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1
Introduction

Search engines allow users to efficiently navigate through the enormous numbers of
documents available online [7]. Underlying every search engine is a ranking system
that processes documents in order to present a ranking to the user [75]. Over the
years, the role of ranking systems has only become more important, as they are now
used in a wide variety of settings. Users rely on them to search through many large
collections of content, including images [35], scientific articles [58], e-commerce
products [60], streaming videos [19], job applications/applicants [32], emails [127], and
legal documents [103]. Similarly, ranking systems are used for recommendation as well,
where they help to suggest content to users that matches their interests [101]. This may
even be content of which users are not aware that they have an interest in [106]. In all
these rankings scenarios, the best user experience is provided when the items that users
prefer most are on top of the produced rankings [52]. In other words, the ranking should
help the user find what they are looking for with the minimal amount of effort [105].

Without a ranking system finding the right information in any sizeable collection
becomes an impossible task. Furthermore, without recommendations many online
services would lack a lot of user engagement [29]. Thus, ranking systems drive both
user satisfaction – providing users with the content they prefer – and user engagement
– bringing providers of content or services to interested consumers [34]. Therefore,
the performance of a ranking system is very important to both the users of a service
and its providers. Due to this importance, a lot of interest has gone to the evaluation
of ranking systems [18, 38, 45, 55, 104, 105] and the field of Learning to Rank (LTR)
which covers methods for optimizing ranking systems [13, 58–60, 75, 129].

Traditionally, ranking evaluation and LTR methods made use of human judgements
in the form of expert annotations [104]: for given pairs of queries and documents,
experts are asked to annotate the relevance of a document w.r.t. a specific query. This
costly process results in an annotated dataset: a collection of query and document pairs
with corresponding expert annotations [17, 27, 76]. For an annotated dataset to be useful
it should accurately capture: (i) the queries users typically issue; (ii) the documents
that have to be ranked; and (iii) the relevance preferences of the user [105]. With such
a dataset, the optimization of a ranking system can be done through supervised LTR
methods. These methods optimize ranking metrics such as Precision, Average Relevance
Position (ARP) or Discounted Cumulative Gain (DCG), based on the provided relevance
annotations [52, 75]. While very important to the LTR field, some severe limitations of
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this supervised approach have become apparent over the years: (i) Expert annotations
are expensive and time-consuming to obtain [17, 76]. (ii) In sensitive settings acquiring
experts annotations can be unethical, for instance, when gathering data for optimizing
systems for search over personal documents such as emails [127]. (iii) For specific
settings there may be no experts that can judge what is relevant, for instance, in the
context of personalized recommendations. (iv) What users perceive as relevant is known
to change over time, thus a dataset would have to be updated regularly, further increasing
the associated costs [1, 71]. (v) Actual user preferences and expert annotations are often
misaligned [104]. Consequently, the supervised approach is infeasible for many LTR
practitioners because they do not have the resources to create an annotated dataset or
gathering annotations is not possible in their ranking setting. Moreover, even if a dataset
can be obtained, it may not lead to the optimal ranking system. Thus there is a need for
an alternative to the supervised approach to ranking evaluation and LTR.

An alternative approach that has received a lot of attention is to base evaluation and
optimization on user interactions [56, 99]. For rankings this usually means that user
clicks are used to compare and improve ranking systems. At first glance user interactions
seem to solve the problems with annotations: (i) If a service has enough active users,
interactions are virtually free and available at a large scale. (ii) Gathering interactions
can be done without showing sensitive items to experts for annotation. (iii) Unlike
annotations, interactions are an indication of the actual individual user preferences.
Thus there appears to be a lot of potential for using user interactions, however, there are
also drawbacks specific to using them: (i) It requires keeping track of large amounts of
user behavior, something users may not consent with [94]. (ii) User behavior is very
unpredictable, clicks in particular are known to be a very noisy signal [20]. (iii) Clicks
are a form of implicit feedback; there are other factors beside user preference that also
affect whether a click takes place, making clicks a biased signal of relevance [20, 25].
This thesis will not explore the first drawback and will instead focus on settings where
acquiring user interactions is done with consent, in a privacy-respecting and ethical
manner. Mainly, we will consider how methods of evaluation and optimization based
on clicks can mitigate the negative effects from click-related noise and bias.

Existing methods for ranking evaluation and optimization from user interactions
can roughly be divided into two families: the online family that deals with bias through
direct interaction and result-randomization [100, 132]; and the counterfactual family
that first models click behavior and then uses the inferred model to correct for bias
in logged click data [58, 127]. A further division can be made. For this thesis a
decomposition into five areas is relevant. We will divide the online family into three
areas:

(i) Online Evaluation – methods like A/B testing and interleaving [56] that interact
directly with users to compare ranking systems and randomize displayed results
to mitigate biases [18, 44, 110, 111].

(ii) Feature-Based Online LTR – methods like Dueling Bandit Gradient Descent
(DBGD) [132] and the Perturbed Preference Perceptron for Ranking (3PR) [100]
that optimize feature-based ranking models by direct interaction with users, often
relying on online evaluation [42, 111, 126].
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(iii) Tabular Online LTR – methods like Cascading Bandits [68] and the Position-
Based Model algorithm (PBM) [69] that optimize a single ranking for a single
ranking setting, by learning from direct interactions and result randomization [67,
70, 138, 139]. Characteristic about tabular methods is that they do not use any
feature-based prediction model but instead memorize the best ranking.

For the counterfactual family, we will use the following division into two areas:

(iv) Counterfactual Evaluation – methods that evaluate rankings based on historically
logged clicks. They require an inferred model of click behavior and use that model
to correct for biases using, for instance, Inverse Propensity Scoring (IPS) [4, 16,
58, 92, 116].

(v) Counterfactual LTR – methods that use counterfactual evaluation to estimate
performance based on historical click-logs, and that optimize ranking models to
maximize the estimated a system’s performance [2, 3, 46, 58, 92, 127].

This division reveals a rich diversity in approaches that all share the same goal of
evaluating or optimizating ranker performance based on user interactions.

On the one hand, this diversity is understandable, since in some settings only one
area of methods is applicable. For instance, one cannot add randomization to data
that is already logged, making the counterfactual approach the only available option
if only logged data is available. On the other hand, the diversity of approaches is also
unexpected and raises some questions. For instance, why would online approaches
not benefit from an accurate model of click behavior if one is available, similar to the
counterfactual approach?

In this thesis, we investigate whether this online/counterfactual division is truly
necessary. We will introduce several novel LTR methods that improve over the efficiency
of existing methods, and increase the applicability of LTR from user clicks. In particular,
we focus on finding LTR methods that bridge the online/counterfactual division and
find methods that are highly effective both when applied online or counterfactually. An
important result of our thesis on the LTR field, is that we offer a unified perspective and
set of LTR methods.

1.1 Research Outline and Questions

The overarching question this thesis aims to answer is:

Could there be a single general theoretically-grounded approach that has com-
petitive performance for both evaluation and LTR from user clicks on rankings,
in both the counterfactual and online settings?

Our aim is to progress the LTR field towards answering this question in the affirmation.
In this thesis, we will explore two directions in search of a single general theoretically-
grounded approach. Firstly, by introducing novel online LTR methods that outperform
existing online methods in optimization and large scale optimization in the online
setting. Secondly, by introducing novel counterfactual LTR methods that build on
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the original IPS-based counterfactual LTR approach [58]. Our novel counterfactual
LTR methods expand the original counterfactual approach and make it applicable to
more tasks and settings. As a result, these novel methods bridge several gaps between
counterfactual LTR and the areas of supervised LTR and online LTR. Furthermore, all
our novel counterfactual LTR methods are compatible with each other, and can be seen
as part of a novel counterfactual LTR framework. At the end of the thesis, our proposed
framework has taken the original counterfactual LTR approach and greatly increased
its applicability and effectiveness for both online and counterfactual evaluation and
optimization. This leads to a more unified perspective of the LTR field, where areas that
were previously largely independent are now connected.

1.1.1 Novel online methods for learning and evaluating
In the first part of the thesis, we introduce two methods that greatly increase the
efficiency of large scale online evaluation and online LTR. Additionally, we take a
critical look at several existing methods for online evaluation and online LTR.

Interleaving was introduced as an efficient evaluation paradigm designed for eval-
uating whether one ranking system outperforms another [56]. Interleaving methods
take the rankings produced by two systems and combine them into an interleaved rank-
ing [41, 96, 99]. Clicks on the interleaved ranking are interpreted directly as preference
signals between the two systems, resulting in a more data-efficient approach [110]. Thus
allowing one to efficiently estimate if an alteration leads to an improved system. Later,
the interleaving approach was extended to multileaving which allows for comparisons
that include more than two systems at once [12, 108, 109], thereby enabling efficient
comparing large numbers of systems with each other.

In Chapter 2 we look at such multileaving methods for large scale online ranking
evaluation. Specifically, we investigate the following question:

RQ1 Does the effectiveness of online ranking evaluation methods scale to large com-
parisons?

We examine existing multileaving methods in terms of fidelity – are they provably
unbiased in unambiguous cases [44] – and considerateness – are they safe w.r.t. the
user experience during the gathering of clicks. From our theoretical analysis, we find
that no existing multileaving method manages to meet both criteria. Furthermore, our
empirical analysis reveals that their performance decreases as comparisons involve
more ranking systems at once. As a novel alternative, we introduce the Pairwise
Preference Multileaving (PPM) algorithm, PPM bases evaluation on inferred pairwise
item preferences. We prove that it meets both the fidelity and considerateness criteria.
Furthermore, our empirical results indicate that using PPM leads to a much smaller
number of errors especially in large scale comparisons.

Besides evaluation, optimization is also very important to obtain effective ranking
systems [75]. The idea of optimizing ranking systems based on clicks is long-established.
One of the first-theoretically grounded approaches was Dueling Bandit Gradient Descent
(DBGD) [132]. For every incoming query, DBGD samples a variation on a ranking
system and then uses interleaving to estimate whether this variation is an improvement.
If so, it updates the ranking system to be more similar to the variation. Over time
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this process is supposed to oscillate towards the optimal ranking system. Numerous
extensions have been proposed but all have kept the overall DBGD approach of sampling
variations and using online evaluation [42, 100, 111, 126]. This is somewhat puzzling,
since this sampling approach is in stark contrast with all other LTR methods that use
gradient-based optimization.

In Chapter 3 we explore alternatives to the DBGD approach and ask ourselves the
following question:

RQ2 Is online LTR possible without relying on model-sampling and online evaluation?

We answer this question in the affirmative by proposing a novel online LTR method:
Pairwise Differentiable Gradient Descent (PDGD). Unlike DBGD, PDGD does not
require model-sampling nor does it make use of any online evaluation. Instead, PDGD
optimizes a stochastic Plackett-Luce ranking model and bases its updates on inferred
pairwise item preferences. PDGD weights the gradients w.r.t. item-pairs to mitigate
the effect of position bias. We prove, under very mild assumptions, that the weighted
gradient of PDGD is unbiased w.r.t. item-preferences. Our experimental results show
that PDGD requires far fewer interactions to reach the same level of performance as
DBGD. Furthermore, we show that even in ideal settings DBGD may not be able to find
the optimal model and is ineffective at optimizing neural models. In contrast, PDGD
does converge to near optimal models, and reaches even higher performance when
applied to neural networks.

The large improvements of PDGD over DBGD observed in Chapter 3, made us
wonder whether DBGD is actually a reliable choice for online LTR. In response to this
question, Chapter 4 tackles the following question:

RQ3 Are DBGD LTR methods reliable in terms of theoretical soundness and empirical
performance?

First, we take a critical look at the theory underlying the DBGD approach, and find that
its assumptions do not hold for deterministic ranking systems and common ranking
metrics. Consequently, we conclude that its theory is not applicable to the large majority
of existing research that utilizes the DBGD approach [42, 43, 90, 111, 125, 135].
Second, we perform an empirical analysis where DBGD and PDGD are compared in
circumstances ranging from near-ideal – where interactions contain little noise and no
position bias – to extremely difficult – where interactions contain extreme amounts of
noise and position bias. The difference in performance between PDGD and DBGD is
so large, that we conclude that PDGD is by far the more reliable choice.

For the field of online LTR this leads us to question the relevancy of DBGD and
its extentions, as we have found theoretical weaknesses and empirical inferiority. The
fact that virtually all previous methods in the online LTR field are extensions of DBGD
raises profound questions.

1.1.2 A single framework for online and counterfactual learning
to rank

In the second part of the thesis, we expand the existing IPS-based counterfactual LTR
approach [58] to create a unified framework for both online and counterfactual LTR and
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ranking evaluation based on clicks.
The conclusions of the first part of the thesis revealed that DBGD, which forms the

basis of most previous work in online LTR, has problems in terms of performance and
its theoretical basis. It is concerning that these conclusions could have been made much
earlier: previous work could have taken a critical look at the theory at any moment;
furthermore, if previous work had compared DBGD performance with supervised LTR
in the prevalent simulated setups, it would have observed the convergence problems
of DBGD. To avoid similar issues, we chose to build upon the Counterfactual LTR
approach because it has a strong theoretical basis, and additionally, all experimental
comparisons in the second part include optimal ranking models to detect potential
convergence issues.

In contrast with online LTR approaches, counterfactual LTR and evaluation makes
explicit assumptions about user behavior [58, 127]. By making such assumptions, the
unbiasedness of counterfactual methods can be proven. Thus guaranteeing optimal
convergence, given that the assumptions are correct. While this provides a strong
foundation for learning from historically logged clicks, the counterfactual approach is
not always applicable nor always the most effective option [50]. The following research
questions consider whether counterfactual LTR could overcome its limitations and
become the best choice for LTR from clicks in general.

One of the requirements for the unbiasedness of the original counterfactual LTR
method is that it requires every relevant item to be displayed at every query [58]. This
is a problem in top-k ranking settings where not all items can be displayed at once [92].
Hence, Chapter 5 concerns the question:

RQ4 Can counterfactual LTR be extended to top-k ranking settings?

We introduce the Policy-Aware estimator that corrects for position bias while taking
into account the behavior of a stochastic logging policy. As a result, the policy-aware
estimator is unbiased even when learning from top-k feedback, if the policy gives every
relevant item a non-zero chance of appearing in the top-k. Thus with this extension
counterfactual LTR is also applicable to the top-k setting which is especially prevalent
in recommendation.

Existing work has considered how to optimize ranking metrics such as DCG using
counterfactual LTR [2, 46]. Interestingly, the solutions for counterfactual LTR are very
different than those in supervised LTR [13, 129]. To investigate whether this difference
is really necessary, Chapter 5 also addresses the question:

RQ5 Is it possible to apply state-of-the-art supervised LTR methods to the counterfac-
tual LTR problem?

We find that the LambdaLoss framework [129], which includes the famous Lamb-
daMART method [13], can also be applied to counterfactual estimates of ranking
metrics. Thus we show that there does not need to be a divide between state-of-the-art
supervised LTR and counterfactual LTR.

So far we have not considered the area of tabular online LTR: methods that find
the optimal ranking for a single query based on result randomization and direct in-
teraction [67–70, 139]. While these methods need a lot of click data to reach decent
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performance, they can always find the optimal ranking since they optimize a memorized
ranking, instead of using a feature-based model [138]. The downside is that when few
clicks are available for a query, tabular LTR methods are highly sensitive to noise. Thus
these approaches are good for specialization: they have great performance on queries
where numerous clicks have been observed, while also having an initial period of poor
performance. Conversely, counterfactual LTR commonly optimizes feature-based mod-
els for generalization to have a robust performance on previously unseen queries, while
often not reaching perfect performance at convergence.

Inspired by this contrast, in Chapter 6 we ask ourselves:

RQ6 Can the specialization ability of tabular online LTR be combined with the robust
feature-based approach of counterfactual LTR?

Our answer is in the form of the novel Generalization and Specialization (GENSPEC)
algorithm, it optimizes a single robust generalized policy and numerous specialized
policies each optimized for a single query. Then the GENSPEC meta-policy uses high-
confidence bounds to safely decide per query which policy to deploy. Consequently,
for previously unseen queries GENSPEC choose the generalized policy which utilizes
the robust feature-based ranking model. While for other queries it can decide to
deploy a specialized policy, i.e., if it has enough data to confidently determine that the
specialized policy has found the better ranking. For the LTR field, GENSPEC shows
that specialization does not need to be unique to tabular online LTR, instead it can be a
property of counterfactual LTR as well. Moreover, overall it shows that specialization
and generalization are not mutually exclusive abilities.

While counterfactual evaluation methods are designed for using historical clicks,
they can be applied online by simply treating newly gathered data as historical [16, 50].
In contrast with online evaluation methods, counterfactual evaluation is completely pas-
sive: its methods do not prescribe which rankings should be displayed. This difference
leads us to ask the following question in Chapter 7:

RQ7 Can counterfactual evaluation methods for ranking be extended to perform effi-
cient and effective online evaluation?

We answer this question positively by introducing the novel Logging-Policy Optimiza-
tion Algorithm (LogOpt) which uses available clicks to optimize the logging policy to
minimize the variance of counterfactual estimates of ranking metrics. By minimizing
variance, LogOpt increases the data-efficiency of counterfactual evaluation, leading to
more accurate estimates from fewer logged clicks. LogOpt is applied when data is still
been gathered and changes what rankings will be displayed for future queries. Thus,
with the addition of LogOpt, counterfactual evaluation is transformed into an online
approach that is actively involved with how data is gathered. Our experimental results
suggest that LogOpt is at least as efficient as interleaving methods, while also being
proven to be unbiased under the common assumptions of counterfactual LTR.

The results in Chapter 2 and Chapter 7 did not show any online evaluation method
converge on a zero error. This lead us to also ask the following question in Chapter 7:

RQ8 Are existing interleaving methods truly capable of unbiased evaluation w.r.t.
position bias?
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We prove that, under the assumption of basic position bias, interleaving methods are not
unbiased. Furthermore, our results in Chapter 7 indicate that interleaving methods have
a systematic error. Unfortunately, we are unable to estimate the impact this systematic
error has on real-world comparisons. To the best of our knowledge, no empirical studies
have been performed that could measure such a bias, our findings strongly show that
such a study would be highly valuable to the field.

In Chapter 7 we have shown that counterfactual ranking evaluation can be as
efficient as online evaluation methods, while also having the theoretical justification of
counterfactual methods. Naturally this leads to a similar question regarding LTR:

RQ9 Can the counterfactual LTR approach be extended to perform highly effective
online LTR?

In Chapter 8 we answer this question by introducing the intervention-aware estimator for
online/counterfactual LTR. The intervention-aware estimator corrects for position-bias
and trust-bias while also taking into account the effect of online interventions. This
means that if an intervention takes place – i.e., the logging policy changes during the
gathering of data – the intervention-aware estimator takes its effect on the interaction
biases into account. The result is an estimator that, one the one hand, is just as efficient
as other counterfactual estimators when applied to historical data. While on the other
hand, it is much more efficient when applied online than existing estimators. Moreover,
its performance is comparable to online LTR methods. In contrast with online methods,
including DBGD and PDGD, the intervention-aware estimator is proven to be unbiased
w.r.t. ranking metrics under the standard assumptions. In other words, it is the only
method that is proven to converge on the optimal model, while also being as efficient as
the others. Therefore, we consider the intervention-aware estimator a bridge between
online and counterfactual LTR as it is a most-reliable choice in both scenarios.

1.2 Main Contributions

This section will now summarize the main contributions of this thesis. We differentiate
between algorithmic contributions – novel algorithms introduced in the thesis – and
theoretical contributions – findings that are important to the field, both in the form of
formal proofs and empirical observations.

1.2.1 Algorithmic contributions
1. The Pairwise Preference Multileaving (PPM) algorithm for large scale compar-

isons in online evaluation.

2. The Pairwise Differentiable Gradient Descent (PDGD) algorithm for fast and
efficient online LTR.

3. The policy-aware estimator that can perform unbiased counterfactual LTR from
top-k settings.

4. Three loss functions for optimizing top-k metrics with counterfactual LTR, in-
cluding an adaption of the supervised LTR LambdaLoss method.
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5. The Generalization and Specialization (GENSPEC) algorithm that combines
the specialization ability of tabular models with the generalization ability of
feature-based models.

6. The Logging-Policy Optimization Algorithm (LogOpt) algorithm that turns coun-
terfactual evaluation into online evaluation so as to minimize variance by updating
the logging policy during the gathering of data.

7. The intervention-aware estimator that bridges the gap between counterfactual
and online LTR, by extending the policy-aware estimator to take into account the
effect of online interventions.

8. An overarching framework for both online and counterfactual LTR evaluation
and optimization, by combining the existing counterfactual approach with the
contributions of the second part of the thesis. For counterfactual/online eval-
uation contributions 3, 6, and 7 can be applied simultaneously, similarly for
counterfactual/online LTR the same can be done with contributions 3, 4, 5, and 7.

1.2.2 Theoretical contributions

9. An extension of the definition of fidelity and considerateness for multileaving; in
addition, we show that no existing multileave method meets the criteria of both
simultaneously.

10. A formal proof that PDGD is unbiased w.r.t. pairwise item preferences under
mild assumptions.

11. A formal proof that the assumptions of DBGD are not sound for deterministic
ranking models, thus invalidating some claims of unbiasedness in previous online
LTR work.

12. An extensive comparison of DBGD and PDGD under circumstances ranging
from ideal to near worst-case, revealing that even in ideal circumstances DBGD
is often unable to approximate the optimal model.

13. A formal proof for the unbiasedness of the policy-aware and intervention-aware
estimators, proving that the former is unbiased w.r.t. position bias and item-
selection bias and the latter w.r.t. position bias, item-selection bias, and trust bias
respectively.

14. A formal demonstration how LTR loss functions can be adapted to bound top-k
metrics, including a description of how LambdaLoss can be adapted for counter-
factual LTR.

15. An extension of existing bounds in order to bound the relative performance of two
policies, with an additional proof that this bound is more efficient than comparing
the bounds of individual policies.

16. A formal proof that interleaving methods are not unbiased w.r.t. position bias.
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17. An empirical analysis that reveals that PDGD is not unbiased w.r.t. position bias,
item-selection bias, and trust bias, when not applied fully online.

In addition to these contributions, the source code used to perform the experiments in
each published chapter has been shared publicly to enable reproducibility.

1.3 Thesis Overview

This section will provide an overview of the thesis, and provide some recommendations
for reading directions. This thesis consists of an introduction chapter, seven research
chapters divided into two parts, and a conclusion. Each research chapter answers one or
two of the thesis research questions put forward in Section 1.1, in addition to several
chapter-specific research questions. The thesis research questions are important to the
overarching story of the thesis, whereas the chapter-specific research questions only
consider the individual contributions of the chapters.

The first chapter, which you are currently reading, introduces the subject of this
thesis: LTR and ranking evaluation from user clicks. Furthermore, it lays out the thesis
research questions this thesis answers, and provides an overview of its contributions
and its origins.

Part I titled Novel Online Methods for Learning and Evaluating contains three
research chapters that all consider online methods for LTR and ranking evaluation.
Chapter 2 looks at multileaving methods for online evaluation, evaluates existing
methods and introduces a novel multileaving method. Chapter 3 considers online LTR
and introduces PDGD, a novel debiased pairwise method. Chapter 4 performs an
extensive comparison of the previous state-of-the-art online LTR method DBGD and
our novel PDGD, in terms of theoretical guarantees and an experimental analysis.

Part II titled A Single Framework for Online and Counterfactual Learning to Rank
contains four research chapters that build on the counterfactual approach to LTR and
ranker evaluation. The chapters in this part of the thesis are complementary, most of
their contributions can be applied together or build upon each other. Chapter 5 extends
counterfactual LTR to top-k settings; it introduces a novel estimator to learn from top-k
feedback and extends supervised LTR methods to optimize counterfactual estimates of
top-k ranking metrics. Chapter 6 looks at both tabular and feature-based ranking models,
and introduces an algorithm that optimizes both types of models and safely deploys
different models per query. Thus combining the specialization abilities of tabular
models with the robust performance of feature-based models in previously unseen
circumstances. Chapter 7 aims to unify counterfactual and online ranking evaluation;
it introduces a method that updates the logging policy during the gathering of data,
turning counterfactual evaluation into efficient online evaluation. Similarly, Chapter 8
seeks to unify counterfactual and online LTR; it proposes a novel estimator that takes
into account the effect of online interventions but can also be applied counterfactually.
As a result, the estimator is effective for both counterfactual LTR and online LTR.

Lastly, the thesis is concluded in Chapter 9, where we summarize the findings of the
thesis; in particular, we discus whether the division between the families of online and
counterfactual LTR methods has been bridged. We end the chapter with a discussion of
possible future research directions.
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The research chapters in this thesis are self-contained, therefore, a reader can read
any single chapter independently if they desire. The research chapters grew out of
published papers. We wanted to avoid creating alternate versions of published work
that deviate from the originals. As a result, the notation between some chapters differ
somewhat; to help the reader, we have added a table at the end of each chapter detailing
the notation it uses. For the best experience, we recommend reading all the chapters in
part II because they build on each other. For the same reason, Chapter 3 and Chapter 4
are best read together.

1.4 Origins

We will now list the publications on which the research chapters were based. Each of
the publications is a conference paper written by Harrie Oosterhuis and Maarten de
Rijke. In all cases, Oosterhuis came up with the main research ideas, performed all
experiments, and wrote the majority of text. De Rijke lead the discussions on how each
paper should be structured and contributed significantly to the text. In total, this thesis
is built on 6 publications [81, 82, 84–88].

Chapter 2 is based on Sensitive and scalable online evaluation with theoretical guar-
antees published at CIKM ’17 by [81].

Chapter 3 is based on Differentiable Unbiased Online Learning to Rank published at
CIKM ’18 by Oosterhuis and de Rijke [82].

Chapter 4 is based on Optimizing Ranking Models in an Online Setting published at
ECIR ’19 by Oosterhuis and de Rijke [84].

Chapter 5 is based on Policy-Aware Unbiased Learning to Rank for Top-k Rankings
published at SIGIR ’20 by Oosterhuis and de Rijke [86].

Chapter 6 is based on Robust Generalization and Safe Query-Specialization in Coun-
terfactual Learning to Rank submitted to WWW ’21 by Oosterhuis and de Rijke
[87].

Chapter 7 is based on Taking the Counterfactual Online: Efficient and Unbiased
Online Evaluation for Ranking published at ICTIR ’20 by Oosterhuis and de Rijke
[85].

Chapter 8 is based on Unifying Online and Counterfactual Learning to Rank published
at WSDM ’21 by Oosterhuis and de Rijke [88].

In addition, this thesis also indirectly benefitted from the following publications:

• Probabilistic Multileave for Online Retrieval Evaluation published at SIGIR ’15 by
Schuth et al. [109].

• Multileave Gradient Descent for Fast Online Learning to Rank published at WSDM
’16 by Schuth et al. [111].
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• Probabilistic Multileave Gradient Descent published at ECIR ’16 by Oosterhuis et al.
[90].

• Balancing Speed and Quality in Online Learning to Rank for Information Retrieval
published at CIKM ’17 by Oosterhuis and de Rijke [80].

• Query-level Ranker Specialization published at CEUR ’17 by Jagerman et al. [49].

• Ranking for Relevance and Display Preferences in Complex Presentation Layouts
published at SIGIR ’18 by Oosterhuis and de Rijke [83].

• The Potential of Learned Index Structures for Index Compression published at ADCS
’18 by Oosterhuis et al. [91].

• To Model or to Intervene: A Comparison of Counterfactual and Online Learning to
Rank from User Interactions published at SIGIR ’19 by Jagerman et al. [50].

• When Inverse Propensity Scoring does not Work: Affine Corrections for Unbiased
Learning to Rank published at CIKM ’20 by Vardasbi et al. [123].

• Keeping Dataset Biases out of the Simulation: A Debiased Simulator for Reinforce-
ment Learning based Recommender Systems published at RecSys ’20 by Huang et al.
[47].

Furthermore, other work helped with gaining broader research insights, without being
directly related to the thesis topic:

• Semantic Video Trailers by Oosterhuis et al. [89].

• Optimizing Interactive Systems with Data-Driven Objectives by Li et al. [73].

• Actionable Interpretability through Optimizable Counterfactual Explanations for Tree
Ensembles by Lucic et al. [77].
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Novel Online Methods for
Learning and Evaluating
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2
Sensitive and Scalable Online Evaluation

with Theoretical Guarantees

Multileaved comparison methods generalize interleaved comparison methods to provide
a scalable approach for comparing ranking systems based on regular user interactions.
Such methods enable the increasingly rapid research and development of search engines.
However, existing multileaved comparison methods that provide reliable outcomes do
so by degrading the user experience during evaluation. Conversely, current multileaved
comparison methods that maintain the user experience cannot guarantee correctness.

In this chapter, we address the following thesis research question:

RQ1 Does the effectiveness of online evaluation methods scale to large comparisons?

Our answer comes in a two-fold contribution; First, we propose a theoretical framework
for systematically comparing multileaved comparison methods using the notions of
considerateness, which concerns maintaining the user experience, and fidelity, which
concerns reliable correct outcomes. Second, we introduce a novel multileaved compari-
son method, Pairwise Preference Multileaving (PPM), that performs comparisons based
on document-pair preferences, and prove that it is considerate and has fidelity. We show
empirically that, compared to previous multileaved comparison methods, PPM is more
sensitive to user preferences and scalable with the number of rankers being compared.

2.1 Introduction

Evaluation is of tremendous importance to the development of modern search engines.
Any proposed change to the system should be verified to ensure it is a true improvement.
Online approaches to evaluation aim to measure the actual utility of an Information
Retrieval (IR) system in a natural usage environment [45]. Interleaved comparison
methods are a within-subject setup for online experimentation in IR. For interleaved
comparison, two experimental conditions (“control” and “treatment”) are typical. Re-
cently, multileaved comparisons have been introduced for the purpose of efficiently
comparing large numbers of rankers [12, 108]. These multileaved comparison methods
were introduced as an extension to interleaving and the majority are directly derived

This chapter was published as [81]. Appendix 2.A gives a reference for the notation used in this chapter.
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from their interleaving counterparts [108, 109]. The effectiveness of these methods has
thus far only been measured using simulated experiments on public datasets. While
this gives some insight into the general sensitivity of a method, there is no work that
assesses under what circumstances these methods provide correct outcomes and when
they break. Without knowledge of the theoretical properties of multileaved comparison
methods we are unable to identify when their outcomes are reliable.

In prior work on interleaved comparison methods a theoretical framework has been
introduced that provides explicit requirements that an interleaved comparison method
should satisfy [44]. We take this approach as our starting point and adapt and extend it
to the setting of multileaved comparison methods. Specifically, the notion of fidelity is
central to Hofmann et al. [44]’s previous work; Section 2.3 describes the framework
with its requirements of fidelity. In the setting of multileaved comparison methods, this
means that a multileaved comparison method should always recognize an unambiguous
winner of a comparison. We also introduce a second notion, considerateness, which
says that a comparison method should not degrade the user experience, e.g., by allowing
all possible permutations of documents to be shown to the user. In this chapter we
examine all existing multileaved comparison methods and find that none satisfy both
the considerateness and fidelity requirements. In other words, no existing multileaved
comparison method is correct without sacrificing the user experience.

To address this gap, we propose a novel multileaved comparison method, Pairwise
Preference Multileaving (PPM). PPM differs from existing multileaved comparison
methods as its comparisons are based on inferred pairwise document preferences,
whereas existing multileaved comparison methods either use some form of document
assignment [108, 109] or click credit functions [12, 108]. We prove that PPM meets both
the considerateness and the fidelity requirements, thus PPM guarantees correct winners
in unambiguous cases while maintaining the user experience at all times. Furthermore,
we show empirically that PPM is more sensitive than existing methods, i.e., it makes
fewer errors in the preferences it finds. Finally, unlike other multileaved comparison
methods, PPM is computationally efficient and scalable, meaning that it maintains most
of its sensitivity as the number of rankers in a comparison increases.

In this chapter we address thesis research question RQ1 by answering the following
more specific research questions:

RQ2.1 Does PPM meet the fidelity and considerateness requirements?

RQ2.2 Is PPM more sensitive than existing methods when comparing multiple rankers?

To summarize, our contributions in this chapter are:

1. A theoretical framework for comparing multileaved comparison methods;

2. A comparison of all existing multileaved comparison methods in terms of consider-
ateness, fidelity and sensitivity;

3. A novel multileaved comparison method that is considerate and has fidelity and is
more sensitive than existing methods.
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2.2 Related Work

Evaluation of information retrieval systems is a core problem in IR. Two types of
approach are common to designing reliable methods for measuring an IR system’s
effectiveness. Offline approaches such as the Cranfield paradigm [104] are effective
for measuring topical relevance, but have difficulty taking into account contextual
information including the user’s current situation, fast changing information needs, and
past interaction history with the system [45]. In contrast, online approaches to evaluation
aim to measure the actual utility of an IR system in a natural usage environment. User
feedback in online evaluation is usually implicit, in the form of clicks, dwell time, etc.

By far the most common type of controlled experiment on the web is A/B testing [65,
66]. This is a classic between-subject experiment, where each subject is exposed to
one of two conditions, control—the current system—and treatment—an experimental
system that is assumed to outperform the control.

An alternative experimental design uses a within-subject setup, where all study
participants are exposed to both experimental conditions. Interleaved comparisons
[54, 99] have been developed specifically for online experimentation in IR. Interleaved
comparison methods have two main ingredients. First, a method for constructing
interleaved result lists specifies how to select documents from the original rankings
(“control” and “treatment”). Second, a method for inferring comparison outcomes based
on observed user interactions with the interleaved result list. Because of their within-
subject nature, interleaved comparisons can be up to two orders of magnitude more
efficient than A/B tests in effective sample size for studies of comparable dependent
variables [18].

For interleaved comparisons, two experimental conditions are typical. Extensions
to multiple conditions have been introduced by Schuth et al. [108]. Such multileaved
comparisons are an efficient online evaluation method for comparing multiple rankers
simultaneously. Similar to interleaved comparison methods [41, 56, 96, 99], a multi-
leaved comparison infers preferences between rankers. Interleaved comparisons do
this by presenting users with interleaved result lists; these represent two rankers in
such a way that a preference between the two can be inferred from clicks on their
documents. Similarly, for multileaved comparisons multileaved result lists are created
that allow more than two rankers to be represented in the result list. As a consequence,
multileaved comparisons can infer preferences between multiple rankers from a single
click. Due to this property multileaved comparisons require far fewer interactions
than interleaved comparisons to achieve the same accuracy when multiple rankers are
involved [108, 109].

The general approach for every multileaved comparison method is described in
Algorithm 2.1; here, a comparison of a set of rankers R is performed over T user
interactions. After the user submits a query q to the system (Line 4), a ranking li is
generated for each ranker ri in R (Line 6). These rankings are then combined into
a single result list by the multileaving method (Line 7); we refer to the resulting list
m as the multileaved result list. In theory a multileaved result list could contain the
entire document set, however in practice a length k is chosen beforehand, since users
generally only view a restricted number of result pages. This multileaved result list is
presented to the user who has the choice to interact with it or not. Any interactions
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Algorithm 2.1 General pipeline for multileaved comparisons.
1: Input: set of rankersR, documents D, no. of timesteps T .
2: P ← 0 // initialize |R| × |R| preference matrix
3: for t = 1, . . . , T do
4: qt ← wait for user() // receive query from user
5: for i = 1, . . . , |R| do
6: li ← ri(q,D) // create ranking for query per ranker
7: mt ← combine lists(l1, . . . , lR) // combine into multileaved list
8: c← display(mt) // display to user and record interactions
9: for i = 1, . . . , |R| do

10: for j = 1, . . . , |R| do
11: Pij ← Pij + infer(i, j, c,mt) // infer pref. between rankers
12: return P

are recorded in c and returned to the system (Line 8). While c could contain any
interaction information [63], in practice multileaved comparison methods only consider
clicks. Preferences between the rankers inR can be inferred from the interactions and
the preference matrix P is updated accordingly (Line 11). The method of inference
(Line 11) is defined by the multileaved comparison method (Line 7). By aggregating the
inferred preferences of many interactions a multileaved comparison method can detect
preferences of users between the rankers inR. Thus it provides a method of evaluation
without requiring a form of explicit annotation.

By instantiating the general pipeline for multileaved comparisons shown in Algo-
rithm 2.1, i.e., the combination method at Line 6 and the inference method at Line 11,
we obtain a specific multileaved comparison method. We detail all known multileaved
comparison methods in Section 2.4 below.

What we add on top of the work discussed above is a theoretical framework that allows
us to assess and compare multileaved comparison methods. In addition, we propose an
accurate and scalable multileaved comparison method that is the only one to satisfy the
properties specified in our theoretical framework and that also proves to be the most
efficient multileaved comparison method in terms of much reduced data requirements.

2.3 A Framework for Assessing Multileaved Compari-
son Methods

Before we introduce a novel multileaved comparison method in Section 2.5, we propose
two theoretical requirements for multileaved comparison methods. These theoretical
requirements will allow us to assess and compare existing multileaved comparison
methods. Specifically, we introduce two theoretical properties: considerateness and
fidelity. These properties guarantee correct outcomes in unambigious cases while
always maintaining the user experience. In Section 2.4 we show that no currently
available multileaved comparison method satisfies both properties. This motivates the
introduction of a method that satisfies both properties in Section 2.5.
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2.3.1 Considerateness

Firstly, one of the most important properties of a multileaved comparison method is
how considerate it is. Since evaluation is done online it is important that the search
experience is not substantially altered [54, 96]. In other words, users should not be
obstructed to perform their search tasks during evaluation. As maintaining a user base
is at the core of any search engine, methods that potentially degrade the user experience
are generally avoided. Therefore, we set the following requirement: the displayed
multileaved result list should never show a document d at a rank i if every ranker inR
places it at a lower rank. Writing r(d, lj) for the rank of d in the ranking lj produced by
ranker rj , this boils down to:

mi = d→ ∃rj ∈ R, r(d, lj) ≤ i. (2.1)

Requirement 2.1 guarantees that a document can never be displayed higher in a mul-
tileaved result list than any ranker would. In addition, it guarantees that if all rankers
agree on the top n documents, the resulting multileaved result list m will display the
same top n.

2.3.2 Fidelity

Secondly, the preferences inferred by a multileaved comparison method should corre-
spond with those of the user with respect to retrieval quality, and should be robust to
user behavior that is unrelated to retrieval quality [54]. In other words, the preferences
found should be correct in terms of ranker quality. However, in many cases the relative
quality of rankers is unclear. For that reason we will use the notion of fidelity [44] to
compare the correctness of a multileaved comparison method. Fidelity was introduced
by Hofmann et al. [44] and describes two general cases in which the preference between
two rankers is unambiguous. To have fidelity the expected outcome of a method is
required to be correct in all matching cases. However, the original notion of fidelity
only considers two rankers as it was introduced for interleaved comparison methods,
therefore the definition of fidelity must be expanded to the multileaved case. First we
describe the following concepts:

Uncorrelated clicks Clicks are considered uncorrelated if relevance has no influence
on the likelihood that a document is clicked. We write r(di,m) for the rank of document
di in multileaved result list m and P (cl | q,ml = di) for the probability of a click at
the rank l at which di is displayed: l = r(di,m). Then, for a given query q

uncorrelated(q)⇔ ∀l,∀di,j , P (cl | q,ml = di) = P (cl | q,ml = dj). (2.2)

Correlated clicks We consider clicks correlated if there is a positive correlation
between document relevance and clicks. However we differ from Hofmann et al. [44]
by introducing a variable k that denotes at which rank users stop considering documents.
Writing P (ci | rel(mi, q)) for the probability of a click at rank i if a document relevant
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to query q is displayed at this rank, we set

correlated(q, k)⇔
∀i ≥ k, P (ci) = 0 ∧ ∀i < k, P (ci | rel(mi, q)) > P (ci | ¬rel(mi, q)).

(2.3)

Thus under correlated clicks a relevant document is more likely to be clicked than a
non-relevant one at the same rank, if they appear above rank k.

Pareto domination Ranker r1 Pareto dominates ranker r2 if all relevant documents
are ranked at least as high by r1 as by r2 and r1 ranks at least one relevant document
higher. Writing rel for the set of relevant documents that are ranked above k by at least
one ranker, i.e., rel = {d | rel(d, q) ∧ ∃rn ∈ R, r(d, ln) > k}, we require that the
following holds for every query q and any rank k:

Pareto(ri, rj , q, k)⇔
∀d ∈ rel, r(d, li) ≤ r(d, lj) ∧ ∃d ∈ rel, r(d, li) < r(d, lj).

(2.4)

Then, fidelity for multileaved comparison methods is defined by the following two
requirements:
1. Under uncorrelated clicks the expected outcome may find no preferences between

any two rankers inR:

∀q,∀(ri, rj) ∈ R, uncorrelated(q)⇒ E[Pij | q] = 0. (2.5)

2. Under correlated clicks, a ranker that Pareto dominates all other rankers must win
the multileaved comparison in expectation:

∀k, ∀q,∀ri ∈ R,(
correlated(q, k) ∧ ∀rj ∈ R, i 6= j → Pareto(ri, rj , q, k)

)
⇒ (∀rj ∈ R, i 6= j → E[Pij | q] > 0) .

(2.6)

Note that for the case where |R| = 2 and if only k = |D| is considered, these re-
quirements are the same as for interleaved comparison methods [44]. The k parameter
was added to allow for fidelity in considerate methods, since it is impossible to detect
preferences at ranks that users never consider without breaking the considerateness
requirement. We argue that differences at ranks that users are not expected to observe
should not affect comparison outcomes. Fidelity is important for a multileaved com-
parison method as it ensures that an unambiguous winner is expected to be identified.
Additionally, the first requirement ensures that in exception no preferences are inferred
when clicks are unaffected by relevancy.

2.3.3 Additional properties
In addition to the two theoretical properties listed above, considerateness and fidelity, we
also scrutinize multileaved comparison methods to determine whether they accurately
find preferences between all rankers inR and minimize the number of user impressions
required do so. This empirical property is commonly known as sensitivity [44, 108].
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In Section 2.6 we describe experiments that are aimed at comparing the sensitivity of
multileaved comparison methods. Here, two aspects of every comparison are considered:
the level of error at which a method converges and the number of impressions required
to reach that level. Thus, an interleaved comparison method that learns faster initially
but does not reach the same final level of error is deemed worse.

2.4 An Assessment of Existing Multileaved Compari-
son Methods

We briefly examine all existing multileaved comparison methods to determine whether
they meet the considerateness and fidelity requirements. An investigation of the empiri-
cal sensitivity requirement is postponed until Section 2.6 and 2.7.

2.4.1 Team Draft Multileaving

Team-Draft Multileaving (TDM) was introduced by Schuth et al. [108] and is based on
the previously proposed Team Draft Interleaving (TDI) [99]. Both methods are inspired
by how team assignments are often chosen for friendly sport matches. The multileaved
result list is created by sequentially sampling rankers without replacement; the first
sampled ranker places their top document at the first position of the multileaved list.
Subsequently, the next sampled ranker adds their top pick of the remaining documents.
When all rankers have been sampled, the process is continued by sampling from the
entire set of rankers again. The method is stops when all documents have been added.
When a document is clicked, TDM assigns the click to the ranker that contributed
the document. For each impression binary preferences are inferred by comparing the
number of clicks each ranker received.

It is clear that TDM is considerate since each added document is the top pick of
at least one ranker. However, TDM does not meet the fidelity requirements. This is
unsurprising as previous work has proven that TDI does not meet these requirements
[41, 44, 96]. Since TDI is identical to TDM when the number of rankers is |R| = 2,
TDM does not have fidelity either.

2.4.2 Optimized Multileaving

Optimized Multileaving (OM) was proposed by Schuth et al. [108] and serves as
an extension of Optimized Interleaving (OI) introduced by Radlinski and Craswell
[96]. The allowed multileaved result lists of OM are created by sampling rankers
with replacement at each iteration and adding the top document of the sampled ranker.
However, the probability that a multileaved result list is shown is not determined by the
generative process. Instead, for a chosen credit function OM performs an optimization
that computes a probability for each multileaved result list so that the expected outcome
is unbiased and sensitive to correct preferences.

All of the allowed multileaved result lists of OM meet the considerateness require-
ment, and in theory instantiations of OM could have fidelity. However, in practice OM
does not meet the fidelity requirements. There are two main reasons for this. First, it
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is not guaranteed that a solution exists for the optimization that OM performs. For
the interleaving case this was proven empirically when k = 10 [96]. However, this
approach does not scale to any number of rankers. Secondly, unlike OI, OM allows more
result lists than can be computed in a feasible amount of time. Consider the top k of all
possible multileaved result lists; in the worst case this produces |R|k lists. Computing
all lists for a large value of |R| and performing linear constraint optimization over them
is simply not feasible. As a solution, Schuth et al. [108] propose a method that samples
from the allowed multileaved result lists and relaxes constraints when there is no exact
solution. Consequently, there is no guarantee that this method does not introduce bias.
Together, these two reasons show that the fidelity of OI does not imply fidelity of OM.
It also shows that OM is computationally very costly.

2.4.3 Probabilistic Multileaving

Probabilistic Multileaving (PM) [109] is an extension of Probabilistic Interleaving (PI)
[41], which was designed to solve the flaws of TDI. Unlike the previous methods, PM
considers every ranker as a distribution over documents, which is created by applying
a soft-max to each of them. A multileaved result list is created by sampling a ranker
with replacement at each iteration and sampling a document from the ranker that was
selected. After the sampled document has been added, all rankers are renormalized
to account for the removed document. During inference PM credits every ranker the
expected number of clicked documents that were assigned to them. This is done by
marginalizing over the possible ways the list could have been constructed by PM. A
benefit of this approach is that it allows for comparisons on historical data [41, 44].

A big disadvantage of PM is that it allows any possible ranking to be shown, albeit
not with uniform probabilities. This is a big deterrent for the usage of PM in opera-
tional settings. Furthermore, it also means that PM does not meet the considerateness
requirement. On the other hand, PM does meet the fidelity requirements, the proof for
this follows from the fact that every ranker is equally likely to add a document at each
location in the ranking. Moreover, if multiple rankers want to place the same document
somewhere they have to share the resulting credits.1 Similar to OM, PM becomes
infeasible to compute for a large number of rankers |R|; the number of assignments
in the worst case is |R|k. Fortunately, PM inference can be estimated by sampling
assignments in a way that maintains fidelity [90, 109].

2.4.4 Sample Only Scored Multileaving

Sample-Scored-Only Multileaving (SOSM) was introduced by Brost et al. [12] in an
attempt to create a more scalable multileaved comparison method. It is the only existing
multileaved comparison method that does not have an interleaved comparison counter-
part. SOSM attempts to increase sensitivity by ignoring all non-sampled documents
during inference. Thus, at each impression a ranker receives credits according to how it
ranks the documents that were sampled for the displayed multileaved result list of size
k. The preferences at each impression are made binary before being added to the mean.

1Brost et al. [12] proved that if the preferences at each impression are made binary the fidelity of PM is
lost.
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Table 2.1: Overview of multileaved comparison methods and whether they meet the
considerateness and fidelity requirements.

Considerateness Fidelity Source

TDM X [108]
OM X [108]
PM X [109]
SOSM X [12]
PPM X X this chapter

SOSM creates multileaved result lists following the same procedure as TDM, a choice
that seems arbitrary.

SOSM meets the considerateness requirements for the same reason TDM does.
However, SOSM does not meet the fidelity requirement. We can prove this by providing
an example where preferences are found under uncorrelated clicks. Consider the two
documents A and B and the three rankers with the following three rankings:

l1 = AB, l2 = l3 = BA.

The first requirement of fidelity states that under uncorrelated clicks no preferences may
be found in expectation. Uncorrelated clicks are unconditioned on document relevance
(Equation 2.2); however, it is possible that they display position bias [134]. Thus the
probability of a click at the first rank may be greater than at the second:

P (c1 | q) > P (c2 | q).

Under position biased clicks the expected outcome for each possible multileaved result
list is not zero. For instance, the following preferences are expected:

E[P12 |m = AB] > 0,

E[P12 |m = BA] < 0,

E[P12 |m = AB] = −E[P12 |m = BA].

Since SOSM creates multileaved result lists following the TDM procedure the proba-
bility P (m = BA) is twice as high as P (m = AB). As a consequence, the expected
preference is biased against the first ranker:

E[P12] < 0.

Hence, SOSM does not have fidelity. This outcome seems to stem from a disconnect
between how multileaved results lists are created and how preferences are inferred.

To conclude this section, Table 2.1 provides an overview of our findings thus far, i.e.,
the theoretical requirements that each multileaved comparison method satisfies; we have
also included PPM, the multileaved comparison method that we will introduce below.
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Algorithm 2.2 Multileaved result list construction for PPM.
1: Input: set of rankersR, rankings {l}, documents D.
2: m← [] // initialize empty multileaving
3: for n = 1, . . . , |D| do
4: Ω̂n ← Ω(n,R, D) \m // choice set of remaining documents
5: d← uniform sample(Ω̂n) // uniformly sample next document
6: m← append(m, d) // add sampled document to multileaving
7: return m

2.5 A Novel Multileaved Comparison Method

The previously described multileaved comparison methods are based around direct
credit assignment, i.e., credit functions are based on single documents. In contrast, we
introduce a method that estimates differences based on pairwise document preferences.
We prove that this novel method is the only multileaved comparison method that meets
the considerateness and fidelity requirements set out in Section 2.3.

The multileaved comparison method that we introduce is Pairwise Preference Mul-
tileaving (PPM). It infers pairwise preferences between documents from clicks and
bases comparisons on the agreement of rankers with the inferred preferences. PPM is
based on the assumption that a clicked document is preferred to: (i) all of the unclicked
documents above it; and (ii) the next unclicked document. These assumptions are
long-established [55] and form the basis of pairwise Learning to Rank (LTR) [54].

We write cr(di,m) for a click on document di displayed in multileaved result list m
at the rank r(di,m). For a document pair (di, dj), a click cr(di,m) infers a preference
as follows:

cr(di,m) ∧ ¬cr(dj ,m) ∧
(
∃i, (ci ∧ r(dj ,m) < i) ∨ cr(dj ,m)−1

)
⇔ di >c dj . (2.7)

In addition, the preference of a ranker r is denoted by di >r dj . Pairwise preferences
also form the basis for Preference-Based Balanced Interleaving (PBI) introduced by He
et al. [38]. However, previous work has shown that PBI does not meet the fidelity
requirements [44]. Therefore, we do not use PBI as a starting point for PPM. Instead,
PPM is derived directly from the considerateness and fidelity requirements. Conse-
quently, PPM constructs multileaved result lists inherently differently and its inference
method has fidelity, in contrast with PBI.

When constructing a multileaved result list m we want to be able to infer unbiased
preferences while simultaneously being considerate. Thus, with the requirement for
considerateness in mind we define a choice set as:

Ω(i,R, D) = {d | d ∈ D ∧ ∃rj ∈ R, r(d, lj) ≤ i}. (2.8)

This definition is chosen so that any document in Ω(i,R, D) can be placed at rank i
without breaking the considerateness requirement (Equation 2.1). The multileaving
method of PPM is described in Algorithm 2.2. The approach is straightforward: at
each rank n the set of documents Ω̂n is determined (Line 4). This set of documents is
Ω(n,R, D) with the previously added documents removed to avoid document repetition.
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Algorithm 2.3 Preference inference for PPM.
1: Input: rankersR, rankings {l}, documents D, multileaved result list m, clicks c.
2: P ← 0 // preference matrix of |R| × |R|
3: for (di, dj) ∈ {(di, dj) | di >c dj} do
4: if

¯
r(i, j,m) ≥ r̄(i, j) then

5: w ← 1 // variable to store P (
¯
r(i, j,m) ≥ r̄(i, j))

6: min x← mind∈{di,dj}minrn∈R r(d, ln)
7: for x = min x, . . . , r̄(i, j)− 1 do
8: w ← w · (1− (|Ω(x,R, D)| − x− 1)−1)
9: for n = 1, . . . , |R| do

10: for m = 1, . . . , |R| do
11: if di >rn dj ∧ n 6= m then
12: Pnm ← Pnm + w−1 // result of scoring function φ
13: else if n 6= m then
14: Pnm ← Pnm − w−1

15: return P

Then, the next document is sampled uniformly from Ω̂n (Line 5), thus every document
in Ω̂n has a probability:

1

|Ω(n,R, D)| − n+ 1
(2.9)

of being placed at position n (Line 6). Since Ω̂n ⊆ Ω(n,R, D) the resulting m is
guaranteed to be considerate.

While the multileaved result list creation method used by PPM is simple, its prefer-
ence inference method is more complicated as it has to meet the fidelity requirements.
First, the preference found between a ranker rn and rm from a single interaction c is
determined by:

Pnm =
∑

di>cdj

φ(di, dj , rn,m,R)− φ(di, dj , rm,m,R), (2.10)

which sums over all document pairs (di, dj) where interaction c inferred a preference.
Before the scoring function φ can be defined we introduce the following function:

r̄(i, j,R) = max
d∈{di,dj}

min
rn∈R

r(d, ln). (2.11)

For succinctness we will note r̄(i, j) = r̄(i, j,R). Here, r̄(i, j) provides the highest
rank at which both documents di and dj can appear in m. Position r̄(i, j) is important
to the document pair (di, dj), since if both documents are in the remaining documents
Ω̂r̄(i,j), then the rest of the multileaved result list creation process is identical for both.
To keep notation short we introduce:

¯
r(i, j,m) = min

d∈{di,dj}
r(d,m). (2.12)
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Therefore, if
¯
r(i, j,m) ≥ r̄(i, j) then both documents appear below r̄(i, j). This, in

turn, means that both documents are equally likely to appear at any rank:

∀n, P (mn = di |
¯
r(i, j,m) ≥ r̄(i, j))

= P (mn = dj |
¯
r(i, j,m) ≥ r̄(i, j)). (2.13)

The scoring function φ is then defined as follows:

φ(di, dj , r,m) =


0,

¯
r(i, j,m) < r̄(i, j)

−1
P (

¯
r(i,j,m)≥r̄(i,j)) , di <r dj

1
P (

¯
r(i,j,m)≥r̄(i,j)) , di >r dj ,

(2.14)

indicating that a zero score is given if one of the documents appears above r̄(i, j).
Otherwise, the value of φ is positive or negative depending on whether the ranker
r agrees with the inferred preference between di and dj . Furthermore, this score is
inversely weighted by the probability P (

¯
r(i, j,m) ≥ r̄(i, j)). Therefore, pairs that

are less likely to appear below their threshold r̄(i, j) result in a higher score than for
more commonly occuring pairs. Algorithm 2.3 displays how the inference of PPM can
be computed. The scoring function φ was carefully chosen to guarantee fidelity, the
remainder of this section will sketch the proof for PPM meeting its requirements.

The two requirements for fidelity will be discussed in order:

Requirement 1

The first fidelity requirement states that under uncorrelated clicks the expected outcome
should be zero. Consider the expected preference:

E[Pnm] =
∑
di,dj

∑
m

P (di >c dj |m)P (m)(φ(di, dj , rn,m)

− φ(di, dj , rm,m)).

(2.15)

To see that E[Pnm] = 0 under uncorrelated clicks, take any multileaving m where
P (m) > 0 and φ(di, dj , r,m) 6= 0 with mx = di and my = dj . Then there is always
a multileaved result list m′ that is identical expect for swapping the two documents
so that m′x = dj and m′y = di. The scoring function only gives non-zero values
if both documents appear below the threshold

¯
r(i, j,m) < r̄(i, j) (Equation 2.14).

At this point the probability of each document appearing at any position is the same
(Equation 2.13), thus the following holds:

P (m) = P (m′), (2.16)
φ(di, dj , rn,m) = −φ(dj , di, rn,m

′). (2.17)

Finally, from the definition of uncorrelated clicks (Equation 2.2) the following holds:

P (di >c dj |m) = P (dj >c di |m′). (2.18)

As a result, any document pair (di, dj) and multileaving m that affects the expected out-
come is cancelled by the multileaving m′. Therefore, we can conclude thatE[Pnm] = 0
under uncorrelated clicks, and that PPM meets the first requirement of fidelity.
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Requirement 2

The second fidelity requirement states that under correlated clicks a ranker that Pareto
dominates all other rankers should win the multileaved comparison. Therefore, the
expected value for a Pareto dominating ranker rn should be:

∀m,n 6= m→ E[Pnm] > 0. (2.19)

Take any other ranker rm that is thus Pareto dominated by rn. The proof for the first
requirement shows that E[Pnm] is not affected by any pair of documents di, dj with the
same relevance label. Furthermore, any pair on which rn and rm agree will not affect
the expected outcome since:

(di >rn dj ↔ di >rm dj)⇒ φ(di, dj , rn,m)− φ(di, dj , rm,m) = 0. (2.20)

Then, for any relevant document di, consider the set of documents that rn incorrectly
prefers over di:

A = {dj | ¬rel(dj) ∧ dj >rn di} (2.21)

and the set of documents that rm incorrectly prefers over di and places higher than
where rn places di:

B = {dj | ¬rel(dj) ∧ dj >rm di ∧ r(dj , lm) < r(di, ln)}. (2.22)

Since rn Pareto dominates rm, it has the same or fewer incorrect preferences: |A| ≤ |B|.
Furthermore, for any document dj in either A or B the threshold of the pair di, dj is the
same:

∀dj ∈ A ∪B, r̄(i, j) = r(di, ln). (2.23)

Therefore, all pairs with documents from A and B will only get a non-zero value from
φ if they both appear at or below r(di, ln). Then, using Equation 2.13 and the Bayes
rule we see:

∀(dj , dl) ∈ A ∪B,
P (mx = dj ,

¯
r(i, j,m) ≥ r̄(i, j,R))

P (
¯
r(i, j,m) ≥ r̄(i, j,R))

=
P (mx = dl,

¯
r(i, l,m) ≥ r̄(i, l,R))

P (
¯
r(i, l,m) ≥ r̄(i, l,R))

.

(2.24)

Similarly, the reweighing of φ ensures that every pair inA andB contributes the same to
the expected outcome. Thus, if both rankers rank di at the same position the following
sum: ∑

dj∈A∪B

∑
m

P (m)

· [P (di >c dj |m)(φ(di, dj , rn,m)− φ(di, dj , rm,m))

+ P (dj >c di |m)(φ(dj , di, rn,m)− φ(dj , di, rm,m))]

(2.25)
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will be zero if |A| = |B| and positive if |A| < |B| under correlated clicks. Moreover,
since rn Pareto dominates rm, there will be at least one document dj where:

∃di,∃dj , rel(di) ∧ ¬rel(dj) ∧ r(di, ln) = r(dj , lm). (2.26)

This means that the expected outcome (Equation 2.15) will always be positive under
correlated clicks, i.e., E[Pnm] > 0, for a Pareto dominating ranker rn and any other
ranker rm.

In summary, we have introduced a new multileaved comparison method, PPM.
Furthermore, we answered RQ2.1 in the affirmative since we have shown it to be
considerate and to have fidelity. We further note that PPM has polynomial complexity:
to calculate P (

¯
r(i, j,m) ≥ r̄(i, j)) only the size of the choice sets Ω and the first

positions at which di and dj occur in Ω have to be known.

2.6 Experiments

In order to answer Research Question RQ2.2 posed in Section 2.1 several experiments
were performed to evaluate the sensitivity of PPM. The methodology of evaluation
follows previous work on interleaved and multileaved comparison methods [12, 41, 44,
108, 109] and is completely reproducible.

2.6.1 Ranker selection and comparisons

In order to make fair comparisons between rankers, we will use the LTR datasets
described in Section 2.6.2 below. From the feature representations in these datasets
a handpicked set of features was taken and used as ranking models. To match the
real-world scenario as best as possible this selection consists of features that are known
to perform well as relevance signals independently. This selection includes but is not
limited to: BM25, LMIR.JM, Sitemap, PageRank, HITS and TF.IDF [108].

Then the ground-truth comparisons between the rankers are based on their NDCG
scores computed on a held-out test set, resulting in a binary preference matrix Pnm for
all ranker pairs (rn, rm):

Pnm = NDCG(rn)−NDCG(rm). (2.27)

The metric by which multileaved comparison methods are compared is the binary error,
Ebin [12, 108, 109]. Let P̂nm be the preference inferred by a multileaved comparison
method; then the error is:

Ebin =

∑
n,m∈R∧n 6=m sgn(P̂nm) 6= sgn(Pnm)

|R| × (|R| − 1)
. (2.28)

2.6.2 Datasets

Our experiments are performed over ten publicly available LTR datasets with varying
sizes and representing different search tasks. Each dataset consists of a set of queries
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Table 2.2: Instantiations of Cascading Click Models [36] as used for simulating user
behaviour in experiments.

P (click = 1 | R) P (stop = 1 | R)

R 0 1 2 3 4 0 1 2 3 4

perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
navigational 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9
informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

and a set of corresponding documents for every query. While queries are represented
only by their identifiers, feature representations and relevance labels are available for
every document-query pair. Relevance labels are graded differently by the datasets
depending on the task they model, for instance, navigational datasets have binary labels
for not relevant (0), and relevant (1), whereas most informational tasks have labels
ranging from not relevant (0), to perfect relevancy (4). Every dataset consists of five
folds, each dividing the dataset in different training, validation and test partitions.

The first publicly available LTR datasets are distributed as LETOR 3.0 and 4.0 [76];
they use representations of 45, 46, or 64 features encoding ranking models such as
TF.IDF, BM25, Language Modelling, PageRank, and HITS on different parts of the
documents. The datasets in LETOR are divided by their tasks, most of which come from
the TREC Web Tracks between 2003 and 2008 [23, 24]. HP2003, HP2004, NP2003,
NP2004, TD2003 and TD2004 each contain between 50 and 150 queries and 1,000
judged documents per query and use binary relevance labels. Due to their similarity
we report average results over these six datasets noted as LETOR 3.0. The OHSUMED
dataset is based on the query log of the search engine on the MedLine abstract database,
and contains 106 queries. The last two datasets, MQ2007 and MQ2008, were based on
the Million Query Track [8] and consist of 1,700 and 800 queries, respectively, but have
far fewer assessed documents per query.

The MLSR-WEB10K dataset [95] consists of 10,000 queries obtained from a retired
labelling set of a commercial web search engine. The datasets uses 136 features to
represent its documents, each query has around 125 assessed documents.

Finally, we note that there are more LTR datasets that are publicly available [17, 27],
but there is no public information about their feature representations. Therefore, they
are unfit for our evaluation as no selection of well performing ranking features can be
made.

2.6.3 Simulating user behavior

While experiments using real users are preferred [18, 21, 63, 133], most researchers
do not have access to search engines. As a result the most common way of comparing
online evaluation methods is by using simulated user behaviour [12, 41, 44, 108, 109].
Such simulated experiments show the performance of multileaved comparison methods
when user behaviour adheres to a few simple assumptions.

Our experiments follow the precedent set by previous work on online evaluation:
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First, a user issues a query simulated by uniformly sampling a query from the static
dataset. Subsequently, the multileaved comparison method constructs the multileaved
result list of documents to display. The behavior of the user after receiving this list is
simulated using a cascade click model [20, 36]. This model assumes a user to examine
documents in their displayed order. For each document that is considered the user
decides whether it warrants a click, which is modeled as the conditional probability
P (click = 1 | R) where R is the relevance label provided by the dataset. Accordingly,
cascade click model instantiations increase the probability of a click with the degree of
the relevance label. After the user has clicked on a document their information need
may be satisfied; otherwise they continue considering the remaining documents. The
probability of the user not examining more documents after clicking is modeled as
P (stop = 1 | R), where it is more likely that the user is satisfied from a very relevant
document. At each impression we display k = 10 documents to the user.

Table 2.2 lists the three instantiations of cascade click models that we use for this
chapter. The first models a perfect user who considers every document and clicks on all
relevant documents and nothing else. Secondly, the navigational instantiation models a
user performing a navigational task who is mostly looking for a single highly relevant
document. Finally, the informational instantiation models a user without a very specific
information need who typically clicks on multiple documents. These three models have
increasing levels of noise, as the behavior of each depends less on the relevance labels
of the displayed documents.

2.6.4 Experimental runs

Each experimental run consists of applying a multileaved comparison method to a
sequence of T = 10, 000 simulated user impressions. To see the effect of the number
of rankers in a comparison, our runs consider |R| = 5, |R| = 15, and |R| = 40.
However only the MSLR dataset contains |R| = 40 rankers. Every run is repeated for
every click model to see how different behaviours affect performance. For statistical
significance every run is repeated 25 times per fold, which means that 125 runs are
conducted for every dataset and click model pair. Since our evaluation covers five
multileaved comparison methods, we generate over 393 million impressions in total. We
test for statistical significant differences using a two tailed t-test. Note that the results
reported on the LETOR 3.0 data are averaged over six datasets and thus span 750 runs
per datapoint.

The parameters of the baselines are selected based on previous work on the same
datasets; for OM the sample size η = 10 was chosen as reported by Schuth et al. [108];
for PM the degree τ = 3.0 was chosen according to Hofmann et al. [41] and the sample
size η = 10, 000 in accordance with Schuth et al. [109].

2.7 Results and Analysis

We answer Research Question RQ2.2 by evaluating the sensitivity of PPM based on the
results of the experiments detailed in Section 2.6.

The results of the experiments with a smaller number of rankers: |R| = 5 are
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Table 2.3: The binary error Ebin of all multileaved comparison methods after 10,000
impressions on comparisons of |R| = 5 rankers. Average per dataset and click model;
standard deviation in brackets. The best performance per click model and dataset is
noted in bold, statistically significant improvements of PPM are noted by H(p < 0.01)
and O(p < 0.05) and losses by N and M respectively or ◦ for no difference, per baseline.

TDM OM PM SOSM PPM

perfect

LETOR 3.0 0.16 ( 0.13) 0.14 ( 0.15) 0.15 ( 0.15) 0.16 ( 0.15) 0.14 ( 0.13) ◦◦◦◦
MQ2007 0.19 ( 0.16) 0.22 ( 0.18) 0.16 ( 0.14) 0.18 ( 0.16) 0.16 ( 0.14) ◦H◦◦
MQ2008 0.15 ( 0.12) 0.19 ( 0.14) 0.16 ( 0.12) 0.18 ( 0.15) 0.14 ( 0.12) ◦H◦O
MSLR-WEB10k 0.23 ( 0.13) 0.27 ( 0.17) 0.20 ( 0.14) 0.25 ( 0.18) 0.14 ( 0.13) HHHH

OHSUMED 0.14 ( 0.12) 0.19 ( 0.15) 0.11 ( 0.09) 0.11 ( 0.10) 0.11 ( 0.10) HH◦◦
navigational

LETOR 3.0 0.16 ( 0.13) 0.15 ( 0.15) 0.15 ( 0.14) 0.17 ( 0.15) 0.16 ( 0.14) ◦◦◦◦
MQ2007 0.21 ( 0.17) 0.33 ( 0.21) 0.18 ( 0.12) 0.29 ( 0.23) 0.17 ( 0.14) ◦H◦H
MQ2008 0.17 ( 0.14) 0.21 ( 0.20) 0.17 ( 0.15) 0.23 ( 0.18) 0.15 ( 0.13) ◦H◦H
MSLR-WEB10k 0.24 ( 0.14) 0.32 ( 0.20) 0.24 ( 0.17) 0.31 ( 0.19) 0.20 ( 0.15) OHOH

OHSUMED 0.12 ( 0.11) 0.27 ( 0.19) 0.14 ( 0.12) 0.23 ( 0.17) 0.13 ( 0.12) ◦H◦H
informational

LETOR 3.0 0.16 ( 0.14) 0.22 ( 0.19) 0.14 ( 0.11) 0.17 ( 0.15) 0.15 ( 0.13) ◦H◦◦
MQ2007 0.23 ( 0.15) 0.41 ( 0.26) 0.23 ( 0.15) 0.37 ( 0.23) 0.17 ( 0.16) HHHH

MQ2008 0.18 ( 0.13) 0.28 ( 0.19) 0.18 ( 0.16) 0.23 ( 0.18) 0.17 ( 0.14) ◦H◦H
MSLR-WEB10k 0.27 ( 0.18) 0.42 ( 0.23) 0.24 ( 0.17) 0.36 ( 0.20) 0.19 ( 0.17) HHOH

OHSUMED 0.13 ( 0.10) 0.37 ( 0.24) 0.12 ( 0.11) 0.27 ( 0.21) 0.12 ( 0.10) ◦H◦H

displayed in Table 2.3. Here we see that after 10,000 impressions PPM has a significantly
lower error on many datasets and at all levels of interaction noise. Furthermore, for
|R| = 5 there are no significant losses in performance under any circumstances.

When |R| = 15 as displayed in Table 2.4, we see a single case where PPM performs
worse than a previous method: on MQ2007 under the perfect click model SOSM
performs significantly better than PPM. However, on the same dataset PPM performs
significantly better under the informational click model. Furthermore, there are more
significant improvements for |R| = 15 than when the number of rankers is the smaller
|R| = 5.

Finally, when the number of rankers in the comparison is increased to |R| = 40 as
displayed in Table 2.5, PPM still provides significant improvements.

We conclude that PPM, in the experimental conditions that we considered, provides
a performance that is at least as good as any existing method. Moreover, PPM is robust to
noise as we see more significant improvements under click-models with increased noise.
Furthermore, since improvements are found with the number of rankers |R| varying
from 5 to 40, we conclude that PPM is scalable in the comparison size. Additionally, the
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Table 2.4: The binary error Ebin after 10,000 impressions on comparisons of |R| = 15
rankers. Notation is identical to Table 2.3.

TDM OM PM SOSM PPM

perfect

LETOR 3.0 0.16 ( 0.07) 0.14 ( 0.08) 0.15 ( 0.07) 0.17 ( 0.08) 0.16 ( 0.08) ◦◦◦◦
MQ2007 0.20 ( 0.07) 0.25 ( 0.09) 0.18 ( 0.06) 0.15 ( 0.07) 0.19 ( 0.07) ◦H◦N
MQ2008 0.16 ( 0.05) 0.17 ( 0.05) 0.16 ( 0.05) 0.15 ( 0.07) 0.15 ( 0.06) ◦O◦◦
MSLR-WEB10k 0.24 ( 0.07) 0.38 ( 0.11) 0.21 ( 0.06) 0.30 ( 0.08) 0.14 ( 0.05) HHHH

OHSUMED 0.14 ( 0.03) 0.18 ( 0.05) 0.13 ( 0.03) 0.13 ( 0.03) 0.11 ( 0.03) HHHH

navigational

LETOR 3.0 0.16 ( 0.08) 0.16 ( 0.09) 0.15 ( 0.08) 0.17 ( 0.08) 0.17 ( 0.08) ◦◦◦◦
MQ2007 0.24 ( 0.07) 0.33 ( 0.11) 0.20 ( 0.07) 0.22 ( 0.08) 0.21 ( 0.08) HH◦◦
MQ2008 0.19 ( 0.05) 0.21 ( 0.07) 0.16 ( 0.05) 0.18 ( 0.06) 0.16 ( 0.06) HH◦H
MSLR-WEB10k 0.27 ( 0.07) 0.42 ( 0.12) 0.24 ( 0.06) 0.28 ( 0.09) 0.22 ( 0.08) HH◦H
OHSUMED 0.14 ( 0.04) 0.25 ( 0.07) 0.13 ( 0.03) 0.18 ( 0.06) 0.13 ( 0.04) ◦H◦H

informational

LETOR 3.0 0.18 ( 0.07) 0.20 ( 0.11) 0.17 ( 0.08) 0.16 ( 0.08) 0.18 ( 0.08) ◦O◦◦
MQ2007 0.28 ( 0.07) 0.42 ( 0.14) 0.26 ( 0.08) 0.28 ( 0.11) 0.21 ( 0.08) HHHH

MQ2008 0.23 ( 0.06) 0.26 ( 0.11) 0.18 ( 0.06) 0.20 ( 0.06) 0.15 ( 0.06) HHHH

MSLR-WEB10k 0.30 ( 0.09) 0.45 ( 0.12) 0.28 ( 0.08) 0.35 ( 0.11) 0.24 ( 0.08) HHHH

OHSUMED 0.15 ( 0.03) 0.42 ( 0.09) 0.13 ( 0.03) 0.25 ( 0.06) 0.13 ( 0.04) HH◦H

dataset type seems to affect the relative performance of the methods. For instance, on
LETOR 3.0 little significant differences are found, whereas the MSLR dataset displays
the most significant improvements. This suggests that on more artificial data, i.e., the
smaller datasets simulating navigational tasks, the differences are fewer, while on the
other hand on large commercial data the preference for PPM increases further. Lastly,
Figure 2.1 displays the binary error of all multileaved comparison methods on the MSLR
dataset over 10,000 impressions. Under the perfect click model we see that all of the
previous methods display converging behavior around 3,000 impressions. In contrast,
the error of PPM continues to drop throughout the experiment. The fact that the existing
methods converge at a certain level of error in the absence of click-noise is indicative
that they are lacking in sensitivity.

Overall, our results show that PPM reaches a lower level of error than previous
methods seem to be capable of. This feat can be observed on a diverse set of datasets,
various levels of interaction noise and for different comparison sizes. To answer
Research Question RQ2.2: from our results we conclude that PPM is more sensitive
than any existing multileaved comparison method.
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Table 2.5: The binary error Ebin of all multileaved comparison methods after 10,000
impressions on comparisons of |R| = 40 rankers. Averaged over the MSLR-WEB10k,
notation is identical to Table 2.3.

TDM OM PM SOSM PPM

perfect 0.26 ( 0.03) 0.43 ( 0.02) 0.23 ( 0.02) 0.31 ( 0.02) 0.18 ( 0.04) HHHH

navigational 0.31 ( 0.03) 0.44 ( 0.01) 0.25 ( 0.03) 0.23 ( 0.03) 0.24 ( 0.05) HHH◦
informational 0.37 ( 0.04) 0.47 ( 0.01) 0.30 ( 0.05) 0.34 ( 0.05) 0.27 ( 0.06) HHHH

2.8 Conclusion

In this chapter we have examined multileaved comparison methods for evaluating
ranking models online.

We have presented a new multileaved comparison method, Pairwise Preference
Multileaving (PPM), that is more sensitive to user preferences than existing methods.
Additionally, we have proposed a theoretical framework for assessing multileaved
comparison methods, with considerateness and fidelity as the two key requirements.
We have shown that no method published prior to PPM has fidelity without lacking
considerateness. In other words, prior to PPM no multileaved comparison method has
been able to infer correct preferences without degrading the search experience of the
user. In contrast, we prove that PPM has both considerateness and fidelity, thus it is
guaranteed to correctly identify a Pareto dominating ranker without altering the search
experience considerably. Furthermore, our experimental results spanning ten datasets
show that PPM is more sensitive than existing methods, meaning that it can reach a
lower level of error than any previous method. Moreover, our experiments show that
the most significant improvements are obtained on the more complex datasets, i.e.,
larger datasets with more grades of relevance. Additionally, similar improvements are
observed under different levels of noise and numbers of rankers in the comparison,
indicating that PPM is robust to interaction noise and scalable to large comparisons.
As an extra benefit, the computational complexity of PPM is polynomial and, unlike
previous methods, does not depend on sampling or approximations.

With these findings we can answer the thesis research question RQ1 positively:
with the introduction of our novel Pairwise Preference Multileaving (PPM) method the
effectiveness of online evaluation scales to large comparisons.

The theoretical framework that we have introduced allows future research into
multileaved comparison methods to guarantee improvements that generalize better than
empirical results alone. In turn, properties like considerateness can further stimulate the
adoption of multileaved comparison methods in production environments; future work
with real-world users may yield further insights into the effectiveness of the multileaving
paradigm. Rich interaction data enables the introduction of multileaved comparison
methods that consider more than just clicks, as has been done for interleaving methods
[63]. These methods could be extended to consider other signals such as dwell-time or
the order of clicks in an impression, etc.

Furthermore, the field of Online Learning to Rank (OLTR) has depended on online
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evaluation from its inception [132]. The introduction of multileaving and subsequent
novel multileaved comparison methods brought substantial improvements to both fields
[90, 111]. Similarly, PPM and any future extensions are likely to benefit the OLTR field
too.

Finally, while the theoretical and empirical improvements of PPM are convincing,
future work should investigate whether the sensitivity can be made even stronger. For
instance, it is possible to have clicks from which no preferences between rankers can
be inferred. Can we devise a method that avoids such situations as much as possible
without introducing any form of bias, thus increasing the sensitivity even further while
maintaining theoretical guarantees?

In Chapter 7 we will take another look at online ranker evaluation and contrast it
with counterfactual evaluation. We will see that existing interleaving methods (and
by extension some multileaving methods) are biased w.r.t. the definition of position
bias common in counterfactual evaluation. The novel method introduced in Chapter 7
combines aspects of counterfactual and online ranker evaluation, creating a method
with strong theoretical guarantees while also being very effective.

Furthermore, similar to this chapter, Chapter 3 will look at whether a pairwise LTR
method is suitable for online LTR. While different from PPM, the method introduced
in Chapter 3 also infers pairwise preferences between documents, and weights inferred
preferences to account for position bias.
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Figure 2.1: The binary error of different multileaved comparison methods on compar-
isons of |R| = 15 rankers on the MSLR-WEB10k dataset.
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2.A Notation Reference for Chapter 2

Notation Description

q a user-issued query
T the total number of interactions
ri an individual ranker a.k.a. a single ranking system or ranking model
R a set of rankers to compare
li a ranking generated by ranker ri
m a multileaved result list
k the length of the multileaved result lists
c a vector indicating clicks on a displayed multileaved result list
P a preference matrix to store inferred preferences between rankers
r(d, li) the rank at which ranker ri places document d
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3
Differentiable Online Learning to Rank

Online Learning to Rank (OLTR) methods optimize rankers based on direct interaction
with users. State-of-the-art OLTR methods rely on online evaluation and sampling
model variants, they were designed specifically for linear models. Their approaches do
not extend well to non-linear models such as neural networks.

To address this limitation, this chapter will consider the thesis research question:

RQ2 Is online Learning to Rank (LTR) possible without relying on model-sampling
and online evaluation?

We introduce an entirely novel approach to OLTR that constructs a weighted differ-
entiable pairwise loss after each interaction: Pairwise Differentiable Gradient De-
scent (PDGD). PDGD breaks away from the traditional approach that relies on inter-
leaving or multileaving and extensive sampling of models to estimate gradients. Instead,
its gradient is based on inferring preferences between document pairs from user clicks
and can optimize any differentiable model. We prove that the gradient of PDGD is
unbiased w.r.t. user document pair preferences. Our experiments on the largest publicly
available LTR datasets show considerable and significant improvements under all levels
of interaction noise. PDGD outperforms existing OLTR methods both in terms of learn-
ing speed as well as final convergence. Furthermore, unlike previous OLTR methods,
PDGD also allows for non-linear models to be optimized effectively. Our results show
that using a neural network leads to even better performance at convergence than a
linear model. In summary, PDGD is an efficient and unbiased OLTR approach that
provides a better user experience than previously possible.

3.1 Introduction

In order to benefit from unprecedented volumes of content, users rely on ranking systems
to provide them with the content of their liking. LTR in Information Retrieval (IR)
concerns methods that optimize ranking models so that they order documents according
to user preferences. In web search engines such models combine hundreds of signals
to rank web-pages according to their relevance to user queries [75]. Similarly, ranking
models are a vital part of recommender systems where there is no explicit search intent

This chapter was published as [82]. Appendix 3.A gives a reference for the notation used in this chapter.
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[59]. LTR is also prevalent in settings where other content is ranked, e.g., videos [19],
products [60], conversations [97] or personal documents [127].

Traditionally, LTR has been applied in the offline setting where a dataset with
annotated query-document pairs is available. Here, the model is optimized to rank
documents according to the relevance annotations, which are based on the judgements
of human annotators. Over time the limitations of this supervised approach have
become apparent: annotated sets are expensive and time-consuming to create [17, 76];
when personal documents are involved such a dataset would breach privacy [127];
the relevance of documents to queries can change over time, like in a news search
engine [1, 71]; and judgements of raters are not necessarily aligned with the actual
users [104].

In order to overcome the issues with annotated datasets, previous work in LTR has
looked into learning from user interactions. Work along these lines can be divided
into approaches that learn from historical interactions, i.e., in the form of interaction
logs [54], and approaches that learn in an online setting [132]. The latter regard methods
that determine what to display to the user at each impression, and then immediately
learn from observed user interactions and update their behavior accordingly. This online
approach has the advantage that it does not require an existing ranker of decent quality,
and thus can handle cold-start situations. Additionally, it is more responsive to the
user by updating continuously and instantly, therefore allowing for a better experience.
However, it is important that an online method can handle biases that come with user
behavior: for instance, the observed interactions only take place with the displayed
results, i.e., there is item-selection bias, and are more likely to occur with higher ranked
items, i.e., there is position bias. Accordingly, a method should learn user preferences
w.r.t. document relevance, and be robust to the forms of noise and bias present in the
online setting. Overall, the online LTR approach promises to learn ranking models that
are in line with user preferences, in a responsive matter, reaching good performance
from few interactions, even in cold-start situations.

Despite these highly beneficial properties, previous work in OLTR has only con-
sidered linear models [42, 111, 132] or trivial variants thereof [80]. The reason for
this is that existing work in OLTR has worked with the Dueling Bandit Gradient De-
scent (DBGD) algorithm [132] as a basis. While very influential and effective, we
identify two main problems with the gradient estimation of the DBGD algorithm:

1. Gradient estimation is based on sampling model variants from a unit circle around the
current model. This concept does not extend well to non-linear models. Computing
rankings for variants is also computationally costly for larger complex models.

2. It uses online evaluation methods, i.e., interleaving or multileaving, to determine the
gradient direction from the resulting set of models. However, these evaluation meth-
ods are designed for finding preferences between ranking systems, not (primarily)
for determining how a model should be updated.

As an alternative we introduce Pairwise Differentiable Gradient Descent (PDGD), the
first unbiased OLTR method that is applicable to any differentiable ranking model.
PDGD infers pairwise document preferences from user interactions and constructs an
unbiased gradient after each user impression. In addition, PDGD does not rely on sam-
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pling models for exploration, but instead models rankings as probability distributions
over documents. Therefore, it allows the OLTR model to be very certain for specific
queries and perform less exploration in those cases, while being much more explorative
in other, uncertain cases. Our results show that, consequently, PDGD provides signifi-
cant and considerable improvements over previous OLTR methods. This indicates that
its gradient estimation is more in line with the preferences to be learned.

In this chapter, we address the thesis research question RQ2 by answering the
following three specific research questions:

RQ3.1 Does using PDGD result in significantly better performance than the current
state-of-the-art Multileave Gradient Descent?

RQ3.2 Is the gradient estimation of PDGD unbiased?

RQ3.3 Is PDGD capable of effectively optimizing different types of ranking models?

To facilitate replicability and repeatability of our findings, we provide open source
implementations of PDGD and our experiments under the permissive MIT open-source
license.1

3.2 Related Work

3.2.1 Learning to rank

LTR can be applied to the offline and online setting. In the offline setting LTR is
approached as a supervised problem where the relevance of each query-document pair
is known. Most of the challenges with offline LTR come from obtaining annotations.
For instance, gathering annotations is time-consuming and expensive [17, 76, 95].
Furthermore, in privacy sensitive-contexts it would be unethical to annotate items,
e.g., for personal emails or documents [127]. Moreover, for personalization problems
annotators are unable to judge what specific users would prefer. Also, (perceived)
relevance chances over time, due to cognitive changes on the user’s end [120] or due to
changes in document collections [1] or the real world [71]. Finally, annotations are not
necessarily aligned with user satisfaction, as judges may interpret queries differently
from actual users [104]. Consequently, the limitations of offline LTR have led to an
increased interest in alternative approaches to LTR.

3.2.2 Online learning to rank

OLTR is an attractive alternative to offline LTR as it learns directly from interacting
with users [132]. By doing so it attempts to solve the issues with offline annotations that
occur in LTR, as user preferences are expected to be better represented by interactions
than by offline annotations [99]. Unlike methods in the offline setting, OLTR algorithms
have to simultaneously perform ranking while also optimizing their ranking model. In
other words, an OLTR algorithm decides what rankings to display to users, while at

1https://github.com/HarrieO/OnlineLearningToRank
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the same time learning from the interactions with the presented rankings. While the
potential of learning in the online setting is great, it has its own challenges. In particular,
the main difficulties of the OLTR task are bias and noise. Any user interaction that does
not reflect their true preference is considered noise, this happens frequently e.g., clicks
often occur for unexpected reasons [104]. Bias comes in many forms, for instance,
item-selection bias occurs because interactions only involve displayed documents [127].
Another common bias is position bias, a consequence from the fact documents at the
top of a ranking are more likely to be considered [134]. An OLTR method should thus
take into account the biases that affect user behavior while also being robust to noise, in
order to learn the true user preferences.

OLTR methods can be divided into two groups [139]: tabular methods that learn
the best ranked list under some model of user interaction with the list [98, 114], such as
a click model [20], and feature-based algorithms that learn the best ranker in a family of
rankers [43, 132]. Model-based methods may have greater statistical efficiency but they
give up generality, essentially requiring us to learn a separate model for every query.
For the remainder of this chapter, we focus on model-free OLTR methods.

3.2.3 DBGD and beyond

State-of-the-art (model-free) OLTR approaches learn user preferences by approaching
optimization as a dueling bandit problem [132]. They estimate the gradient of the model
w.r.t. user satisfaction by comparing the current model to sampled variations of the
model. The original DBGD algorithm [132] uses interleaving methods to make these
comparisons: at each interaction the rankings of two rankers are combined to create a
single result list. From a large number of clicks on such a combined result list a user
preference between the two rankers can reliably be inferred [41]. Conversely, DBGD
compares its current ranking model to a different slight variation at each impression.
Then, if a click is indicative of a preference for the variation, the current model is
slightly updated towards it. Accordingly, the model of DBGD will continuously update
itself and oscillate towards an inferred optimum.

Other work in OLTR has used DBGD as a basis and extended upon it. Notably,
Hofmann et al. [43] have proposed a method that guides exploration by only sam-
pling variations that seem promising from historical interaction data. Unfortunately,
while this approach provides faster initial learning, the historical data introduces bias
which leads to the quality of the ranking model to steadily decrease over time [90].
Alternatively, Schuth et al. [111] introduced Multileave Gradient Descent (MGD), this
extension replaced the interleaving of DBGD with multileaving methods. In turn the
multileaving paradigm is an extension of interleaving where a set of rankers are com-
pared efficiently [81, 108, 109]. Conversely, multileaving methods can combine the
rankings of more than two rankers and thus infer preferences over a set of rankers from
a single click. MGD uses this property to estimate the gradient more effectively by
comparing a large number of model variations per user impression [90, 111]. As a result,
MGD requires fewer user interactions to converge on the same level of performance
as DBGD. Another alternative approach was considered by Hofmann et al. [40], who
inject the ranking from the current model with randomly sampled documents. Then,
after each user impression, a pairwise loss is constructed from inferred preferences
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between documents. This pairwise approach was not found to be more effective than
DBGD.

Quite remarkably, all existing work in OLTR has only considered linear models.
Recently, Oosterhuis and de Rijke [80] recognized that a tradeoff unique to OLTR arises
when choosing models. High capacity models such as neural networks [13] require more
data than simpler models. On the one hand, this means that high capacity models need
more user interactions to reach the same level of performance, thus giving a worse initial
user experience. On the other hand, high capacity models are capable of finding better
optima, thus lead to better final convergence and a better long-term user experience.
This dilemma is named the speed-quality tradeoff, and as a solution a cascade of models
can be optimized: combining the initial learning speed of a simple model with the
convergence of a complex one. But there are more reasons why non-linear models have
so far been absent from OLTR. Importantly, the DBGD algorithm was designed for
linear models from the ground up; relying on a unit circle to sample model variants
and averaging models to estimate the gradient. Furthermore, the computational cost of
maintaining an extensive set of model variants for large and complex models makes this
approach very impractical.

Our contribution over the work listed above is an OLTR method that is not an
extension of DBGD, instead it computes a differentiable pairwise loss to update its
model. Unlike the existing pairwise approach, our loss function is unbiased and our
exploration is performed using the model’s confidence over documents. Finally, we also
show that this is the first OLTR method to effectively optimize neural networks in the
online setting.

3.3 Method

In this section we introduce a novel OLTR algorithm: Pairwise Differentiable Gradient
Descent (PDGD). First, Section 3.3.1 describes PDGD in detail, before Section 3.3.2
formalizes and proves the unbiasedness of the method. Appendix 3.A lists the notation
we use.

3.3.1 Pairwise Differentiable Gradient Descent

PDGD revolves around optimizing a ranking model fθ(d) that takes a feature represen-
tation of a query-document pair d as input and outputs a score. The aim of the algorithm
is to find the parameters θ so that sorting the documents by their scores in descending
order provides the most optimal rankings. Because this is an online algorithm, the
method must first decide what ranking to display to the user, then after the user has
interacted with the displayed ranking, it may update θ accordingly.

Unlike previous OLTR approaches, PDGD does not rely on any online evaluation
methods. Instead, a Plackett-Luce (PL) model is applied to the ranking function fθ(·)
resulting in a distribution over the document set D:

P (d|D) =
efθ(d)∑

d′∈D e
fθ(d′)

. (3.1)
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Figure 3.1: Left: a click on a document ranking R and the inferred preferences of d3

over {d1, d2, d4}. Right: the reversed pair ranking R∗(d1, d3, R) for the document pair
d1 and d3.

A ranking R to display to the user is then created by sampling from the distribution k
times, where after each placement the distribution is renormalized to prevent duplicate
placements. PL models have been used before in LTR. For instance, the ListNet
method [15] optimizes such a model in the offline setting. With Ri denoting the
document at position i, the probability of the ranking R then becomes:

P (R|D) =

k∏
i=1

P (Ri|D \ {R1, . . . , Ri−1}). (3.2)

After the ranking R has been displayed to the user, they have the option to interact with
it. The user may choose to click on some (or none) of the documents. Based on these
clicks, PDGD will infer preferences between the displayed documents. We assume
that clicked documents are preferred over observed unclicked documents. However, to
the algorithm it is unknown which unclicked documents the user has considered. As
a solution, PDGD relies on the assumption that every document preceding a clicked
document and the first subsequent unclicked document was observed, as illustrated
in Figure 3.1a. This preference assumption has been proven useful in IR before, for
instance in pairwise LTR on click logs [54] and recently in online evaluation [81]. We
will denote preferences between documents inferred from clicks as: dk >c dl where dk
is preferred over dl.

Then θ is updated by optimizing pairwise probabilities over the preference pairs;
for each inferred document preference dk >c dl, the probability that the preferred
document dk is sampled before dl is sampled is increased [118]:

P (dk � dl) =
P (dk|D)

P (dk|D) + P (dl|D)
=

ef(dk)

ef(dk) + ef(dl)
. (3.3)

We have chosen for pairwise optimization over listwise optimization because a pairwise
method can be made unbiased by reweighing preference pairs. To do this we introduce
the weighting function ρ(dk, dl, R,D) and estimate the gradient of the user preferences
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Algorithm 3.1 Pairwise Differentiable Gradient Descent (PDGD).

1: Input: initial weights: θ1; scoring function: f ; learning rate η.
2: for t← 1 . . .∞ do
3: qt ← receive query(t) // obtain a query from a user
4: Dt ← preselect documents(qt) // preselect documents for query
5: Rt ← sample list(fθt , Dt) // sample list according to Eq. 3.1
6: ct ← receive clicks(Rt) // show result list to the user
7: ∇fθt ← 0 // initialize gradient
8: for dk >c dl ∈ ct do
9: w ← ρ(dk, dl, R,D) // initialize pair weight (Eq. 3.5)

10: w ← w e
fθt

(dk)
e
fθt

(dl)(
e
fθt

(dk)
+e

fθt
(dl)

)2 // pair gradient (Eq. 3.4)

11: ∇fθt ← ∇θt + w(f ′θt(dk)− f ′θt(dl)) // model gradient (Eq. 3.4)
12: θt+1 ← θt + η∇fθt // update the ranking model

by the weighted sum:

∇fθ(·) ≈
∑

dk>cdl

ρ(dk, dl, R,D) [∇P (dk � dl)]

=
∑

dk>cdl

ρ(dk, dl, R,D)
efθ(dk)efθ(dl)

(efθ(dk) + efθ(dl))2
(f ′θ(dk)− f ′θ(dl)).

(3.4)

The ρ function is based on the reversed pair ranking R∗(dk, dl, R), which is the same
ranking as R with the position of dk and dl swapped. An example of a reversed pair
ranking is illustrated in Figure 3.1b. The idea is that if a preference for dk >c dl is
inferred in R and both documents are equally relevant, then the reverse preference
dl >c dk is equally likely to be inferred in R∗(dk, dl, R). The ρ function reweighs the
found preferences to the ratio between the probabilities of R or R∗(dk, dl, R) occurring:

ρ(dk, dl, R,D) =
P (R∗(dk, dl, R)|D)

P (R|D) + P (R∗(dk, dl, R)|D)
. (3.5)

This procedure has similarities with importance sampling [93]; however, we found that
reweighing according to the ratio betweenR andR∗ provides a more stable performance,
since it produces less extreme values. Section 3.3.2 details exactly how ρ creates an
unbiased gradient.

Algorithm 3.1 describes the PDGD method step by step: Given the initial parameters
θ1 and a differentiable scoring function f (Line 1), the method waits for a user-issued
query qt to arrive (Line 3). Then the preselected set of documents Dt for the query is
fetched (Line 4), in our experiments these preselections are given in the LTR datasets
that we use. A result list R is sampled from the current model (Line 5 and Equation 3.1)
and displayed to the user. The clicks from the user are logged (Line 6) and preferences
between the displayed documents inferred (Line 8). The gradient is initialized (Line 7),
and for each pair document pair dk, dl such that dk >c dl, the weight ρ(dk, dl, R,D)
is calculated (Line 9 and Equation 3.5), followed by the gradient for the pair probability
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(Line 10 and Equation 3.4). Finally, the gradient for the scoring function f is weighted
and added to the gradient (Line 11), resulting in the estimated gradient. The model is
then updated by taking an η step in the direction of the gradient (Line 12). The algorithm
again waits for the next query to arrive and thus the process continues indefinitely.

PDGD has some notable advantages over MGD [111]. Firstly, it explicitly models
uncertainty over the documents per query, thus PDGD is able to have high confidence
in its ranking for one query, while being completely uncertain for another query. As a
result, it will vary the amount of exploration per query, allowing it to avoid exploration
in cases where it is not required and focussing on areas where it can improve. In contrast,
MGD does not explicitly model confidence: its degree of exploration is only affected
by the norm of its linear model [80]. Consequently, MGD is unable to vary exploration
per query nor is there a way to directly measure its level of confidence. Secondly,
PDGD works for any differentiable scoring function f and does not rely on sampling
model variants. Conversely, MGD is based around sampling from the unit sphere
around a model; this approach is very ineffective for non-linear models. Additionally,
sampling large models and producing rankings for them can be very computationally
expensive. Besides these beneficial properties, our experimental results in Section 3.5
show that PDGD achieves significantly higher levels of performance than MGD and
other previous methods.

3.3.2 Unbiased gradient estimation
The previous section introduced PDGD; this section answers RQ3.2:

RQ3.2 Is the gradient estimation of PDGD unbiased?

First, Theorem 3.1 will provide a definition of unbiasedness w.r.t. user document
pair preferences. Then we state the assumptions we make about user behavior and
use them to prove Theorem 3.1. Our notation will use dk =rel dl to indicate no user
preference between two documents t dk and dl; and dk >rel dl to indicate a preference
for dk over dl; and dk <rel dl for the opposite preference.

Theorem 3.1. The expected estimated gradient of PDGD can be written as a weighted
sum, with a unique weight αk,l for each possible document pair dk and dl in the
document collection D:

E[∇fθ(·)] =
∑

dk,dl∈D

αk,l(f
′
θt(dk)− f ′θt(dl)). (3.6)

The signs of the weights αk,l adhere to user preferences between documents. That is, if
there is no preference:

dk =rel dl ⇔ αk,l = 0; (3.7)

if dk is preferred over dl:
dk >rel dl ⇔ αk,l > 0; (3.8)

and if dl is preferred over dk:

dk <rel dl ⇔ αk,l < 0. (3.9)

Therefore, in expectation PDGD will perform updates that adhere to the preferences
between the documents in every possible document pair.
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Assumptions. To prove Theorem 3.1 the following assumptions about user behavior
will be used:

Assumption 1. We assume that clicks from a user are position biased and con-
ditioned on the relevance of the current document and the previously considered doc-
uments. For a click on a document in ranking R at position i the probability can be
written as:

P (click(Ri)|{R0, . . . , Ri−1, Ri+1}). (3.10)

For ease of notation, we will denote the set of “other documents” as {. . .} from here on.

Assumption 2. If there is no user preference between two documents dk, dl,
denoted by dk =rel dl, we assume that each is equally likely to be clicked given the
same context:

dk =rel dl ⇒ P (click(dk)|{. . .}) = P (click(dl)|{. . .}). (3.11)

Assumption 3. If a document in the set of documents being considered is replaced
with an equally preferred document the click probability is not affected:

dk =rel dl ⇒ P (click(Ri)|{. . . , dk}) = P (click(Ri)|{. . . , dl}). (3.12)

Assumption 4. Similarly, given the same context if one document is preferred
over another, then it is more likely to be clicked:

dk >rel dl ⇒ P (click(dk)|{. . .}) > P (click(dl)|{. . .}). (3.13)

Assumption 5. Lastly, for any pair dk >rel dl, the considered document set
{. . . , dk} and the same set with dk replaced by dl {. . . , dl}, we assume that the preferred
dk in the context of {. . . , dl} is more likely to be clicked than dl in the context of
{. . . , dk}:

dk >rel dl ⇒ P (click(dk)|{. . . , dk}) > P (click(dl)|{. . . , dl}). (3.14)

These are all the assumptions we make about the user. With these assumptions, we can
proceed to prove Theorem 3.1.

Proof of Theorem 3.1. We denote the probability of inferring the preference of dk over
dl in ranking R as P (dk >c dl|R). Then the expected gradient ∇fθ(·) of PDGD can
be written as:

E[∇fθ(·)] =∑
R

∑
dk,dl∈D

[
P (dk >c dl|R) · P (R) · ρ(dk, dl, R,D)[∇P (dk � dl)]

]
.

(3.15)

We will rewrite this expectation using the symmetry property of the reversed pair
ranking:

Rn = R∗(dk, dl, R
m)⇔ Rm = R∗(dk, dl, R

n). (3.16)
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First, we define a weight ωRk,l for every document pair dk, dl and ranking R so that:

ωRk,l = P (R)ρ(dk, dl, R,D) =
P (R|D)P (R∗(dk, dl, R)|D)

P (R|D) + P (R∗(dk, dl, R)|D)
. (3.17)

Therefore, the weight for the reversed pair ranking is equal:

ω
R∗(dk,dl,R)
k,l = P (R∗(dk, dl, R))ρ(dk, dl, R

∗(dk, dl, R), D)

= ωRk,l.
(3.18)

Then, using the symmetry of Equation 3.3 we see that:

∇P (dk � dl) = −∇P (dl � dk). (3.19)

Thus, with R∗ as a shorthand for R∗(dk, dl, R), the expectation can be rewritten as:

E[∇fθ(·)] = (3.20)∑
dk,dl∈D

∑
R

ωRi,j
2

(
P (dk >c dl | R)− P (dl >c dk | R∗)

)[
∇P (dk � dl)

]
,

proving that the expected gradient matches the form of Equation 3.6. Then to prove that
Equations 3.7, 3.8, and 3.9 are correct we will show that:

dk =rel dl ⇒ P (dk >c dl|R) = P (dl >c dk|R∗), (3.21)
dk >rel dl ⇒ P (dk >c dl|R) > P (dl >c dk|R∗), (3.22)
dk <rel dl ⇒ P (dk >c dl|R) < P (dl >c dk|R∗). (3.23)

If a preference Ri >c Rj is inferred then there are only three possible cases based on
the positions:

1. The clicked document succeeds the unclicked document by more than one posi-
tion: i+ 1 > j.

2. The clicked document precedes the unclicked document by more than one posi-
tion: i− 1 < j.

3. The clicked document is one position before or after the unclicked document:
i = j + 1 ∨ i = j − 1.

In the first case the clicked document succeeds the other by more than one position, the
probability of an inferred preference is then:

i+ 1 > j ⇒ P (Ri >c Rj |R) = P (ci|Ri, {. . . , Rj} )(1−P (cj |Rj , {. . .})). (3.24)

Combining Assumption 2 and 3 with Equation 3.24 proves Equation 3.21 for this
case. Furthermore, combining Assumption 4 and 5 with Equation 3.24 proves Equa-
tions 3.22 and 3.23 for this case as well.
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Table 3.1: Instantiations of Cascading Click Models [36] as used for simulating user
behavior in experiments.

P (click = 1 | R) P (stop = 1 | click = 1, R)

R 0 1 2 3 4 0 1 2 3 4

perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
navigational 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9
informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

Then the second case is when the clicked document appears more than one position
before the unclicked document, the probability of the inferred preference is then:

i+ 1 < j ⇒
P (Ri >c Rj |R) = P (ci|Ri, {. . .})(1− P (cj |Rj , {. . . , Ri} ))P (crem),

(3.25)

where P (crem) denotes the probability of an additional click that is required to add Rj
to the inferred observed documents. First, due to Assumption 1 this probability will be
the same for R and R∗:

P (crem|Ri, Rj , R) = P (crem|Ri, Rj , R∗). (3.26)

Combining Assumption 2 and 3 with Equation 3.25 also proves Equation 3.21 for this
case. Furthermore, combining Assumption 4 and 5 with Equation 3.25 also proves
Equation 3.22 and 3.23 for this case as well.

Lastly, in the third case the clicked document is one position before or after the
other document, the probability of the inferred preference is then:

i = j + 1 ∨ i = j − 1 (3.27)
⇒ P (Ri >c Rj |R) = P (ci|Ri, {. . . , Rj} )(1− P (cj |Rj , {. . . , Ri})).

Combining Assumption 3 with Equation 3.28 proves Equation 3.21 for this case as well.
Then, combining Assumption 5 with Equation 3.28 also proves Equation 3.22 and 3.23
for this case.

This concludes our proof of the unbiasedness of PDGD. Hence, we answer RQ3.2
positively: the gradient estimation of PDGD is unbiased. We have shown that the
expected gradient is in line with user preferences between document pairs.

3.4 Experiments

In this section we detail the experiments that were performed to answer the research
questions in Section 3.1.
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3.4.1 Datasets

Our experiments are performed over five publicly available LTR datasets; we have
selected three large labelled dataset from commercial search engines and two smaller
research datasets. Every dataset consists of a set of queries with each query having a
corresponding preselected document set. The exact content of the queries and documents
are unknown, each query is represented only by an identifier, but each query-document
pair has a feature representation and relevance label. Depending on the dataset, the
relevance labels are graded differently; we have purposefully chosen datasets that have
at least two grades of relevance. Each dataset is divided in training, validation and test
partitions.

The oldest datasets we use are MQ2007 and MQ2008 [95] which are based on the
Million Query Track [8] and consist of 1,700 and 800 queries. They use representations
of 46 features that encode ranking models such as TF.IDF, BM25, Language Modeling,
PageRank, and HITS on different parts of the documents. They are divided into five
folds and the labels are on a three-grade scale from not relevant (0) to very relevant (2).

In 2010 Microsoft released the MSLR-WEB30k and MLSR-WEB10K datasets [95],
which are both created from a retired labelling set of a commercial web search engine
(Bing). The former contains 30,000 queries with each query having 125 assessed
documents on average, query-document pairs are encoded in 136 features, The latter is
a subsampling of 10,000 queries from the former dataset. For practical reasons only
MLSR-WEB10K was used for this chapter. Also in 2010 Yahoo! released an LTR dataset
[17]. It consists of 29,921 queries and 709,877 documents encoded in 700 features, all
sampled from query logs of the Yahoo! search engine. Finally, in 2016 a LTR dataset
was released by the Istella search engine [27]. It is the largest with 33,118 queries, an
average of 315 documents per query and 220 features. These three commercial datasets
all label relevance on a five-grade scale: from not relevant (0) to perfectly relevant (4).

3.4.2 Simulating user behavior

For simulating users we follow the standard setup for OLTR simulations [38, 40, 90,
111, 137]. First, queries issued by users are simulated by uniformly sampling from the
static dataset. Then the algorithm determines the result list of documents to display.
User interactions with the displayed list are then simulated using a cascade click
model [20, 36]. This models a user who goes through the documents one at a time
in the displayed order. At each document, the user decides whether to click it or not,
modelled as a probability conditioned on the relevance label R: P (click = 1 | R).
After a click has occurred, the user’s information need may be satisfied and they may
then stop considering documents. The probability of a user stopping after a click is
modelled as P (stop = 1 | click = 1, R). For our experiments κ = 10 documents are
displayed at each impression.

The three instantiations of cascade click models that we used are listed in Table 3.1.
First, a perfect user is modelled who considers every document and solely clicks on all
relevant documents. The second models a user with a navigational task, where a single
highly relevant document is searched. Finally, an informational instantiation models a
user without a specific information need, and thus typically clicks on many documents.
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These models have varying levels of noise, as each behavior depends on the relevance
labels of documents with a different degree.

3.4.3 Experimental runs

For our experiments three baselines are used. First, MGD with Probabilistic Multi-
leaving [90]; this is the highest performing existing OLTR method [80, 90]. For this
chapter n = 49 candidates were sampled per iteration from the unit sphere with δ = 1;
updates are performed with η = 0.01 and zero initialization was used. Additionally,
DBGD is used for comparison as it is one of the most influential methods, it was run
with the same parameters except that only n = 1 candidate is sampled per iteration.
Furthermore, we also let DBGD optimize a single hidden-layer neural network with 64
hidden nodes and sigmoid activation functions with Xavier initialization [33]. These
parameters were also found most effective in previous work [40, 90, 111, 132].

Additionally, the pairwise method introduced by Hofmann et al. [40] is used as a
baseline. Despite not showing significant improvements over DBGD in the past [40],
the comparison with PDGD is interesting because they both estimate gradients from
pairwise preferences. For this baseline, η = 0.01 and ε = 0.8 is used; these parameters
are chosen to maximize the performance at convergence [40].

Runs with PDGD are performed with both a linear and neural ranking model. For
the linear ranking model η = 0.1 and zero initialization was used. The neural network
has the same parameters as the one optimized by DBGD, except for η = 0.1.

3.4.4 Metrics and tests

Two aspects of performance are evaluated seperately: the final convergence and the
ranking quality during training.

Final convergence is addressed in offline performance which is the average NDCG@10
of the ranking model over the queries in the held-out test-set. The offline performance
is measured after 10,000 impressions at which point most ranking models have reached
convergence. The user experience during optimization should be considered as well,
since deterring users during training would compromise the goal of OLTR. To address
this aspect of evaluation online performance has been introduced [39]; it is the cumula-
tive discounted NDCG@10 of the rankings displayed during training. For T sequential
queries with Rt as the ranking displayed to the user at timestep t, this is:

Online Performance =

T∑
t=1

NDCG(Rt) · γ(t−1). (3.28)

This metric models the expected reward a user receives with a γ probability that the
user stops searching after each query. We follow previous work [80, 90] by choosing
a discount factor of γ = 0.9995, consequently queries beyond the horizon of 10,000
queries have a less than 1% impact.

Lastly, all experimental runs are repeated 125 times, spread evenly over the available
dataset folds. Results are averaged and a two-tailed Student’s t-test is used for signifi-
cance testing. In total, our results are based on more than 90,000,000 user impressions.
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3.5 Results and Analysis

Our main results are displayed in Table 3.2 and Table 3.3, showing the offline and online
performance of all methods, respectively. Additionally, Figure 3.2 displays the offline
performance on the MSLR-WEB10k dataset over 30,000 impressions and Figure 3.3
over 1,000,000 impressions. We use these results to answer RQ3.1 – whether PDGD
provides significant improvements over existing OLTR methods – and RQ3.3 – whether
PDGD is successful at optimizing different types of ranking models.

3.5.1 Convergence of ranking models

First, we consider the offline performance after 10,000 impressions as reported in Ta-
ble 3.2. We see that the DBGD and MGD baselines reach similar levels of performance,
with marginal differences at low levels of noise. Our results seem to suggest that MGD
provides an efficient alternative to DBGD that requires fewer user interactions and is
more robust to noise. However, MGD does not appear to have an improved point of
convergence over DBGD, Figure 3.2 further confirms this conclusion. Additionally,
Table 3.2 and Figure 3.3 reveal thats DBGD is incapable of training its neural network
so that it improves over the linear model, even after 1,000,000 impressions.

Alternatively, the pairwise baseline displays different behavior, providing improve-
ments over DBGD and MGD on most datasets under all levels of noise. However, on
the istella dataset large decreases in performance are observed. Thus it is unclear if this
method provides a reliable alternative to DBGD or MGD in terms of convergence. Fig-
ure 3.2 also reveals that it converges within several hundred impressions, while DBGD
or MGD continue to learn and considerably improve over the total 30,000 impressions.
Because the pairwise baseline also converges sub-optimally under the perfect click
model, we do not attribute its suboptimal convergence to noise but to the method being
biased.

Conversely, Table 3.2 shows that PDGD reaches significantly higher performance
than all the baselines within 10,000 impressions. Improvements are observed on all
datasets under all levels of noise, especially on the commercial datasets where increases
up to 0.17 NDCG are observed. Our results also show that PDGD learns faster than the
baselines; at all time-steps the offline performance of PDGD is at least as good or better
than all other methods, across all datasets. This increased learning speed can also be
observed in Figure 3.2. Besides the faster learning it also appears as if PDGD converges
at a better optimum than DBGD or MGD. However, Figure 3.2 reveals that DBGD
does not fully converge within 30,000 iterations. Therefore, we performed an additional
experiment where PDGD and DBGD optimize models over 1,000,000 impressions
on the MSLR-WEB10k dataset, as displayed in Figure 3.3. Clearly the performance
of DBGD plateaus at a considerably lower level than that of PDGD. Therefore, we
conclude that PDGD indeed has an improved point of final convergence compared to
DBGD and MGD.

Finally, Figure 3.2 and 3.3 also shows the behavior predicted by the speed-quality
tradeoff [80]: a more complex model will have a worse initial performance but a better
final convergence. Here, we see that depending on the level of interaction noise the
neural model requires 3,000 to 20,000 iterations to match the performance of a linear
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model. However, in the long run the neural model does converge at a significantly
better point of convergence. Thus, we conclude that PDGD is capable of effectively
optimizing different kinds of models in terms of offline performance.

In conclusion, our results show that PDGD learns faster than existing OLTR methods
while also converging at significantly better levels of performance.

3.5.2 User experience during training

Besides the ranking models learned by the OLTR methods, we also consider the user
experience during optimization. Table 3.3 shows that the online performance of DBGD
and MGD are close to each other; MGD has a higher online performance due to its
faster learning speed [90, 111]. In contrast, the pairwise baseline has a substantially
lower online performance in all cases. Because Figure 3.2 shows that the learning speed
of the pairwise baseline sometimes matches that of DBGD and MGD, we attribute this
difference to the exploration strategy it uses. Namely, the random insertion of uniformly
sampled documents by this baseline appears to have a strong negative effect on the user
experience.

The linear model optimized by PDGD has significant improvements over all baseline
methods on all datasets and under all click models. This improvement indicates that
the exploration of PDGD, which uses a distribution over documents, does not lead to
a worse user experience. In conclusion, PDGD provides a considerably better user
experience than all existing methods.

Finally, we also discuss the performance of the neural models optimized by PDGD
and DBGD. This model has both significant increases and decreases in online per-
formance varying per dataset and amount of interaction noise. The decrease in user
experience is predicted by the speed-quality tradeoff [80], as Figure 3.2 also shows, the
neural model has a slower learning speed leading to a worse initial user experience. A
solution to this tradeoff has been proposed by Oosterhuis and de Rijke [80], which opti-
mizes a cascade of models. In this case, the cascade could combine the user experience
of the linear model with the final convergence of the neural model, providing the best of
both worlds.

3.5.3 Improvements of PDGD

After having discussed the offline and online performance of PDGD, we will now
answer RQ3.1 and RQ3.3.

First, concerning RQ3.1 (whether PDGD performs significantly better than MGD),
the results of our experiments show that models optimized with PDGD learn faster and
converge at better optima than MGD, DBGD, and the pairwise baseline, regardless of
dataset or level of interaction noise. Moreover, the level of performance reached with
PDGD is significantly higher than the final convergence of any other method. Thus,
even in the long run DBGD and MGD are incapable of reaching the offline performance
of PDGD. Additionally, the online performance of a linear model optimized with PDGD
is significantly better across all datasets and user models. Therefore, we answer RQ3.1
positively: PDGD outperforms existing methods both in terms of model convergence
and user experience during learning.
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Then, with regards to RQ3.3 (whether PDGD can effectively optimize different
types of models), in our experiments we have successfully optimized models from two
families: linear models and neural networks. Both models reach a significantly higher
level of performance of model convergence than previous OLTR methods, across all
datasets and degrees of interaction noise. As expected, the simpler linear model has a
better initial user experience, while the more complex neural model has a better point
of convergence. In conclusion, we answer RQ3.3 positively: PDGD is applicable to
different ranking models and effective for both linear and non-linear models.

3.6 Conclusion

In this chapter, we have introduced a novel OLTR method: PDGD that estimates its
gradient using inferred pairwise document preferences. In contrast with previous OLTR
approaches PDGD does not rely on online evaluation to update its model. Instead
after each user interaction it infers preferences between document pairs. Subsequently,
it constructs a pairwise gradient that updates the ranking model according to these
preferences.

We have proven that this gradient is unbiased w.r.t. user preferences, that is, if there
is a preference between a document pair, then in expectation the gradient will update the
model to meet this preference. Furthermore, our experimental results show that PDGD
learns faster and converges at a higher performance level than existing OLTR methods.
Thus, it provides better performance in the short and long term, leading to an improved
user experience during training as well. On top of that, PDGD is also applicable to any
differentiable ranking model, in our experiments a linear and a neural network were
optimized effectively. Both reached significant improvements over DBGD and MGD
in performance at convergence. In conclusion, the novel unbiased PDGD algorithm
provides better performance than existing methods in terms of convergence and user
experience. Unlike the previous state-of-the-art, it can be applied to any differentiable
ranking model.

We can now answer thesis research question RQ2 positively: OLTR is possible
without relying on model-sampling and online evaluation. Moreover, our results shows
that using PDGD instead leads to much higher performance, and is much more effective
at optimizing non-linear models.

Future research could consider the regret bounds of PDGD; these could give further
insights into why it outperforms DBGD based methods. Furthermore, while we proved
the unbiasedness of our method w.r.t. document pair preferences, the expected gradient
weighs document pairs differently. Offline LTR methods like LambdaMART [13] use a
weighted pairwise loss to create a listwise method that directly optimizes IR metrics.
However, in the online setting there is no metric that is directly optimized. Instead,
future work could see if different weighing approaches are more in line with user
preferences. Another obvious avenue for future research is to explore the effectiveness
of different ranking models in the online setting. There is a large collection of research
in ranking models in offline LTR, with the introduction of PDGD such an extensive
exploration in models is now also possible in OLTR.

Based on the big difference in observed performance between PDGD and DBGD,
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Chapter 4 will further extend this comparison to more extreme experimental conditions.
Furthermore, Chapter 8 will also consider the performance of PDGD and compare it
with methods inspired by counterfactual LTR. Additionally, Chapter 8 will consider
applying PDGD as a counterfactual method and without debiasing weights, and finds
that in both these scenarios this leads to biased convergence.
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Figure 3.2: Offline performance (NDCG) on the MSLR-WEB10k dataset under three
different click models, the shaded areas indicate the standard deviation.
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Figure 3.3: Long-term offline performance (NDCG) on the MSLR-WEB10k dataset
under three click models, the shaded areas indicate the standard deviation.
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3. Differentiable Online Learning to Rank

3.A Notation Reference for Chapter 3

Notation Description

q a user-issued query
d, dk, dl document
d feature representation of a query-document pair
D set of documents
R ranked list
R∗ the reversed pair ranking R∗(dk, dl, R)
Ri document placed at rank i
ρ preference pair weighting function
θ parameters of the ranking model
fθ(·) ranking model with parameters θ
f(dk) ranking score for a document from model
click(d) a click on document d
dk =rel dl two documents equally preferred by users
dk >rel dl a user preference between two documents
dk >c dl document preference inferred from clicks
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4
A Critical Comparison of Online

Learning to Rank Methods

Online Learning to Rank (OLTR) methods optimize ranking models by directly inter-
acting with users, which allows them to be very efficient and responsive. All OLTR
methods introduced during the past decade have extended on the original OLTR method:
Dueling Bandit Gradient Descent (DBGD). In Chapter 3, a fundamentally different
approach was introduced with the Pairwise Differentiable Gradient Descent (PDGD)
algorithm. The empirical comparisons in Chapter 3 suggested that PDGD converges at
much higher levels of performance and learns considerably faster than DBGD-based
methods. In contrast, DBGD appeared unable to converge on the optimal model in
scenarios with little noise or bias. Furthermore, it seemed DBGD is not effective at
optimizing non-linear models. These observations are quite surprising and prompted us
to further investigate DBGD. As a result, this Chapter will address the thesis research
question:

RQ3 Are DBGD Learning to Rank methods reliable in terms of theoretical soundness
and empirical performance?

In this chapter, we investigate whether the previous conclusions about the PDGD and
DBGD comparison generalize from ideal to worst-case circumstances. We do so in
two ways. First, we compare the theoretical properties of PDGD and DBGD, by taking
a critical look at previously proven properties in the context of ranking. Second, we
estimate an upper and lower bound on the performance of methods by simulating
both ideal user behavior and extremely difficult behavior, i.e., almost-random non-
cascading user models. Our findings show that the theoretical bounds of DBGD do not
apply to any common ranking model and, furthermore, that the performance of DBGD
is substantially worse than PDGD in both ideal and worst-case circumstances. These
results reproduce previously published findings about the relative performance of PDGD
vs. DBGD and generalize them to extremely noisy and non-cascading circumstances.
Overall they show that DBGD is a very flawed method for OLTR both in terms of
theoretical guarantees and performance.

This chapter was published as [84]. Appendix 4.A gives a reference for the notation used in this chapter.
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4.1 Introduction

Learning to Rank (LTR) plays a vital role in information retrieval. It allows us to
optimize models that combine hundreds of signals to produce rankings, thereby making
large collections of documents accessible to users through effective search and recom-
mendation. Traditionally, LTR has been approached as a supervised learning problem,
where annotated datasets provide human judgements indicating relevance. Over the
years, many limitations of such datasets have become apparent: they are costly to pro-
duce [17, 95] and actual users often disagree with the relevance annotations [104]. As
an alternative, research into LTR approaches that learn from user behavior has increased.
By learning from the implicit feedback in user behavior, users’ true preferences can
potentially be learned. However, such methods must deal with the noise and biases that
are abundant in user interactions [134]. Roughly speaking, there are two approaches to
LTR from user interactions: learning from historical interactions and Online Learning
to Rank (OLTR). Learning from historical data allows for optimization without gath-
ering new data [58], though it does require good models of the biases in logged user
interactions [20]. In contrast, OLTR methods learn by interacting with the user, thus
they gather their own learning data. As a result, these methods can adapt instantly and
are potentially much more responsive than methods that use historical data.

Dueling Bandit Gradient Descent (DBGD) [132] is the most prevalent OLTR
method; it has served as the basis of the field for the past decade. DBGD samples
variants of its ranking model, and compares them using interleaving to find improve-
ments [41, 96]. Subsequent work in OLTR has extended on this approach [43, 111, 125].
In Chapter 3, the first alternative approach to DBGD was introduced with Pairwise
Differentiable Gradient Descent (PDGD) [82]. PDGD estimates a pairwise gradient
that is reweighed to be unbiased w.r.t. users’ document pair preferences. Chapter 3
showed considerable improvements over DBGD under simulated user behavior [84]: a
substantially higher point of performance at convergence and a much faster learning
speed. The results in Chapter 3 are based on simulations using low-noise cascading
click models. The pairwise assumption that PDGD makes, namely, that all documents
preceding a clicked document were observed by the user, is always correct in these
circumstances, thus potentially giving it an unfair advantage over DBGD. Furthermore,
the low level of noise presents a close-to-ideal situation, and it is unclear whether the
findings in Chapter 3 generalize to less perfect circumstances.

In this chapter, we contrast PDGD and DBGD. Prior to an experimental comparison,
we determine whether there is a theoretical advantage of DBGD over PDGD and
examine the regret bounds of DBGD for ranking problems. We then investigate whether
the benefits of PDGD over DBGD reported in Chapter 3 generalize to circumstances
ranging from ideal to worst-case. We simulate circumstances that are perfect for both
methods – behavior without noise or position-bias – and circumstances that are the worst
possible scenario – almost-random, extremely-biased, non-cascading behavior. These
settings provide estimates of upper and lower bounds on performance, and indicate
how well previous comparisons generalize to different circumstances. Additionally, we
introduce a version of DBGD that is provided with an oracle interleaving method; its
performance shows us the maximum performance DBGD could reach from hypothetical
extensions.
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In summary, we map thesis research question RQ3 into the following more fine-
grained research questions:

RQ4.1 Do the regret bounds of DBGD provide a benefit over PDGD?

RQ4.2 Do the advantages of PDGD over DBGD observed in Chapter 3 generalize to
extreme levels of noise and bias?

RQ4.3 Is the performance of PDGD reproducible under non-cascading user behavior?

4.2 Related Work

This section provides a brief overview of traditional LTR (Section 4.2.1), of LTR from
historical interactions (Section 4.2.2), and OLTR (Section 4.2.3).

4.2.1 Learning to rank from annotated datasets
Traditionally, LTR has been approached as a supervised problem; in the context of
OLTR this approach is often referred to as offline LTR. It requires a dataset containing
relevance annotations of query-document pairs, after which a variety of methods can
be applied [75]. The limitations of offline LTR mainly come from obtaining such
annotations. The costs of gathering annotations are high as it is both time-consuming
and expensive [17, 95]. Furthermore, annotators cannot judge for very specific users,
i.e., gathering data for personalization problems is infeasible. Moreover, for certain
applications it would be unethical to annotate items, e.g., for search in personal emails
or documents [127]. Additionally, annotations are stationary and cannot account for
(perceived) relevance changes [1, 71, 120]. Most importantly, though, annotations are
not necessarily aligned with user preferences; judges often interpret queries differently
from actual users [104]. As a result, there has been a shift of interest towards LTR
approaches that do not require annotated data.

4.2.2 Learning to rank from historical interactions
The idea of LTR from user interactions is long-established; one of the earliest examples
is the original pairwise LTR approach [54]. This approach uses historical click-through
interactions from a search engine and considers clicks as indications of relevance.
Though very influential and quite effective, this approach ignores the noise and biases
inherent in user interactions. Noise, i.e., any user interaction that does not reflect the
user’s true preference, occurs frequently, since many clicks happen for unexpected
reasons [104]. Biases are systematic forms of noise that occur due to factors other than
relevance. For instance, interactions will only involve displayed documents, resulting
in selection bias [127]. Another important form of bias in LTR is position bias, which
occurs because users are less likely to consider documents that are ranked lower [134].
Thus, to effectively learn true preferences from user interactions, a LTR method should
be robust to noise and handle biases correctly.

In recent years counterfactual LTR methods have been introduced that correct for
some of the bias in user interactions. Such methods use inverse propensity scoring to
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account for the probability that a user observed a ranking position [58]. Thus, clicks on
positions that are observed less often due to position bias will have greater weight to
account for that difference. However, the position bias must be learned and estimated
somewhat accurately [5]. On the other side of the spectrum are click models, which
attempt to model user behavior completely [20]. By predicting behavior accurately, the
effect of relevance on user behavior can also be estimated [11, 127].

An advantage of these approaches over OLTR is that they only require historical
data and thus no new data has to be gathered. However, unlike OLTR, they do require a
fairly accurate user model, and thus they cannot be applied in cold-start situations.

4.2.3 Online learning to rank

OLTR differs from the approaches listed above because its methods intervene in the
search experience. They have control over what results are displayed, and can learn
from their interactions instantly. Thus, the online approach performs LTR by interacting
with users directly [132]. Similar to LTR methods that learn from historical interaction
data, OLTR methods have the potential to learn the true user preferences. However, they
also have to deal with the noise and biases that come with user interactions. Another
advantage of OLTR is that the methods are very responsive, as they can apply their
learned behavior instantly. Conversely, this also brings a danger as an online method
that learns incorrect preferences can also worsen the experience immediately. Thus, it
is important that OLTR methods are able to learn reliably in spite of noise and biases.
Thus, OLTR methods have a two-fold task: they have to simultaneously present rankings
that provide a good user experience and learn from user interactions with the presented
rankings.

The original OLTR method is Dueling Bandit Gradient Descent (DBGD); it ap-
proaches optimization as a dueling bandit problem [132]. This approach requires an
online comparison method that can compare two rankers w.r.t. user preferences; tra-
ditionally, DBGD methods use interleaving. Interleaving methods take the rankings
produced by two rankers and combine them in a single result list, which is then dis-
played to users. From a large number of clicks on the presented list the interleaving
methods can reliably infer a preference between the two rankers [41, 96]. At each
timestep, DBGD samples a candidate model, i.e., a slight variation of its current model,
and compares the current and candidate models using interleaving. If a preference for
the candidate is inferred, the current model is updated towards the candidate slightly.
By doing so, DBGD will update its model continuously and should oscillate towards an
inferred optimum. Section 4.3 provides a complete description of the DBGD algorithm.

Virtually all work in OLTR in the decade since the introduction of DBGD has used
DBGD as a basis. A straightforward extension comes in the form of Multileave Gradient
Descent [111] which compares a large number of candidates per interaction [81, 108,
109]. This leads to a much faster learning process, though in the long run this method
does not seem to improve the point of convergence.

One of the earliest extensions of DBGD proposed a method for reusing historical
interactions to guide exploration for faster learning [43]. While the initial results showed
great improvements [43], later work showed performance drastically decreasing in the
long term due to bias introduced by the historical data [90]. Unfortunately, OLTR work
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Algorithm 4.1 Dueling Bandit Gradient Descent (DBGD).

1: Input: initial weights: θ1; unit: u; learning rate η.
2: for t← 1 . . .∞ do
3: qt ← receive query(t) // obtain a query from a user
4: θct ← θt + sample from unit sphere(u) // create candidate ranker
5: Rt ← get ranking(θt, Dqt) // get current ranker ranking
6: Rct ← get ranking(θct , Dqt) // get candidate ranker ranking
7: It ← interleave(Rt, R

c
t) // interleave both rankings

8: ct ← display to user(It) // displayed interleaved list, record clicks
9: if preference for candidate(It, ct, Rt, R

c
t) then

10: θt+1 ← θt + η(θct − θt) // update model towards candidate
11: else
12: θt+1 ← θt // no update

that continued this historical approach [125] also only considered short term results;
moreover, the results of some work [135] are not based on held-out data. As a result,
we do not know whether these extensions provide decent long-term performance and it
is unclear whether the findings of these studies generalize to more realistic settings.

In Chapter 3, an inherently different approach to OLTR was introduced with
PDGD [82]. PDGD interprets its ranking model as a distribution over documents;
it estimates a pairwise gradient from user interactions with sampled rankings. This
gradient is differentiable, allowing for non-linear models like neural networks to be
optimized, something DBGD is ineffective at [80, 82]. Section 4.4 provides a detailed
description of PDGD. In the chapter in which we introduced PDGD (Chapter 3), we
claim that it provides substantial improvements over DBGD. However, those claims are
based on cascading click models with low levels of noise. This is problematic because
PDGD assumes a cascading user, and could thus have an unfair advantage in this setting.
Furthermore, it is unclear whether DBGD with a perfect interleaving method could still
improve over PDGD. Lastly, DBGD has proven regret bounds while PDGD has no
such guarantees.

In this chapter, we clear up these questions about the relative strengths of DBGD and
PDGD by comparing the two methods under non-cascading, high-noise click models.
Additionally, by providing DBGD with an oracle comparison method, its hypothetical
maximum performance can be measured; thus, we can study whether an improvement
over PDGD is hypothetically possible. Finally, a brief analysis of the theoretical regret
bounds of DBGD shows that they do not apply to any common ranking model, therefore
hardly providing a guaranteed advantage over PDGD.

4.3 Dueling Bandit Gradient Descent

This section describes the DBGD algorithm in detail, before discussing the regret
bounds of the algorithm.
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4.3.1 The Dueling Bandit Gradient Descent method
The DBGD algorithm [132] describes an indefinite loop that aims to improve a ranking
model at each step; Algorithm 4.1 provides a formal description. The algorithm starts a
given model with weights θ1 (Line 1); then it waits for a user-submitted query (Line 3).
At this point a candidate ranker is sampled from the unit sphere around the current
model (Line 4), and the current and candidate model both produce a ranking for the
current query (Line 5 and 6). These rankings are interleaved (Line 7) and displayed to
the user (Line 8). If the interleaving method infers a preference for the candidate ranker
from subsequent user interactions the current model is updated towards the candidate
(Line 10), otherwise no update is performed (Line 12). Thus, the model optimized by
DBGD should converge and oscillate towards an optimum.

4.3.2 Regret bounds of Dueling Bandit Gradient Descent
Unlike PDGD, DBGD has proven regret bounds [132], potentially providing an advan-
tage in the form of theoretical guarantees. In this section we answer RQ4.1 by critically
looking at the assumptions which form the basis of DBGD’s proven regret bounds.

The original DBGD paper [132] proved a sublinear regret under several assumptions.
DBGD works with the parameterized space of ranking functions W , that is, every
θ ∈ W is a different set of parameters for a ranking function. For this chapter we will
only consider deterministic linear models because all existing OLTR work has dealt
with them [40, 43, 82, 90, 111, 125, 132, 135]. But we note that the proof is easily
extendable to neural networks where the output is a monotonic function applied to
a linear combination of the last layer. Then there is assumed to be a concave utility
function u : W → R; since this function is concave, there should only be a single
instance of weights that are optimal θ∗. Furthermore, this utility function is assumed to
be L-Lipschitz smooth:

∃L ∈ R, ∀(θa, θb) ∈ W, |u(θa)− u(θb)| < L‖θa − θb‖. (4.1)

We will show that these assumptions are incorrect: there is an infinite number of optimal
weights, and the utility function u cannot be L-Lipschitz smooth. Our proof relies on
two assumptions that avoid cases where the ranking problem is trivial. First, the zero
ranker is not the optimal model:

θ∗ 6= 0. (4.2)

Second, there should be at least two models with different utility values:

∃(θ, θ′) ∈ W, u(θ) 6= u(θ′). (4.3)

We will start by defining the set of rankings a model f(·, θ) will produce as:

RD(f(·, θ)) = {R | ∀(d, d′) ∈ D, [f(d, θ) > f(d′, θ)→ d �R d′]}. (4.4)

It is easy to see that multiplying a model with a positive scalar α > 0 will not affect this
set:

∀α ∈ R>0, RD(f(·, θ)) = RD(αf(·, θ)). (4.5)
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Consequently, the utility of both functions will be equal:

∀α ∈ R>0, u(f(·, θ)) = u(αf(·, θ)). (4.6)

For linear models scaling weights has the same effect: αf(·, θ) = f(·, αθ). Thus, the
first assumption cannot be true since for any optimal model f(·, θ∗) there is an infinite
set of equally optimal models: {f(·, αθ∗) | α ∈ R>0}.

Then, regarding L-Lipschitz smoothness, using any positive scaling factor:

∀α ∈ R>0, |u(θa)− u(θb)| = |u(αθa)− u(αθb)|, (4.7)
∀α ∈ R>0, ‖αθa − αθb‖ = α‖θa − θb‖. (4.8)

Thus the smoothness assumption can be rewritten as:

∃L ∈ R, ∀α ∈ R>0, ∀(θa, θb) ∈ W, |u(θa)− u(θb)| < αL‖θa − θb‖. (4.9)

However, there is always an infinite number of values for α small enough to break the
assumption. Therefore, we conclude that a concave L-Lipschitz smooth utility function
can never exist for a deterministic linear ranking model, thus the proof for the regret
bounds is not applicable when using deterministic linear models.

Consequently, the regret bounds of DBGD do not apply to the ranking problems in
previous work. One may consider other models (e.g., spherical coordinate based models
or stochastic ranking models), however this still means that for the simplest and most
common ranking problems there are no proven regret bounds. As a result, we answer
RQ4.1 negatively, the regret bounds of DBGD do not provide a benefit over PDGD for
the ranking problems in LTR.

4.4 Pairwise Differentiable Gradient Descent

The Pairwise Differentiable Gradient Descent (PDGD) [82] algorithm is formally de-
scribed in Algorithm 4.2. PDGD interprets a ranking function f(·, θ) as a probability
distribution over documents by applying a Plackett-Luce model:

P (d|D, θ) =
ef(d,θ)∑

d′∈D e
f(d′,θ)

. (4.10)

First, the algorithm waits for a user query (Line 3), then a ranking R is created by
sampling documents without replacement (Line 4). Then PDGD observes clicks from
the user and infers pairwise document preferences from them. All documents preceding
a clicked document and the first succeeding one are assumed to be observed by the
user. Preferences between clicked and unclicked observed documents are inferred by
PDGD; this is a long-standing assumption in pairwise LTR [54]. We denote an inferred
preference between documents as di �c dj , and the probability of the model placing di
earlier than dj is denoted and calculated by:

P (di � dj | θ) =
ef(di,θ)

ef(di,θ) + ef(dj ,θ)
. (4.11)
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Algorithm 4.2 Pairwise Differentiable Gradient Descent (PDGD).

1: Input: initial weights: θ1; scoring function: f ; learning rate η.
2: for t← 1 . . .∞ do
3: qt ← receive query(t) // obtain a query from a user
4: Rt ← sample list(fθt , Dqt) // sample list according to Eq. 4.10
5: ct ← receive clicks(Rt) // show result list to the user
6: ∇f(·, θt)← 0 // initialize gradient
7: for di �c dj ∈ ct do
8: w ← ρ(di, dj , R,D) // initialize pair weight (Eq. 4.13)
9: w ← w × P (di � dj | θt)P (dj � di | θt) // pair gradient (Eq. 3.4)

10: ∇f(·, θt)← ∇fθt + w × (f ′(di, θt)− f ′(dj , θt)) // model gradient (Eq. 3.4)
11: θt+1 ← θt + η∇f(·, θt) // update the ranking model

The gradient is estimated as a sum over inferred preferences with a weight ρ per pair:

∇f(·, θ)
≈

∑
di�cdj

ρ(di, dj , R,D)[∆P (di � dj | θ)] (4.12)

=
∑

di�cdj

ρ(di, dj , R,D)P (di � dj | θ)P (dj � di | θ)(f ′(di, θ)− f ′(dj , θ)).

After computing the gradient (Line 10), the model is updated accordingly (Line 11).
This will change the distribution (Equation 4.10) towards the inferred preferences. This
distribution models the confidence over which documents should be placed first; the
exploration of PDGD is naturally guided by this confidence and can vary per query.

The weighting function ρ is used to make the gradient of PDGD unbiased w.r.t.
document pair preferences. It uses the reverse pair ranking: R∗(di, dj , R), which is the
same ranking as R but with the document positions of di and dj swapped. Then ρ is the
ratio between the probability of R and R∗:

ρ(di, dj , R,D) =
P (R∗(di, dj , R) | D)

P (R | D) + P (R∗(di, dj , R) | D)
. (4.13)

In Chapter 3, the weighted gradient is proven to be unbiased w.r.t. document pair
preferences under certain assumptions about the user. Here, this unbiasedness is defined
by being able to rewrite the gradient as:

E[∆f(·, θ)] =
∑

(di,dj)∈D

αij(f
′(di, θ)− f ′(dj , θ)), (4.14)

and the sign of αij agreeing with the preference of the user:

sign(αij) = sign(relevance(di)− relevance(dj)). (4.15)

The proof in Chapter 3 only relies on the difference in the probabilities of inferring a
preference: di �c dj in R and the opposite preference dj �c di in R∗(di, dj , R). The
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Table 4.1: Click probabilities for simulated perfect or almost random behavior.

P (click(d) | relevance(d), observed(d))

relevance(d) 0 1 2 3 4

perfect 0.00 0.20 0.40 0.80 1.00
almost random 0.40 0.45 0.50 0.55 0.60

proof relies on the sign of this difference to match the user’s preference:

sign(P (di �c dj | R)− P (dj �c di | R∗))
= sign(relevance(di)− relevance(dj)).

(4.16)

As long as Equation 4.16 is true, Equation 4.14 and 4.15 hold as well. Interestingly, this
means that other assumptions about the user can be made than in Chapter 3, and other
variations of PDGD are possible, e.g., the algorithm could assume that all documents
are observed and the proof still holds.

Chapter 3 reports large improvements over DBGD, however these improvements
were observed under simulated cascading user models. This means that the assumption
that PDGD makes about which documents are observed are always true. As a result, it
is currently unclear whether the method is really better in cases where the assumption
does not hold.

4.5 Experiments

In this section we detail the experiments that were performed to answer the research
questions in Section 4.1.1

4.5.1 Datasets
Our experiments are performed over three large labelled datasets from commercial
search engines, the largest publicly available LTR datasets. These datasets are the
MLSR-WEB10K [95], Yahoo! Webscope [17], and Istella [27] datasets. Each contains a
set of queries with corresponding preselected document sets. Query-document pairs are
represented by feature vectors and five-grade relevance annotations ranging from not
relevant (0) to perfectly relevant (4). Together, the datasets contain over 29,900 queries
and between 136 and 700 features per representation.

4.5.2 Simulating user behavior
In order to simulate user behavior we partly follow the standard setup for OLTR [38,
40, 90, 111, 137]. At each step a user issued query is simulated by uniformly sampling
from the datasets. The algorithm then decides what result list to display to the user, the

1The resources for reproducing the experiments in this chapter are available at https://github.
com/HarrieO/OnlineLearningToRank
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result list is limited to k = 10 documents. Then user interactions are simulated using
click models [20]. Past OLTR work has only considered cascading click models [36];
in contrast, we also use non-cascading click models. The probability of a click is
conditioned on relevance and observance:

P (click(d) | relevance(d), observed(d)). (4.17)

We use two levels of noise to simulate perfect user behavior and almost random be-
havior [39], Table 4.1 lists the probabilities of both. The perfect user observes all
documents, never clicks on anything non-relevant, and always clicks on the most rele-
vant documents. Two variants of almost random behavior are used. The first is based on
cascading behavior, here the user first observes the top document, then decides to click
according to Table 4.1. If a click occurs, then, with probability P (stop | click) = 0.5
the user stops looking at more documents, otherwise the process continues on the next
document. The second almost random behavior is simulated in a non-cascading way;
here we follow [58] and model the observing probabilities as:

P (observed(d) | rank(d)) =
1

rank(d)
. (4.18)

The important distinction is that it is safe to assume that the cascading user has observed
all documents ranked before a click, while this is not necessarily true for the non-
cascading user. Since PDGD makes this assumption, testing under both models can
show us how much of its performance relies on this assumption. Furthermore, the
almost random model has an extreme level of noise and position bias compared to the
click models used in previous OLTR work [40, 90, 111], and we argue it simulates an
(almost) worst-case scenario.

4.5.3 Experimental runs

In our experiments we simulate runs consisting of 1,000,000 impressions; each run
was repeated 125 times under each of the three click models. PDGD was run with
η = 0.1 and zero initialization, DBGD was run using Probabilistic Interleaving [90]
with zero initialization, η = 0.001, and the unit sphere with δ = 1. Other variants like
Multileave Gradient Descent [111] are not included; previous work has shown that their
performance matches that of regular DBGD after around 30,000 impressions [82, 90,
111]. The initial boost in performance comes at a large computational cost, though,
as the fastest approaches keep track of at least 50 ranking models [90], which makes
running long experiments extremely impractical. Instead, we introduce a novel oracle
version of DBGD, where, instead of interleaving, the NDCG values on the current query
are calculated and the highest scoring model is selected. This simulates a hypothetical
perfect interleaving method, and we argue that the performance of this oracle run
indicates what the upper bound on DBGD performance is.

Performance is measured by NDCG@10 on a held-out test set, a two-sided t-test
is performed for significance testing. We do not consider the user experience during
training, because Chapter 3 has already investigated this aspect thoroughly.
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4.6 Experimental Results and Analysis

Recall that in Section 4.3.2 we have already provided a negative answer to RQ4.1: the
regret bounds of DBGD do not provide a benefit over PDGD for the common ranking
problem in LTR. In this section we present our experimental results and answer RQ4.2
(whether the advantages of PDGD over DBGD of previous work generalize to extreme
levels of noise and bias) and RQ4.3 (whether the performance of PDGD is reproducible
under non-cascading user behavior).

Our main results are presented in Table 4.2. Additionally, Figure 4.1 displays the
average performance over 1,000,000 impressions. First, we consider the performance
of DBGD; there is a substantial difference between its performance under the perfect
and almost random user models on all datasets. Thus, it seems that DBGD is strongly
affected by noise and bias in interactions; interestingly, there is little difference between
performance under the cascading and non-cascading behavior. On all datasets the oracle
version of DBGD performs significantly better than DBGD under perfect user behavior.
This means there is still room for improvement and hypothetical improvements in, e.g.,
interleaving could lead to significant increases in long-term DBGD performance.

Next, we look at the performance of PDGD; here, there is also a significant differ-
ence between performance under the perfect and almost random user models on all
datasets. However, the effect of noise and bias is very limited compared to DBGD, and
this difference at 1,000,000 impressions is always less than 0.03 NDCG on any dataset.

To answer RQ4.2, we compare the performance of DBGD and PDGD. Across all
datasets, when comparing DBGD and PDGD under the same levels of interaction noise
and bias, the performance of PDGD is significantly better in every case. Furthermore,
PDGD under the perfect user model significantly outperforms the oracle run of DBGD,
despite the latter being able to directly observe the NDCG of rankers on the current
query. Moreover, when comparing PDGD’s performance under the almost random
user model with DBGD under the perfect user model, we see the differences are
limited and in both directions. Thus, even under ideal circumstances DBGD does not
consistently outperform PDGD under extremely difficult circumstances. As a result,
we answer RQ4.2 positively: our results strongly indicate that the performance of
PDGD is considerably better than DBGD and that these findings generalize from ideal
circumstances to settings with extreme levels of noise and bias.

Finally, to answer RQ4.3, we look at the performance under the two almost random
user models. Surprisingly, there is no clear difference between the performance of
PDGD under cascading and non-cascading user behavior. The differences are small and
per dataset it differs which circumstances are slightly preferred. Therefore, we answer
RQ4.3 positively: the performance of PDGD is reproducible under non-cascading user
behavior.

4.7 Conclusion

In this chapter, we have reproduced and generalized findings about the relative per-
formance of Dueling Bandit Gradient Descent (DBGD) and Pairwise Differentiable
Gradient Descent (PDGD). Our results show that the performance of PDGD is repro-
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Table 4.2: Performance (NDCG@10) after 1,000,000 impressions for DBGD and
PDGD under a perfect click model and two almost-random click models: cascading and
non-cascading, and DBGD with an oracle comparator. Significant improvements and
losses (p< 0.01) between DBGD and PDGD are indicated by N, H, and ◦ (no significant
difference). Indications are in order of: oracle, perfect, cascading, and non-cascading.

Yahoo MSLR Istella

Dueling Bandit Gradient Descent

oracle 0.744 (0.001) H N N 0.438 (0.004) H N N 0.584 (0.001) H N N

perfect 0.730 (0.002) H ◦ ◦ 0.426 (0.004) H N N 0.554 (0.002) H H H

cascading 0.696 (0.008) H H H 0.320 (0.006) H H H 0.415 (0.014) H H H

non-cascading 0.692 (0.010) H H H 0.320 (0.014) H H H 0.422 (0.014) H H H

Pairwise Differentiable Gradient Descent

perfect 0.752 (0.001) N N N N 0.442 (0.003) N N N N 0.592 (0.000) N N N N

cascading 0.730 (0.003) H ◦ N N 0.420 (0.007) H H N N 0.563 (0.003) H N N N

non-cascading 0.729 (0.003) H ◦ N N 0.424 (0.005) H H N N 0.570 (0.003) H N N N

ducible under non-cascading user behavior. Furthermore, PDGD outperforms DBGD
in both ideal and extremely difficult circumstances with high levels of noise and bias.
Moreover, the performance of PDGD in extremely difficult circumstances is compa-
rable to that of DBGD in ideal circumstances. Additionally, we have shown that the
regret bounds of DBGD are not applicable to the common ranking problem in LTR.
In summary, our results strongly confirm the previous finding that PDGD consistently
outperforms DBGD, and generalizes this conclusion to circumstances with extreme
levels of noise and bias.

With these findings we can answer RQ3 mostly negatively: the theory behind
DBGD is not sound for the common deterministic ranking problem, moreover, DBGD
has extremely poor performance when compared to the PDGD method under varying
conditions. Consequently, there appears to be no advantage to using DBGD over
PDGD in either theoretical or empirical terms. In addition, a decade of OLTR work
has attempted to extend DBGD in numerous ways without leading to any measurable
long-term improvements. Together, this suggests that the general approach of DBGD
based methods, i.e., sampling models and comparing with online evaluation, is not an
effective way of optimizing ranking models. Although the PDGD method considerably
outperforms the DBGD approach, we currently do not have a theoretical explanation
for this difference. Thus it seems plausible that a more effective OLTR method could
be derived, if the theory behind the effectiveness of OLTR methods is better understood.
Due to this potential and the current lack of regret bounds applicable to OLTR, we argue
that a theoretical analysis of OLTR would make a very valuable future contribution to
the field.

Finally, we consider the limitations of the comparison in this chapter. As is standard
in OLTR our results are based on simulated user behavior. These simulations provide
valuable insights: they enable direct control over biases and noise, and evaluation can
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be performed at each time step. In this chapter, the generalizability of this setup was
pushed the furthest by varying the conditions to the extremely difficult. It appears
unlikely that more reliable conclusions can be reached from simulated behavior. Thus
we argue that the most valuable future comparisons would be in experimental settings
with real users. Furthermore, with the performance improvements of PDGD the time
seems right for evaluating the effectiveness of OLTR in real-world applications.

The limited theoretical guarantees regarding OLTR methods, prompted the second
part of this thesis where we consider counterfactual LTR. In contrast with OLTR,
counterfactual LTR methods are founded on assumed models of user behavior and
are proven to unbiasedly optimize ranking metrics if the assumed models are correct.
Despite these theoretical strengths, empirical comparisons in previous work show that
PDGD is more robust than existing counterfactual LTR methods. In Chapter 8 we
introduce a counterfactual LTR method that can reach the same levels of performance
as PDGD when applied online.

71



4. A Critical Comparison of Online Learning to Rank Methods

Figure 4.1: Performance (NDCG@10) on held-out data from Yahoo (top), MSLR
(center), Istella (bottom) datasets, under the perfect, and almost random user models:
cascading (casc.) and non-cascading (non-casc.). The shaded areas display the standard
deviation.
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4.A. Notation Reference for Chapter 4

4.A Notation Reference for Chapter 4

Notation Description

t a timestep
q a user-issued query
d, dk, dl document
d feature representation of a query-document pair
D set of documents
R ranked list
It an interleaved result list
R∗ the reversed pair ranking R∗(dk, dl, R)
ρ preference pair weighting function
θ parameters of the ranking model
fθ(·) ranking model with parameters θ
f(dk) ranking score for a document from model
ct a binary vector representing the clicks at timestep t
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5
Policy-Aware Counterfactual Learning to

Rank for Top-k Rankings

Counterfactual Learning to Rank (LTR) methods optimize ranking systems using logged
user interactions that contain interaction biases. Existing methods are only unbiased if
users are presented with all relevant items in every ranking. However, in prevalent top-k
ranking settings not all items can be displayed at once. Therefore, there is currently no
existing counterfactual unbiased LTR method for top-k rankings. In this chapter we
address this limitation by asking the thesis research question:

RQ4 Can counterfactual LTR be extended to top-k ranking settings?

We introduce a novel policy-aware counterfactual estimator for LTR metrics that can
account for the effect of a stochastic logging policy. We prove that the policy-aware
estimator is unbiased if every relevant item has a non-zero probability to appear in the
top-k ranking. Our experimental results show that the performance of our estimator
is not affected by the size of k: for any k, the policy-aware estimator reaches the
same retrieval performance while learning from top-k feedback as when learning from
feedback on the full ranking.

While the policy-aware estimator allows us to learn from top-k feedback, there is
no theoretically-grounded way to optimize for top-k ranking metrics. Furthermore,
existing counterfactual LTR work has mostly used novel loss functions for optimization,
which are quite different from those used in supervised LTR. This lead us to ask the
following thesis research question:

RQ5 Is it possible to apply state-of-the-art supervised LTR to the counterfactual LTR
problem?

In this chapter, we also introduce novel extensions of supervised LTR methods to
perform counterfactual LTR and to optimize top-k metrics. Together, our contributions
introduce the first policy-aware unbiased LTR approach that learns from top-k feedback
and optimizes top-k metrics. As a result, counterfactual LTR is now applicable to the
very prevalent top-k ranking setting in search and recommendation.

This chapter was published as [86]. Appendix 5.A gives a reference for the notation used in this chapter.
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5.1 Introduction

LTR optimizes ranking systems to provide high quality rankings. Interest in LTR from
user interactions has greatly increased in recent years with the introduction of unbiased
LTR methods [58, 127]. The potential for learning from logged user interactions is
great: user interactions provide valuable implicit feedback while also being cheap and
relatively easy to acquire at scale [57]. However, interaction logs also contain large
amounts of bias, which is the result of both user behavior and the ranker used during
logging. For instance, users are more likely to examine items at the top of rankings,
consequently the display position of an item heavily affects the number of interactions it
receives [128]. This effect is called position bias and it is very dominant when learning
from interactions with rankings. Naively ignoring it during learning can be detrimental
to ranking performance, as the learning process is strongly impacted by what rankings
were displayed during logging instead of true user preferences. The goal of unbiased
LTR methods is to optimize a ranker w.r.t. the true user preferences, consequently, they
have to account and correct for such forms of bias.

Previous work on unbiased LTR has mainly focussed on accounting for position
bias through counterfactual learning [5, 58, 127]. The prevalent approach models the
probability of a user examining an item in a displayed ranking. This probability can
be inferred from user interactions [4, 5, 58, 127, 128] and corrected for using inverse
propensity scoring. As a result, these methods optimize a loss that in expectation is
unaffected by the examination probabilities during logging, hence it is unbiased w.r.t.
position bias.

This approach has been applied effectively in various ranking settings, including
search for scientific articles [58], email [127] or other personal documents [128]. How-
ever, a limitation of existing approaches is that in every logged ranking they require
every relevant item to have a non-zero chance of being examined [16, 58]. In this chap-
ter, we focus on top-k rankings where the number of displayed items is systematically
limited. These rankings can display at most k items, making it practically unavoidable
that relevant items are missing. Consequently, existing counterfactual LTR methods
are not unbiased in these settings. We recognize this problem as item-selection bias
introduced by the selection of (only) k items to display. This is especially concerning
since top-k rankings are quite prevalent, e.g., in recommendation [26, 48], mobile
search [9, 124], query autocompletion [14, 127, 128], and digital assistants [112].

Our main contribution is a novel policy-aware estimator for counterfactual LTR that
accounts for both a stochastic logging policy and the users’ examination behavior. Our
policy-aware approach can be viewed as a generalization of the existing counterfactual
LTR framework [2, 58]. We prove that our policy-aware approach performs unbiased
LTR and evaluation while learning from top-k feedback. Our experimental results show
that while our policy-aware estimator is unaffected by the choice of k, the existing
policy-oblivious approach is strongly affected even under large values of k. For instance,
optimization with the policy-aware estimator on top-5 feedback reaches the same
performance as when receiving feedback on all results. Furthermore, because top-k
metrics are the only relevant metrics in top-k rankings, we also propose extensions to
traditional LTR approaches that are proven to optimize top-k metrics unbiasedly and
introduce a pragmatic way to choose optimally between available loss functions.
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This chapter is based around two main contributions:

1. A novel estimator for unbiased LTR from top-k feedback.

2. Unbiased losses that optimize bounds on top-k LTR metrics.

To the best of our knowledge, our policy-aware estimator is the first estimator that is
unbiased in top-k ranking settings.

5.2 Background

In this section we discuss supervised LTR and counterfactual LTR [58].

5.2.1 Supervised learning to rank
The goal of LTR is to optimize ranking systems w.r.t. specific ranking metrics. Ranking
metrics generally involve items d, their relevance r w.r.t. a query q, and their position in
the ranking R produced by the system. We will optimize the Empirical Risk [121] over
the set of queries Q, with a loss ∆(Ri | qi, r) for a single query qi:

L =
1

|Q|
∑
qi∈Q

∆(Ri | qi, r). (5.1)

For simplicity we assume that relevance is binary: r(q, d) ∈ {0, 1}; for brevity we
write: r(q, d) = r(d). Then, ranking metrics commonly take the form of a sum over
items:

∆(R | q, r) =
∑
d∈R

λ (d | R) · r(d), (5.2)

where λ can be chosen for a specific metric, e.g., for Average Relevance Position (ARP)
or Discounted Cumulative Gain (DCG):

λARP(d | R) = rank(d | R), (5.3)

λDCG(d | R) = − log2

(
1 + rank(d | R)

)−1
. (5.4)

In a so-called full-information setting, where the relevance values r are known, opti-
mization can be done through traditional LTR methods [13, 54, 75, 129].

5.2.2 Counterfactual learning to rank
Optimizing a ranking loss from the implicit feedback in interaction logs requires a
different approach from supervised LTR. We will assume that clicks are gathered using
a logging policy π with the probability of displaying ranking R̄ for query q denoted as
π(R̄ | q). Let oi(d) ∈ {0, 1} indicate whether d was examined by a user at interaction i
and oi(d) ∼ P (o(d) | qi, r, R̄i). Furthermore, we assume that users click on all relevant
items they observe and nothing else: ci(d) = 1[r(d) ∧ oi(d)]. Our goal is to find an
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estimator ∆̂ that provides an unbiased estimate of the actual loss; for N interactions
this estimate is:

L̂ =
1

N

N∑
i=1

∆̂(Ri | qi, R̄i, π, ci). (5.5)

We writeRi for the ranking produced by the system for which the loss is being computed,
while R̄i is the ranking that was displayed when logging interaction i. For brevity we
will drop i from our notation when only a single interaction is involved. A naive
estimator could simply consider every click to indicate relevance:

∆̂naive (R | q, c) =
∑

d:c(d)=1

λ (d | R) . (5.6)

Taking the expectation over the displayed ranking and observance variables results in
the following expected loss:

Eo,R̄
[
∆̂naive (R | q, c)

]
= Eo,R̄

 ∑
d:c(d)=1

λ(d | R)

 = Eo,R̄

[∑
d∈R

λ(d | R) · c(d)

]

= Eo,R̄

[∑
d∈R

o(d) · λ (d | R) · r(d)

]
(5.7)

= ER̄

[∑
d∈R

P
(
o(d) = 1 | q, r, R̄

)
· λ (d | R) · r(d)

]
=

∑
R̄∈π(·|q)

π(R̄ | q) ·
∑
d∈R

P
(
o(d) = 1 | q, r, R̄

)
· λ (d | R) · r(d).

Here, the effect of position bias is very clear; in expectation, items are weighted
according to their probability of being examined. Furthermore, it shows that examination
probabilities are determined by both the logging policy π and user behavior P (o(d) |
q, r, R̄).

In order to avoid the effect of position bias, Joachims et al. [58] introduced an inverse-
propensity-scoring estimator in the same vain as previous work by Wang et al. [127].
The main idea behind this estimator is that if the examination probabilities are known,
then they can be corrected for per click:

∆̂oblivious
(
R | q, c, R̄

)
=

∑
d:c(d)=1

λ (d | R)

P
(
o(d) = 1 | q, r, R̄

) . (5.8)

In contrast to the naive estimator (Eq. 5.6), this policy-oblivious estimator (Eq. 5.8) can
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provide an unbiased estimate of the loss:

Eo,R̄
[
∆̂oblivious

(
R | q, c, R̄

) ]
= Eo,R̄

[ ∑
d:c(d)=1

λ (d | R)

P
(
o(d) = 1 | q, r, R̄

)]

=
∑
d∈R

Eo,R̄

[
o(d) · λ (d | R) · r(d)

P
(
o(d) = 1 | q, r, R̄

)]

=
∑
d∈R

ER̄

[
P
(
o(d) = 1 | q, r, R̄

)
· λ (d | R) · r(d)

P
(
o(d) = 1 | q, r, R̄

) ]
=
∑
d∈R

λ (d | R) · r(d) = ∆(R | q, r).

(5.9)

We note that the last step assumes P
(
o(d) = 1 | q, r, R̄

)
> 0, and that only relevant

items r(d) = 1 contribute to the estimate [58]. Therefore, this estimator is unbiased as
long as the examination probabilities are positive for every relevant item:

∀d, ∀R̄ ∈ π(· | q)
[
r(d) = 1→ P

(
o(d) = 1 | q, r, R̄

)
> 0
]
. (5.10)

Intuitively, this condition exists because propensity weighting is applied to items clicked
in the displayed ranking and items that cannot be observed can never receive clicks.
Thus, there are no clicks that can be weighted more heavily to adjust for the zero
observance probability of an item.

An advantageous property of the policy-oblivious estimator ∆̂oblivious is that the
logging policy π does not have to be known. That is, as long as Condition 5.10 is met,
it works regardless of how interactions were logged. Additionally, Joachims et al. [58]
proved that it is still unbiased under click noise. Virtually all recent counterfactual LTR
methods use the policy-oblivious estimator for LTR optimization [3–5, 58, 127, 128].

5.3 Learning from Top-k Feedback

In this section we explain why the existing policy-oblivious counterfactual LTR frame-
work is not applicable to top-k rankings. Subsequently, we propose a novel solution
through policy-aware propensity scoring that takes the logging policy into account.

5.3.1 The problem with top-k feedback

An advantage of the existing policy-oblivious estimator for counterfactual LTR de-
scribed in Section 5.2.2 is that the logging policy does not need to be known, making
its application easier. However, the policy-oblivious estimator is only unbiased when
Condition 5.10 is met: every relevant item has a non-zero probability of being observed
in every ranking displayed during logging.

81
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We recognize that in top-k rankings, where only k items can be displayed, relevant
items may systematically lack non-zero examination probabilities. This happens because
items outside the top-k cannot be examined by the user:

∀d,∀R̄
[
rank

(
d | R̄

)
> k → P

(
o(d) = 1 | q, r, R̄

)
= 0
]
. (5.11)

In most top-k ranking settings it is very unlikely that Condition 5.10 is satisfied; If k is
very small, the number of relevant items is large, or if the logging policy π is ineffective
at retrieving relevant items, it is unlikely that all relevant items will be displayed in
the top-k positions. Moreover, for a small value of k the performance of the logging
policy π has to be near ideal for all relevant items to be displayed. We call this effect
item-selection bias, because in this setting the logging ranker makes a selection of
which k items to display, in addition to the order in which to display them (position
bias). The existing policy-oblivious estimator for counterfactual LTR (as described in
Section 5.2.2) cannot correct for item-selection bias when it occurs, and can thus be
affected by this bias when applied to top-k rankings.

5.3.2 Policy-aware propensity scoring

Item-selection bias is inevitable in a single top-k ranking, due to the limited number
of items that can be displayed. However, across multiple top-k rankings more than k
items could be displayed if the displayed rankings differ enough. Thus, a stochastic
logging-policy could provide every item with a non-zero probability to appear in the
top-k ranking. Then, the probability of examination can be calculated as an expectation
over the displayed ranking:

P (o(d) = 1 | q, r, π) = ER̄
[
P
(
o(d) = 1 | q, r, R̄

)]
(5.12)

=
∑

R̄∈π(·|q)

π
(
R̄ | q

)
· P
(
o(d) = 1 | q, r, R̄

)
.

This policy-dependent examination probability can be non-zero for all items, even
if all items cannot be displayed in a single top-k ranking. Naturally, this leads to a
policy-aware estimator:

∆̂aware (R | q, c, π) =
∑

d:c(d)=1

λ(d | R)

P
(
o(d) = 1 | q, r, π

) . (5.13)

By basing the propensity on the policy instead of the individual rankings, the policy-
aware estimator can correct for zero observance probabilities in some displayed rankings
by more heavily weighting clicks on other displayed rankings with non-zero observance
probabilities. Thus, if a click occurs on an item that the logging policy rarely displays
in a top-k ranking, this click may be weighted more heavily than a click on an item
that is displayed in the top-k very often. In contrast, the policy-oblivious approach only
corrects for the observation probability for the displayed ranking in which the click
occurred, thus it does not correct for the fact that an item may be missing from the top-k
in other displayed rankings.
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In expectation, the policy-aware estimator provides an unbiased estimate of the
ranking loss:

Eo,R̄
[
∆̂aware (R | q, c, π)

]
= Eo,R̄

[ ∑
d:c(d)=1

λ
(
d | R

)
P (o(d) = 1 | q, r, π)

]

=
∑
d∈R

Eo,R̄

[
o(d) · λ

(
d | R

)
· r(d)∑

R̄′∈π(·|q) π
(
R̄′ | q

)
· P
(
o(d) = 1 | q, r, R̄′

)]

=
∑
d∈R

ER̄

[
P
(
o(d) = 1 | q, r, R̄

)
· λ
(
d | R

)
· r(d)∑

R̄′∈π(·|q) π
(
R̄′ | q

)
· P
(
o(d) = 1 | q, r, R̄′

)]

=
∑
d∈R

∑
R̄∈π(·|q) π

(
R̄ | q

)
· P
(
o(d) = 1 | q, r, R̄

)
· λ
(
d | R

)
· r(d)∑

R̄′∈π(·|q) π
(
R̄′ | q

)
· P
(
o(d) = 1 | q, r, R̄′

)
=
∑
d∈R

λ
(
d | R

)
· r(d)

= ∆
(
R | q, r

)
.

(5.14)

In contrast to the policy-oblivious approach (Section 5.2.2), this proof is sound as long
as every relevant item has a non-zero probability of being examined under the logging
policy π:

∀d

r(d) = 1→
∑

R̄∈π(·|q)

π
(
R̄ | q

)
· P
(
o(d) = 1 | q, r, R̄

)
> 0

 . (5.15)

It is easy to see that Condition 5.10 implies Condition 5.15, in other words, for all
settings where the policy-oblivious estimator (Eq. 5.8) is unbiased, the policy-aware
estimator (Eq. 5.13) is also unbiased. Conversely, Condition 5.15 does not imply
Condition 5.10, thus there are cases where the policy-aware estimator is unbiased but
the policy-oblivious estimator is not guaranteed to be.

To better understand for which policies Condition 5.15 is satisfied, we introduce a
substitute Condition 5.16:

∀d
[
r(d) = 1→ ∃R̄

[
π
(
R̄ | q

)
> 0 ∧ P

(
o(d) = 1 | q, r, R̄

)
> 0
]]
. (5.16)

Since Condition 5.16 is equivalent to Condition 5.15, we see that the policy-aware
estimator is unbiased for any logging-policy that provides a non-zero probability for
every relevant item to appear in a position with a non-zero examination probability.
Thus to satisfy Condition 5.16 in a top-k ranking setting, every relevant item requires a
non-zero probability of being displayed in the top-k.

As long as Condition 5.16 is met, a wide variety of policies can be chosen according
to different criteria. Moreover, the policy can be deterministic if k is large enough to
display every relevant item. Similarly, the policy-oblivious estimator can be seen as a
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special case of the policy-aware estimator where the policy is deterministic (or assumed
to be). The big advantage of our policy-aware estimator is that it is applicable to a much
larger number of settings than the existing policy-oblivious estimator, including those
were feedback is only received on the top-k ranked items.

5.3.3 Illustrative example

To better understand the difference between the policy-oblivious and policy-aware
estimators, we introduce an illustrative example that contrasts the two. We consider a
single query q and a logging policy π that chooses between two rankings to display: R̄1

and R̄2, with: π(R̄1 | q) > 0; π(R̄2 | q) > 0; and π(R̄1 | q) +π(R̄2 | q) = 1. Then for
a generic estimator we consider how it treats a single relevant item dn with r(dn) 6= 0
using the expectation:

Eo,R̄
[ c(dn) · λ

(
dn | R

)
ρ
(
o(dn) = 1 | q, dn, R̄, π

)] = λ
(
dn | R

)
· r(dn) ·(

π(R̄1|q) · P
(
o(dn) = 1|q, r, R̄1

)
ρ
(
o(dn) = 1 | q, dn, R̄1, π

) +
π(R̄2|q) · P

(
o(dn) = 1|q, r, R̄2

)
ρ
(
o(dn) = 1 | q, dn, R̄2, π

) )
,

(5.17)

where the propensity function ρ can be chosen to match either the policy-oblivious
(Eq. 5.8) or policy-aware (Eq. 5.13) estimator.

First, we examine the situation where dn appears in the top-k of both rankings R̄1

and R̄2, thus it has a positive observance probability in both cases: P
(
o(dn) = 1 |

q, r, R̄1

)
> 0 and P

(
o(dn) = 1 | q, r, R̄2

)
> 0. Here, the policy-oblivious estimator

∆̂oblivious (Eq. 5.8) removes the effect of observation bias by adjusting for the observance
probability per displayed ranking:(

π(R̄1|q) · P
(
o(dn) = 1|q, r, R̄1

)
P
(
o(dn) = 1 | q, r, R̄1

) +
π(R̄2|q) · P

(
o(dn) = 1|q, r, R̄2

)
P
(
o(dn) = 1 | q, r, R̄2

) )
· λ
(
dn | R

)
· r(dn) = λ

(
dn | R

)
· r(dn).

(5.18)

The policy-aware estimator ∆̂aware (Eq. 5.13) also corrects for the examination bias,
but because its propensity scores are based on the policy instead of the individual
rankings (Eq. 5.12), it uses the same score for both rankings:

π(R̄1 | q) · P
(
o(dn) = 1| q, r, R̄1

)
+ π(R̄2 | q) · P

(
o(dn) = 1| q, r, R̄2

)
π(R̄1 | q) · P

(
o(dn) = 1| q, r, R̄1

)
+ π(R̄2 | q) · P

(
o(dn) = 1| q, r, R̄2

)
· λ
(
dn | R

)
· r(dn) = λ

(
dn | R

)
· r(dn).

(5.19)

Then, we consider a different relevant item dm with r(dm) = r(dn) that unlike the
previous situation only appears in the top-k of R̄1. Thus it only has a positive observance
probability in R̄1: P

(
o(dm) = 1 | q, r, R̄1

)
> 0 and P

(
o(dm) = 1 | q, r, R̄2

)
= 0.

Consequently, no clicks will ever be received in R̄2 , i.e., R̄ = R̄2 → c(dm) = 0, thus
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the expectation for dm only has to consider R̄1:

Eo,R̄
[ c(dm) · λ

(
dm | R

)
ρ
(
o(dm) = 1 | q, dm, R̄, π

)]
=
π(R̄1 | q) · P

(
o(dm) = 1 | q, r, R̄1

)
ρ
(
o(dm) = 1 | q, dm, R̄1, π

) · λ
(
dm |R

)
· r(dm).

(5.20)

In this situation, Condition 5.10 is not satisfied, and correspondingly, the policy-
oblivious estimator (Eq. 5.8) does not give an unbiased estimate:

π(R̄1 | q) · P
(
o(dm) = 1 | q, r, R̄1

)
P
(
o(dm) = 1 | q, r, R̄1

) · λ
(
dm | R

)
· r(dm) < λ

(
dm | R

)
· r(dm).

(5.21)
Since the policy-oblivious estimator ∆̂oblivious only corrects for the observance proba-
bility per displayed ranking, it is unable to correct for the zero probability in R2 as no
clicks on dm can occur here. As a result, the estimate is affected by the logging policy
π: the more item-selection bias π introduces (determined by π(R̄1 | q)) the further the
estimate will deviate. Consequently, in expectation ∆̂oblivious will biasedly estimate that
dn should be ranked higher than dm, which is incorrect since both items are actually
equally relevant.

In contrast, the policy-aware estimator ∆̂aware (Eq. 5.13) avoids this issue because
its propensities are based on the logging policy π. When calculating the probability of
observance conditioned on π, P

(
o(dm) = 1 | q, r, π

)
(Eq. 5.12), it takes into account

that there is a π(R̄2 | q) chance that dm is not displayed to the user:

π(R̄1| q) · P
(
o(dm) = 1| q, r, R̄1

)
π(R̄1| q) · P

(
o(dm) = 1| q, r, R̄1

) · λ(dm|R) · r(dm) = λ
(
dm|R

)
· r(dm). (5.22)

Since in this situation Condition 5.16 is true (and therefore also Condition 5.15), we
know beforehand that in expectation the policy-aware estimator is unaffected by position
and item-selection bias.

This concludes our illustrative example. It was meant to contrast the behavior of
the policy-aware and policy-oblivious estimators in two different situations. When
there is no item-selection bias, i.e., an item is displayed in the top-k of all rankings the
logging policy may display, both estimators provide unbiased estimates albeit using
different propensity scores. However, when there is item-selection bias. i.e., an item
is not always present in the top-k, the policy-oblivious estimator ∆̂oblivious no longer
provides an unbiased estimate, while the policy-aware estimator ∆̂aware is still unbiased
w.r.t. both position bias and item-selection bias.

5.4 Learning for Top-k Metrics

This section details how counterfactual LTR can be used to optimize top-k metrics,
since these are the relevant metrics in top-k rankings.
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5.4.1 Top-k metrics
Since top-k rankings only display the k highest ranked items to the user, the performance
of a ranker in this setting is only determined by those items. Correspondingly, only
top-k metrics matter here, where items beyond rank k have no effect:

λmetric@k(d | R) =

{
λmetric

(
d | R

)
, if rank(d | R) ≤ k,

0, if rank
(
d | R

)
> k.

(5.23)

These metrics are commonly used in LTR since, usually, performance gains in the top
of a ranking are the most important for the user experience. For instance, NDCG@k,
which is the normalized version of DCG@k, is often used:

λDCG@k(d |R) =

{
− log2

(
1 + rank(d |R)

)−1
, if rank(d |R)≤ k,

0, if rank
(
d |R

)
>k.

(5.24)

Generally in LTR, DCG is optimized in order to maximize NDCG [13, 129]. In unbiased
LTR it is not trivial to estimate the normalization factor for NDCG, further motivating
the optimization of DCG instead of NDCG [2, 16].

Importantly, top-k metrics bring two main challenges for LTR. First, the rank
function is not differentiable, a problem for almost every LTR metric [75, 129]. Second,
changes in a ranking beyond position k do not affect the metric’s value thus resulting in
zero-gradients. The first problem has been addressed in existing LTR methods, we will
now propose adaptations of these methods that address the second issue as well.

5.4.2 Monotonic upper bounding
A common approach for enabling optimization of ranking methods, is by finding lower
or upper bounds that can be minimized or maximized, respectively. For instance, similar
to a hinge loss, the rank function can be upper bounded by a maximum over score
differences [54, 58]. Let s be the scoring function used to rank (in descending order),
then:

rank
(
d | R

)
≤
∑
d′∈R

max
(

1−
(
s(d)− s(d′)

)
, 0
)
. (5.25)

Alternatively, the logistic function is also a popular choice [129]:

rank
(
d | R

)
≤
∑
d′∈R

log2

(
1 + es(d

′)−s(d)
)
. (5.26)

Minimizing one of these differentiable upper bounds will directly minimize an upper
bound on the ARP metric (Eq. 5.3).

Furthermore, Agarwal et al. [2] showed that this approach can be extended to any
metric based on a monotonically decreasing function. For instance, if rank

(
d | R

)
is an

upper bound on the rank
(
d | R

)
function, then the following is an upper bound on the

DCG loss (Eq. 5.4):

λDCG(d | R) ≤ − log2

(
1 + rank(d | R)

)−1
= λ̂DCG(d | R). (5.27)
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More generally, let α be a monotonically decreasing function. A loss based on α is
always upper bounded by:

λα
(
d | R

)
= −α

(
rank(d | R)

)
≤ −α

(
rank(d | R)

)
= λ̂α

(
d | R

)
. (5.28)

Though appropriate for many standard ranking metrics, λ̂α is not an upper bound
for top-k metric losses. To understand this, consider that an item beyond rank k
may still receive a negative score from λ̂α, for instance, for the DCG upper bound:
rank

(
d | R

)
> k → λ̂DCG

(
d | R

)
< 0. As a result, this is not an upper bound for a

DCG@k based loss.
We propose a modification of the λ̂α function to provide an upper bound for top-k

metric losses, by simply giving a positive penalty to items beyond rank k:

λ̂α@k(d | R) = −α
(
rank(d | R)

)
+ 1

[
rank(d | R) > k

]
· α(k). (5.29)

The resulting function is an upper bound on top-k metric losses based on a monotonic
function: λα@k

(
d | R

)
≤ λ̂α@k

(
d | R

)
. The main difference with λ̂α is that items

beyond rank k acquire a positive score from λα@k, thus providing an upper bound on
the actual metric loss. Interestingly, the gradient of λ̂α@k w.r.t. the scoring function s is
the same as that of λ̂α.1 Therefore, the gradient of either function optimizes an upper
bound on λα@k top-k metric losses, while only λ̂α@k provides an actual upper bound.

While this monotonic function-based approach is simple, it is unclear how coarse
these upper bounds are. In particular, some upper bounds on the rank function (e.g.,
Eq. 5.25) can provide gross overestimations. As a result, these upper bounds on ranking
metric losses may be very far removed from their actual values.

5.4.3 Lambda-based losses for counterfactual top-k LTR
Many supervised LTR approaches, such as the well-known LambdaRank and subse-
quent LambdaMART methods [13], are based on Expectation Maximization (EM)
procedures [28]. Recently, Wang et al. [129] introduced the LambdaLoss framework,
which provides a theoretical way to prove that a method optimizes a lower bound on a
ranking metric. Subsequently, it was used to prove that LambdaMART optimizes such
a bound on DCG, similarly it was also used to introduce the novel LambdaLoss method
which provides an even tighter bound on DCG. In this section, we will show that the
LambdaLoss framework can be used to find proven bounds on counterfactual LTR
losses and top-k metrics. Since LambdaLoss is considered state-of-the-art in supervised
LTR, making its framework applicable to counterfactual LTR could potentially provide
competitive performance. Additionally, adapting the LambdaLoss framework to top-k
metrics further expands its applicability.

The LambdaLoss framework and its EM-optimization approach work for metrics
that can be expressed in item-based gains, G(dn | q, r), and discounts based on position,
D
(
rank(dn | R)

)
; for brevity we use the shorter Gn and Dn, respectively, resulting in:

∆
(
R | q, r

)
=
∑
dn∈R

G(dn| q, r) ·D
(
rank(dn|R)

)
=

|R|∑
n=1

Gn ·Dn. (5.30)

1We consider the indicator function to never have a non-zero gradient.
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For simplicity of notation, we choose indexes so that: n = rank(dn | R), thus Dn is
always the discount for the rank n. Then, we differ from the existing LambdaLoss
framework by allowing the discounts to be zero (∀nDn ≥ 0), thus also accounting
for top-k metrics. Furthermore, items at the first rank are not discounted or the metric
can be scaled so that D1 = 1. Additionally, higher ranked items should be discounted
less or equally: n > m → Dn ≤ Dm. Most ranking metrics meet these criteria; for
instance, Gn and Dn can be chosen to match ARP or DCG. Importantly, our adaption
also allows ∆ to match top-k metrics such as DCG@k or Precision@k.

In order to apply the LambdaLoss framework to counterfactual LTR, we consider a
general inverse-propensity-scored estimator:

∆̂IPS(R | q, c, ·) =
∑

dn:c(dn)=1

λ(dn | R)

ρ
(
o(dn) = 1 | q, r, R̄, π

) , (5.31)

where the propensity function ρ can match either the policy-oblivious (Eq. 5.8) or the
policy-aware (Eq. 5.13) estimator. By choosing

Gn =
1

ρ
(
o(dn) = 1 | q, r, R̄, π

) and Dn = λ(dn | R), (5.32)

the estimator can be described in terms of gains and discounts. In contrast, in the existing
LambdaLoss framework [129] gains are based on item relevance. For counterfactual
top-k LTR, we have designed Eq. 5.32 so that gains are based on the propensity scores
of observed clicks, and the discounts can have zero values.

The EM-optimization procedure alternates between an expectation step and a maxi-
mization step. In our case, the expectation step sets the discount values Dn according to
the current ranking R of the scoring function s. Then the maximization step updates s
to optimize the ranking model. Following the LambdaLoss framework [129], we derive
a slightly different loss. With the delta function:

δnm = D|n−m| −D|n−m|+1, (5.33)

our differentiable counterfactual loss becomes:∑
Gn>Gm

− log2

((
1

1 + es(dm)−s(dn)

)δnm·|Gn−Gm|)
. (5.34)

The changes we made do not change the validity of the proof provided in the original
LambdaLoss paper [129]. Therefore, the counterfactual loss (Eq. 5.34) can be proven
to optimize a lower bound on counterfactual estimates of top-k metrics.

Finally, in the same way the LambdaLoss framework can also be used to derive
counterfactual variants of other supervised LTR losses/methods such as LambdaRank
or LamdbaMART. Unlike previous work that also attempted to find a counterfactual
lambda-based method by introducing a pairwise-based estimator [46], our approach is
compatible with the prevalent counterfactual approach since it uses the same estimator
based on single-document propensities [3–5, 58, 127, 128]. Our approach suggests
that the divide between supervised and counterfactual LTR methods may disappear
in the future, as a state-of-the-art supervised LTR method can now be applied to the
state-of-the-art counterfactual LTR estimators.
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5.4.4 Unbiased loss selection

So far we have introduced two counterfactual LTR approaches that are proven to op-
timize lower bounds on top-k metrics: with monotonic functions (Section 5.4.2) and
through the LambdaLoss framework (Section 5.4.3). To the best of our knowledge,
we are the first to introduce theoretically proven lower bounds for top-k LTR met-
rics. Nevertheless, previous work has also attempted to optimize top-k metrics, albeit
through heuristic methods. Notably, Wang et al. [129] used a truncated version of the
LambdaLoss loss to optimize DCG@k. Their loss uses the discounts Dn based on
full-ranking DCG but ignores item pairs outside of the top-k:

∑
Gn>Gm

−1
[
n ≤ k ∨m ≤ k

]
· log2

((
1

1 + es(dm)−s(dn)

)δnm·|Gn−Gm|)
. (5.35)

While empirical results motivate its usage, there is no known theoretical justification for
this loss, and thus it is considered a heuristic.

This leaves us with a choice between two theoretically-motivated counterfactual
LTR approaches for optimizing top-k metrics (Eq. 5.29 and 5.34) and an empirically-
motivated heuristic (Eq. 5.35). We propose a pragmatic solution by recognizing that
counterfactual estimators can unbiasedly evaluate top-k metrics. Therefore, in practice
one can optimize several ranking models using various approaches, and subsequently,
estimate which resulting model provides the best performance. Thus, using counterfac-
tual evaluation to select from resulting models is an unbiased method to choose between
the available counterfactual LTR approaches.

5.5 Experimental Setup

We follow the standard setup in unbiased LTR [5, 16, 50, 58] and perform semi-synthetic
experiments: queries and items are based on datasets of commercial search engines and
interactions are simulated using probabilistic click models.

5.5.1 Datasets

We use the queries and documents from two of the largest publicly available LTR
datasets: MLSR-WEB30K [95] and Yahoo! Webscope [17]. Each was created by a
commercial search engine and contains a set of queries with corresponding preselected
document sets. Query-document pairs are represented by feature vectors and five-grade
relevance annotations ranging from not relevant (0) to perfectly relevant (4). In order to
binarize the relevancy, we only consider the two highest relevance grades as relevant.
The MSLR dataset contains 30,000 queries with on average 125 preselected documents
per query, and encodes query-document pairs in 136 features. The Yahoo dataset
has 29,921 queries and on average 24 documents per query encoded in 700 features.
Presumably, learning from top-k feedback is harder as k becomes a smaller percentage
of the number of items. Thus, we expect the MSLR dataset with more documents per
query to pose a more difficult problem.
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5.5.2 Simulating top-k settings

The setting we simulate is one where interactions are gathered using a non-optimal but
decent production ranker. We follow existing work [5, 50, 58] and use supervised opti-
mization for the ARP metric on 1% of the training data. The resulting model simulates
a real-world production ranker since it is much better than a random initialization but
leaves enough room for improvement [58].

We then simulate user-issued queries by uniformly sampling from the training
partition of the dataset. Subsequently, for each query the production ranker ranks the
documents preselected by the dataset. Depending on the experimental run that we
consider, randomization is performed on the resulting rankings. In order for the policy-
aware estimator to be unbiased, every relevant document needs a chance of appearing
in the top-k (Condition 5.16). Since in a realistic setting relevancy is unknown, we
choose to give every document a non-zero probability of appearing in the top-k. Our
randomization policy takes the ranking of the production ranker and leaves the first k−1
documents unchanged but the document at position k is selected by sampling uniformly
from the remaining documents. The result is a minimally invasive randomized top-k
ranking since most of the ranking is unchanged and the placement of the sampled
documents is limited to the least important position.

We note that many other logging policies could be applied (see Condition 5.16), e.g.,
an alternative policy could insert sampled documents at random ranks for less obvious
randomization. Unfortunately, a full exploration of the effect of using different logging
policies is beyond the scope of this chapter.

Clicks are simulated on the resulting ranking R̄ according to position bias and docu-
ment relevance. Top-k position bias is modelled through the probability of observance,
as follows:

P
(
o(d) = 1 | q, r, R̄

)
=

{
rank(d | R̄)−1, if rank(d | R̄) ≤ k,
0, if rank(d | R̄) > k.

(5.36)

The randomization policy results in the following examination probabilities w.r.t. the
logging policy (cf. Eq. 5.12):

P
(
o(d) = 1 | q, r, π

)
=

{
rank(d | R̄)−1, if rank(d | R̄) < k,(
rank(d | R̄) · (|R̄| − k + 1)

)−1
, if rank(d | R̄) ≥ k.

(5.37)

The probability of a click is conditioned on the relevance of the document according to
the dataset:

P
(
c(d) = 1 | q, r, R̄, o

)
=


1, if r(d) = 1 ∧ o(d) = 1,

0.1, if r(d) = 0 ∧ o(d) = 1,

0, if o(d) = 0.

(5.38)

Note that our previous assumption that clicks only take place on relevant items (Sec-
tion 5.2.2) is not true in our experiments.
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Optimization is performed on training clicks simulated on the training partition of
the dataset. Hyperparameter tuning is done by estimating performance on (unclipped)
validation clicks simulated on the validation partition; the number of validation clicks is
always 15% of the number of training clicks. Lastly, evaluation metrics are calculated
on the test partition using the dataset labels.

5.5.3 Experimental runs

In order to evaluate the performance of the policy-aware estimator (Eq. 5.13) and
the effect of item-selection bias, we compare with the following baselines: (i) The
policy-oblivious estimator (Eq. 5.8). In our setting, where the examination probabilities
are known beforehand, the policy-oblivious estimator also represents methods that
jointly estimate these probabilities while performing LTR, i.e., the following methods
reduce to this estimator if the examination probabilities are given: [3, 5, 58, 127]. (ii) A
rerank estimator, an adaption of the policy-oblivious estimator. During optimization the
rerank estimator applies the policy-oblivious estimator but limits the document set of an
interaction i to the k displayed items Ri = {d | rank(d|R̄i) ≤ k} (cf. Eq. 5.8). Thus, it
is optimized to rerank the top-k of the production ranker only, but during inference it is
applied to the entire document set. (iii) Additionally, we evaluate performance without
any cutoff k or randomization; in these circumstances all three estimators (Policy-Aware,
Policy-Oblivious, Rerank) are equivalent. (iv) Lastly, we use supervised LTR on the
dataset labels to get a full-information skyline, which shows the hypothetical optimal
performance.

To evaluate the effectiveness of our proposed loss functions for optimizing top-
k metrics, we apply the monotonic lower bound (Eq. 5.29) with a linear (Eq. 5.25)
and a logistic upper bound (Eq. 5.26). Additionally, we apply several versions of
the LamdbaLoss loss function (Eq. 5.34): one that optimizes full DCG, another that
optimizes DCG@5, and the heuristic truncated loss also optimizing DCG@5 (Eq. 5.35).
Lastly, we apply unbiased loss selection where we select the best-performing model
based on the estimated performance on the (unclipped) validation clicks.

Optimization is done with stochastic gradient descent; to maximize computational
efficiency we rewrite the loss (Eq. 5.5) for a propensity scoring function ρ in the
following manner:

L̂ =
1

N

N∑
i=1

∆̂
(
Ri|qi, R̄i, π, ci

)
=

1

N

N∑
i=1

∑
d:ci(d)=1

λ
(
d | Ri

)
ρ
(
oi(d) = 1|qi, r, ·

)
=

1

N

∑
q∈Q

∑
d∈Rq

(
N∑
i=1

1[qi = q] · ci(d)

ρ
(
oi(d) = 1 | q, r, ·

)) · λ(d | Rq)
=

1

N

∑
q∈Q

∑
d∈Rq

ωd · λ
(
d | Rq

)
.

(5.39)
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After precomputing the document weights ωd, the complexity of computing the loss is
only determined by the dataset size. This allows us to optimize over very large numbers
of clicks with very limited increases in computational costs.

We optimize linear models, but our approach can be applied to any differentiable
model [2]. Propensity clipping [58] is applied to training clicks and never applied to the
validation clicks; we also use self-normalization [116].

5.6 Results and Discussion

In this section we discuss the results of our experiments and evaluate our policy-aware
estimator and the methods for top-k LTR metric optimization empirically.

5.6.1 Learning under item-selection bias

First we consider the question:

RQ5.1 Is the policy-aware estimator effective for unbiased counterfactual LTR from
top-k feedback?

Figure 5.1 displays the performance of different approaches after optimization on 108

clicks under varying values for k. Both the policy-oblivious and rerank estimators are
greatly affected by the item-selection bias introduced by the cutoff at k. On the MSLR
dataset neither approach is able to get close to optimal ARP performance, optimal
DCG@5 is only reached when k > 50. On the Yahoo dataset, the policy-oblivous
approach can only approximate optimal ARP when k > 60; for DCG@5 it requires
k > 25. The rerank approach reaches optimal ARP when k > 50 and optimal DCG@5
when k > 20. Considering that on average a query in the Yahoo dataset only has 24
preselected documents, it appears that even a little item-selection bias has a substantial
effect on both estimators. Furthermore, randomization appears to have a very limited
positive effect on the policy-oblivious and rerank approaches. The one exception is the
policy-oblivious approach when k = 1 where it reaches optimal performance under
randomization. Here, the randomization policy gives every item an equal probability of
being presented, thus trivially removing item-selection bias; additionally, there is no
position bias as there is only a single position. However, besides this trivial exception,
the baseline estimators are strongly affected by item-selection bias and simply logging
with randomization is unable to remove the effect of item-selection bias.

In contrast, the policy-aware approach is hardly affected by the choice of k. It
consistently approximates optimal performance in terms of ARP and DCG@5 on both
datasets. On the MSLR dataset, the policy-aware approach provides near optimal ARP
performance; however, for k > 15 there is a small but noticeable gap. We suspect that
this is the result of variance from click-noise and can be closed by gathering more clicks.
Across all settings, the policy-aware approach appears unaffected by the choice of k and
thus the effect of item-selection bias. Moreover, it consistently provides performance
at least as good as the baselines; and on the Yahoo dataset it outperforms them for
k < 20 and on the MSLR dataset outperforms them for all tested values of k. We
note that the randomization policy is the same for all methods; in other words, under

92



5.6. Results and Discussion

randomization the clicks for the policy-oblivious, policy-aware and rerank approaches
are acquired in the exact same way. Thus, our results show that in order to benefit from
randomization, a counterfactual LTR method has to take its effect into account, hence
only the policy-aware approach has improved performance.

Figure 5.2 displays the performance when learning from top-5 feedback while
varying the number of clicks. Here we see that the policy-oblivious approach perfor-
mance is stable after 105 clicks have been gathered. The rerank approach has stable
performance after 106 clicks when optimized for ARP and 105 for DCG@5. Both
baseline approaches show biased behavior where adding additional data does not lead
to improved performance. This confirms that their estimators are unable to deal with
item-selection bias. In contrast, the policy-aware approach reaches optimal performance
in all settings. However, it appears that the policy-aware approach requires more clicks
than the no-cutoff baseline; we suspect that this difference is due to variance added by
the randomization and smaller propensity scores.

In conclusion, we answer our RQ5.1 positively: our results show that the policy-
aware approach is unbiased w.r.t. item-selection bias and position bias. Where all
baseline approaches are affected by item-selection bias even in small amounts, the
policy-aware approach approximates optimal performance regardless of the cutoff value
k.

5.6.2 Optimizing top-k metrics

Next, we consider the question:

RQ5.2 Are our novel counterfactual LTR loss functions effective for top-k LTR metric
optimization?

Figure 5.3 shows the performance of the policy-aware approach after optimizing differ-
ent loss functions under top-5 feedback. While on the Yahoo dataset small differences
are observed, on the MSLR dataset substantial differences are found. Interestingly,
there seems to be no advantage in optimizing for DCG@5 instead of full DCG with the
LambdaLoss. Furthermore, the monotonic loss function works very well with a linear
upper bound, yet poorly when using the log upper bound. On both datasets the heuristic
truncated LambdaLoss loss function provides the best performance, despite being the
only method without a theoretical basis. When few clicks are available, the differences
change; e.g., the monotonic loss function with a log upper bound outperforms the other
losses on the MSLR dataset when fewer than 105 clicks are available.

Finally, we consider unbiased loss selection; Figure 5.3 displays both the perfor-
mance of the selected models and the estimated performance on which the selections are
based. For the most part the optimal models are selected, but variance does cause mis-
takes in selection when few clicks are available. Thus, unbiased optimal loss selection
seems effective as long as enough clicks are available.

In conclusion, we answer RQ5.2 positively: our results indicate that the truncated
counterfactual LambdaLoss loss function is most effective at optimizing DCG@5.
Using this loss, our counterfactual LTR method reaches state-of-the-art performance
comparable to supervised LTR on both datasets. Alternatively, our proposed unbiased
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loss selection method can choose optimally between models that are optimized by
different loss functions.

5.7 Related Work

Section 5.2.1 has discussed supervised LTR and Section 5.2.2 has described the existing
counterfactual LTR framework; this section contrasts additional related work with our
policy-aware approach.

Interestingly, some existing work in unbiased LTR was performed in top-k rankings
settings [3, 4, 127, 128]. Our findings suggest that the results of that work are affected
by item-selection bias and that there is the potential for considerable improvements by
applying the policy-aware method.

Carterette and Chandar [16] recognized that counterfactual evaluation cannot eval-
uate rankers that retrieve items that are unseen in the interaction logs, essentially due
to a form of item-selection bias. Their proposed solution is to gather new interactions
on rankings where previously unseen items are randomly injected. Accordingly, they
adapt propensity scoring to account for the random injection strategy. In retrospect, this
approach can be seen as a specific instance of our policy-aware approach. In contrast,
we have focused on settings where item-selection bias takes place systematically and
propose that logs should be gathered by any policy that meets Condition 5.16. Instead
of expanding the logs to correct for missing items, our approach avoids systematic
item-selection bias altogether.

Other previous work has also used propensity scores based on a logging policy
and examination probabilities. Komiyama et al. [67] and subsequently Lagrée et al.
[69] use such propensities to find the optimal ranking for a single query by casting the
ranking problem as a multiple-play bandit. Li et al. [72] use similar propensities to
counterfactually evaluate ranking policies where they estimate the number of clicks a
ranking policy will receive. Our policy-aware approach contrasts with these existing
methods by providing an unbiased estimate of LTR-metric-based losses, and thus it can
be used to optimize LTR models similar to supervised LTR.

Lastly, online LTR methods where interactive processes learn from the user [132]
also make use of stochastic ranking policies. They correct for biases through random-
ization in rankings but do not use an explicit model of examination probabilities. To
contrast with counterfactual LTR, while online LTR methods appear to provide robust
performance [50], they are not proven to unbiasedly optimize LTR metrics [82, 84].
Unlike counterfactual LTR, they are not effective when applied to historical interaction
logs [43].

5.8 Conclusion

In this chapter, we have proposed a policy-aware estimator for LTR, the first counter-
factual method that is unbiased w.r.t. both position bias and item-selection bias. Our
experimental results show that existing policy-oblivious approaches are greatly affected
by item-selection bias, even when only small amounts are present. In contrast, the pro-
posed policy-aware LTR method can learn from top-k feedback without being affected
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by the choice of k. Furthermore, we proposed three counterfactual LTR approaches
for optimizing top-k metrics: two theoretically proven lower bounds on DCG@k based
on monotonic functions and the LambdaLoss framework, respectively, and another
heuristic truncated loss. Additionally, we introduced unbiased loss selection that can
choose optimally between models optimized with different loss functions. Together, our
contributions provide a method for learning from top-k feedback and for top-k metrics.

With these contributions, we can answer the thesis research questions RQ4 and RQ5
positively: with the policy-aware estimator counterfactual LTR is applicable to top-k
ranking settings; furthermore, we have shown that the state-of-the-art supervised LTR
LambdaLoss method can be used for counterfactual LTR. To the best of our knowledge,
this is the first counterfactual LTR method that is unbiased in top-k ranking settings.
Additionally, this chapter also serves to further bridge the gap between supervised and
counterfactual LTR methods, as we have shown that state-of-the-art lambda-based super-
vised LTR methods can be applied to the state-of-the-art counterfactual LTR estimators.
Therefore, the contributions of this chapter have greatly extended the capability of the
counterfactual LTR approach and further connected it with the supervised LTR field.

Future work in supervised LTR could verify whether potential novel supervised
methods can be applied to counterfactual losses. A limitation of the policy-aware LTR
approach is that the logging policy needs to be known; future work could investigate
whether a policy estimated from logs also suffices [72, 74]. Finally, existing work
on bias in recommendation [107] has not considered position bias, thus we anticipate
further opportunities for counterfactual LTR methods for top-k recommendations.

The remaining chapters of this thesis will continue to build on the policy-aware
estimator. Chapter 6 introduces a counterfactual LTR algorithm that uses the policy-
aware estimator to combine properties of tabular models and feature-based models.
Furthermore, Chapter 7 looks at how the policy-aware estimator can be used for ranker
evaluation. It introduces an algorithm that optimizes the logging policy to reduce
variance when using the policy-aware estimator for evaluation. Lastly, Chapter 8
introduces a novel intervention-aware estimator inspired by the policy-aware estimator.
This novel estimator takes the policy-aware approach even further by considering
the effect of all logging policies used during data gathering. The intervention-aware
approach thus also considers the case where the logging policy is updated during
the gathering of data. Besides the policy-aware estimator, Chapter 6, Chapter 7, and
Chapter 8 all use the adaption of LambdaLoss for counterfactual LTR derived in this
chapter.
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Figure 5.1: The effect of item-selection bias on different estimators. Optimization on 108

clicks simulated on top-k rankings with varying number of display positions (k), with
and without randomization (for each datapoint 108 clicks were simulated independently).
Results on the Yahoo dataset and MSLR dataset. The top graph per dataset optimizes
the average relevance position through the linear upper bound (Eq. 5.25); the bottom
graph per dataset optimizes DCG@5 using the truncated LambdaLoss (Eq. 5.35).

96



5.8. Conclusion

Yahoo! Webscope

103 104 105 106 107 108

11.5

12.0

12.5

13.0
A

vg
.

R
el

ev
an

t
P

os
it

io
n

103 104 105 106 107 108

0.55

0.60

N
or

m
al

iz
ed

D
C

G
@

5

MSLR-WEB30k

103 104 105 106 107 108

50

55

A
vg

.
R

el
ev

an
t

P
os

it
io

n

103 104 105 106 107 108

Number of Training Clicks

0.20

0.25

0.30

N
or

m
al

iz
ed

D
C

G
@

5

No-Cutoff

Policy-Aware (rand.)

Policy-Oblivious (no rand.)

Policy-Oblivious (rand.)

Rerank (no rand.)

Rerank (rand.)

Production

Full-Info Skyline

Figure 5.2: Performance of different estimators learning from different numbers of
clicks simulated on top-5 rankings, with and without randomization. Results on the
Yahoo dataset and MSLR dataset. The top graph per dataset optimizes the average
relevance position through the linear upper bound (Eq. 5.25); the bottom graph per
dataset optimizes DCG@5 using the truncated LambdaLoss (Eq. 5.35).
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Figure 5.3: Performance of the policy-aware estimator (Eq. 5.13) optimizing DCG@5
using different loss functions. The loss selection method selects the estimated optimal
model based on clicks gathered on separate validation queries. Varying numbers of
clicks on top-5 rankings with randomization, the number of validation clicks is 15% of
the number of training clicks.
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5.A Notation Reference for Chapter 5

Notation Description

k the number of items that can be displayed in a single ranking
i an iteration number
Q set of queries
q a user-issued query
d an item to be ranked
r(d, q), r(d) the relevance of item d w.r.t. query q
R a ranked list
R̄ a ranked list that was displayed to the user
λ (d | R) a metric that weights items depending on their display rank
ci(d) a function indicating item d was clicked at iteration i
oi(d) a function indicating item d was observed at iteration i
π a logging policy
π(R̄ | q) the probability that policy π displays ranking R̄ for query q
rank

(
d | R̄

)
the rank of item d in displayed ranking R̄

ρ a propensity function used to represent any IPS estimator
s(d) the score given to item d by ranking model s, used to sort items by
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6
Combining Generalized and Specialized

Models in Counterfactual Learning to
Rank

So far, this thesis has only addressed feature-based Learning to Rank (LTR) – the
optimization of models that rank items based on their features – as opposed to tabular
online LTR – which optimizes a ranking directly, thus not using any scoring models.
A big advantage of feature-based LTR is that its model can be applied to previously
unseen queries and items. As a result, it provides very robust performance in previously
unseen circumstances. However, their behavior is often limited by the available features:
in practice they do not provide enough information to determine the optimal ranking. In
stark contrast, tabular LTR memorizes rankings, instead of using a features to predict
them. Consequently, tabular LTR is not limited by which features are available and
can potentially always find the optimal ranking. Despite this potential, tabular LTR
does not generalize: it cannot transfer learned behavior to previously unseen queries or
items. In other words, tabular LTR has the potential to specialize – perform very well in
circumstances encountered often – whereas feature-based LTR is good at generalization
– performing well overall, including previously unseen circumstances. In this chapter
we investigate whether the advantageous properties of these two areas can be combined
in the counterfactual LTR framework, and thus we address the thesis research question:

RQ6 Can the specialization ability of tabular online LTR be combined with the robust
feature-based approach of counterfactual LTR?

In this chapter we introduce a framework for Generalization and Specialization
(GENSPEC) for counterfactual learning from logged bandit feedback. GENSPEC
is designed for problems that can be divided in many non-overlapping contexts. It
simultaneously learns a generalized policy – optimized for high performance across
all contexts – and many specialized policies – each optimized for high performance
in a single context. Using high-confidence bounds on the relative performance of
policies, per context GENSPEC decides whether to deploy a specialized policy, the
general policy, or the current logging policy. By doing so GENSPEC combines the high

This chapter was submitted as [87]. Appendix 6.C gives a reference for the notation used in this chapter.
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performance of successfully specialized policies with the safety and robustness of a
generalized policy.

While GENSPEC is applicable to many different bandit problems, we focus on
query-specialization for counterfactual learning to rank, where a context consists of a
query submitted by a user. Here we learn both a single general feature-based model for
robust performance across queries, and many memory-based models, each of which is
highly specialized for a single query, GENSPEC then chooses which model to deploy
on a per query basis. Our results show that GENSPEC leads to massive performance
gains on queries with sufficient click data, while still having safe and robust behavior
on queries with little or noisy data.

6.1 Introduction

Generalization is an important goal for most machine learning algorithms: models
should perform well across a large range of contexts, especially previously unseen
contexts [10]. Specialization, the ability to perform well in a single context, is often
disfavored over generalization because the latter is more robust [37]. Generally, the
same trade-off pertains to contextual bandit problems [70, Chapter 18]. There, the goal
is to find a policy that maximizes performance over the full distribution of contextual
information. While a specialized policy, i.e., a policy optimized on a subset of possible
contexts, could outperform a generalized policy on that subset, most likely it compro-
mises performance on other contexts to do so since specialization comes with a risk of
overfitting: applying a policy that is specialized in a specific set of contexts to different
contexts [22, 37]. As a consequence, generalization is often preferred as it avoids this
issue.

In this chapter, we argue that, depending on the circumstances, specialization may be
preferable over generalization, specifically, if with high-confidence it can be guaranteed
that a specialized policy is only deployed in contexts where it outperforms policies
optimized for generalization. We focus on counterfactual learning for contextual bandit
problems where contexts can be split into non-overlapping sets. We simultaneously train
(i) a generalized policy that performs well across all contexts, and (ii) many specialized
policies, one for each of a specific set of contexts. Thus, per context there is a choice
between three policies: (i) the logging policy used to gather data, (ii) the generalized
policy, and (iii) the specialized policy. Depending on the circumstances, e.g., the
amount of data available, noise in the data, or the difficulty of the task, a different policy
will perform best in a specific context [22]. To reliably choose between policies, we
estimate high-confidence bounds [119] on the relative performance differences between
policies and then choose conservatively: we only apply a specialized policy instead
of the generalized policy or logging policy if the lower bounds on their differences in
performance are positive in a specific context. Otherwise, the generalized policy is only
applied if with high-confidence it outperforms the logging policy across all contexts.
We call this approach the Generalization and Specialization (GENSPEC) framework: it
trains both generalized and specialized policies and results in a meta-policy that chooses
between them using high-confidence bounds. The GENSPEC meta-policy is particularly
powerful because it can combine the properties of different models: for instance, a
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generalized policy using a feature-based model can be overruled by a specialized policy
using a tabular model that has memorized the best actions. GENSPEC promises the
best of two worlds: the safe robustness of a generalized policy with the potentially high
performance of a specialized policy.

To evaluate the GENSPEC approach, we apply it to query-specialization in the
setting of Counterfactual Learning to Rank (LTR). Existing approaches in this field
either generalize – by learning a ranking model that ranks items based on their features
and generalizes well across all queries [58] – or they specialize – by learning tabular
ranking models that are specific to a single query and cannot be applied to any other
query [70, 138]. By viewing each query as a different context, GENSPEC learns
both a generalized ranker and many specialized tabular rankers, and subsequently
chooses which ranker to apply per query. Our empirical results show that GENSPEC
combines the advantages of both approaches: very high performance on queries where
sufficiently many interactions were observed for successful specialization, and safe
robust performance on queries where interaction data is limited or noisy.

Our main contributions are:

1. an adaptation of existing counterfactual high-confidence bounds for relative
performance between ranking policies;

2. the GENSPEC framework that simultaneously learns generalized and specialized
ranking policies plus a meta-policy that decides which to deploy per context.

To the best of our knowledge, GENSPEC is the first counterfactual LTR method to
simultaneously train generalized and specialized models, and reliably choose between
them using high-confidence bounds.

6.2 Background: Learning to Rank

This section covers the basics of counterfactual LTR.

6.2.1 Supervised learning to rank

The LTR task has been approached as a contextual bandit problem before [68, 70, 117,
132]. The differentiating characteristic of the LTR task is that actions are rankings,
thus they consist of an ordered set of K items: a = (d1, d2, . . . , dK). The contextual
information often contains a user-issued search query, features based on the items
available for ranking and item-query combinations, information about the user, among
other miscellaneous information. Since our focus is query specialization, we record the
query separately; thus, at each time step i contextual information xi and a single query
qi ∈ {1, 2, 3, . . .} are active: xi, qi ∼ P (x, q). Let ∆ indicate the reward for a ranking
a. A policy π should maximize the expected reward [58, 75]:

R(π) =

∫∫ (∑
a∈π

∆(a|x, q, r) · π(a|x, q)
)
P (x, q) dx dq. (6.1)
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Commonly, in LTR the reward for a ranking a is a linear combination of the relevance
scores of the items in a, weighted according to their rank. We use r(d | x, q) to denote
the relevance score of item d and λ

(
rank(d | a)

)
for the weight per rank, resulting in:

∆(a | x, q, r) =
∑
d∈a

λ
(
rank(d | a)

)
· r(d | x, q). (6.2)

A common choice is to optimize the Discounted Cumulative Gain (DCG) metric; λ can
be chosen accordingly:

λDCG(rank(d | a)
)

= log2

(
1 + rank(d | a)

)−1
. (6.3)

When the relevance function r is given, maximizingR can be done through traditional
LTR in a supervised manner [13, 75, 129].

6.2.2 Counterfactual learning to rank
In practice, the relevance score r is often unknown or requires expensive annotation [17,
27, 95, 104]. An attractive alternative comes from LTR based on historical interaction
logs, which takes a counterfactual approach [58, 127]. Let π0 be the logging policy that
was used when interactions were logged:

ai ∼ π0(a | xi, qi). (6.4)

LTR focusses mainly on clicks in interactions; clicks are strongly affected by position
bias [25]. This bias arises because users often do not examine all items presented to
them, and only click on examined items. As a result, items that are displayed in positions
that are more often examined are also more likely to be clicked, without necessarily
being more relevant. Let oi(d) ∈ {0, 1} indicate whether item d was examined by the
user or not:

oi(d) ∼ P
(
o(d) | ai

)
. (6.5)

We use ci(d) ∈ {0, 1} to indicate whether d was clicked at time step i:

ci(d) ∼ P
(
c(d) | oi(d), r(d | x, q)

)
. (6.6)

We assume that click probabilities are only dependent on whether an item was examined,
oi(d), and its relevance, r(d | x, q). Furthermore, we make the common assumption
that clicks only occur on examined items [58, 127], thus:

P
(
c(d) = 1 | o(d) = 0, r(d | x, q)

)
= 0. (6.7)

Moreover, we assume that, given examination, more relevant documents are more likely
to be clicked. Specifically, click probability is proportional to relevance with an offset
µ ∈ R>0:

P
(
c(d) = 1 | o(d) = 1, r(d | x, q)

)
∝ r(d | x, q) + µ. (6.8)

The data used for counterfactual LTR consists of observed clicks ci, propensity scores
ρi, contextual information xi and query qi for N interactions:

D =
{

(ci, ai, ρi, xi, qi)
}N
i=1

. (6.9)
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We apply the policy-aware approach [86] (Chapter 5) and base ρ both on the examination
probability of the user and the behavior of the policy:

ρi(d) =
∑
a∈π0

P
(
oi(d) = 1 | a

)
· π0(a | xi, qi). (6.10)

The estimated reward based on D is now:

R̂(π | D) =
1

|D|
∑
i∈D

∑
a∈π

∆̂(a | ci, ρi) · π(a | xi, qi), (6.11)

where ∆̂ is an Inverse Propensity Scoring (IPS) estimator:

∆̂(a | ci, ρi) =
∑
d∈a

λ
(
rank(d | a)

)
· ci(d)

ρi(d)
. (6.12)

Since the reward r is not observed directly, clicks are used as implicit feedback, which
is a biased and noisy indicator of relevance. The unbiased estimate R̂ can be used for
unbiased evaluation and optimization since:1

arg max
π

Eoi,ai
[
R̂(π | D)

]
= arg max

π
R(π). (6.13)

Previous work has introduced several methods for maximizing R̂ so as to optimize
different LTR metrics [2, 58].

This concludes our description of the counterfactual LTR basics; importantly, rank-
ing policies can be optimized from clicks without being affected by the logging policy
or the users’ position bias.

6.3 GENSPEC for Query Specialization

This section introduces the GENSPEC framework and applies it to query specialization
for LTR. Section 6.6 details how it can be applied to the general contextual bandit
problem.

6.3.1 Generalization and query specialization
We will now propose the first part of the GENSPEC framework, which produces a
general policy πg and, for each query q, a specialized policy πq .

GENSPEC uses the logged data D both to train policies and to evaluate relative
performance; to avoid overfitting we split D in a training partition Dtrain and a policy-
selection partition Dsel so that D = Dtrain ∪ Dsel and Dtrain ∩ Dsel = ∅.

A policy has optimal generalization performance if it maximizes performance across
all queries. Thus, given the generalization policy space Πg , the optimal general policy
is:

πg = arg max
π∈Πg

R̂(π | Dtrain). (6.14)

1See Appendix 6.A for a proof.
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Alternatively, we can also choose to optimize performance for a single query q. First,
we only select the datapoints in D where query q was issued:

Dq =
{

(ci, ai, ρi, xi, qi) ∈ D | qi = q
}
. (6.15)

Then the policy πq that is specialized for query q is the policy in the specialization
policy space Πq that maximizes the performance when query q is issued:

πq = arg max
π∈Πq

R̂(π | Dtrain
q ). (6.16)

The motivation for πq is that it has the potential to provide better performance than πg
when q is issued. We may expect πq to outperform πg because πg may compromise
performance on the query q for better performance across all queries, whereas πq never
makes such compromises. Furthermore, Πq could contain more optimal policies than
Πg , because the policies in Πg have to be applicable to all queries whereas Πq can make
use of specific properties of q. However, it is also possible that πg and πq provide the
same performance. Moreover, since Dq is a subset of D, the optimization of πq is more
vulnerable to noise in the data. As a result, the true performance of πq for query q could
be worse than that of πg , especially when Dq is substantially smaller than D.

In other words, a priori it is unclear whether πg or πq are preferred. We thus need a
method to estimate the optimal choice with a reasonable amount of confidence.

6.3.2 Safely choosing between policies
We will now propose the other part of our GENSPEC framework: a meta-policy that
safely chooses between deploying πg and πq per query q. We wish to avoid deploying
πq when it performs worse than πg, and similarly, avoid deploying πg when it is
outperformed by the logging policy π0. Recently, a method for safe policy deployment
was introduced by Jagerman et al. [51] based on high-confidence bounds [119]. The
intuition behind their method is that a learned policy π should not be deployed before
we can be highly confident that it outperforms the logging policy π0, otherwise it is
safer to keep the logging policy in deployment.

While previous work has bounded the performance of individual policies [51, 119],
we instead bound the difference in performance between two policies directly. Let
δ(π1, π2) indicate the true difference in performance between a policy π1 and policy
π2:

δ(π1, π2) = R(π1)−R(π2). (6.17)

Knowing δ(π1, π2) allows us to optimally choose which of the two policies to deploy.
However, we can only estimate its value from historical data D:

δ̂(π1, π2 | D) = R̂(π1 | D)− R̂(π2 | D). (6.18)

For brevity, let Ri,d indicate the inverse-propensity-scored difference for a single
document d at interaction i:

Ri,d =
ci(d)

ρi(d)

∑
a∈π1∪π2

(
π1(a|xi, qi)− π2(a|xi, qi)

)
· λ
(
rank(d | a)

)
. (6.19)
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Then, for computational efficiency we rewrite:

δ̂(π1, π2 | D) =
1

|D|
∑
i∈D

∑
d∈ai

Ri,d =
1

|D|K
∑

(i,d)∈D

K ·Ri,d. (6.20)

For notational purposes, we let
∑

(i,d)∈D iterate over all actions ai and K documents d
per action ai. With the confidence parameter ε ∈ [0, 1], setting b to be the maximum
possible absolute value for Ri,d, i.e., b = maxλ(·)

min ρ , and

ν =
2|D|K ln

(
2

1−ε
)

|D|K − 1

∑
(i,d)∈D

(
K ·Ri,d − δ̂(π1, π2 | D)

)2
,

we follow Thomas et al. [119] to get the high-confidence bound:

CB(π1, π2 | D) =
7Kb ln

(
2

1−ε
)

3(|D|K − 1)
+

1

|D|K ·
√
ν. (6.21)

In turn, this provides us with the following upper and lower confidence bounds on δ:

LCB(π1, π2 | D) = δ̂(π1, π2 | D)− CB(π1, π2 | D)

UCB(π1, π2 | D) = δ̂(π1, π2 | D) + CB(π1, π2 | D).
(6.22)

As proven by Thomas et al. [119], with at least a probability of ε they bound the true
value of δ(π1, π2):

P
(
δ(π1, π2) ∈

[
LCB(π1, π2 | D),UCB(π1, π2 | D)

])
> ε. (6.23)

These guarantees allow us to safely choose between policies per query q. We apply
a doubly conservative strategy: πg is not deployed before we are confident that it
outperforms π0 across all queries; and πq is not deployed before we are confident
that it outperforms both πg and π0 on query q. This strategy results in the GENSPEC
meta-policy πGS :

πGS(a | x, q) =



πq(a | x, q), if
(
LCB(πq, πg | Dsel

q ) > 0

∧ LCB(πq, π0 | Dsel
q ) > 0

)
,

πg(a | x, q), if
(
LCB(πq, πg | Dsel

q ) ≤ 0

∧ LCB(πg, π0 | Dsel) > 0
)
,

π0(a | x, q), otherwise.

(6.24)

In theory, this approach can make use of the potential gains of specialization while
avoiding its risks. For instance, if the policy-selection partitionDsel

q is very small, it may
be heavily affected by noise, so that the confidence bound CB will be wide and πq will
not be deployed. Simultaneously,Dsel may be large enough so that with high-confidence
πg is deployed.

We expect that in practice the relative bounding of GENSPEC is much more data-
efficient than the Safe Exploration Algorithm (SEA) approach by Jagerman et al. [51].
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SEA computes an upper bound on the trusted policy and a lower bound on a learned
policy, and only deploys the learned policy if its lower bound is greater than the other’s
upper bound. When the learned policy has higher performance than the other, we expect
the relative bounds of GENSPEC to require less data to be certain about this difference
than the SEA bounds. In Appendix 6.B we theoretically analyze the difference between
these approaches and conclude that the relative bounding of GENSPEC is more efficient
if there is a positive covariance between R̂(π1 | D) and R̂(π2 | D). Because both
estimates are based on the same interaction data D, a high covariance is extremely
likely.

Previous work has described safety constraints for policy deployment [51, 62, 131].
The authors assume that a baseline policy exists whose behavior is considered safe; other
policies are considered unsafe if their performance is worse than the baseline policy by
a certain margin. If the logging policy is taken to be the baseline policy, then GENSPEC
can meet such constraints [51]. We note that while the safety guarantee is strong for a
single bound (Eq. 6.23), when applied to a large number of queries the probability of at
least one incorrect bound greatly increases. This problem of multiple comparisons may
cause some non-optimal policies to be deployed for some queries. Since we mainly
care about overall performance this is not expected to be an issue; however, in cases
where safety constraints are very important, ε can be chosen to account for the number
of comparisons.

6.3.3 Summary of the GENSPEC method

This completes our introduction of the GENSPEC framework for query specialization.
Figure 6.1 visualizes our approach to query specialization. We learn from historical
interactions gathered using a logging policy π0; the interactions are divided into a
training and policy-selection partition per query. Subsequently, a policy is optimized for
generalization — to perform well across all queries — and for each query a policy is
optimized for specialization — to perform well for a single query. While specialization
can potentially maximize performance on a specific query, it brings more risks than
generalization, since a general policy is optimized on more data and may provide better
performance on previously unseen queries. As a solution to this dilemma, we propose a
strategy that uses high-confidence bounds on the differences in performance between
policies. These bounds are then used to choose safely between the deployment of the
logging, general and specialized policies. In theory, GENSPEC combines the best of
both worlds: the high potential of specialization and the broad safety of generalization.

6.4 Experimental Setup

This section discusses our experimental setup and the policies used to evaluate the
GENSPEC framework.
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Figure 6.1: Visualization of the GENSPEC framework applied to query specialization
for counterfactual LTR. The data D is divided per query q, many specialized policies
π1, π2, . . . are each optimized for a single query q ∈ {1, 2, . . .}, and single a general
policy πg is learned on the data across all queries. Finally, GENSPEC decides which
policy to deploy per context, based on high-confidence bounds.

6.4.1 Setup and evaluation

To evaluate the GENSPEC framework, we make use of a semi-synthetic experimental
setup: queries, relevance judgements, and documents come from industry datasets, while
biased and noisy user interactions are simulated using probabilistic user models. This
setup is very common in the counterfactual LTR and online LTR literature [2, 58, 84].
We make use of the three largest LTR industry datasets: Yahoo! Webscope [17], MSLR-
WEB30k [95], and Istella [27]. Each consists of a set of queries, with for each query a
preselected set of documents, document-query combinations are only represented by
feature vectors and a label indicating relevance according to expert annotators. Labels
range from 0 (not relevant) to 4 (perfectly relevant): r(d | x, q) ∈ {0, 1, 2, 3, 4}. User
issued queries are simulated by uniformly sampling from the training and validation
partitions of the datasets. Displayed rankings are generated by a logging ranker using
a linear model optimized on 1% of the training partition using supervised LTR [58].
Then, user examination is simulated with probabilities inverse to the displayed rank of a
document: P

(
o(d) = 1 | a

)
= 1

rank(d|a) . Finally, user clicks are generated according to
the following formula using a single parameter α ∈ R:

P
(
c(d) = 1 | o(d) = 1, r(d | x, q)

)
= 0.2 + α · r(d | x, q). (6.25)
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In our experiments, we use α = 0.2 and α = 0.025; the former represents a near-
ideal setting where relevant documents receive a very large number of clicks, the latter
represents a more noisy and harder setting where the large majority of clicks are on
non-relevant documents. Clicks are only generated on the training and validation
partitions, 30% of training clicks are separated for policy selection (Dsel), hyperparame-
ter optimization is done using counterfactual evaluation with clicks on the validation
partition [58].

Some of our baselines are online bandit algorithms, for these baselines no clicks are
separated for Dsel, and the algorithms are run online: this means clicks are not gathered
using the logging policy but by applying the algorithms in an online interactive setting.

The evaluation metric we use is normalized DCG (Eq. 6.3) [53] using the ground-
truth labels from the datasets. Unlike most LTR work we do not apply a rank-cutoff
when computing the metric, thus, an NDCG of 1.0 indicates that all documents are
ranked perfectly (not just the top-k). We separately calculate performance on the test set
(Test-NDCG), to evaluate performance on previously unseen queries, and the training
set (Train-NDCG). The total number of clicks is varied up to 109 in total, uniformly
spread over all queries, the differences in Train-NDCG when more clicks are added
allows us to evaluate performance on queries with different levels of popularity.

6.4.2 Choice of policies

For the generalization policy space Πg we use feature-based ranking models. This is a
natural choice as they can be applied to any query, including previously unseen ones.
However, the available features could limit the possible behavior of the policies. We use
linear models for Πg; optimization is done on Dtrain following previous counterfactual
LTR work [2]. This results in a learned scoring function f(d, x, q) ∈ R according to
which items are ranked; due to score-ties there can be multiple valid rankings:

Ag(x, q) = {a | ∀(dn, dm) ∈ x, (f(dn, x, q) > f(dm, x, q)→ dn �a dm)}. (6.26)

The general policy πg samples uniformly random from the set of valid rankings:

πg(a | x, q) =

{
1

|Ag(x,q)| if a ∈ Ag(x, q),
0 otherwise.

(6.27)

For the specialization policy space Πq, we follow bandit-style online LTR work and
take the tabular approach [69]. Documents are scored according to an unbiased estimate
of Click-Through-Rate (CTR) on query q:

ˆCTR(d, q) =
1

|Dtrain
q |

∑
i∈Dtrain

q

ci(d)

ρi
, (6.28)

which maximizes the estimated performance (Eq. 6.12). Due to ties there can be multiple
valid rankings:

Aq(x, q) =
{
a | ∀(dn, dm) ∈ x,

(
ˆCTR(dn) > ˆCTR(dm)→ dn �a dm

)}
, (6.29)
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The specialized policy πq also chooses uniformly random from the set of valid rankings:

πq(a | x, q) =

{
1

|Aq(x,q)| if a ∈ Aq(x, q),
0 otherwise.

(6.30)

The tabular approach is not restrained by the available features and can produce any
possible ranking [138]. Consequently, given enough interactions the tabular approach
can perfectly rank items according to relevance. However, CTR cannot be estimated
for previously unseen queries and there πq chooses uniformly randomly between all
possible rankings. On a query with a single click, πq will place the once-clicked item at
the front of the ranking. Since clicks are very noisy, this behavior is very risky and hence
GENSPEC uses confidence bounds to avoid the deployment of such unsafe behavior.

6.5 Experimental Results and Discussion

6.5.1 Behavior of the GENSPEC meta-policy
First, we consider the behavior of GENSPEC compared with pure generalization or
pure specialization policies. Figures 6.2 and 6.3 show the performance of (i) GENSPEC
with different levels of confidence for its bounds (ε), along with that of (ii) the logging
policy, (iii) the pure generalization policy, and (iv) the pure specialization policies
between which the GENSPEC meta-policy chooses. We see that pure generalization
requires few clicks to improve over the logging policy but is not able to reach optimal
levels of performance. The performance of pure specialization, on the other hand, is
initially far below the logging policy. However, after enough clicks have been gathered,
performance increases until the optimal ranking is found; when click noise is limited
(α = 0.2) it reaches perfect performance on all three datasets (Train-NDCG). On the
unseen queries where there are no clicks (Test-NDCG), the specialization policy is
unable to learn anything and provides random performance (not displayed in Figures 6.2
and 6.3). The initial period of poor performance can be very detrimental to queries
that do not receive a large number of clicks. Prior work has found that web-search
queries follow a long-tail distribution [113, 115]; White et al. [130] found that 97% of
queries received fewer than 10 clicks over six months. For such queries, users may
only experience the initial poor performance of pure specialization, and never see the
improvements it brings at convergence. This possibility can be a large deterrent from
applying pure specialization in practice [131].

Finally, the GENSPEC policy combines properties of both: after a few clicks it
deploys the generalization policy and thus outperforms the logging policy; as more clicks
are gathered, specialization policies are activated, further improving performance. With
α = 0.2 the GENSPEC policy with ε ≤ 0.5 reaches perfect Train-NDCG performance
on all three datasets, similar to the pure specialization policy. However, unlike pure
specialization the performance of GENSPEC (with ε > 0) never drops below the logging
policy. Moreover, we never observe the situation where an increase in the number of
clicks results in a decrease in mean performance. There is a delay between when the pure
specialization policy is the optimal choice and when GENSPEC activates specialization
policies. Thus, while the usage of confidence bounds prevents the performance from
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Figure 6.2: Performance of GENSPEC with varying levels of confidence, compared
to pure generalization and pure specialization, on clicks generated with α = 0.2. We
separate queries on the training set (Train-NDCG) that have received clicks, and queries
on the test set (Test-NDCG) that do not receive any clicks. Clicks are spread uniformly
over the training set, the x-axis indicates the total number of clicks divided by the
number of training queries. Results are an average of 10 runs; shaded area indicates the
standard deviation.

dropping below the level of the logging policy, it does so at the cost of this delay. When
GENSPEC does not use any bounds it deploys specialized policies earlier, however,
in some cases these deployments result in worse performance than the logging policy,
albeit less than pure specialization. In all our observed results, a confidence of ε = 0.01
was enough to prevent any decreases in performance.

To conclude, our experimental results show that the GENSPEC meta-policy com-
bines the high-performance at convergence of specialization and the safe robustness of
generalization. In contrast to pure specialization, which results in very poor performance
when not enough clicks have been gathered, GENSPEC effectively avoids incorrect
deployment and under our tested conditions it never performs worse than the logging
policy. Meanwhile, GENSPEC achieves considerable gains in performance at conver-
gence, in contrast with pure generalization. Therefore, we conclude that GENSPEC is
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Figure 6.3: Performance of GENSPEC with varying levels of confidence, compared
to pure generalization and pure specialization, on clicks generated with α = 0.025.
Notation is the same as in Figure 6.2.

the best choice in situations where periods of poor performance have to be avoided [131]
or when not all queries receive large numbers of clicks [130].

6.5.2 Effectiveness of relative bounding
GENSPEC is not the first method that deploys policies based on confidence bounds. As
discussed in Section 6.3, Jagerman et al. [51] previously introduced the SEA algorithm.
SEA chooses between deploying a generalizing policy or keeping the logging policy
in deployment, by bounding both the performance of the logging and generalization
policy. When the upper bound of the logging policy is less than the lower bound of the
generalizing policy, SEA deploys the latter. The big differences with GENSPEC are
that SEA (i) uses two bounds to confidently estimate if one policy outperforms another,
and (ii) does not consider specialization policies. Because GENSPEC directly bounds
relative performance, its comparisons only use a single bound and thus we expect it to
be more efficient w.r.t. the number of clicks required than SEA (see Appendix 6.B for a
formal analysis).

For a fair comparison, we adapt SEA to choose between the same policies as
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Figure 6.4: GENSPEC compared to a meta-policy using the SEA bounds (see Sec-
tion 6.5.2), on clicks generated with α = 0.2. Notation is the same as in Figure 6.2.

GENSPEC and provide it with the same click data. Figure 6.4 and 6.5 display the
results of this comparison. Across all settings, GENSPEC deploys policies much earlier
than SEA with the same level of confidence. While they converge at the same levels
of performance, GENSPEC requires considerably less data, e.g., on the Istella dataset
with α = 0.025 GENSPEC deploys with 10 times less data. Thus, we conclude that
the relative bounds of GENSPEC are much more efficient than the existing bounding
approach of SEA.

6.5.3 Comparison with counterfactual LTR

Obvious baselines for our experiments are methods from the counterfactual LTR field [5,
58, 127]. In our setting where the observance probabilities are given, all these methods
reduce to Oosterhuis and de Rijke [86]’s method (see Chapter 5), i.e., the method
used to optimize the pure generalization policy in Figures 6.2 and 6.3. Thus, the
comparison between GENSPEC and pure generalization is effectively a comparison
between GENSPEC and state-of-the-art counterfactual LTR. As expected, we see
that GENSPEC reaches the same performance on previously unseen queries (Test-
NDCG); but on queries with clicks (Train-NDCG) GENSPEC outperforms standard
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Figure 6.5: GENSPEC compared to a meta-policy using the SEA bounds (see Sec-
tion 6.5.2), on clicks generated with α = 0.025. Notation is the same as in Figure 6.2.

counterfactual LTR by enormous amounts once many clicks have been gathered. Again,
there is a small delay between the moment the generalization policy outperforms the
logging policy and when GENSPEC deploys it. Since this observed delay is very short,
this downside seems to be heavily outweighed by the large increases in performance
in Train-NDCG. Thus, we conclude that GENSPEC is preferable over the existing
counterfactual LTR approaches, due to its ability to incorporate highly specialized
models in its policy.

6.5.4 Comparison with online LTR bandits

Other related methods are online LTR bandit algorithms [61, 68]. Unlike counterfactual
LTR, these bandit methods learn using online interventions: at each timestep they
choose which ranking to display to users. Thus, they have some control over the
interactions they receive, and attempt to display rankings that will benefit the learning
process the most. As baselines we use the hotfix algorithm [138] and the Position-
Based Model algorithm (PBM) [69]. The hotfix algorithm is a very general approach,
it completely randomly shuffles the top-n items and ranks them based on pairwise
preferences inferred from clicks. The main downside of the hotfix approach is that it
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Clicks generated with α = 0.2. Clicks generated with α = 0.025.
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Figure 6.6: GENSPEC compared to various online LTR bandits (see Section 6.5.4).
Notation is the same as in Figure 6.2.

can be very detrimental to the user experience due to the randomization.2 We apply two
versions of the hotfix algorithm, one for top-10 reranking to minimize randomization
and another for reranking the complete ranking. PBM is perfectly suited for our task
as it makes the same assumptions about user behavior as our experimental setting. We
apply PMB-PIE [69], which results in PBM always displaying the ranking it expects to
perform best, thus attempting to maximize the user experience during learning. These
methods are very similar to our specialization policies: the bandit baselines memorize
the best rankings and do not depend on features at all. Consequently, their learned
policies cannot be applied to previously unseen queries.

Figure 6.6 displays the results for this comparison. We see that when α = 0.2
Hotfix-Complete, PBM and GENSPEC all reach perfect Train-NCDG; however, Hotfix-
Complete and PBM reach convergence much earlier than GENSPEC. We attribute
this difference to three causes: (i) the online interventions of the bandit baselines,
(ii) GENSPEC only uses 70% of the available data for training (Dtrain) whereas the
bandit baselines use everything, and (iii) the delay in deployment added by GENSPEC’s
usage of confidence bounds. Similar to the pure specialization policies, the earlier

2We only report the performance of the ranking produced by the hotfix baseline, not of the randomized
rankings used to gather clicks.
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moment of convergence of the bandit baselines comes at the cost of an initial period
of very poor performance. We conclude that if only the moment of reaching optimal
performance matters, PBM is the best choice of method. However, if periods of
poor performance should be avoided [131], or if some queries may not receive large
numbers of clicks [130], GENSPEC is the better choice. An additional advantage is
that GENSPEC is a counterfactual method and does not have to be applied online like
the bandit baselines.

6.5.5 Feature-based online LTR
Besides the bandit baselines discussed in Section 6.5.4, feature-based methods for
online LTR also exist [82, 111, 126, 132]. A direct experimental comparison with
these methods is beyond the scope of this chapter. However, previous work has already
compared these methods with each other [84] and the state-of-the-art method with
counterfactual LTR [50]. Based on the latter work by Jagerman et al. [50] we do not
expect considerable differences between these online LTR methods and counterfactual
LTR in our settings. Therefore, we expect that a comparison would lead to similar
results as discussed in Section 6.5.3.

6.6 GENSPEC for Contextual Bandits

So far we have discussed GENSPEC for counterfactual LTR. We will now show that it
is also applicable to the broader contextual bandit problem. Instead of a query q, we
now keep track of an arbitrary context z ∈ {1, 2, . . .} where

xi, zi ∼ P (x, z). (6.31)

Data is gathered using a logging policy π0:

ai ∼ π0(a | xi, zi). (6.32)

However, unlike the LTR case, the rewards ri are observed directly:

ri ∼ P (r | ai, xi, zi). (6.33)

With the propensities
ρi = π0(ai | xi, zi) (6.34)

the data is:
D =

{
(ri, ai, ρi, xi, zi)

}N
i=1

; (6.35)

for specialization the data is filtered per context z:

Dz =
{

(ri, ai, ρi, xi, zi) ∈ D | zi = z
}
. (6.36)

Again, data for training Dtrain and for policy selection Dsel are separated. The reward is
estimated with an IPS estimator:

R̂(π | D) =
1

|D|
∑
i∈D

ri
ρi
π(ai | xi, zi). (6.37)
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With the policy spaces Πg and Πz , the policy for generalization is:

πg = arg max
π∈Πg

R̂(π | Dtrain); (6.38)

per context z, the specialization policy is:

πz = arg max
π∈Πz

R̂(π | Dtrain
z ). (6.39)

The difference between two policies is estimated by:

δ̂(π1, π2 | D) = R̂(π1 | D)− R̂(π2 | D). (6.40)

We differ from the LTR approach by estimating the bounds using:

Ri =
ri
ρi

(
π1(ai | xi, zi)− π2(ai | xi, zi)

)
. (6.41)

Following Thomas et al. [119], the confidence bounds are:

CB(π1, π2 | D) =
7b ln

(
2

1−ε
)

3(|D| − 1)

+
1

|D|

√√√√2|D| ln
(

2
1−ε
)

|D| − 1

∑
i∈D

(
Ri − δ̂(π1, π2 | D)

)2
,

(6.42)

where b is the maximum possible value for Ri. This results in the lower bound:

LCB(π1, π2 | D) = δ̂(π1, π2 | D)− CB(π1, π2 | D), (6.43)

which is used by the GENSPEC meta-policy:

πGS(a|x, z) =
πz(a|x, z), if

(
LCB(πz, πg|Dsel

z ) > 0 ∧ LCB(πz, π0|Dsel
z ) > 0

)
,

πg(a|x, z), if
(
LCB(πz, πg|Dsel

z ) ≤ 0 ∧ LCB(πg, π0|Dsel) > 0
)
,

π0(a|x, z), otherwise.

(6.44)

As such, GENSPEC can be applied to the contextual bandit problem for any arbitrary
choice of context z.

6.7 Conclusion

In this chapter we have introduced the Generalization and Specialization (GENSPEC)
framework for contextual bandit problems. For an arbitrary choice of contexts it simulta-
neously learns a general policy to perform well across all contexts, and many specialized
policies each optimized for a single context. Then, per context the GENSPEC meta-
policy uses high-confidence bounds to choose between deploying the logging policy,
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the general policy, or a specialized policy. As a result, GENSPEC combines the robust
safety of a general policy with the high-performance of a successfully specialized policy.

We have shown how GENSPEC can be applied to query-specialization for coun-
terfactual LTR. Our results show that GENSPEC combines the high performance of
specialized policies on queries with sufficiently many interactions, with the robust
performance on queries that were previously unseen or where little data is available.
Thus, it avoids the low performance at convergence of feature-based models underlying
the general policy, and the initial poor performance of the tabular models underlying
the specialized policies. We expect that GENSPEC can be used for other types of
specialization by choosing different context divisions, i.e., personalization for LTR is a
promising choice.

With these findings we can answer thesis research question RQ6 positively: Using
GENSPEC we can combine the specialization ability of bandit-style online LTR with
the robust generalization of feature-based LTR. As a result, the choice between spe-
cialization and generalization can now be made in a principled, theoretically-grounded
manner. For the LTR field this means that bandit-style LTR and feature-based LTR can
now be seen as complementary, instead of a mutually exclusive choice.

Future work could explore other contextual bandit problems and choices for context.
Additionally, we hope that the robust safety of GENSPEC further incites the application
of bandit algorithms in practice.

While this chapter considered GENSPEC for counterfactual LTR, Chapter 8 in-
troduces a novel method that is both effective at counterfactual LTR and online LTR.
With only small adaptations the contributions of both chapters could be combined, thus
potentially resulting in GENSPEC for both online and counterfactual LTR. Future work
could investigate the effectiveness of this possible combined approach.
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6.A Proof of Unbiasedness for Counterfactual Learn-
ing to Rank

This section will prove that the IPS estimate R̂ (Eq. 6.11) can be used to unbiasedly
optimize the true reward R (Eq. 6.1), as claimed in Section 6.2.2. For this proof we
rely on the following assumptions: (i) LTR metrics are linear combinations of item
relevances (Eq. 6.2), (ii) the assumption that clicks never occur on unobserved items
(Eq. 6.7), and (iii) click probabilities (conditioned on observance) are proportional to
relevance (Eq. 6.8).

First, we consider the expected value for an observed click ci(d) using Eq. 6.7; for
brevity we write r(d) = r(d | xi, qi):

Eoi,ai
[
ci(d)

]
= Eai

[
P
(
ci(d) = 1|oi(d) = 1, r(d)

)
· P
(
oi(d) = 1|ai

)]
= P

(
ci(d) = 1 | oi(d) = 1, r(d)

)
·
( ∑
a∈π0

P
(
oi(d) = 1 | a

)
· π0(a | xi, qi)

)
= ρi(d) · P

(
ci(d) = 1 | oi(d) = 1, r(d)

)
.

(6.45)

Then, consider the expected value for the IPS estimator, and note that ai is a historically
observed action and that a is the action being evaluated:

Eoi,ai
[
∆̂(a | ci, ρi)

]
= Eoi,ai

[∑
d∈a

λ
(
rank(d | a)

)
· ci(d)

ρi(d)

]

=
∑
d∈a

ρi(d)

ρi(d)
· λ
(
rank(d | a)

)
· P
(
ci(d) = 1 | oi(d) = 1, r(d)

)
=
∑
d∈a

λ
(
rank(d | a)

)
· P
(
ci(d) = 1 | oi(d) = 1, r(d)

)
. (6.46)

This step assumes that ρi(d) > 0, i.e., that every item has a non-zero probability of
being examined [58]. While Eoi,ai [∆̂(a | ci, ρi)] and ∆(a | xi, qi, r) are not necessarily
equal, using Eq. 6.8 we see that they are proportional with some offset C:

Eoi,ai
[
∆̂(a | ci, ρi)

]
∝
(∑
d∈a

λ
(
rank(d | a)

)
· r(d)

)
+ C

= ∆(a | xi, qi, r) + C, (6.47)

where C is a constant: C =
(∑K

i=1 λ(i)
)
· µ. Therefore, in expectation R̂ andR are

also proportional with the same constant offset:

Eoi,ai
[
R̂(π | D)

]
∝ R(π) + C. (6.48)
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Consequently, the estimator can be used to unbiasedly estimate the preference between
two policies:

Eoi,ai
[
R̂(π1 | D)

]
< Eoi,ai

[
R̂(π2 | D)

]
⇔ R(π1) < R(π2). (6.49)

Moreover, this implies that maximizing the estimated performance unbiasedly optimizes
the actual reward:

arg max
π

Eoi,ai
[
R̂(π | D)

]
= arg max

π
R(π). (6.50)

This concludes our proof. We have shown that R̂ is suitable for counterfactual evalu-
ation since it can unbiasedly identify if a policy outperforms another (Eq. 6.49) and,
furthermore, that R̂ can be used for unbiased LTR, i.e., it can be used to find the optimal
policy (Eq. 6.50).

6.B Efficiency of Relative Bounding by GENSPEC

Our experimental results showed that GENSPEC chooses between policies more effi-
ciently than when using SEA bounds [51]. In other words, when one policy has higher
performance than another, the relative bounds of GENSPEC require less data to be
certain about this difference than the SEA bounds. In this section, we will prove that
the relative bounds of GENSPEC are more efficient than the SEA bounds when the
covariance between the reward estimates of two policies is positive:

cov
(
R̂(π1|D), R̂(π2|D)

)
> 0. (6.51)

This means that GENSPEC will deploy a policy earlier than SEA if there is high
covariance, since both estimates are based on the same interaction data D a high
covariance is very likely.

Let us first consider when GENSPEC deploys a policy: Deployment by GENSPEC
depends on whether a relative confidence bound is greater than the estimated difference
in performance (cf. Eq. 6.24). For two policies π1 and π2 deployment happens when:

R̂(π1 | D)− R̂(π2 | D)− CB(π1, π2 | D) > 0. (6.52)

Thus the bound has to be smaller than the estimated performance difference:

CB(π1, π2 | D) < R̂(π1 | D)− R̂(π2 | D). (6.53)

In contrast, SEA does not use a single bound, but bounds the performance of both
policies. For clarity, we reformulate the SEA bound in our notation. First we have Rπji,d
the observed reward for an item d at interaction i for policy πj :

R
πj
i,d =

ci(d)

ρi(d)

∑
a∈πj

πj(a|xi, qi) · λ
(
rank(d|a)

)
. (6.54)
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Then we have a νπj for each policy:

νπj =
2|D|K ln

(
2

1−ε
)

|D|K − 1

∑
(i,d)∈D

(
K ·Rπji,d − R̂(πj | D)

)2
,

which we use to note the confidence bound for a single policy πj :

CB(πj | D) =
7Kb ln

(
2

1−ε
)

3(|D|K − 1)
+

1

|D|K ·
√
νπj . (6.55)

We note that the b parameter has the same value for both the relative and single con-
fidence bounds. SEA chooses between policies by comparing their upper and lower
confidence bounds:

R̂(π1 | D)− CB(π1 | D) > R̂(π2 | D) + CB(π2 | D). (6.56)

In this case, the summation of the bounds has to be smaller than the estimated perfor-
mance difference:

CB(π1 | D) + CB(π2 | D) < R̂(π1 | D)− R̂(π2 | D). (6.57)

We can now formally describe under which condition GENSPEC is more efficient
than SEA: by combining Eq. 6.53 and Eq. 6.57, we see that relative bounding is more
efficient when:

CB(π1, π2 | D) < CB(π1 | D) + CB(π2 | D). (6.58)

We notice that D, K, b and ε have the same value for both confidence bounds, thus we
only require:

√
ν <
√
νπ1 +

√
νπ2 . (6.59)

If we assume that D is sufficiently large, we see that
√
ν approximates the standard

deviation scaled by some constant:

√
ν ≈ C ·

√
var
(
δ̂(π1, π2|D)

)
, (6.60)

where the constant is: C =

√
2|D|2K2 ln

(
2

1−ε

)
|D|K−1 . Since the purpose of the bounds is to

prevent deployment until enough certainty has been gained, we think it is safe to assume
that D is large enough for this approximation before any deployment takes place.

To keep our notation concise, we use the following: δ̂ = δ̂(π1, π2|D), R̂1 =
R̂(π1|D), and R̂2 = R̂(π2|D). Using the same approximations for

√
νπ1 and

√
νπ2

we get: √
var(δ̂) <

√
var(R̂1) +

√
var(R̂2). (6.61)

By making use of the Cauchy-Schwarz inequality, we can derive the following lower
bound: √

var(R̂1) + var(R̂2) ≤
√

var(R̂1) +

√
var(R̂2). (6.62)
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Therefore, the relative bounding of GENSPEC must be more efficient when the follow-
ing is true:

var(δ̂) < var(R̂1) + var(R̂2), (6.63)

i.e. the variance of the relative estimator must be less than the sum of the variances of
the estimators for the individual policies. Finally, by rewriting var(δ̂) to:

var(δ̂) = var(R̂1 − R̂2) = var(R̂1) + var(R̂2)− 2cov(R̂1, R̂2), (6.64)

we see that the relative bounds of GENSPEC are more efficient than the multiple bounds
of SEA if the covariance between R̂1 and R̂2 is positive:

cov(R̂1, R̂2) > 0. (6.65)

Remember that both estimates are based on the same interaction data: R̂1 = R̂(π1|D),
and R̂2 = R̂(π2|D). Therefore, they are based on the same clicks and propensities
scores, thus it is extremely likely that the covariance between the estimates is positive.
Correspondingly, it is also extremely likely that the relative bounds of GENSPEC are
more efficient than the bounds used by SEA.

6.C Notation Reference for Chapter 6

Notation Description

K the number of items that can be displayed in a single ranking
i an iteration number
q a user-issued query
x contextual information, i.e., additional features
d an item to be ranked
a a ranked list
π a ranking policy
π(a | q) the probability that policy π displays ranking a for query q
r(d | x, q) the relevance of item d w.r.t. query q given context x
λ
(
rank(d | a)

)
a metric function that weights items depending on their rank

D the available interaction data
ci(d) a function indicating item d was clicked at iteration i
oi(d) a function indicating item d was observed at iteration i
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7
Taking the Counterfactual Online:

Efficient and Unbiased Online
Evaluation for Ranking

Counterfactual evaluation can estimate Click-Through-Rate (CTR) differences between
ranking systems based on historical interaction data, while mitigating the effect of
position bias and item-selection bias. In contrast, online evaluation methods, designed
for ranking, estimate performance differences between ranking systems by showing
interleaved rankings to users and observing their clicks. We are curious to find out
whether the online interventions of online evaluation methods truly result in more
efficient evaluation, and additionally, whether the popular interleaving methods are truly
unbiased w.r.t. biases such as position bias. Accordingly this chapter will consider the
following two thesis research questions:

RQ7 Can counterfactual evaluation methods for ranking be extended to perform effi-
cient and effective online evaluation?

RQ8 Are existing interleaving methods truly capable of unbiased evaluation w.r.t.
position bias?

We introduce the novel Logging-Policy Optimization Algorithm (LogOpt), which op-
timizes the policy for logging data so that the counterfactual estimate has minimal
variance. As minimizing variance leads to faster convergence, LogOpt increases the
data-efficiency of counterfactual estimation. LogOpt turns the counterfactual approach
– which is indifferent to the logging policy – into an online approach, where the algo-
rithm decides what rankings to display. We prove that, as an online evaluation method,
LogOpt is unbiased w.r.t. position and item-selection bias, unlike existing interleaving
methods. Furthermore, we perform large-scale experiments by simulating comparisons
between thousands of rankers. Our results show that while interleaving methods make
systematic errors, LogOpt is as efficient as interleaving without being biased. Lastly, we
provide a formal proof that shows interleaving methods are not unbiased w.r.t. position
bias.

This chapter was published as [85]. Appendix 7.C gives a reference for the notation used in this chapter.
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7.1 Introduction

Evaluation is essential for the development of search and recommendation systems [45,
64]. Before any ranking model is widely deployed it is important to first verify whether
it is a true improvement over the currently-deployed model. A traditional way of
evaluating relative differences between systems is through A/B testing, where part of the
user population is exposed to the current system (“control”) and the rest to the altered
system (“treatment”) during the same time period. Differences in behavior between
these groups can then indicate if the alterations brought improvements, e.g., if the
treatment group showed a higher CTR or more revenue was made with this system [18].

Interleaving has been introduced in Information Retrieval (IR) as a more efficient
alternative to A/B testing [56]. Interleaving algorithms take the rankings produced by
two ranking systems, and for each query create an interleaved ranking by combining the
rankings from both systems. Clicks on the interleaved rankings directly indicate relative
differences. Repeating this process over a large number of queries and averaging the re-
sults, leads to an estimate of which ranker would receive the highest CTR [44]. Previous
studies have found that interleaving requires fewer interactions than A/B testing, which
enables them to make consistent comparisons in a much shorter timespan [18, 110].

More recently, counterfactual evaluation for rankings has been proposed by Joachims
et al. [58] to evaluate a ranking model based on clicks gathered using a different
model. By correcting for the position bias introduced during logging, the counterfactual
approach can unbiasedly estimate the CTR of a new model on historical data. To
achieve this, counterfactual evaluation makes use of Inverse Propensity Scoring (IPS),
where clicks are weighted inversely to the probability that a user examined them during
logging [127]. A big advantage compared to interleaving and A/B testing, is that
counterfactual evaluation does not require online interventions.

In this chapter, we show that no existing interleaving method is truly unbiased:
they are not guaranteed to correctly predict which ranker has the highest CTR. On two
different industry datasets, we simulate a total of 1,000 comparisons between 2,000
different rankers. In our setup, interleaving methods converge on the wrong answer for
at least 2.2% of the comparisons on both datasets. A further analysis shows that existing
interleaving methods are unable to reliably estimate CTR differences of around 1% or
lower. Therefore, in practice these systematic errors are expected to impact situations
where rankers with a very similar CTR are compared.

We propose a novel online evaluation algorithm: Logging-Policy Optimization
Algorithm (LogOpt). LogOpt extends the existing unbiased counterfactual approach,
and turns it into an online approach. LogOpt estimates which rankings should be shown
to the user, so that the variance of its CTR estimate is minimized. In other words, it
attempts to learn the logging-policy that leads to the fastest possible convergence of the
counterfactual estimation. Our experimental results indicate that our novel approach is
as efficient as any interleaving method or A/B testing, without having a systematic error.
As predicted by the theory, we see that the estimates of our approach converge on the
true CTR difference between rankers. Therefore, we have introduced the first online
evaluation method that combines high efficiency with unbiased estimation.

The main contributions of this chapter are:
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1. The first logging-policy optimization method for minimizing the variance in counter-
factual CTR estimation.

2. The first unbiased online evaluation method that is as efficient as state-of-the-art
interleaving methods.

3. A large-scale analysis of existing online evaluation methods that reveals a previously
unreported bias in interleaving methods.

7.2 Preliminaries: Ranker Comparisons

The overarching goal of ranker evaluation is to find the ranking model that provides the
best rankings. For the purposes of this chapter, we will define the quality of a ranker
in terms of the number of clicks it is expected to receive. Let R indicate a ranking
and let E[CTR(R)] ∈ R≥0 be the expected number of clicks a ranking receives after
being displayed to a user. We consider ranking R1 to be better than R2 if in expectation
it receives more clicks: E[CTR(R1)] > E[CTR(R2)]. We will represent a ranking
model by a policy π, with π(R | q) as the probability that π displays R for a query q.
With P (q) as the probability of a query q being issued, the expected number of clicks
received under a ranking model π is:

E[CTR(π)] =
∑
q

P (q)
∑
R

E[CTR(R)]π(R | q). (7.1)

Our goal is to discover the E[CTR] difference between two policies:

∆(π1, π2) = E[CTR(π1)]−E[CTR(π2)]. (7.2)

We recognize that to correctly identify if one policy is better than another, we merely
need a corresponding binary indicator:

∆bin(π1, π2) = sign
(
∆(π1, π2)

)
. (7.3)

However, in practice the magnitude of the differences can be very important, for
instance, if one policy is computationally much more expensive while only having a
slightly higher E[CTR], it may be preferable to use the other in production. Therefore,
estimating the absolute E[CTR] difference is more desirable in practice.

7.2.1 User behavior assumptions

Any proof regarding estimators using user interactions must rely on assumptions about
user behavior. In this chapter, we assume that only two forms of interaction bias are at
play: position bias and item-selection bias.

Users generally do not examine all items that are displayed in a ranking but only
click on examined items [20]. As a result, a lower probability of examination for an
item also makes it less likely to be clicked. Position bias assumes that only the rank
determines the probability of examination [25]. Furthermore, we will assume that given

127



7. Efficient and Unbiased Online Evaluation for Ranking

an examination only the relevance of an item determines the click probability. Let
c(d) ∈ {0, 1} indicate a click on item d and o(d) ∈ {0, 1} examination by the user.
Then these assumptions result in the following assumed click probability:

P (c(d) = 1 | R, q) = P (o(d) = 1 | R)P (c(d) = 1 | o(d) = 1, q)

= θrank(d|R)ζd,q.
(7.4)

Here rank(d | R) indicates the rank of d in R; for brevity we use θrank(d|R) to denote
the examination probability:

θrank(d|R) = P (o(d) = 1 | R), (7.5)

and ζd,q for the conditional click probability:

ζd,q = P (c(d) = 1 | o(d) = 1, q). (7.6)

We also assume that item-selection bias is present; this type of bias is an extreme
form of position bias that results in zero examination probabilities for some items [86,
92]. This bias is unavoidable in top-k ranking settings, where only the k ∈ N>0 highest
ranked items are displayed. Consequently, any item beyond rank k cannot be observed
or examined by the user: ∀r ∈ N>0 (r > k → θr = 0). The distinction between
item-selection bias and position bias is important because the original counterfactual
evaluation method [58] is only able to correct for position bias when no item-selection
bias is present [86, 92].

Based on these assumptions, we can now formulate the expected CTR of a ranking:

E[CTR(R)] =
∑
d∈R

P (c(d) = 1 | R, q) =
∑
d∈R

θrank(d|R)ζd,q. (7.7)

While we assume this model of user behavior, its parameters are still assumed unknown.
Therefore, the methods in this chapter will have to estimate E[CTR] without prior
knowledge of θ or ζ.

7.2.2 Goal: CTR-estimator properties

Recall that our goal is to estimate the CTR difference between rankers (Eq. 7.2); online
evaluation methods do this based on user interactions. Let I be the set of available
user interactions, it contains N tuples of a single (issued) query qi, the corresponding
displayed ranking Ri, and the observed user clicks ci:

I = {(qi, Ri, ci)}Ni=1. (7.8)

Each evaluation method has a different effect on what rankings will be displayed to
users. Furthermore, each evaluation method converts each interaction into a single
estimate using some function f :

xi = f(qi, Ri, ci). (7.9)
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The final estimate is simply the mean over these estimates:

∆̂(I) =
1

N

N∑
i=1

xi =
1

N

N∑
i=1

f(qi, Ri, ci). (7.10)

This description fits all existing online and counterfactual evaluation methods for
rankings. Every evaluation method uses a different function f to convert interactions
into estimates; moreover, online evaluation methods also decide which rankings R to
display when collecting I. These two choices result in different estimators. Before we
discuss the individual methods, we briefly introduce the three properties we desire of
each estimator: consistency, unbiasedness and variance.

• Consistency – an estimator is consistent if it converges as the number of issued
queries N increases. All existing evaluation methods are consistent as their final
estimates are means of bounded values.

• Unbiasedness – an estimator is unbiased if its estimate is equal to the true CTR
difference in expectation:

Unbiased(∆̂)⇔ E
[
∆̂(I)

]
= ∆(π1, π2). (7.11)

If an estimator is both consistent and unbiased it is guaranteed to converge on the true
E[CTR] difference.

• Variance – the variance of an estimator is the expected squared deviation between a
single estimate x and the mean ∆̂(I):

Var(∆̂) = E

[(
x−E[∆̂(I)]

)2]
. (7.12)

Variance affects the rate of convergence of an estimator; for fast convergence it should
be as low as possible.

In summary, our goal is to find an estimator, for the CTR difference between two
ranking models, that is consistent, unbiased and has minimal variance.

7.3 Existing Online and Counterfactual Evaluation Meth-
ods

We describe three families of online and counterfactual evaluation methods for ranking.

7.3.1 A/B testing
A/B testing is a well established form of online evaluation to compare a system A with
a system B [64]. Users are randomly split into two groups and during the same time
period each group is exposed to only one of the systems. In expectation, the only factor
that differs between the groups is the exposure to the different systems. Therefore, by
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comparing the behavior of each user group, the relative effect each system has can be
evaluated.

We will briefly show that A/B testing is unbiased for E[CTR] difference estimation.
For each interaction either π1 or π2 determines the ranking, let Ai ∈ {1, 2} indicate the
assignment and Ai ∼ P (A). Thus, if Ai = 1, then Ri ∼ π1(R | q) and if Ai = 2, then
Ri ∼ π2(R | q). Each interaction i is converted into a single estimate xi by fA/B:

xi = fA/B(qi, Ri, ci) =

(
1[Ai = 1]

P (A = 1)
− 1[Ai = 2]

P (A = 2)

) ∑
d∈Ri

ci(d). (7.13)

We can prove that A/B testing is unbiased, since in expectation each individual estimate
is equal to the CTR difference:

E[fA/B(qi, Ri, ci)] =
∑
q

P (q)

(
P (A = 1)

∑
R π1(R | q)E[CTR(R)]

P (A = 1)

− P (A = 2)
∑
R π2(R | q)E[CTR(R)]

P (A = 2)

)
=
∑
q

P (q)
∑
R

E[CTR(R)]
(
π1(R | q)− π2(R | q)

)
= E[CTR(π1)]−E[CTR(π2)] = ∆(π1, π2). (7.14)

Variance is harder to evaluate without knowledge of π1 and π2. Unless ∆(π1, π2) = 0,
some variance is unavoidable since A/B testing alternates between estimating CTR(π1)
and CTR(π2).

7.3.2 Interleaving

Interleaving methods were introduced specifically for evaluation in ranking, as a more
efficient alternative to A/B testing [56]. After a query is issued, interleaving methods
take the rankings of two competing ranking systems and combine them into a single
interleaved ranking. Any clicks on the interleaved ranking can be interpreted as a
preference signal between either ranking system. Thus, unlike A/B testing, interleaving
does not estimate the CTR of individual systems but a relative preference; the idea is
that this allows it to be more efficient than A/B testing.

Each interleaving method attempts to use randomization to counter position bias,
without deviating too much from the original rankings so as to maintain the user
experience [56]. Team-draft interleaving (TDI) randomly selects one ranker to place
their top document first, then the other ranker places their top (unplaced) document
next [99]. Then it randomly decides the next two documents, and this process is
repeated until all documents are placed in the interleaved ranking. Clicks on the
documents are attributed to the ranker that placed them. The ranker with the most
attributed clicks is inferred to be preferred by the user. Probabilistic interleaving
(PI) treats each ranking as a probability distribution over documents; at each rank a
distribution is randomly selected and a document is drawn from it [41]. After clicks
have been received, probabilistic interleaving computes the expected number of clicked
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documents per ranking system to infer preferences. Optimized interleaving (OI) casts
the randomization as an optimization problem, and displays rankings so that if all
documents are equally relevant no preferences are found [96].

While every interleaving method attempts to deal with position bias, none is unbiased
according to our definition (Section 7.2.2). This may be confusing because previous
work on interleaving makes claims of unbiasedness [41, 44, 96]. However, they use
different definitions of the term. More precisely, TDI, PI, and OI provably converge on
the correct outcome if all documents are equally relevant [41, 44, 96, 99]. Moreover, if
one assumes binary relevance and π1 ranks all relevant documents equal to or higher
than π2, the binary outcome of PI and OI is proven to be correct in expectation [44, 96].
However, beyond the confines of these unambiguous cases, we can prove that these
methods do not meet our definition of unbiasedness: for every method one can construct
an example where it converges on the incorrect outcome. The rankers π1, π2 and
position bias parameters θ can be chosen so that in expectation the wrong (binary)
outcome is estimated; see Appendix 7.A for a proof for each of the three interleaving
methods. Thus, while more efficient than A/B testing, interleaving methods make
systematic errors in certain circumstances and thus should not be considered to be
unbiased w.r.t. CTR differences.

We note that the magnitude of the bias should also be considered. If the systematic
error of an interleaving method is minuscule while the efficiency gains are very high, it
may still be very useful in practice. Our experimental results (Section 7.6.2) reveal that
the systematic error of all three interleaving methods considered becomes very high
when comparing systems with a CTR difference of 1% or smaller.

7.3.3 Counterfactual evaluation

Counterfactual evaluation is based on the idea that if certain biases can be estimated
well, they can also be adjusted [57, 127]. While estimating relevance is considered the
core difficulty of ranking evaluation, estimating the position bias terms θ is very doable.
By randomizing rankings, e.g., by swapping pairs of documents [57] or exploiting
data logged during A/B testing [4], differences in CTR for the same item on different
positions can be observed directly. Alternatively, using Expectation Maximization (EM)
optimization [128] or a dual learning objective [5], position bias can be estimated from
logged data as well. Once the bias terms θ have been estimated, logged clicks can be
weighted so as to correct for the position bias during logging. Hence, counterfactual
evaluation can work with historically logged data. Existing counterfactual evaluation
algorithms do not dictate which rankings should be displayed during logging: they do
not perform interventions and thus we do not consider them to be online methods.

Counterfactual evaluation assumes that the position bias θ and the logging policy
π0 are known, in order to correct for both position bias and item-selection bias. Clicks
are gathered with π0 which decides which rankings are displayed to the user. We follow
Oosterhuis and de Rijke [86] (see Chapter 5) and use as propensity scores the probability
of observance in expectation over the displayed rankings:

ρ(d | q) = ER

[
P (o(d) = 1 | R) | π0

]
=
∑
R

π0(R | q)P (o(d) = 1 | R). (7.15)
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Then we use λ(d | π1, π2) to indicate the difference in observance probability under π1

or π2:

λ(d |π1, π2) = ER

[
P (o(d) = 1 |R) |π1

]
−ER

[
P (o(d) = 1 |R) |π2

]
=
∑
R

θrank(d|R)

(
π1(R | qi)− π2(R | qi)

)
. (7.16)

Then, the IPS estimate function is formulated as:

xi = fIPS(qi, Ri, ci) =
∑

d:ρ(d|qi)>0

ci(d)

ρ(d | qi)
λ(d | π1, π2). (7.17)

Each click is weighted inversely to its examination probability, but items with a zero
probability: ρ(d | qi) = 0 are excluded. We note that these items can never be clicked:

∀q, d (ρ(d | q) = 0→ c(d) = 0. (7.18)

Before we prove unbiasedness, we note that given ρ(d | qi) > 0:

E

[
c(d)

ρ(d | q)

]
=

∑
R π0(R | q)θrank(d|R)ζd,q

ρ(d | qi)

=

∑
R π0(R | q)θrank(d|R)∑
R′ π0(R′ | q)θrank(d|R′)

ζd,q = ζd,q.

(7.19)

This, in turn, can be used to prove unbiasedness:

E[fIPS(qi, Ri, ci)] =
∑
q

P (q)
∑

d:ρ(d | qi)>0

ζd,qλ(d | π1, π2)

= E[CTR(π1)]−E[CTR(π2)] = ∆(π1, π2).

(7.20)

This proof is only valid under the following requirement:

∀d, q (ζd,qλ(d | π1, π2) > 0→ ρ(d | q) > 0). (7.21)

In practice, this means that the items in the top-k of either π1 or π2 need to have a
non-zero examination probability under π0, i.e., they must have a chance to appear in
the top-k under π0.

Besides Requirement 7.21 the IPS counterfactual evaluation method [57, 127] is
completely indifferent to π0 and hence we do not consider it to be an online method. In
the next section, we will introduce an algorithm for choosing and updating π0 during
logging to minimize the variance of the estimator. By doing so we turn counterfactual
evaluation into an online method.

7.4 Logging Policy Optimization for Variance Minimiza-
tion

Next, we introduce a method aimed at finding a logging policy minimizes the variance
of the estimates of the counterfactual estimator.
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7.4.1 Minimizing variance
In Section 7.3.3, we have discussed counterfactual evaluation and established that it is
unbiased as long as θ is known and the logging policy meets Requirement 7.21. The
variance of ∆IPS depends on the position bias θ, the conditional click probabilities ζ,
and the logging policy π0. In contrast to the user-dependent θ and ζ, the way data is
logged by π0 is something one can have control over. The goal of our method is to find
the optimal policy that minimizes variance while still meeting Requirement 7.21:

π∗0 = arg min
π0:π0 meets Req. 7.21

Var
(
∆̂π0

IPS

)
, (7.22)

where ∆̂π0

IPS is the counterfactual estimator based on data logged using π0.
To formulate the variance, we first note that it is an expectation over queries:

Var(∆̂) =
∑
q

P (q)Var(∆̂ | q). (7.23)

To keep notation short, for the remainder of this section we will write: ∆ = ∆(π1, π2);
θd,R = θrank(d|R); ζd = ζd,q; λd = λ(d | π1, π2); and ρd = ρ(d | q, π0). Next, we
consider the probability of a click pattern c, this is simply a vector indicating a possible
combination of clicked documents c(d) = 1 and not-clicked documents c(d) = 0:

P (c | q) =
∑
R

π0(R | q)
∏

d:c(d)=1

θd,Rζd
∏

d:c(d)=0

(1− θd,Rζd)

=
∑
R

π0(R | q)P (c | R).
(7.24)

Here, π0 has some control over this probability: by deciding the distribution of displayed
rankings it can make certain click patterns more or less frequent. The variance added
per query is the squared error of every possible click pattern weighted by the probability
of each pattern. Let

∑
c sum over every possible click pattern:

Var(∆̂π0

IPS | q) =
∑
c

P (c | q)
(

∆−
∑

d:c(d)=1

λd
ρd

)2

. (7.25)

It is unknown whether there is a closed-form solution for π∗0 . However, the variance
function is differentiable. Taking the derivative reveals a trade-off between two poten-
tially conflicting goals:

δ

δπ0
Var(∆̂π0

IPS | q) =
∑
c

minimize frequency of high-error click patterns︷ ︸︸ ︷[
δ

δπ0
P (c | q)

](
∆−

∑
d:c(d)=1

λd
ρd

)2

+P (c | q)

 δ

δπ0

(
∆−

∑
d:c(d)=1

λd
ρd

)2


︸ ︷︷ ︸
minimize error of frequent click patterns

.

(7.26)
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On the one hand, the derivative reduces the frequency of click patterns that result in
high error samples, i.e., by updating π0 so that these are less likely to occur. On the
other hand, changing π0 also affects the propensities ρd, i.e., if π0 makes an item d less
likely to be examined, its corresponding value λd/ρd becomes larger, which can lead to
a higher error for related click patterns. The optimal policy has to balance: (i) avoiding
showing rankings that lead to high-error click patterns; and (ii) avoiding minimizing
propensity scores, which increases the errors of corresponding click patterns.

Our method applies stochastic gradient descent to optimize the logging policy w.r.t.
the variance. There are two main difficulties with this approach: (i) the parameters θ
and ζ are unknown a priori; and (ii) the gradients include summations over all possible
rankings and all possible click patterns, both of which are computationally infeasible.
In the following sections, we will detail how LogOpt solves both of these problems.

7.4.2 Bias & relevance estimation
In order to compute the gradient in Eq. 7.26, the parameters θ and ζ have to be known.
LogOpt is based on the assumption that accurate estimates of θ and ζ suffice to find a
near-optimal logging policy. We note that the counterfactual estimator only requires θ
to be known for unbiasedness (see Section 7.3.3). Our approach is as follows. At given
intervals during evaluation we use the available clicks to estimate θ and ζ . Then we use
the estimated θ̂ to get the current estimate ∆̂IPS (I, θ̂) (Eq. 7.17) and optimize w.r.t. the
estimated variance (Eq. 7.25) based on θ̂, ζ̂, and ∆̂IPS (I, θ̂).

For estimating θ and ζ we use the existing EM approach by Wang et al. [128],
because it works well in situations where few interactions are available and does not
require randomization. We note that previous work has found randomization-based
approaches to be more accurate for estimating θ [4, 30, 128]. However, they require
multiple interactions per query and specific types of randomization in their results; by
choosing the EM approach we avoid having these requirements.

7.4.3 Monte-Carlo-based derivatives
Both the variance (Eq. 7.25) and its gradient (Eq. 7.26), include a sum over all possible
click patterns. Moreover, they also include the probability of a specific pattern P (c | q)
that is based on a sum over all possible rankings (Eq. 7.24). Clearly, these equations
are infeasible to compute under any realistic time constraints. To solve this issue, we
introduce gradient estimation based on Monte-Carlo sampling. Our approach is similar
to that of Ma et al. [78], however, we are estimating gradients of variance instead of
general performance.

First, we assume that policies place the documents in order of rank and the probabil-
ity of placing an individual document at rank x only depends on the previously placed
documents. Let R1:x−1 indicate the (incomplete) ranking from rank 1 up to rank x, then
π0(d | R1:x−1, q) indicates the probability that document d is placed at rank x given
that the ranking up to x is R1:x−1. The probability of a ranking R up to rank k is thus:

π0(R1:k | q) =

k∏
x=1

π0(Rx | R1:x−1, q). (7.27)
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LetK be the length of a complete rankingR, the gradient of the probability of a ranking
w.r.t. a policy is:

δπ0(R | q)
δπ0

=

K∑
x=1

π0(R | q)
π0(Rx | R1:x, q)

[
δπ0(Rx | R1:x−1, q)

δπ0

]
. (7.28)

The gradient of the propensity w.r.t. the policy (cf. Eq. 7.15) is:

δρ(d| q)
δπ0

=

K∑
k=1

θk
∑
R

π0(R1:k−1| q)
([

δπ0(d|R1:k−1, q)

δπ0

]

+

k−1∑
x=1

π0(d|R1:k−1, q)

π0(Rx|R1:x−1, q)

[
δπ0(Rx|R1:x−1, q)

δπ0

])
.

(7.29)

To avoid iterating over all rankings in the
∑
R sum, we sample M rankings: Rm ∼

π0(R | q), and a click pattern on each ranking: cm ∼ P (c | Rm). This enables us to
make the following approximation:

ρ̂-grad(d) =
1

M

M∑
m=1

K∑
k=1

θk

([
δπ0(d|Rm1:k−1, q)

δπ0

]

+

k−1∑
x=1

π0(d|Rm1:k−1, q)

π0(Rmx |Rm1:x−1, q)

[
δπ0(Rmx |Rm1:x−1, q)

δπ0

])
,

(7.30)

since δρ(d| q)
δπ0

≈ ρ̂-grad(d, q). In turn, we can use this to approximate the second part of
Eq. 7.26:

̂error-grad(c) = 2

(
∆−

∑
d:c(d)=1

λd
ρd

) ∑
d:c(d)=1

λd
ρ2
d

ρ̂-grad(d). (7.31)

We approximate the first part of Eq. 7.26 with:

̂freq-grad(R, c) =(
∆−

∑
d:c(d)=1

λd
ρd

)2 K∑
x=1

1

π0(Rx | R1:x−1, q)

[
δπ0(Rx | R1:x−1, q)

δπ0

]
.

(7.32)

Together, they approximate the complete gradient (cf. Eq. 7.26):

δVar(∆̂π0

IPS | q)
δπ0

≈ 1

M

M∑
m=1

̂freq-grad(Rm, cm) + ̂error-grad(cm). (7.33)

Therefore, we can approximate the gradient of the variance w.r.t. a logging policy π0,
based on rankings sampled from π0 and our current estimated click model θ̂, ζ̂, while
staying computationally feasible.1

1For a more detailed description see Appendix 7.B.
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Algorithm 7.1 Logging-Policy Optimization Algorithm (LogOpt)

1: Input: Historical interactions: I; rankers to compare π1, π2.
2: θ̂, ζ̂ ← infer click model(I) // estimate bias using EM
3: λ̂← estimated observance(θ̂, π1, π2) // estimate λ cf. Eq 7.16
4: ∆̂(π1, π2)← estimated CTR(I, λ̂, θ̂) // CTR diff. cf. Eq 7.17
5: π0 ← init policy() // initialize logging policy
6: for j ∈ {1, 2, . . .} do
7: q ∼ P (q | I) // sample a query from interactions
8: R ← {R1, R2, . . . , RM} ∼ π0(R | q) // sample M rankings
9: C ← {c1, c2, . . . , cM} ∼ P (c | R) // sample M click patterns

10: δ̂ ← approx grad(R, C, λ̂, θ̂, ∆̂(π1, π2)) // using Eq. 7.33
11: π0 ← update(π0, δ̂) // update using approx. gradient
12: return π0

7.4.4 Summary

We have summarized the LogOpt method in Algorithm 7.1. The algorithm requires a
set of historical interactions I and two rankers π1 and π2 to compare. Then by fitting
a click model on I using an EM-procedure (Line 2) an estimate of observation bias
θ̂ and document relevance ζ̂ is obtained. Using θ̂, an estimate of the difference in
observation probabilities λ̂ is computed (Line 3 and cf. Eq 7.16), and an estimate of the
CTR difference ∆̂(π1, π2) (Line 4 and cf. Eq 7.17). Then the optimization of a new
logging policy π0 begins: A query is sampled from I (Line 7), and for that query M
rankings are sampled from the current π0 (Line 8), then for each ranking a click pattern
is sampled using θ̂ and ζ̂ (Line 9). Finally, using the sampled rankings and clicks, θ̂,
λ̂, and ∆̂(π1, π2), the gradient is now approximated using Eq. 7.33 (Line 10) and the
policy π0 is updated accordingly (Line 11). This process can be repeated for a fixed
number of steps, or until the policy has converged.

This concludes our introduction of LogOpt: the first method that optimizes the
logging policy for faster convergence in counterfactual evaluation. We argue that
LogOpt turns counterfactual evaluation into online evaluation, because it instructs
which rankings should be displayed for the most efficient evaluation. The ability to
make interventions like this is the defining characteristic of an online evaluation method.

7.5 Experimental Setup

We ran semi-synthetic experiments that are prevalent in online and counterfactual
evaluation [41, 58, 86]. User-issued queries are simulated by sampling from learning to
rank datasets; each dataset contains a preselected set of documents per query. We use
the Yahoo! Webscope [17] and MSLR-WEB30k [95] datasets; they both contain 5-grade
relevance judgements for all preselected query-document pairs. For each sampled query,
we let the evaluation method decide which ranking to display and then simulate clicks
on them using probabilistic click models.

To simulate position bias, we use the rank-based probabilities of Joachims et al.
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[58]:

P (o(d) = 1 | R, q) =
1

rank(d | R)
. (7.34)

If observed, the click probability is determined by the relevance label of the dataset
(ranging from 0 to 4). More relevant items are more likely to be clicked, yet non-relevant
documents still have a non-zero click probability:

P (c(d) = 1 | o(d) = 1, q) = 0.225 · relevance label(q, d) + 0.1. (7.35)

Spread over both datasets, we generated 2,000 rankers and created 1,000 ranker-pairs.
We aimed to generate rankers that are likely to be compared in real-world scenarios;
unfortunately, no simple distribution of such rankers is available. Therefore, we tried to
generate rankers that have (at least) a decent CTR and that span a variety of ranking
behaviors. Each ranker was optimized using LambdaLoss [129] based on the labelled
data of 100 sampled queries; each ranker is based on a linear model that only uses a
random sample of 50% of the dataset features. Figure 7.1 displays the resulting CTR
distribution; it appears to follow a normal distribution, on both datasets.

For each ranker-pair and method, we sample 3 · 106 queries and calculate their
CTR estimates for different numbers of queries. We considered three metrics: (i) The
binary error: whether the estimate correctly predicts which ranker should be preferred.
(ii) The absolute error: the absolute difference between the estimate and the trueE[CTR]
difference:

absolute-error = |∆(π1, π2)− ∆̂(I)|. (7.36)

And (iii) the mean squared error: the squared error per sample (not the final estimate);
if the estimator is unbiased this is equivalent to the empirical variance:

mean-squared-error =
1

N

N∑
i=1

(∆(π1, π2)− xi)2. (7.37)

We compare LogOpt with the following baselines: (i) A/B testing (with equal proba-
bilities for each ranker), (ii) Team-Draft Interleaving, (iii) Probabilistic Interleaving
(with τ = 4), and (iv) Optimized Interleaving (with the inverse rank scoring function).
Furthermore, we compare LogOpt with other choices of logging policies: (i) uniform
sampling, (ii) A/B testing: showing either the ranking of A or B with equal probability,
and (iii) an Oracle logging policy: applying LogOpt to the true relevances ζ and position
bias θ. We also consider LogOpt both in the case where θ is known a priori, or where it
has to be estimated still. Because estimating θ and optimizing the logging policy π0

is time-consuming, we only update θ̂ and π0 after 103, 104, 105 and 106 queries. The
policy LogOpt optimizes uses a neural network with 2 hidden layers consisting of 32
units each. The network computes a score for every document, then a softmax is applied
to the scores to create a distribution over documents.

7.6 Results

Our results are displayed in Figures 7.2, 7.3, and 7.4. Figure 7.2 shows the results
comparing LogOpt with other online evaluation methods; Figure 7.3 compares LogOpt
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Figure 7.1: The CTR distribution of the 2000 generated rankers, 1000 were generated
per dataset.

with counterfactual evaluation using other logging policies; and finally, Figure 7.4
shows the distribution of binary errors for each method after 3 · 106 sampled queries.

7.6.1 Performance of LogOpt

In Figure 7.2 we see that, unlike interleaving methods, counterfactual evaluation with
LogOpt continues to decrease both its binary error and its absolute error as the number
of queries increases. While interleaving methods converge at a binary error of at least
2.2% and an absolute error greater than 0.01, LogOpt appears to converge towards zero
errors for both. This is expected as LogOpt is proven to be unbiased when the position
bias is known. Interestingly, we see similar behavior from LogOpt with estimated
position bias. Both when bias is known or estimated, LogOpt has a lower error than the
interleaving methods after 2 · 103 queries. Thus we conclude that interleaving methods
converge faster and have an initial period where their error is lower, but are biased. In
contrast, by being unbiased, LogOpt converges on a lower error eventually.

If we use Figure 7.2 to compare LogOpt with A/B testing, we see that on both
datasets LogOpt has a considerably smaller mean squared error. Since both methods
are unbiased, this means that LogOpt has a much lower variance and thus is expected
to converge faster. On the Yahoo dataset we observe this behavior, both in terms of
binary error and absolute error and regardless of whether the bias is estimated, LogOpt
requires half as much data as A/B testing to reach the same level or error. Thus, on
Yahoo LogOpt is roughly twice as data-efficient as A/B testing. On the MSLR dataset it
is less clear whether LogOpt is noticeably more efficient: after 104 queries the absolute
error of LogOpt is twice as high, but after 105 queries it has a lower error than A/B
testing. We suspect that the relative drop in performance around 104 queries is due
to LogOpt overfitting on incorrect ζ̂ values, however, we were unable to confirm this.
Hence, LogOpt is just as efficient as, or even more efficient than, A/B testing, depending
on the circumstances.

Finally, when we use Figure 7.3 to compare LogOpt with other logging policy
choices, we see that LogOpt mostly approximates the optimal Oracle logging policy. In
contrast, the uniform logging policy is very data-inefficient; on both datasets it requires
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Figure 7.2: Comparison of LogOpt with other online methods; displayed results are an
average over 500 comparisons.

around ten times the number of queries to reach the same level or error as LogOpt.
The A/B logging policy is a better choice than the uniform logging policy, but apart
from the dip in performance on the MSLR dataset, it appears to require twice as many
queries as LogOpt. Interestingly, the performance of LogOpt is already near the Oracle
when only 102 queries have been issued. With such a small number of interactions,
accurately estimating the relevances ζ should not be possible, thus it appears that in
order for LogOpt to find an efficient logging policy the relevances ζ are not important.
This must mean that only the differences in behavior between the rankers (i.e., λ) have
to be known for LogOpt to be efficient. Overall, these results show that LogOpt can
greatly increase the efficiency of counterfactual estimation.

7.6.2 Bias of interleaving

Our results in Figure 7.2 clearly illustrate the bias of interleaving methods: each of them
systematically infers incorrect preferences in (at least) 2.2% of the ranker-pairs. These
errors are systematic since increasing the number of queries from 105 to 3 · 106 does not
remove any of them. Additionally, the combination of the lowest mean-squared-error
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Figure 7.3: Comparison of logging policies for counterfactual evaluation; displayed
results are an average over 500 comparisons.

with a worse absolute error than A/B testing after 104 queries, indicates that interleaving
results in a low variance at the cost of bias. To better understand when these systematic
errors occur, we show the distribution of binary errors w.r.t. the CTR differences of the
associated ranker-pairs in Figure 7.4. Here we see that most errors occur on ranker-pairs
where the CTR difference is smaller than 1%, and that of all comparisons the percentage
of errors greatly increases as the CTR difference decreases below 1%. This suggests
that interleaving methods are unreliable to detect preferences when differences are 1%
CTR or less.

It is hard to judge the impact this bias may have in practice. On the one hand, a 1%
CTR difference is far from negligible: generally a 1% increase in CTR is considered
an impactful improvement in the industry [102]. On the other hand, our results are
based on a single click model with specific values for position bias and conditional click
probabilities. While our results strongly prove that interleaving is biased, we should be
careful not to generalize the size of the observed systematic error to all other ranking
settings.

Previous work has performed empirical studies to evaluate various interleaving
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methods with real users. Chapelle et al. [18] applied interleaving methods to compare
ranking systems for three different search engines, and found team-draft interleaving
to highly correlate with absolute measures such as CTR. However, we note that in
the study by Chapelle et al. [18] no more than six rankers were compared, thus such a
study would likely miss a systematic error of 2.2%. In fact, Chapelle et al. [18] note
themselves that they cannot confidently claim team-draft interleaving is completely
unbiased. Schuth et al. [110] performed a larger comparison involving 38 ranking
systems, but again, too small to reliably detect a small systematic error.

It appears that the field is missing a large scale comparison that involves a large
enough number of rankers to observe small systematic errors. If such an error is found,
the next step is to identify if certain types of ranking behavior are erroneously and
systematically disfavored. While these questions remain unanswered, we are concerned
that the claims of unbiasedness in previous work on interleaving (see Section 7.3.2)
give practitioners an unwarranted sense of reliability in interleaving.

7.7 Conclusion

In this chapter, we considered thesis research question RQ7: whether counterfactual
evaluation methods for ranking can be extended to perform efficient and effective
online evaluation. Our answer is positive: we have introduced the Logging-Policy
Optimization Algorithm (LogOpt): the first method that optimizes a logging policy
for minimal variance counterfactual evaluation. Counterfactual evaluation is proven to
be unbiased w.r.t. position bias and item-selection bias under a wide range of logging
policies. With the introduction of LogOpt, we now have an algorithm that can decide
which rankings should be displayed for the fastest convergence. Therefore, we argue that
LogOpt turns the IPS-based counterfactual evaluation approach – which is indifferent
to the logging policy – into an online approach – which instructs the logging policy.
Our experimental results show that LogOpt can lead to a better data-efficiency than A/B
testing, while also showing that interleaving is biased.

This brings us to the second thesis research question that this chapter addressed,
RQ8: whether interleaving methods are truly unbiased w.r.t. position bias. We an-
swer this question negatively: Our experimental results clearly reveal a systematic
error in interleaving, moreover, in Appendix 7.A we formally prove that cases exist
where interleaving is affected by position bias. In other words, interleaving should not
be considered unbiased under the most common definition of bias in counterfactual
evaluation.

While our findings are mostly theoretical, they do suggest that future work should
further investigate the bias in interleaving methods. Our results suggest that all inter-
leaving methods make systematic errors, in particular when rankers with a similar CTR
are compared. Furthermore, to the best of our knowledge, no empirical studies have
been performed that could measure such a bias; our findings strongly show that such a
study would be highly valuable to the field. Finally, LogOpt shows that in theory an
evaluation method that is both unbiased and efficient is possible; if future work finds
that these theoretical findings match empirical results with real users, this could be the
start of a new line of theoretically-justified online evaluation methods.
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Inspired by the success of this chapter to find a method effective at both online and
counterfactual evaluation for ranking, Chapter 8 introduces a method that is effective
at both online and counterfactual Learning to Rank (LTR). Together, these chapters
show that the divide between online and counterfactual optimization/evaluation can be
bridged.
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Figure 7.4: Distribution of errors over the CTR differences of the rankers in the compar-
ison; red indicates a binary error; green indicates a correctly inferred binary preference;
results are on estimates based on 3 · 106 sampled queries.
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7.A Proof of Bias in Interleaving

Section 7.3.2 claimed that for the discussed interleaving methods, an example can be
constructed so that in expectation the wrong binary outcome is estimated w.r.t. the actual
expected CTR differences. These examples are enough to prove that these interleaving
methods are biased w.r.t. CTR differences. In the following sections we will introduce a
single example for each interleaving method.

For clarity, we will keep these examples as basic as possible. We consider a
ranking setting where only a single query q1 occurs, i.e. P (q1) = 1, furthermore,
there are only three documents to be ranked: A, B, and C. The two policies π1 and
π2 in the comparison are both deterministic so that: π1([A,B,C] | q1) = 1 and
π2([B,C,A] | q1) = 1. Thus π1 will always display the ranking: [A,B,C], and π2

the ranking: [B,C,A]. Furthermore, document B is completely non-relevant: ζB = 0,
consequently, B can never receive clicks; this will make our examples even simpler.

The true E[CTR] difference is thus:

∆(π1, π2) = (θ1 − θ3)ζA + (θ3 − θ2)ζC . (7.38)

For each interleaving method, will now show that position bias parameters θ1, θ2, and
θ3 and relevances ζA and ζC exist where the wrong binary outcome is estimated.

7.A.1 Team-Draft Interleaving

Team-Draft Interleaving [99] lets rankers take turns to add their top document and keeps
track which ranker added each document. In total there are four possible interleaving
and assignment combinations, each is equally probable:

Interleaving Ranking Assignments Probability

R1 A, B, C 1, 2, 1 1/4
R2 A, B, C 1, 2, 2 1/4
R3 B, A, C 2, 1, 1 1/4
R4 B, A, C 2, 1, 2 1/4

Per issued query Team-Draft Interleaving produces a binary outcome, this is based on
which ranker had most of its assigned documents clicked. To match our CTR estimate,
we use 1 to indicate π1 receiving more clicks, and −1 for π2. Per interleaving we can
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compute the probability of each outcome:

P (outcome = 1 | R1) = θ1ζA + (1− θ1ζA)θ3ζC ,

P (outcome = 1 | R2) = θ1ζA(1− θ3ζC),

P (outcome = 1 | R3) = θ2ζA + (1− θ2ζA)θ3ζC ,

P (outcome = 1 | R4) = θ2ζA(1− θ3ζC),

P (outcome = −1 | R1) = 0,

P (outcome = −1 | R2) = (1− θ1ζA)θ3ζC ,

P (outcome = −1 | R3) = 0,

P (outcome = −1 | R4) = (1− θ2ζA)θ3ζC .

Since every interleaving is equally likely, we can easily derive the unconditional proba-
bilities:

P (outcome = 1) =
1

4

(
θ1ζA + (1− θ1ζA)θ3ζC + θ1ζA(1− θ3ζC)

+ θ2ζA + (1− θ2ζA)θ3ζC + θ2ζA(1− θ3ζC)
)
,

P (outcome = −1) =
1

4

(
(1− θ1ζA)θ3ζC + (1− θ2ζA)θ3ζC

)
.

With these probabilities, the expected outcome is straightforward to calculate:

E[outcome] = P (outcome = 1)− P (outcome = −1)

=
1

4

(
θ1ζA + θ1ζA(1− θ3ζC) + θ2ζA + θ2ζA(1− θ3ζC)

)
> 0.

Interestingly, without knowing the values for θ, ζA and ζC , we already know that the
expected outcome is positive. Therefore, we can simply choose values that lead to a
negative CTR difference, and the expected outcome will be incorrect. For this example,
we choose the position bias: θ1 = 1.0, θ2 = 0.9, and θ3 = 0.8; and the relevances:
ζ1 = 0.1, and ζ3 = 1.0. As a result, the expected binary outcome of Team-Draft
Interleaving will not match the true E[CTR] difference:

∆(π1, π2) < 0 ∧E[outcome] > 0. (7.39)

Therefore, we have proven that Team-Draft Interleaving is biased w.r.t. CTR differences.

7.A.2 Probabilistic Interleaving
Probabilistic Interleaving [41] treats rankings as distributions over documents, we
follow the soft-max approach of Hofmann et al. [41] and use τ = 4.0 as suggested.
Probabilistic Interleaving creates interleavings by sampling randomly from one of
the rankings, unlike Team-Draft Interleaving it does not remember which ranking
added each document. Because rankings are treated as distributions, every possible
permutation is a valid interleaving, leading to six possibilities with different probabilities
of being displayed. When clicks are received, every possible assignment is considered
and the expected outcome is computed over all possible assignments. Because there
are 36 possible rankings and assignment combinations, we only report every possible
ranking and the probabilities for documents A or C being added by π1:
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Interleaving Ranking P (add(A) = 1) P (add(C) = 1) Probability

R1 A, B, C 0.9878 0.4701 0.4182
R2 A, C, B 0.9878 0.4999 0.0527
R3 B, A, C 0.8569 0.0588 0.2849
R4 B, C, A 0.5000 0.0588 0.2094
R5 C, A, B 0.9872 0.5000 0.0166
R6 C, B, A 0.5000 0.0562 0.0182

These probabilities are enough to compute the expected outcome, similar as the pro-
cedure we used for Team-Draft Interleaving. We will not display the full calculation
here as it is extremely long; we recommend using some form of computer assistance to
perform these calculations. While there are many possibilities, we choose the following
position bias: θ1 = 1.0, θ2 = 0.9, and θ3 = 0.3; and relevance: ζ1 = 0.5, and ζ3 = 1.0.
This leads to the following erroneous result:

∆(π1, π2) < 0 ∧E[outcome] > 0. (7.40)

Therefore, we have proven that Probabilistic Interleaving is biased w.r.t. CTR differ-
ences.

7.A.3 Optimized Interleaving

Optimized Interleaving casts interleaving as an optimization problem [96]. Optimized
Interleaving works with a credit function: each clicked document produces a positive or
negative credit. The sum of all credits is the final estimated outcome. We follow Radlin-
ski and Craswell [96] and use the linear rank difference, resulting in the following credits
per document: click-credit(A) = 2, click-credit(B) = −1, and click-credit(C) = −1.
Then the set of allowed interleavings is created, these are all the rankings that do not
contradict a pairwise document preference that both rankers agree on. Given this set
of interleavings, a distribution over them is found so that if every document is equally
relevant then no preference is found.2 For our example, the only valid distribution over
interleavings is the following:

Interleaving Ranking Probability

R1 A, B, C 1/3
R2 B, A, C 1/3
R3 B, C, A 1/3

The expected credit outcome shows us which ranker will be preferred in expectation:

E[credit] =
1

3

(
2(θ1 + θ2 + θ3)ζA − (θ2 + 2θ3)ζC

)
. (7.41)

2Radlinski and Craswell [96] state that if clicks are not correlated with relevance then no preference
should be found, in their click model (and ours) these two requirements are actually equivalent.
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We choose the position bias: θ1 = 1.0, θ2 = 0.9, and θ3 = 0.9; and the relevances:
ζ1 = 0.5, ζ3 = 1.0. As a result, the true E[CTR] difference is positive, but optimized
interleaving will prefer π2 in expectation:

∆(π1, π2) > 0 ∧E[credit] < 0. (7.42)

Therefore, we have proven that Optimized Interleaving is biased w.r.t. CTR differences.

7.B Expanded Explanation of Gradient Approximation

This section describes our Monte-Carlo approximation of the variance gradient in more
detail. We repeat the steps described in Section 7.4.3 and include some additional
intermediate steps; this should make it easier for a reader to verify our theory.

First, we assume that policies place the documents in order of rank and the probabil-
ity of placing an individual document at rank x only depends on the previously placed
documents. Let R1:x−1 indicate the (incomplete) ranking from rank 1 up to rank x, then
π0(d | R1:x−1, q) indicates the probability that document d is placed at rank x given
that the ranking up to x is R1:x−1. The probability of a ranking R of length K is thus:

π0(R | q) =

K∏
x=1

π0(Rx | R1:x−1, q). (7.43)

The probability of a ranking R up to rank k is:

π0(R1:k | q) =

k∏
x=1

π0(Rx | R1:x−1, q). (7.44)

Therefore the propensity (cf. Eq. 7.15) can be rewritten to:

ρ(d | q) =

K∑
k=1

θk
∑
R

π0(R1:k−1 | q)π0(d |R1:k−1, q). (7.45)

Before we take the gradient of the propensity, we note that the gradient of the probability
of a single ranking is:

δπ0(R | q)
δπ0

=

K∑
x=1

π0(R | q)
π0(Rx | R1:x, q)

[
δπ0(Rx | R1:x−1, q)

δπ0

]
. (7.46)

Using this gradient, we can derive the gradient of the propensity w.r.t. the policy:

δρ(d| q)
δπ0

=

K∑
k=1

θk
∑
R

π0(R1:k−1| q)
([

δπ0(d|R1:k−1, q)

δπ0

]

+

k−1∑
x=1

π0(d|R1:k−1, q)

π0(Rx|R1:x−1, q)

[
δπ0(Rx|R1:x−1, q)

δπ0

])
. (7.47)
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To avoid iterating over all rankings in the
∑
R sum, we sample M rankings: Rm ∼

π0(R | q), and a click pattern on each ranking: cm ∼ P (c | Rm). This enables us to
make the following approximation:

ρ̂-grad(d) =
1

M

M∑
m=1

K∑
k=1

θk

([
δπ0(d|Rm1:k−1, q)

δπ0

]

+

k−1∑
x=1

π0(d|Rm1:k−1, q)

π0(Rmx |Rm1:x−1, q)

[
δπ0(Rmx |Rm1:x−1, q)

δπ0

])
,

(7.48)

since δρ(d| q)
δπ0

≈ ρ̂-grad(d, q). The second part of Eq. 7.26 is:[
δ

δπ0

(
∆−

∑
d:c(d)=1

λd
ρd

)2
]

= 2

(
∆−

∑
d:c(d)=1

λd
ρd

) ∑
d:c(d)=1

λd
ρ2
d

[
δρd
δπ0

]
, (7.49)

using ρ̂-grad(d) we get the approximation:

̂error-grad(c) = 2

(
∆−

∑
d:c(d)=1

λd
ρd

) ∑
d:c(d)=1

λd
ρ2
d

ρ̂-grad(d). (7.50)

Next, we consider the gradient of a single click pattern:

δ

δπ0
P (c | q) =

∑
R

P (c | R)

[
δπ0(R | q)

δπ0

]
. (7.51)

This can then be used to reformulate the first part of Eq. 7.26:

∑
c

[
δ

δπ0
P (c | q)

](
∆−

∑
d:c(d)=1

λd
ρd

)2

=
∑
c

∑
R

P (c | R)

[
δπ0(R | q)

δπ0

](
∆−

∑
d:c(d)=1

λd
ρd

)2
(7.52)

Making use of Eq. 7.46, we approximate this with:

̂freq-grad(R, c) =(
∆−

∑
d:c(d)=1

λd
ρd

)2 K∑
x=1

1

π0(Rx | R1:x−1, q)

[
δπ0(Rx | R1:x−1, q)

δπ0

]
.

(7.53)

Combining the approximation of both parts of Eq. 7.26, allows us to approximate the
complete gradient:

δVar(∆̂π0

IPS | q)
δπ0

≈ 1

M

M∑
m=1

̂freq-grad(Rm, cm) + ̂error-grad(cm). (7.54)
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This completes our expanded description of the gradient approximation. We have shown
that we can approximate the gradient of the variance w.r.t. a logging policy π0, based
on rankings sampled from π0 and our current estimated click model θ̂, ζ̂, while staying
computationally feasible.

7.C Notation Reference for Chapter 7

Notation Description

k the number of items that can be displayed in a single ranking
i an iteration number
q a user-issued query
d an item to be ranked
R a ranked list
R1:x the subranking in R from index 1 up to and including index x
π a ranking policy
π(R | q) the probability that policy π displays ranking R for query q
π(Rx|R1:x−1, q) probability of π adding item Rx given R1:x−1 is already placed
I the available interaction data
c a click pattern: a vector indicating a combination of clicked

and not-clicked items∑
c a summation over every possible click pattern

c(d) a function indicating item d was clicked in click pattern c
o(d) a function indicating item d was observed at iteration i
xi the estimate for a single interaction i
f(qi, Ri, ci) the method-specific function that converts a single interaction

into an estimate xi
θrank(d|R) the observation probability: P (o(d) = 1 | R)
ζd,q the conditional click probability: P (c(d) = 1 | o(d) = 1, q)
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8
Unifying Online and Counterfactual

Learning to Rank

In Chapter 7, we introduced the Logging-Policy Optimization Algorithm (LogOpt)
algorithm that turns a counterfactual ranking evaluation method into an online evaluation
method. Thus, the contributions of Chapter 7 are a significant step in bridging the divide
between online and counterfactual ranking evaluation. Inspired by this contribution, this
chapter will consider whether something similar can be done for the gap between online
and counterfactual Learning to Rank (LTR). Accordingly, in this chapter the following
question will be addressed:

RQ9 Can the counterfactual LTR approach be extended to perform highly effective
online LTR?

In contrast with Chapter 7, which looked at finding the best logging policy, this chapter
will consider a novel counterfactual estimator; we propose the novel intervention-aware
estimator for both counterfactual and online LTR. The estimator corrects for the effect of
position bias, trust bias, and item-selection bias using corrections based on the behavior
of the logging policy and online interventions: changes to the logging policy made
during the gathering of click data. Our experimental results show that, unlike existing
counterfactual LTR methods, the intervention-aware estimator can greatly benefit from
online interventions. In contrast, existing online methods are hindered without online
interventions and thus should not be applied counterfactually. With the introduction
of the intervention-aware estimator, we aim to bridge the online/counterfactual LTR
division as it is shown to be highly effective in both online and counterfactual scenarios.

8.1 Introduction

Ranking systems form the basis for most search and recommendation applications [75].
As a result, the quality of such systems can greatly impact the user experience, thus it is
important that the underlying ranking models perform well. The LTR field considers
methods to optimize ranking models. Traditionally this was based on expert annotations.
Over the years the limitations of expert annotations have become apparent; some of the

This chapter was submitted as [88]. Appendix 8.A gives a reference for the notation used in this chapter.
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most important ones are: (i) they are expensive and time-consuming to acquire [17, 95];
(ii) in privacy-sensitive settings expert annotation is unethical, e.g., in email or private
document search [128]; and (iii) often expert annotations appear to disagree with actual
user preferences [104].

User interaction data solves some of the problems with expert annotations: (i) in-
teraction data is virtually free for systems with active users; (ii) it does not require
experts to look at potentially privacy-sensitive content; (iii) interaction data is indicative
of users’ preferences. For these reasons, interest in LTR methods that learn from user
interactions has increased in recent years. However, user interactions are a form of
implicit feedback and generally also affected by other factors than user preference [57].
Therefore, to be able to reliably learn from interaction data, the effect of factors other
than preference has to be corrected for. In clicks on rankings three prevalent factors are
well known: (i) position bias: users are less likely to examine, and thus click, lower
ranked items [25]; (ii) item-selection bias: users cannot click on items that are not
displayed [86, 92]; and (iii) trust bias: because users trust the ranking system, they
are more likely to click on highly ranked items that they do not actually prefer [3, 57].
As a result of these biases, which ranking system was used to gather clicks can have a
substantial impact on the clicks that will be observed. Current LTR methods that learn
from clicks can be divided into two families: counterfactual approaches [58] – that
learn from historical data, i.e., clicks that have been logged in the past – and online
approaches [132] – that can perform interventions, i.e., they can decide what rankings
will be shown to users. Recent work has noticed that some counterfactual methods can
be applied as an online method [50], or vice versa [6, 136]. Nonetheless, every existing
method was designed for either the online or counterfactual setting, never both.

In this chapter, we propose a novel estimator for both counterfactual and online
LTR from clicks: the intervention-aware estimator. The intervention-aware estimator
builds on ideas that underlie the latest existing counterfactual methods: the policy-aware
estimator [86] and the affine estimator [123]; and expands them to consider the effect
of online interventions. It does so by considering how the effect of bias is changed by
an intervention, and utilizes these differences in its unbiased estimation. As a result,
the intervention-aware estimator is both effective when applied as a counterfactual
method, i.e., when learning from historical data, and as an online method where online
interventions lead to enormous increases in efficiency. In our experimental results
the intervention-aware estimator is shown to reach state-of-the-art LTR performance
in both online and counterfactual settings, and it is the only method that reaches top-
performance in both settings.

The main contributions of this chapter are:

1. A novel intervention-aware estimator that corrects for position bias, trust bias, item-
selection bias, and the effect of online interventions.

2. An investigation into the effect of online interventions on state-of-the-art counterfac-
tual and online LTR methods.
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8.2 Interactions with Rankings

The theory in this chapter assumes that three forms of interaction bias occur: position
bias, item-selection bias, and trust bias.

Position bias occurs because users only click an item after examining it, and users
are more likely to examine items displayed at higher ranks [25]. Thus the rank (a.k.a.
position) at which an item is displayed heavily affects the probability of it being clicked.
We model this bias using P (E = 1 | k): the probability that an item d displayed at rank
k is examined by a user E [128].

Item-selection bias occurs when some items have a zero probability of being ex-
amined in some displayed rankings [92]. This can happen because not all items are
displayed to the user, or if the ranked list is so long that no user ever considers the entire
list. We model this bias by stating:

∃k, ∀k′, (k′ > k → P (E = 1 | k′) = 0), (8.1)

i.e., there exists a rank k such that items ranked lower than k have no chance of being
examined. The distinction between position bias and item-selection bias is important
because some methods can only correct for the former if the latter is not present [86].

Finally, trust bias occurs because users trust the ranking system and, consequently,
are more likely to perceive top ranked items as relevant even when they are not [57].
We model this bias using: P (C = 1 | k,R,E): the probability of a click conditioned
on the displayed rank k, the relevance of the item R, and examination E.

To combine these three forms of bias into a single click model, we follow Agarwal
et al. [3] and write:

P (C = 1 | d, k, q)
= P (E = 1 | k)

(
P (C = 1 | k,R = 0, E = 1)P (R = 0 | d, q)
+ P (C = 1 | k,R = 1, E = 1)P (R = 1 | d, q)

)
,

(8.2)

where P (R = 1 | d, q) is the probability that an item d is deemed relevant w.r.t. query
q by the user. An analysis on real-world interaction data performed by Agarwal et al.
[3], showed that this model better captures click behavior than models that only capture
position bias [128] on search services for retrieving cloud-stored files and emails.

To simplify the notation, we follow Vardasbi et al. [123] and adopt:

αk = P (E = 1 | k)
(
P (C = 1 | k,R = 1, E = 1)

− P (C = 1 | k,R = 0, E = 1)
)
,

βk = P (E = 1 | k)P (C = 1 | k,R = 0, E = 1).

(8.3)

This results in a compact notation for the click probability (8.2):

P (C = 1 | d, k, q) = αkP (R = 1 | d, q) + βk. (8.4)

For a single ranking y, let k be the rank at which item d is displayed in y; we denote
αk = αd,y and βk = βd,y. This allows us to specify the click probability conditioned
on a ranking y:

P (C = 1 | d, y, q) = αd,yP (R = 1 | d, q) + βd,y. (8.5)
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Finally, let π be a ranking policy used for logging clicks, where π(y | q) is the probability
of π displaying ranking y for query q, then the click probability conditioned on π is:

P (C = 1 | d, π, q) =
∑
y

π(y | q)(αd,yP (R = 1 | d, q) + βd,y). (8.6)

The proofs in the remainder of this chapter will assume this model of click behavior.

8.3 Background

In this section we cover the basics on LTR and counterfactual LTR.

8.3.1 Learning to rank
The field of LTR considers methods for optimizing ranking systems w.r.t. ranking
metrics. Most ranking metrics are additive w.r.t. documents; let P (q) be the probability
that a user-issued query is query q, then the metric rewardR commonly has the form:

R(π) =
∑
q

P (q)
∑
d∈Dq

λ(d | Dq, π, q)P (R = 1 | d, q). (8.7)

Here, the λ function scores each item d depending on how π ranks d when given the
preselected item set Dq; λ can be chosen to match a desired metric, for instance, the
common Discounted Cumulative Gain (DCG) metric [52]:

λDCG(d | Dq, π, q) =
∑
y

π(y | q)(log2(rank(d | y) + 1))
−1
. (8.8)

Supervised LTR methods can optimize π to maximizeR if relevances P (R = 1 | d, q)
are known [75, 129]. However in practice, finding these relevance values is not straight-
forward.

8.3.2 Counterfactual learning to rank
Over time, limitations of the supervised LTR approach have become apparent. Most
importantly, finding accurate relevance values P (R = 1 | d, q) has proved to be
impossible or infeasible in many practical situations [127]. As a solution, LTR methods
have been developed that learn from user interactions instead of relevance annotations.
Counterfactual LTR concerns approaches that learn from historical interactions. Let D
be a set of collected interaction data over T timesteps; for each timestep t it contains
the user issued query qt, the logging policy πt used to generate the displayed ranking
ȳt, and the clicks ct received on the ranking:

D = {(πt, qt, ȳt, ct)}Tt=1, (8.9)

where ct(d) ∈ {0, 1} indicates whether item d was clicked at timestep t. While clicks
are indicative of relevance they are also affected by several forms of bias, as discussed
in Section 8.2.
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Counterfactual LTR methods utilize estimators that correct for bias to unbiasedly
estimate the reward of a policy π. The prevalent methods introduce a function ∆̂ that
transforms a single click signal to correct for bias. The general estimate of the reward
is:

R̂(π | D) =
1

T

T∑
t=1

∑
d∈Dqt

λ(d | Dqt , π, q)∆̂(d | πt, qt, ȳt, ct). (8.10)

We note the important distinction between the policy π for which we estimate the
reward, and the policy πt that was used to gather interactions at timestep t. During
optimization only π is changed in order to maximize the estimated reward.

The original Inverse Propensity Scoring (IPS) based estimator introduced by Wang
et al. [127] and Joachims et al. [58] weights clicks according to examination probabili-
ties:

∆̂IPS(d | ȳt, ct) =
ct(d)

P (E = 1 | ȳt, d)
. (8.11)

This estimator results in unbiased optimization under two requirements. First, every
relevant item must have a non-zero examination probability in all displayed rankings:

∀t, ∀d ∈ Dqt (P (R = 1 | d, qt) > 0→ P (E = 1 | ȳt, d) > 0) . (8.12)

Second, the click probability conditioned on relevance on examined items should be the
same on every rank:

∀k, k′ (P (C | k,R,E = 1) = P (C | k′, R,E = 1)) , (8.13)

i.e., no trust bias is present. These requirements illustrate that this estimator can only
correct for position bias, and is biased when item-selection bias or trust bias is present.
For a proof we refer to previous work by Joachims et al. [58] and Vardasbi et al. [123].

Oosterhuis and de Rijke [86] (Chapter 5) adapt the IPS approach to correct for
item-selection bias as well. They weight clicks according to examination probabilities
conditioned on the logging policy, instead of the single displayed ranking on which a
click took place. This results in the policy-aware estimator:

∆̂aware(d | πt, qt, ct) =
ct(d)

P (E = 1 | πt, qt, d)

=
ct(d)∑

y π(y | qt)P (E = 1 | y, d, qt)
.

(8.14)

This estimator can be used for unbiased optimization under two assumptions. First,
every relevant item must have a non-zero examination probability under the logging
policy:

∀t, ∀d ∈ Dqt (P (R = 1 |, d, qt) > 0→ P (E = 1 |πt, d, qt) > 0) . (8.15)

Second, no trust bias is present as described in Eq. 8.13. Importantly, this first require-
ment can be met under item-selection bias, since a stochastic ranking policy can always
provide every item a non-zero probability of appearing in a top-k ranking. Thus, even
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when not all items can be displayed at once, a stochastic policy can provide non-zero
examination probabilities to all items. For a proof of this claim we refer to previous
work by Oosterhuis and de Rijke [86].

Lastly, Vardasbi et al. [123] prove that IPS cannot correct for trust bias. As an
alternative, they introduce an estimator based on affine corrections. This affine estimator
penalizes an item displayed at rank k by βk while also reweighting inversely w.r.t. αk:

∆̂affine(d | ȳt, ct) =
ct(d)− βd,ȳt

αd,ȳt
. (8.16)

The β penalties correct for the number of clicks an item is expected to receive due to its
displayed rank, instead of its relevance. The affine estimator is unbiased under a single
assumption, namely that the click probability of every item must be correlated with its
relevance in every displayed ranking:

∀t,∀d ∈ Dqt , αd,ȳt 6= 0. (8.17)

Thus, while this estimator can correct for position bias and trust bias, it cannot correct
for item-selection bias. For a proof of these claims we refer to previous work by
Vardasbi et al. [123].

We note that all of these estimators require knowledge of the position bias (P (E =
1 | k)) or trust bias (α and β). A lot of existing work has considered how these values
can be inferred accurately [3, 30, 128]. The theory in this chapter assumes that these
values are known.

This concludes our description of existing counterfactual estimators on which our
method expands. To summarize, each of these estimators corrects for position bias, one
also corrects for item-selection bias, and another also for trust bias. Currently, there is
no estimator that corrects for all three forms of bias together.

8.4 Related Work

One of the earliest approaches to LTR from clicks was introduced by Joachims [54]. It
infers pairwise preferences between items from click logs and uses pairwise LTR to
update an SVM ranking model. While this approach had some success, in later work
Joachims et al. [58] notes that position bias often incorrectly pushes the pairwise loss to
flip the ranking displayed during logging. To avoid this biased behavior, Joachims et al.
[58] proposed the idea of counterfactual LTR, in the spirit of earlier work by Wang et al.
[127]. This led to estimators that correct for position bias using IPS weighting (see
Section 8.3.2). This work sparked the field of counterfactual LTR which has focused
on both capturing interaction biases and optimization methods that can correct for
them. Methods for measuring position bias are based on EM optimization [128], a
dual learning objective [5], or randomization [4, 30]; for trust bias only an EM-based
approach is currently known [3]. Agarwal et al. [2] showed how counterfactual LTR can
optimize neural networks and DCG-like methods through upper-bounding. Oosterhuis
and de Rijke [86] introduced an IPS estimator that can correct for item-selection bias (see
Section 8.3.2 and Chapter 5), while also showing that the LambdaLoss framework [129]
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can be applied to counterfactual LTR (see Chapter 5). Lastly, Vardasbi et al. [123]
proved that IPS estimators cannot correct for trust bias and introduced an affine estimator
that is capable of doing so (see Section 8.3.2). There is currently no known estimator
that can correct for position bias, item selection bias, and trust bias simultaneously.

The other paradigm for LTR from clicks is online LTR [132]. The earliest method,
Dueling Bandit Gradient Descent (DBGD), samples variations of a ranking model and
compares them using online evaluation [41]; if an improvement is recognized the model
is updated accordingly. Most online LTR methods have increased the data-efficiency
of DBGD [43, 111, 126]; later work found that DBGD is not effective at optimizing
neural models [82] (Chapter 3) and often fails to find the optimal linear-model even in
ideal scenarios [84] (Chapter 4). To these limitations, alternative approaches for online
LTR have been proposed. Pairwise Differentiable Gradient Descent (PDGD) takes a
pairwise approach but weights pairs to correct for position bias [82] (Chapter 3). While
PDGD was found to be very effective and robust to noise [50, 84] (Chapter 4), it can be
proven that its gradient estimation is affected by position bias, thus we do not consider
it to be unbiased. In contrast, Zhuang and Zuccon [136] introduced Counterfactual
Online Learning to Rank (COLTR), which takes the DBGD approach but uses a form
of counterfactual evaluation to compare candidate models. Despite making use of
counterfactual estimation, Zhuang and Zuccon [136] propose the method solely for
online LTR.

Interestingly, with COLTR the line between online and counterfactual LTR methods
starts to blur. Recent work by Jagerman et al. [50] applied the original counterfactual
approach [58] as an online method and found that it lead to improvements. Furthermore,
Ai et al. [6] noted that with a small adaptation PDGD can be applied to historical data.
Although this means that some existing methods can already be applied both online
and counterfactually, no method has been found that is the most reliable choice in both
scenarios.

8.5 An Estimator Oblivious to Online Interventions

Before we propose the main contribution of this chapter, the intervention-aware esti-
mator, we will first introduce an estimator that simultaneously corrects for position
bias, item-selection bias, and trust bias, without considering the effects of interventions.
Subsequently, the resulting intervention-oblivious estimator will serve as a method to
contrast the intervention-aware estimator with.

Section 8.3.2 described how the policy-aware estimator corrects for item-selection
bias by taking into account the behavior of the logging policy used to gather clicks [86].
Furthermore, Section 8.3.2 also detailed how the affine estimator corrects for trust bias
by applying an affine transformation to individual clicks [123]. We will now show that
a single estimator can correct for both item-selection bias and trust bias simultaneously,
by combining the approaches of both these existing estimators.

First we note the probability of a click conditioned on a single logging policy πt
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can be expressed as:

P (C = 1| d, πt, q) =
∑
ȳ

πt(ȳ | q)(αd,ȳP (R = 1 | d, q) + βd,ȳ)

= Eȳ[αd |πt, q]P (R = 1 | d, q) +Eȳ[βd |πt, q].
(8.18)

where the expected values of α and β conditioned on πt are:

Eȳ[αd | πt, q] =
∑
ȳ

πt(ȳ | q)αd,ȳ,

Eȳ[βd | πt, q] =
∑
ȳ

πt(ȳ | q)βd,ȳ.
(8.19)

By reversing Eq. 8.18 the relevance probability can be obtained from the click probabil-
ity. We introduce our intervention-oblivious estimator, which applies this transformation
to correct for bias:

∆̂IO(d | qt, ct) =
ct(d)−Eȳ[βd | πt, qt]

Eȳ[αd | πt, qt]
. (8.20)

The intervention-oblivious estimator brings together the policy-aware and affine esti-
mators: on every click it applies an affine transformation based on the logging policy
behavior. Unlike existing estimators, we can prove that the intervention-oblivious
estimator is unbiased w.r.t. our assumed click model (Section 8.2).

Theorem 8.1. The estimated reward R̂ (Eq. 8.10) using the intervention-oblivious
estimator (Eq. 8.20) is unbiased w.r.t. the true rewardR (Eq. 8.7) under two assumptions:
(1) our click model (Eq. 8.5), and (2) the click probability on every item, conditioned on
the logging policies per timestep πt, is correlated with relevance:

∀t, ∀d ∈ Dqt , Eȳ[αd | πt, qt] 6= 0. (8.21)

Proof. Using Eq. 8.18 and Eq. 8.21 the relevance probability can be derived from the
click probability by:

P (R = 1 | d, q) =
P (C = 1 | d, πt, q)−Eȳ[βd | πt, q]

Eȳ[αd | πt, q]
. (8.22)

Eq. 8.22 can be used to show that ∆̂IO is an unbiased indicator of relevance:

Eȳ,c

[
∆̂IO(d | qt, ct) | πt

]
= Eȳ,c

[
ct(d)−Et,ȳ[βd | πt, qt]

Eȳ[αd | πt, qt]
| πt, qt

]
=
Eȳ,c[ct(d) | πt, qt]−Eȳ[βd | πt, qt]

Eȳ[αd | πt, qt]

=
P (C = 1 | d, πt, qt)−Eȳ[βd | πt, qt]

Eȳ[αd | πt, qt]
= P (R = 1 | d, qt).

(8.23)
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Figure 8.1: Example of an online intervention and the weights used by the intervention-
oblivious and intervention-aware estimators for a single item as more data is gathered.

Finally, combining Eq. 8.7 with Eq. 8.10 and Eq. 8.23 reveals that R̂ based on the
intervention-oblivious estimator ∆̂IO is unbiased w.r.t.R:

Et,q,ȳ,c

[
R̂(π | D)

]
(8.24)

=
∑
q

P (q)
∑
d∈Dq

λ(d | Dq, π, q)
1

T

T∑
t=1

Eȳ,c

[
∆̂IO(d | c, q) |πt, q

]
=
∑
q

P (q)
∑
d∈Dq

λ(d | Dq, π, q)P (R = 1 | d, q) = R(π).

8.5.1 Example with an online intervention
Existing estimators for counterfactual LTR are designed for a scenario where the logging
policy is static:

∀(πt, πt′) ∈ D, πt = πt′ . (8.25)

However, we note that if an online intervention takes place [50], meaning that the
logging policy was updated during the gathering of data:

∃(πt, πt′) ∈ D, πt 6= πt′ , (8.26)

the intervention-oblivious estimator is still unbiased. This was already proven in
Theorem 8.1 because its assumptions cover both scenarios where online interventions
do and do not take place.

However, the individual corrections of the intervention-oblivious estimator are
only based on the single logging policy that was deployed at the timestep of each
specific click. It is completely oblivious to the logging policies applied at different
timesteps. Although this does not lead to bias in its estimation, it does result in
unintuitive behavior. We illustrate this behavior in Figure 8.1, here a logging policy
that results in E[αd | πt, q] = 0.25 for an item d is deployed during the first t ≤ 100
timesteps. Then an online intervention takes place and the logging policy is updated
so that for t > 100, E[αd | πt, q] = 0.05. The intervention-oblivous estimator weights
clicks inversely toE[αd | πt]; so clicks for t ≤ 100 will be weighted by 1/0.25 = 4 and
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for t > 100 by 1/0.05 = 20. Thus, there is a sharp and sudden difference in how clicks
are treated before and after t = 100. What is unintuitive about this example is that the
way clicks are treated after t = 100 is completely independent of what the situation was
before t = 100. For instance, consider another item d′ where ∀t,E[αd′ | πt, q] = 0.05.
If both d and d′ are clicked on timestep t = 101, these clicks would both be weighted
by 20, despite the fact that d has so far been treated completely different than d′. One
would expect that in such a case the click on d should be weighted less, to compensate
for the high E[αd | πt, q] it had in the first 100 timesteps. The question is whether such
behavior can be incorporated in an estimator without introducing bias.

8.6 The Intervention-Aware Estimator

Our goal for the intervention-aware estimator is to find an estimator whose individual
corrections are not only based on single logging policies, but instead consider the entire
collection of logging policies used to gather the data D. Importantly, this estimator
should also be unbiased w.r.t. position bias, item-selection bias and trust bias.

For ease of notation, we use ΠT for the set of policies that gathered the data in D:
ΠT = {π1, π2, . . . , πT }. The probability of a click can be conditioned on this set:

P (C = 1 | d,ΠT , q) =
1

T

T∑
t=1

∑
ȳ

πt(ȳ | q)(αd,ȳP (R = 1 | d, q) + βd,ȳ)

= Et,ȳ[αd | ΠT , q]P (R = 1 | d, q) +Et,ȳ[βd | ΠT , q],

(8.27)

where the expected values of α and β conditioned on ΠT are:

Et,ȳ[αd | ΠT , q] =
1

T

T∑
t=1

∑
ȳ

πt(ȳ | q)αd,ȳ,

Et,ȳ[βd | ΠT , q] =
1

T

T∑
t=1

∑
ȳ

πt(ȳ | q)βd,ȳ.
(8.28)

Thus P (C = 1 | d,ΠT , q) gives us the probability of a click given that any policy from
ΠT could be deployed. We propose our intervention-aware estimator that corrects for
bias using the expectations conditioned on ΠT :

∆̂IA(d | qt, ct) =
ct(d)−Et,ȳ[βd | ΠT , qt]

Et,ȳ[αd | ΠT , qt]
. (8.29)

The salient difference with the intervention-oblivious estimator is that the expectations
are conditioned on ΠT , all logging policies in D, instead of an individual logging
policy πt. While the difference with the intervention-oblivious estimator seems small,
our experimental results show that the differences in performance are actually quite
sizeable. Lastly, we note that when no interventions take place the intervention-oblivious
estimator and intervention-aware estimators are equivalent. Because the intervention-
aware estimator is the only existing counterfactual LTR estimator whose corrections are
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influenced by online interventions, we consider it to be a step that helps to bridge the
gap between counterfactual and online LTR.

Before we revisit our online intervention example with our novel intervention-aware
estimator, we prove that it is unbiased w.r.t. our assumed click model (Section 8.2).

Theorem 8.2. The estimated reward R̂ (Eq. 8.10) using the intervention-aware esti-
mator (Eq. 8.29) is unbiased w.r.t. the true rewardR (Eq. 8.7) under two assumptions:
(1) our click model (Eq. 8.5), and (2) the click probability on every item, conditioned on
the set of logging policies ΠT , is correlated with relevance:

∀q,∀d ∈ Dq, Et,ȳ[αd | ΠT , q] 6= 0. (8.30)

Proof. Using Eq. 8.27 and Eq. 8.30 the relevance probability can be derived from the
click probability by:

P (R = 1 | d, q) =
P (C = 1 | d,ΠT , q)−Et,ȳ[βd | ΠT , q]

Et,ȳ[αd | ΠT , q]
. (8.31)

Eq. 8.31 can be used to show that ∆̂IA is an unbiased indicator of relevance:

Et,ȳ,c

[
∆̂IA(d | qt, ct) | ΠT

]
= Et,ȳ,c

[
ct(d)−Et,ȳ[βd | ΠT , qt]

Et,ȳ[αd | ΠT , qt]
| ΠT , qt

]
=
Et,ȳ,c[ct(d) | ΠT , qt]−Et,ȳ[βd | ΠT , qt]

Et,ȳ[αd | ΠT , qt]

=
P (C = 1 | d,ΠT , qt)−Et,ȳ[βd | ΠT , qt]

Et,ȳ[αd | ΠT , qt]

= P (R = 1 | d, qt).

(8.32)

Finally, combining Eq. 8.32 with Eq. 8.10 and Eq. 8.7 reveals that R̂ based on the
intervention-aware estimator ∆̂IA is unbiased w.r.t.R:

Et,q,ȳ,c

[
R̂(π | D)

]
(8.33)

=
∑
q

P (q)
∑
d∈Dq

λ(d | Dq, π, q)Et,ȳ,c

[
∆̂IA(d | c, q) | ΠT , q

]
=
∑
q

P (q)
∑
d∈Dq

λ(d | Dq, π, q)P (R = 1 | d, q)

= R(π).

8.6.1 Online intervention example revisited

We will now revisit the example in Figure 8.1, but this time consider how the intervention-
aware estimator treats item d. Unlike the intervention-oblivious estimator, clicks are
weighted byE[αd | ΠT ] which means that the exact timestep t of a click does not matter,
as long as t < T . Furthermore, the weight of a click can change as the total number of
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timesteps T increases. In other words, as more data is gathered, the intervention-aware
estimator retroactively updates the weights of all clicks previously gathered.

We see that this behavior avoids the sharp difference in weights of clicks occurring
before the intervention t ≤ 100 and after t > 100. For instance, for a click on
d occuring at t = 101 while T = 400, results in E[αd | ΠT ] = 0.1 and thus a
weight of 1/0.1 = 10. This is much lower than the intervention-oblivious weight of
1/0.05 = 20, because the intervention-aware estimator is also considering the initial
period where E[αd | πt, q] was high. Thus we see that the intervention-aware estimator
has the behavior we intuitively expected: it weights clicks based on how the item
was treated throughout all timesteps. In this example, it leads weights considerably
smaller than those used by the intervention-oblivious estimator. In IPS estimators, low
propensity weights are known to lead to high variance [58], thus we may expect that the
intervention-aware estimator reduces variance in this example.

8.6.2 An online and counterfactual approach

While the intervention-aware estimator takes into account the effect of interventions,
it does not prescribe what interventions should take place. In fact, it will work with
any interventions that result in Eq. 8.30 being true, including the situation where no
intervention takes place at all. For clarity, we will describe the intervention approach we
applied during our experiments here. Algorithm 8.1 displays our online/counterfactual
approach. As input it requires a starting policy (π0), a choice for λ, the α and β
parameters, a set of intervention timesteps (Φ), and the final timestep T .

The algorithm starts by initializing an empty set to store the gathered interaction
data (Line 2) and initializes the logging policy with the provided starting policy π0.
Then for each timestep i in Φ the dataset is expanded using the current logging policy so
that |D| = i (Line 5). In other words, for i− |D| timesteps π is used to display rankings
to user-issued queries, and the resulting interactions are added to D. Then a policy is
optimized using the available data in D which becomes the new logging policy. For this
optimization, we split the available data in training and validation partitions in order to
do early stopping to prevent overfitting. We use stochastic gradient descent where we
use π0 as the initial model; this practice is based on the assumption that π0 has a better
performance than a randomly initialized model. Thus, during optimization, gradient
calculation uses the intervention-aware estimator on the training partition of D, and
after each epoch, optimization is stopped if the intervention-aware estimator using the
validation partition of D suspects overfitting. Each iteration results in an intervention as
the resulting policy replaces the logging policy, and thus changes the way future data is
logged. After iterating over Φ is completed, more data is gathered so that |D| = T and
optimization is performed once more. The final policy is the end result of the procedure.

We note that, depending on Φ, our approach can be either online, counterfactual,
or somewhere in between. If Φ = ∅ the approach is fully counterfactual since all data
is gathered using the static π0. Conversely, if Φ = {1, 2, 3, . . . , T} it is fully online
since at every timestep the logging policy is updated. In practice, we expect a fully
online procedure to be infeasible as it is computationally expensive and user queries
may be issued faster than optimization can be performed. In our experiments we will
investigate the effect of the number of interventions on the approach’s performance.
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Algorithm 8.1 Our Online/Counterfactual LTR Approach

1: Input: Starting policy: π0; Metric weight function: λ;
Inferred bias parameters: α and β;
Interventions steps: Φ; End-time: T .

2: D ← {} // initialize data container
3: π ← π0 // initialize logging policy
4: for i ∈ Φ do
5: D ← D ∪ gather(π, i− |D|) // observe i− |D| timesteps
6: π ← optimize(D, α, β, π0) // optimize based on available data
7: D ← D ∪ gather(π, T − |D|) // expand data to T
8: π ← optimize(D, α, β, π0) // optimize based on final data
9: return π

8.7 Experimental Setup

Our experiments aim to answer the following research questions:

RQ1 Does the intervention-aware estimator lead to higher performance than existing
counterfactual LTR estimators when online interventions take place?

RQ2 Does the intervention-aware estimator lead to performance comparable with
existing online LTR methods?

We use the semi-synthetic experimental setup that is common in existing work on both
online LTR [43, 82, 84, 136] and counterfactual LTR [58, 92, 123]. In this setup, queries
and documents are sampled from a dataset based on commercial search logs, while user
interactions and rankings are simulated using probabilistic click models. The advantage
of this setup is that it allows us to investigate the effects of online interventions on a
large scale while also being easy to reproduce by researchers without access to live
ranking systems.

We use the publicly-available Yahoo Webscope dataset [17], which consists of
29,921 queries with, on average, 24 documents preselected per query. Query-document
pairs are represented by 700 features and five-grade relevance annotations ranging from
not relevant (0) to perfectly relevant (4). The queries are divided into training, validation
and test partitions.

At each timestep, we simulate a user-issued query by uniformly sampling from
the training and validation partitions. Subsequently, the preselected documents are
ranked according to the logging policy, and user interactions are simulated on the
top-5 of the ranking using a probabilistic click model. We apply Eq. 8.4 with α =
[0.35, 0.53, 0.55, 0.54, 0.52] and β = [0.65, 0.26, 0.15, 0.11, 0.08]; the relevance prob-
abilities are based on the annotations from the dataset: P (R = 1 | d, q) = 0.25 ·
relevance label(d, q). The values of α and β were chosen based on those reported by
Agarwal et al. [3] who inferred them from real-world user behavior. In doing so, we
aim to emulate a setting where realistic levels of position bias, item-selection bias, and
trust bias are present.
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All counterfactual methods use the approach described in Section 8.6.2. To simulate
a production ranker policy, we use supervised LTR to train a ranking model on 1% of
the training partition [58]. The resulting production ranker has much better performance
than a randomly initialized model, yet still leaves room for improvement. We use the
production ranker as the initial logging policy. The size of Φ (the intervention timesteps)
varies per run, and the timesteps in Φ are evenly spread on an exponential scale. All
ranking models are neural networks with two hidden layers, each containing 32 hidden
units with sigmoid activations. Gradients are calculated using a Monte-Carlo method
following Oosterhuis and de Rijke [85] (Chapter 7). All policies apply a softmax to the
document scores produced by the ranking models to obtain a probability distribution
over documents. Clipping is only applied on the training clicks, denominators of any
estimator are clipped by 10/

√
|D| to reduce variance. Early stopping is applied based

on counterfactual estimates of the loss using (unclipped) validation clicks.
The following methods are compared: (i) The intervention-aware estimator. (ii) The

intervention-oblivious estimator. (iii) The policy-aware estimator [86] (Chapter 5).
(iv) The affine estimator [123]. (v) PDGD [82] (Chapter 3), we apply PDGD both
online and as a counterfactual method. As noted by Ai et al. [6], this can be done
by separating the logging models from the learned model and, basing the debiasing
weights on the logging function. (vi) Biased PDGD, identical to PDGD except that we
do not apply the debiasing weights. (vii) COLTR [136]. We compute the Normalized
DCG (NDCG) of both the logging policy and of a policy trained on all available data.
Every reported result is the average of 20 independent runs, figures plot the mean,
shaded areas indicate the standard deviation.

8.8 Results and Discussion

8.8.1 Comparison with counterfactual LTR

To answer the first research question: whether the intervention-aware estimator leads to
higher performance than existing counterfactual LTR estimators when online interven-
tions take place, we consider Figure 8.2 which displays the performance of LTR using
different counterfactual estimators.

First we consider the top of Figure 8.2 which displays performance in the coun-
terfactual setting where the logging policy is static.1 We clearly see that the affine
estimator converges at a suboptimal point of convergence, a strong indication of bias.
The most probable cause is that the affine estimator is heavily affected by the pres-
ence of item-selection bias. In contrast, neither the policy-aware estimator nor the
intervention-aware estimator have converged after 108 queries. However, very clearly
the intervention-aware estimator quickly reaches a higher performance. While the theory
guarantees that it will converge at the optimal performance, we were unable to observe
the number of queries it requires to do so. From the result in the counterfactual setting,
we conclude that by correcting for position-bias, trust-bias, and item-selection bias the
intervention-aware estimator already performs better without online interventions.

1Since under a static logging policy the intervention-aware and the intervention-oblivious estimators are
equivalent, our conclusions apply to both in this setting.
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Figure 8.2: Comparison of counterfactual LTR estimators. Top: Counterfactual runs
(no interventions); Bottom: Online runs (50 interventions).

Second, we turn to the bottom of Figure 8.2 which considers the online setting
where the estimators perform 50 online interventions during logging. We see that online
interventions have a positive effect on all estimators; leading to a higher performance for
the affine and policy-aware estimators as well. However, interventions also introduce an
enormous amount of variance for the policy-aware and intervention-oblivious estimators.
In stark contrast, the amount of variance of the intervention-aware estimator hardly
increases while it learns much faster than the other estimators.

Thus we answer the first research question positively: the intervention-aware estima-
tor leads to higher performance than existing estimators, moreover, its data-efficiency
becomes even greater when online interventions take place.

8.8.2 Effect of interventions

To better understand how much the intervention-aware estimator benefits from online
interventions, we compared its performance under varying numbers of interventions in
Figure 8.3. It shows both the performance of the resulting model when training from the
logged data (top), as the performance of the logging policy which reveals when inter-
ventions take place (bottom). When comparing both graphs, we see that interventions
lead to noticeable immediate improvements in data-efficiency. For instance, when only
5 interventions take place the intervention-aware estimator needs more than 20 times
the amount of data to reach optimal performance as with 50 interventions. Despite these
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Figure 8.3: Effect of online interventions on LTR with the intervention-aware estimator.

speedups there are no large increases in variance. From these observations, we conclude
that the intervention-aware estimator can effectively and reliably utilize the effect of
online interventions for optimization, leading to enormous increases in data-efficiency.

8.8.3 Comparison with online LTR

In order to answer the second research question: whether the intervention-aware
estimator leads to performance comparable with existing online LTR methods, we
consider Figure 8.4 which displays the performance of two online LTR methods: PDGD
and COLTR and the intervention-aware estimator with 100 online interventions.

First, we notice that COLTR is unable to outperform its initial policy, moreover, we
see its performance drop as the number of iterations increase. We were unable to find
hyper-parameters for COLTR where this did not occur. It seems likely that COLTR is
unable to deal with trust-bias, thus causing this poor performance. However, we note
that Zhuang and Zuccon [136] already show COLTR performs poorly when no bias or
noise is present, suggesting that it is perhaps an unstable method overall.

Second, we see that the difference between PDGD and the intervention-aware
estimator becomes negligible after 2 · 104 queries. Despite PDGD running fully online,
and the intervention-aware estimator only performing 100 interventions in total. We do
note that PDGD initially outperforms the intervention-aware estimator, thus it appears
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Figure 8.4: Comparison with online LTR methods.

that PDGD works better with low numbers of interactions. Additionally, we should
also consider the difference in overhead: while PDGD requires an infrastructure that
allows for fully online learning, the intervention-aware estimator only requires 100
moments of intervention, yet has comparable performance after a short initial period.
By comparing Figure 8.4 to Figure 8.2, we see that the intervention-aware estimator
is the first counterfactual LTR estimator that leads to stable performance while being
comparably efficient with online LTR methods.

Thus we answer the second research question positively: besides an initial period
of lower performance, the intervention-aware estimator has comparable performance
to online LTR and only requires 100 online interventions to do so. To the best of our
knowledge, it is the first counterfactual LTR method that can achieve this feat.

8.8.4 Understanding the effectiveness of PDGD
Now that we concluded that the intervention-aware estimator reaches performance com-
parable to PDGD when enough online interventions take place, the opposite question
seems equally interesting: Does PDGD applied counterfactually provide performance
comparable to existing counterfactual LTR methods?

To answer this question, we ran PDGD in a counterfactual way following Ai et al.
[6], both fully counterfactual and with only 100 interventions. The results of these
runs are displayed in Figure 8.5. Quite surprisingly, the performance of PDGD ran
counterfactually and with 100 interventions, reaches much higher performance than the
intervention-aware estimator without interventions. However, after a peak in perfor-
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Figure 8.5: Effect of online interventions on PDGD.

mance around 106 queries, the PDGD performance starts to drop. This drop cannot be
attributed to overfitting, since online PDGD does not show the same behavior. There-
fore, we must conclude that PDGD is biased when not ran fully online. This conclusion
does not contradict the existing theory, since in Chapter 3 we only proved it is unbiased
w.r.t. pairwise preferences. In other words, PDGD is not proven to unbiasedly optimize
a ranking metric, and therefore also not proven to converge on the optimal model. This
drop is particularly unsettling because PDGD is a continuous learning algorithm: there
is no known early stopping method for PDGD. Yet these results show there is a great
risk in running PDGD for too many iterations if it is not applied fully online. To answer
our PDGD question: although PDGD reaches high performance when run counterfac-
tually and appears to have great data-efficiency initially, it appears to converge at a
suboptimal biased model. Thus we cannot conclude that PDGD is a reliable method for
counterfactual LTR.

To better understand PDGD, we removed its debiasing weights resulting in the
performance shown in Figure 8.4 (Biased-PDGD). Clearly, PDGD needs these weights
to reach optimal performance. Similarly, from Figure 8.5 we see it also needs to be
run fully online. This makes the choice between the intervention-aware estimator and
PDGD complicated: on the one hand, PDGD does not require us to know the α and
β parameters, unlike the intervention-aware estimator; furthermore, PDGD has better
initial data-efficiency even when not run fully online. On the other hand, there are no
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theoretical guarantees for the convergence of PDGD, and we have observed that not
running it fully online can lead to large drops in performance. It seems the choice
ultimately depends on what guarantees a practitioner prefers.

8.9 Conclusion

In this chapter, we have introduced an intervention-aware estimator: an extension of
existing counterfactual approaches that corrects for position-bias, trust-bias, and item-
selection bias, while also considering the effect of online interventions. Our results
show that the intervention-aware estimator outperforms existing counterfactual LTR
estimators, and greatly benefits from online interventions in terms of data-efficiency.
With only 100 interventions it is able to reach a performance comparable to state-of-
the-art online LTR methods. These findings allow us to answer thesis research question
RQ9: whether the counterfactual LTR approach be extended to perform highly effective
online LTR. From our experimental results, it appears that the answer is positive:
using the intervention-aware estimator and 100 online interventions the performance of
state-of-the-art online LTR methods can be matched.

With the introduction of the intervention-aware estimator, we hope to further unify
the fields of online LTR and counterfactual LTR as it appears to be the most reliable
method for both settings. Future work could investigate what kind of interventions work
best for the intervention-aware estimator. Since we have already seen in Chapter 7 that
such an approach is effective for counterfactual/online ranking evaluation.

In retrospect, this chapter has put many findings from previous chapters in a different
perspective. Chapter 3 introduced the concept of unbiasedness w.r.t. pairwise prefer-
ences and proved PDGD had this property. The experimental results of this chapter
have shown that unbiasedness w.r.t. pairwise preferences is not enough to guarantee con-
vergence at an optimal level of NDCG. Furthermore, Chapter 4 showed PDGD is very
robust to noise and bias, but with the results of this chapter we now know that PDGD
needs to be run online for this robustness. The policy-aware estimator in Chapter 5 is a
precursor to the intervention-aware estimator of this chapter. While Chapter 5 realized
that taking the logging policy into account is beneficial to counterfactual estimation,
this chapter showed that taking the idea further, by accounting for all logging policies,
provides even more benefits. Lastly, Chapter 7 looked at bridging the divide between
online and counterfactual evaluation; in retrospect, the results of Chapter 7 might have
been even better had it used the intervention-aware estimator. Together, Chapter 7 and
this chapter suggest that an online method should both optimize its logging policy and
use an intervention-aware estimator to learn, thus leaving a potentially very fruitful
direction for future work.
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8. Unifying Online and Counterfactual Learning to Rank

8.A Notation Reference for Chapter 8

Notation Description

k the number of items that can be displayed in a single ranking
t a timestep number
T the total number of timesteps (gathered so far)
D the available data
R(π) the metric reward of a policy π
R̂(π | D) an estimate of the metric reward of a policy π
q a user-issued query
Dq the set of items to be ranked for query q
d an item to be ranked
y a ranked list
π a ranking policy
π(R | q) the probability that policy π displays ranking R for query q
π(Rx|R1:x−1, q) probability of π adding item Rx given R1:x−1 is already placed
ΠT the set of logging policies deployed up to timestep T
λ(d | Dq, π, q) a metric function that weights items depending on their rank
c(d) a function indicating item d was clicked in click pattern c
o(d) a function indicating item d was observed at iteration i
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9
Conclusions

In Section 1.1 we stated the overarching question that we aim to answer in this thesis:

Could there be a single general theoretically-grounded approach that has com-
petitive performance for both evaluation and Learning to Rank (LTR) from user
clicks on rankings, in both the counterfactual and online settings?

The thesis has explored this question by looking at both online and counterfactual
families of LTR methods, and in particular, to see if one of these approaches can be
extended to be effective at both the online and counterfactual LTR scenarios. In this
final chapter, we will summarize the findings of the thesis and discuss how they reflect
on our overarching thesis question. Finally, we will consider future research directions
for the field of LTR from user clicks.

9.1 Main Findings

This section look back at the thesis research questions posed in Section 1.1. We divide
our discussion in two parts discussing online methods and counterfactual methods for
LTR and evaluation, respectively.

9.1.1 Novel methods for online learning and evaluation for rank-
ing

The first part of the thesis focussed on online LTR methods. Chapter 2 looked at
multileaving methods [108] for comparing multiple ranking systems at once and asked:

RQ1 Does the effectiveness of online ranking evaluation methods scale to large com-
parisons?

We introduced the novel Pairwise Preference Multileaving (PPM) algorithm, PPM bases
evaluation on inferred pairwise item preferences. Furthermore, PPM is proven to have
fidelity – it is provably unbiased in unambiguous cases [44] – and considerateness – it
is safe w.r.t. the user experience during the gathering of clicks. From our theoretical
analysis, we find that no other existing multileaving method manages to meet both
criteria. In addition, our empirical results indicate that using PPM leads to a much lower
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number of errors, in particular when applied to large scale comparisons. Therefore, we
answered RQ1 positively: PPM is shown to be effective at online ranking evaluation
for large scale comparisons.

Besides in Chapter 2, online evaluation was also the subject of Chapter 7, which
addressed the question:

RQ8 Are existing interleaving methods truly capable of unbiased evaluation w.r.t.
position bias?

We showed that under a basic rank-based model of position bias (common in coun-
terfactual LTR [4, 58, 128]), three of the most prevalent interleaving algorithms are
not unbiased: Team Draft Interleaving [99], Probabilistic Interleaving [41], and Opti-
mized Interleaving [96]. For each of these three methods, we showed that situations
exist where the binary outcome of the method does not agree with the expected binary
difference in Click-Through-Rate (CTR). In other words, under a basic assumption of
position bias, situations exist where these interleaving methods are expected to prefer
one system over another, while the latter system has a higher expected CTR than the
former. Thus, we answer RQ8 negatively: the most prevalent interleaving methods are
not unbiased w.r.t. position bias.

This finding can be extended to the multileaving methods: Team-Draft Multileav-
ing [108], Probabilistic Multileaving [109], and Optimized Multileaving [108], since
they are equivalent to their interleaving counterparts when only two systems are com-
pared. While we did not examine it in this thesis, it is likely that PPM also fails to
be unbiased under basic position bias. Nonetheless, an evaluation method can still be
effective despite being biased, for instance, if the systematic error is small or situations
where bias occurs are rare.

Chapter 3 looked at online LTR methods. Existing online LTR methods have relied
on sampling model variants and comparing them using online evaluation [132]. In
response to the existing online LTR approach, Chapter 3 considered the question:

RQ2 Is online LTR possible without relying on model-sampling and online evaluation?

We answered this question positively by introducing Pairwise Differentiable Gradient
Descent (PDGD), an online LTR method that learns from inferred pairwise preferences
and uses a debiased pairwise loss. Besides proving that PDGD is unbiased w.r.t. pairwise
preferences, our experimental results show that PDGD greatly outperforms the previous
state-of-the-art Dueling Bandit Gradient Descent (DBGD) [132] algorithm in terms of
data-efficiency and convergence. Furthermore, PDGD is the first online LTR method
that can effectively optimize neural networks as ranking models.

Chapter 8 took another look at PDGD, in particular at conditions where PDGD is
no longer effective. The results in Chapter 8 show that PDGD fails to reach optimal
performance without debiasing weights or when not applied fully online. A particular
worrisome observation was that, when not applied fully online, the performance of
PDGD can degrade as more interactions are gathered. While this behavior looks similar,
it is not overfitting since PDGD does not display it when applied online. Instead, it
appears that PDGD becomes severely biased when not applied fully online. Therefore,
we can conclude that the fact that PDGD is unbiased w.r.t. pairwise preferences is not
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enough to guarantee unbiased optimization. It appears that we do not fully understand
why PDGD appears to be so effective when run online.

The results of Chapter 3 had surprising implications on DBGD, for instance, it
appeared that DBGD was not able to reach the performance of PDGD at conver-
gence. Meanwhile, DBGD forms the basis of most existing online LTR methods.
This prompted us to further investigate DBGD in Chapter 4, where we asked:

RQ3 Are DBGD LTR methods reliable in terms of theoretical soundness and empirical
performance?

By critically examining the theoretical assumptions underlying the DBGD method,
we found that they are impossible when optimizing a deterministic ranking model.
This means that the existing theoretical guarantees of DBGD are unsound in a lot of
previous work where such models were used [40, 43, 82, 90, 111, 125, 126, 132, 135].
Moreover, our empirical analysis revealed that ideal circumstances exist where DBGD
is still unable to find the optimal model. In other words, even in scenarios where
optimization should be very easy, DBGD was unable to get near optimal performance.
These findings lead us to answer RQ3 negatively: our empirical results show that
DBGD is very unreliable and its theoretical guarantees do not cover the most common
LTR ranking models.

9.1.2 Extending the counterfactual approach to learning and eval-
uation for ranking

The second part of the thesis considered counterfactual LTR methods for optimization
and evaluation. In particular, we tried to widen the applicability of counterfactual LTR
methods and their effectiveness as online methods.

First, Chapter 5 recognized that the original Inverse Propensity Scoring (IPS) coun-
terfactual method [58] is not unbiased when item selection bias occurs. This bias occurs
when not all items can be displayed in a single ranking; this bias is unavoidable in top-k
ranking settings where only k items can be displayed. One of the questions Chapter 5
addressed is:

RQ4 Can counterfactual LTR be extended to top-k ranking settings?

We showed that one can correct for item selection bias by basing propensity weights on
both the position bias of the user and the stochastic ranking behavior of the logging pol-
icy. Our novel policy-aware estimator uses this idea to extend the original IPS approach
by taking into account the logging policy behavior. We prove that, assuming rank-based
position bias, the policy-aware estimator is unbiased as longs as the logging policy
gives every relevant item a non-zero probability of appearing in the top-k of a ranking.
Furthermore, in our experimental results the policy-aware estimator approximates opti-
mal performance regardless of the amount of item-selection bias present. Therefore,
we answer RQ4 positively: with the introduction of the policy-aware estimator the
applicability of counterfactual LTR has been extended to top-k ranking settings.

Besides learning from top-k feedback, Chapter 5 also considered optimizing for top-
k metrics. Interestingly, the existing counterfactual LTR methods [2, 46] for optimizing
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Discounted Cumulative Gain (DCG) metrics are very dissimilar from the state-of-the-
art in supervised LTR [13, 129]. To address this dissimilarity, Chapter 5 posed the
following question:

RQ5 Is it possible to apply state-of-the-art supervised LTR methods to the counterfac-
tual LTR problem?

We answer this question positively by showing that, with some small adjustments,
the LambdaLoss framework [129] can be applied to counterfactual LTR losses, thus
enabling the application of state-of-the-art supervised LTR to counterfactual LTR. The
implication of this finding is that there does not need to be a division between state-of-
the-art supervised LTR and counterfactual LTR. In other words, counterfactual LTR
methods can build on the best methods from the supervised LTR field.

Chapter 6 takes a look at tabular and feature-based LTR methods. Tabular methods
optimize a tabular ranking model [67–70, 139], which remembers the optimal ranking,
in contrast with feature-based methods that optimize models that use the features of
items to predict the optimal ranking. The tabular models are extremely expressive
and can capture any possible ranking, making them always capable of converging on
the optimal ranking [138]. However, their learned behavior does not generalize to
previously unseen circumstances. Conversely, the learned behavior of feature-based
models can generalize very well to previously unseen circumstances [10, 75]. But
feature-based models can also be limited by the available features, because often the
available features do not provide enough information to predict the optimal ranking.
Thus feature-based LTR generalizes very well to unseen circumstances, whereas tabular
LTR can specialize extremely well in specific circumstances. Inspired by this tradeoff,
we asked the following question in Chapter 6:

RQ6 Can the specialization ability of tabular online LTR be combined with the robust
feature-based approach of counterfactual LTR?

Our answer is in the form of the novel Generalization and Specialization (GENSPEC)
algorithm, a method for combining the behavior of a single robust generalized model
and numerous specialized models. GENSPEC optimizes a single feature-based ranking
model for performance across all queries, and many tabular ranking models each
specialized for a single query. Then GENSPEC applies a meta-policy that uses high-
confidence bounds to safely decide per query which model to deploy. Consequently,
for previously unseen queries GENSPEC chooses the generalized model which utilizes
robust feature-based prediction. For other queries, it can decide to deploy a specialized
model, i.e., if it has enough data to confidently determine that the tabular model has
found the better ranking. Our experimental results show that GENSPEC successfully
combines robust performance on unseen queries with extremely high performance
at convergence. Accordingly, we answer RQ6 positively: using GENSPEC we can
combine the specialization properties of tabular LTR with the robust generalization
of feature-based LTR. For the LTR field, the introduction of GENSPEC shows that
specialization does not need to be unique to tabular online LTR, instead it can be a
property of counterfactual LTR as well.

As discussed above, Chapter 7 proved that several prominent interleaving methods
are biased w.r.t. a basic model of position bias. Nonetheless, empirical results suggest
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that these online ranking evaluation methods are still very effective. This leaves a gap
for a theoretically-grounded online ranking evaluation method that is also very effective.
To address this gap, Chapter 7 considers counterfactual ranking evaluation, which has
strong theoretical guarantees, and asks:

RQ7 Can counterfactual evaluation methods for ranking be extended to perform effi-
cient and effective online evaluation?

We realized that with the introduction of the policy-aware estimator in Chapter 5, the
logging policy has an important role in counterfactual estimation. Using the policy-
aware estimator as a starting point, we introduce the Logging-Policy Optimization
Algorithm (LogOpt) that optimizes the logging policy to minimize the variance of the
policy-aware estimator. LogOpt can be deployed during the gathering of data, periodi-
cally or fully online, and thus changes the logging behavior through an intervention. As
such, it turns the counterfactual evaluation approach with the policy-aware estimator
into an online approach. Our experimental results show that applying LogOpt increases
the data-efficiency of counterfactual evaluation with the policy-aware estimator. The
performance with LogOpt is comparable to A/B testing and interleaving, but in contrast
with interleaving, the policy-aware estimator applied with LogOpt does not have a
systematic error. Therefore, we answer RQ7 positively: by optimizing the logging
policy with LogOpt, counterfactual evaluation can perform effective and data-efficient
online evaluation.

Inspired by how Chapter 7 bridges part of the gap between online and counterfactual
ranking evaluation, Chapter 8 addressed our final question:

RQ9 Can the counterfactual LTR approach be extended to perform highly effective
online LTR?

The motivation is similar to the previous chapter: we would like to find a theoretically-
grounded method that is effective at both counterfactual LTR and online LTR. Since
counterfactual LTR has strong theoretical guarantees, we used it as a starting point.
Then we introduced the novel intervention-aware estimator which does not assume a
stationary logging policy. As a result, the estimator takes into account the fact that an
online intervention may change the logging policy during the gathering of data. Thus
when applied online, the intervention-aware estimator does not only consider the logging
policy used when a click was logged but also all the other logging policies applied at
all other timesteps. In addition, the intervention-aware estimator also combines the
theoretical properties of recent counterfactual LTR estimators: it is the first estimator that
can correct for both position bias, item-selection bias, and trust bias. Our experimental
results show that the intervention-aware estimator results in much lower variance,
than an equivalent estimator that ignores the effect of interventions. Furthermore, in
our experimental setting it outperformed all existing counterfactual estimators, with
especially large differences when online interventions take place. Importantly, we
observed that the intervention-aware estimator matches the performance of PDGD with
as few as 100 interventions during learning. Besides a small initial period, LTR with the
intervention-aware estimator was able to reach the performance of the most effective
online LTR methods. Therefore, we answer RQ9 positively: the intervention-aware
estimator extends the counterfactual LTR approach to perform highly effective online
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LTR. For the LTR field, this demonstrates that methods do not have to be either part
of counterfactual LTR or online LTR. By designing them for both applications at once,
they can be highly effective in both scenarios.

Finally, we note the complementary nature of the findings in the second part of
the thesis. Many of the contributions of earlier chapters were used in later chapters.
For instance, the methods introduced in Chapter 6 and Chapter 7 made use of the
policy-aware estimator proposed in Chapter 5, and Chapter 8 built on the policy-
aware estimator to introduce the intervention-aware estimator. Similarly, the adaptation
of LambdaLoss for counterfactual LTR introduced in Chapter 5 was applied in the
experiments of Chapter 6 and Chapter 7. While not explored in the thesis, many of
the later contributions can also be applied to methods in earlier chapters. For instance,
the intervention-aware estimator from Chapter 8 is completely compatible with the
LambdaLoss adaption from Chapter 5 and GENSPEC from Chapter 6. In particular, it
could be applied in combination with LogOpt from Chapter 7, potentially leading to even
more effective online ranking evaluation. Together, the contributions of the second part
can be combined into a single framework for counterfactual LTR and ranking evaluation,
where our contributions complement each other. Importantly, this framework bridges
several gaps between supervised LTR, online LTR, and counterfactual LTR.

9.2 Summary of Findings

The overarching question this thesis aimed to answer considered whether there could be
a single general theoretically-grounded approach that has competitive performance for
both evaluation and LTR from user clicks on rankings, in both the counterfactual and
online settings.

We have looked at the family of online methods for LTR [43, 126, 132] and ranking
evaluation [44, 56, 96, 108], which traditionally avoid making strong assumptions
about user behavior, i.e., that a model of position bias is known [128]. While this
makes their theory widely applicable, the theoretical guarantees of these methods
are relatively weak. For instance, some interleaving and multileaving methods are
proven to converge on correct outcomes if clicks are uncorrelated with relevance
and thus every ranker performs equally well [41, 96]. Though such guarantees are
valuable, they only cover a small group of unambiguous situations and thus leave most
situations without theoretical guarantees. Online LTR methods are often motivated by
empirical results from semi-synthetic experiments, where they are tested in settings
with varying levels of noise and bias [42, 80, 111, 125]. The fundamental question
with this type of empirical motivation is how well the results generalize, in particular,
whether a method is still effective if the experimental conditions change slightly. This
thesis has presented four examples of online methods that showed surprisingly poor
performance when tested in new conditions: (i) On several datasets DBGD [132] did
not get close to optimal performance after 106 issued-queries while learning from
clicks without noise or position bias (Chapter 4). (ii) Team Draft Interleaving [99],
Probabilistic Interleaving [41], and Optimized Interleaving [96] make systematic errors
in some ranking comparisons when tested under rank-based position bias (Chapter 7).
(iii) The performance of the COLTR algorithm [136] dropped severely when tested
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under position bias, item-selection bias, and trust bias (Chapter 8). (iv) PDGD no
longer converged to near-optimal performance when we ran it counterfactually or
only provided it with 100 online interventions, and instead resulted in a large drop
in performance (Chapter 8). While these online methods LTR and evaluation have
also shown great performance in previous work [41, 50, 96, 99, 111, 132, 136], these
problematic examples illustrate why we cannot conclude that these online LTR methods
are reliable. For instance, the performance of a method like PDGD was thought to
be very robust to noise and bias [50] (Chapter 3 and 4), until tested without constant
online interventions (Chapter 8). Without strong theoretical guarantees, we cannot
know whether there are more currently-unknown conditions required for the robust
performance of PDGD. In general, it is unclear how robust online LTR methods are in
practice; this thesis has shown that there is a potential risk for detrimental performance
if real-world circumstances do not match the tested experimental settings. Therefore,
we conclude that online LTR methods should not be used as a basis for a single general
approach for LTR and ranking evaluation from user clicks.

In the second part of the thesis, we considered the family of counterfactual methods
for LTR and ranking evaluation [58, 127], which consist of theoretically-grounded meth-
ods that use explicit assumptions about user behavior. In contrast with the online family,
counterfactual methods are less widely applicable: they only provide guarantees when
the assumed models of user behavior are true. For instance, the original counterfactual
LTR method assumes clicks are only affected by relevance and rank-based position
bias [58, 127]. Despite their limited applicability, counterfactual methods have very
strong theoretical guarantees. In contrast to most online LTR methods, counterfactual
LTR methods guarantee convergence at the same performance as supervised LTR, given
that their assumptions about user behavior are true. The findings of this thesis indicate
that the strong guarantees with limited applicability of counterfactual LTR are preferable
over the weak guarantees with wide applicability of online LTR. This is mainly because
widening the applicability of counterfactual LTR proved very doable. In this thesis,
we have expanded the applicability of counterfactual LTR and evaluation to (i) top-k
settings with item-selection bias (Chapter 5), and (ii) ranking settings where both trust
bias and item-selection bias occur (Chapter 8). Besides expanding the settings where
counterfactual LTR methods can be applied, we expanded the methods that perform
counterfactual LTR, including: (iii) the state-of-the-art LambdaLoss supervised LTR
framework [129] (Chapter 5), (iv) tabular models for extremely specialized rankings
(Chapter 6), and (v) a meta-policy that safely chooses between generalized feature-based
models and specialized tabular models (Chapter 6). Moreover, this thesis also found
novel algorithms to increase the effectivity of counterfactual LTR methods for (vi) on-
line ranking evaluation (Chapter 7), and (vii) online LTR (Chapter 8), even with a
limited number of online interventions. Together, these contributions have widened the
applicability of counterfactual LTR while maintaining its strong theoretical guarantees.
As a direct result of this thesis, counterfactual LTR is applicable to more settings, more
LTR methods can be applied to the counterfactual LTR problem, and counterfactual
LTR methods are more effective in both the counterfactual and online LTR scenarios.

In conclusion, based on the findings of this thesis, it appears that counterfactual LTR
could form the basis of a general approach for LTR from user clicks. In our experimental
results, counterfactual LTR provided competitive performance to online LTR methods
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in both the counterfactual and online settings. While the theory of counterfactual LTR
does rely on stronger assumptions regarding user behavior than existing online LTR
methods, counterfactual LTR provides far stronger theoretical guarantees. In contrast, it
is currently unclear under what conditions online LTR methods are effective, making
their performance very unpredictable. Therefore, we answer our overarching thesis
question positively: the counterfactual LTR framework proposed in this thesis provides
a unified approach for effective and reliable LTR from user clicks. For the LTR field,
the counterfactual LTR framework bridges many gaps between areas of online LTR,
counterfactual LTR, and supervised LTR, and as such, it unifies many of the most
effective methods for LTR from user clicks.

9.3 Future Work

We will conclude the thesis with promising research directions for future work.
The most obvious direction is to widen the applicability of the counterfactual LTR

framework. This means that estimators are introduced that are unbiased under other
assumptions about user behavior. Joachims et al. [58] mentioned that the original coun-
terfactual method is unbiased as long as click probabilities decompose into observation
and relevance probabilities. For example, Vardasbi et al. [122] looked at the perfor-
mance of counterfactual LTR when assuming cascading user behavior, an alternative
to rank-based position bias. Additionally, Fang et al. [30] looked at context-dependent
position bias, where the degree of bias varies per query. It seems natural to continue
this trend to more complex models of user behavior. The challenge for future work is
two-fold: find LTR methods that are proven to be unbiased under more complex user
behavior models; and introduce methods that can reliably find the parameters of these
behavior models.

Besides learning from more complex user behavior, there is a big need for LTR
based on user clicks that optimizes for more complex goals. Some existing work has
already looked at complex goals: for instance, Radlinski et al. [98] introduced a bandit
algorithm for tabular LTR that optimizes for both relevance and diversity within a
ranking. Thus, using user clicks to find a ranking that has relevant items, as well as
having variety in the items within the ranking. Another example comes from Morik
et al. [79], who use counterfactual LTR to optimize for relevance and ranking fairness.
Ranking fairness metrics are based on the amount of exposure different items receive,
for example, some fairness metrics measure whether certain groups of items receive
similar amounts of exposure. Other areas of LTR also optimize for computational
efficiency to ensure that ranking systems can process queries in minimal amounts of
time [31]. Future work could investigate if counterfactual LTR can be used for complex
goals like these and combinations of them.

Surprisingly, the experimental results in this thesis showed that PDGD is no longer
effective when not applied fully online, and similarly, we observed very poor perfor-
mance for the COLTR algorithm [136]. However, we could not find theoretically proven
conditions that guarantee that PDGD or COLTR is or is not effective. It appears that we
lack a theoretical approach to understand the limits of online LTR methods. If such an
approach could be found, we may be able to correct for the faults in some online LTR
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methods, or understand when they can be applied reliably. Thus it may be very valuable
if future work reconsidered the theory behind existing online LTR methods.

Finally, most of the existing work on LTR from user interactions only consideres
user clicks. Existing work has already looked at additional signals that are useful for
learning [63, 110]. Novel methods that learn from other interactions in addition to
user clicks have the potential to better understand user preferences. However, the main
challenge this direction of research may be the availability of such data. Perhaps this
direction of research mostly needs a publicly available source of data and methods to
share such data in a privacy-respecting way.

Overall, our main advice for future work is to focus on methods that forge connec-
tions between advances in the larger field of LTR; that is, methods that combine the
best of different areas, as our proposed framework does for online LTR, counterfactual
LTR, and supervised LTR.
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Summary

Ranking systems form the basis for online search engines and recommendation services.
They process large collections of items, for instance web pages or e-commerce products,
and present the user with a small ordered selection. The goal of a ranking system is to
help a user find the items they are looking for with the least amount of effort. Thus the
rankings they produce should place the most relevant or preferred items at the top of
the ranking. Learning to rank is a field within machine learning that covers methods
which optimize ranking systems w.r.t. this goal. Traditional supervised learning to rank
methods utilize expert-judgements to evaluate and learn, however, in many situations
such judgements are impossible or infeasible to obtain. As a solution, methods have been
introduced that perform learning to rank based on user clicks instead. The difficulty with
clicks is that they are not only affected by user preferences, but also by what rankings
were displayed. Therefore, these methods have to prevent being biased by other factors
than user preference. This thesis concerns learning to rank methods based on user clicks
and specifically aims to unify the different families of these methods.

The first part of the thesis consists of three chapters that look at online learning to
rank algorithms which learn by directly interacting with users. Its first chapter considers
large scale evaluation and shows existing methods do not guarantee correctness and
user experience, we then introduce a novel method that can guarantee both. The second
chapter proposes a novel pairwise method for learning from clicks that contrasts with
the previous prevalent dueling-bandit methods. Our experiments show that our pairwise
method greatly outperforms the dueling-bandit approach. The third chapter further
confirms these findings in an extensive experimental comparison, furthermore, we also
show that the theory behind the dueling-bandit approach is unsound w.r.t. deterministic
ranking systems.

The second part of the thesis consists of four chapters that look at counterfactual
learning to rank algorithms which learn from historically logged click data. Its first
chapter takes the existing approach and makes it applicable to top-k settings where
not all items can be displayed at once. It also shows that state-of-the-art supervised
learning to rank methods can be applied in the counterfactual scenario. The second
chapter introduces a method that combines the robust generalization of feature-based
models with the high-performance specialization of tabular models. The third chapter
looks at evaluation and introduces a method for finding the optimal logging policy that
collects click data in a way that minimizes the variance of estimated ranking metrics.
By applying this method during the gathering of clicks, one can turn counterfactual
evaluation into online evaluation. The fourth chapter proposes a novel counterfactual
estimator that considers the possibility that the logging policy has been updated during
the gathering of click data. As a result, it can learn much more efficiently when deployed
in an online scenario where interventions can take place. The resulting approach is
thus both online and counterfactual, our experimental results show that its performance
matches the state-of-the-art in both the online and the counterfactual scenario.

As a whole, the second part of this thesis proposes a framework that bridges many
gaps between areas of online, counterfactual, and supervised learning to rank. It has
taken approaches, previously considered independent, and unified them into a single
methodology for widely applicable and effective learning to rank from user clicks.
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Samenvatting

Rankingsystemen vormen de basis voor online zoekmachines en aanbevelingsdiensten.
Ze verwerken grote verzamelingen van bijvoorbeeld webpagina’s of web-winkel pro-
ducten, en presenteren een kleine geordende selectie aan de gebruiker. Voor de beste
gebruikerservaring, moeten de resulterende rankings de meest relevante of geprefereerde
items bovenaan plaatsen. Het learning-to-rank veld omvat methodes die rankingssyste-
men optimaliseren voor dit doel. Traditionele learning-to-rank methoden maken gebruik
van supervisie: annotaties van deskundigen. Omdat het verkrijgen van dergelijke
annotaties vaak onmogelijk is, zijn methoden ontwikkeld die leren op basis van gebruik-
ersclicks. Helaas worden clicks niet alleen beı̈nvloed door gebruikersvoorkeuren, maar
ook door welke rankings worden weergegeven. Om werkelijk de gebruikersvoorkeuren
te leren moeten deze methoden dus de invloed van zulke andere factoren vermijden. Dit
proefschrift betreft learning-to-rank methoden op basis van gebruikersclicks en heeft
specifiek het doel de verschillende families van deze methoden te verenigen.

Het eerste deel van dit proefschrift bestaat uit drie hoofdstukken die kijken naar
online learning-to-rank algoritmen die leren d.m.v. directe interactie met gebruikers.
Het eerste hoofdstuk behandelt evaluatie op grote schaal waar we de eerste methode
introduceren die garanties biedt voor zowel juiste resultaten en goede gebruikerservaring.
Het tweede hoofdstuk stelt een nieuwe paarsgewijze methode voor om te leren van
clicks die in contrast staat met de eerdere dueling-bandits methoden. Onze experimenten
tonen aan dat onze paarsgewijze methode veel beter presteert dan de dueling-bandits
methoden. Het derde hoofdstuk bevestigt deze bevinding en laat ook zien dat de theorie
achter de dueling-bandits methoden incorrect is t.o.v. deterministische rankingsystemen.

Het tweede deel van het proefschrift bestaat uit vier hoofdstukken die kijken naar
counterfactual learning-to-rank algoritmen die leren van eerder verzamelde clickdata.
Het eerste hoofdstuk maakt deze algoritmen toepasbaar op top-k rankings die niet alle
items tegelijkertijd kunnen weergeven. Verder laat het ook zien dat state-of-the-art
supervised learning-to-rank methoden toepasbaar zijn in het counterfactual scenario. Het
tweede hoofdstuk introduceert een methode die de robuuste generalisatie van ‘feature-
based’ modellen combineert met de hoge prestaties van gespecialiseerde tabelmodellen.
Het derde hoofdstuk behandelt evaluatiemethodes en introduceert een methode voor
het vinden van de optimale logging-policy die clickdata verzamelt op een manier die
de variantie van geschatte rankingmetrieken minimaliseert. Door deze methode toe
te passen tijdens het verzamelen van clicks wordt counterfactual evaluatie omgezet in
online evaluatie. Het vierde hoofdstuk presenteert een nieuwe counterfactual methode
die rekening houdt met de mogelijkheid dat de logging policy niet constant is. Als
gevolg hiervan kan het veel efficiënter leren in een online scenario waar interventies
plaatsvinden. Onze experimentele resultaten laten zien dat de prestaties van deze
methode overeenkomen met de state-of-the-art in zowel het online als het counterfactual
scenario.

In zijn geheel stelt het tweede deel van dit proefschrift een raamwerk voor dat
veel hiaten overbrugt tussen de online, counterfactual en supervised learning-to-rank
gebieden. Het heeft methodes die voorheen als onafhankelijk werden beschouwd,
verenigd in één enkele methodologie voor breed toepasbare en effectieve learning-to-
rank op basis van gebruikersclicks.
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