeu, which is obtained from B.1 by assum-
ing a uniform prior distribution over the parameters (Dirichlet distribution with all the
hyperparameters taking the same value a). Let ajjx = a;/(r;q;) and a; = a, where r; is
the number of states of X; and g; is the number of configurations of parents of X;, the
number of parents configuration of X;. Then score BDeu is defined as follows

i I'(ria;) i I'(a; +Mlj, k]
BDeu(¥,%;q) = : B.2
euts, ;@) U,El T(ria; + MIk]) ]EII T(at;) -2
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[110] argues that choosing uniform prior distributions over ¢ x; |Pax; and ¢ can have a
negative effect over the quality of the results obtained with the score BDeu. To avoid this
he introduces the score BDs.

In the first place we see that if P(k) = 0 for some k € {1,...,g;} and i € [n], or if the
sample size of & is very small, it may happen that M[k] = 0 for some configurations of
Pay, which do not appear in 9, then we can split

T T(rigs F(a)
BDeu(¥,2;a) =

MIk)=0
( ﬁ ‘r(.riai) ﬁr(ai+M[j,k]))

k=1 Lria;+MIk]) ;- I'(a;)
MIKI>0

We note that as the number of parent configurations which appear in the data & de-
creases, the effective imaginary sample size decreases, as

Y Yais) ai=a. (B.3)

k:M[k1>0 j k,j

This induces the posterior to converge to the corresponding likelihood estimation and
hence leaning towards overfitting and including spurious edges in ¢. To avoid this prob-
lem we define:

~ . -~ a/(r,-cil-) ifcil->0,
Gi=\|tkefl,...,gi}: M[k] >0}| and @; _{ 0 otherwise.

With this new definition the expression B.3 becomes an equality, 3 im0 2 @i = @.
Moreover, we see that the uniform prior that we just defined is on the conditional distri-
bution which can be estimated from 2, so this is a empirical Bayesian score. Finally, we
substitute @; in B.2 by &; and obtain:

o I(ria;) o D@ + M(j, k)

BDS(‘«@@;“):E[ ,}:[1 r(rl-d,-+M[k1)]l_[:1 @)

(B.4)

M([k]>0

B.2. Stress scenarios
The first scenario is stressing three banks in the network, BRECON, BOM and SBERBANK.
Figure B.1 depicts the network with the nodes coloured according to the probabilities
obtained in that scenario, shown next to it. We observe that the values obtained are
similar to the ones of the scenario where the sovereign is stressed. This may be due
to the strong connections of the sovereign with big companies such as GAZPRU and
GAZPRU.Gneft and because the stressed banks are in the periphery of the network.

As the Russian crisis of 2014 was strongly related to oil industry, in the second scenario
we stress four of the largest oil companies: AKT, GAZPRU, LUKOIL, and ROSNEE Figure
B.2 shows the network and the probabilities for this case. It is noticeable that the oil
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Issuer Prob.

BKECON 1 s K
BOM 1

SBERBANK 1
RUSAGB  0.7757
VIB 0.7287
GAZPRU 0.69
AKT  0.5797

GAZPRU.Gneft ~ 0.5593
ROSNEE  0.5514 ’ .
RUSSIA  0.5351

CITMOS ~ 0.5107 D Q
LUKOIL ~ 0.4948

VIP  0.4742

o (2 @ @ @
ALROSA  0.4244

MDMOJC  0.4242

MBT  0.3379
RSBZAO  0.3319

Figure B.1: Probabilities and network in the scenario of three banks stressed.

companies have a larger impact on the network. Note also that in this case four nodes
are stressed. However, one can see that these nodes are more centred and the rest of the
nodes are more stressed.
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Issuer Prob.
AKT 1
GAZPRU 1
LUKOIL 1
ROSNEF 1
GAZPRU.Gneft  0.8382
RUSAGB  0.7867
SBERBANK  0.7563
RUSSIA  0.6469
VIB  0.6028 . .
RUSRAI  0.5814
MDMOJC  0.5321 .
BKECON  0.5273
CITMOS  0.5133
C I
BOM  0.4972
ALROSA  0.4708 .
RSBZAO  0.4053
VIP  0.366

Figure B.2: Probabilities and network in the scenario of four oil companies stressed.



Chapter 5 regression results and
empirical correlations

C.1. Full regression results on the basis of Equation (5.28)

This appendix presents the full regression results for the time-series regression models
that are presented in Equation (5.28) for Chapter 5.

Table C.1: This table provides the results of the industry, region, and community factor analysis derived from
CDS spread returns. The analysis is based on non-overlapping monthly log-returns and conducted over the
period January 2007 through December 2016. After standardization the CDS returns are used to derive global,
industry, region and community factors as cross-sectional averages at each time point. The industry, region,
and community factors are regressed onto the global factor; coefficients (yy, Yr, Y¢, and ysc respectively) as
well as R? are provided in the table, complemented by the standard deviation of the residual returns. -tests
are conducted to evaluate whether the coefficients differ from one.

Industry yr t-statistic  p-value R? or oG
Basic Materials 1.027 0.993 32.3% 923% 20.1%
Consumer goods 0.988 -0.586 55.9% 95.2% 15.1%
Consumer services 0.962 -1.676 9.6% 93.7% 16.9%
Energy 1.021 0.491 62.5% 82.7% 31.7%
Financials 1.019 0.603 54.8% 90.1% 23.0%
Government 1.042 1.035 30.3% 84.6% 30.2% 67.9%
Health care 0.880 -3.306 0.1% 83.2% 26.9%
Industrials 1.028 1.493 13.8% 96.3% 13.6%
Technology 0.890 -4.178 0.0% 90.7% 19.4%
Telecommunication services  1.023 0.982 32.8% 94.0% 17.5%
Utilities 1.009 0.350 727% 93.2% 18.5%
Region YR  t-statistic p-value R? OR oG
Africa 1.056 0.936 35.1% 72.8% 43.8%
Asia 1.115 2.883 0.5% 86.9% 29.3%
Eastern Europe 1.065 1.056 293% 71.8% 45.3%
67.9%
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Europe 1.021 0.928 355% 94.5% 16.7%
India 1.131 1.792 7.6% 67.1% 53.8%
Latin America 1.072 1.221 22.4% 73.6% 43.6%
Middle East 0.928 -1.282 20.2% 69.7% 41.6%
North America 0.926 -3.702 0.0% 94.9% 14.6%
Oceania 1.104 2.688 0.8% 87.3% 28.7%
Community Yc  t-statistic  p-value R? oc oG
A 0.967 -1.196 23.4% 91.5% 20.1%
B 0.987 -0.526 60.0% 92.6% 18.9% 67.9%
C 1.061 1.852 6.6% 89.9% 24.2%
D 0.989 -0.220 82.6% 76.8% 36.9%
Subcommunity Ys  t-statistic  p-value R? g oG
Al 0.943 -1.665 0.098 86.5% 25.3%
A2 0.934 -2.052 0.042 87.6% 23.9%
A3 1.093 2.260 0.026 85.6% 30.4%
A4 0.999 -0.015 0.988 76.5% 37.5%
B1 0.952 -1.516 0.132 88.5% 23.2%
B2 1.067 2.267 0.025 91.8% 21.7%
Cl1 1.022 0.474 0.636 80.4% 34.3%
C2 0.995 -0.141 0.888 88.4% 24.5% 67.9%
C3 1.154 3.665 0.000 86.5% 31.0%
D1 1.026 0.379 0.705 65.5% 50.5%
D2 0.895 -3.202 0.002 86.4% 24.1%
D3 0.980 -0.295 0.768 62.8% 51.2%
D4 1.123 1.664 0.099 66.2% 54.6%
D5 1.081 1.122 0.264 65.7% 53.0%

D6 1.011 0.168 0.867 65.0% 50.4%
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C.2. Empirical pairwise correlations
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Figure C.1: Empirical pairwise correlation. The figure shows the distribution of the CDS spread correlation
during the period January 2007 through December 2016, based on Markit data for 786 issuers. The return
correlation is calculated from non-overlapping monthly log-returns.
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