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Behavioral/Cognitive

Decreased Alertness Reconfigures Cognitive Control
Networks

Andrés Canales-Johnson,1,2,3,4,5* Lola Beerendonk,3,4* Salome Blain,1 Shin Kitaoka,1 Alejandro Ezquerro-Nassar,1,2

Stijn Nuiten,3,4 Johannes Fahrenfort,3,4 Simon van Gaal,3,4† and Tristan A. Bekinschtein1,2†
1Cambridge Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom,
2Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom, 3Department of Psychology,
University of Amsterdam, 1018 WT, Amsterdam, The Netherlands, 4Amsterdam Brain & Cognition, University of Amsterdam, 1018 WT,
Amsterdam, The Netherlands, and 5Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3480112, Chile

Humans’ remarkable capacity to flexibly adapt their behavior based on rapid situational changes is termed cognitive control.
Intuitively, cognitive control is thought to be affected by the state of alertness; for example, when drowsy, we feel less capable
of adequately implementing effortful cognitive tasks. Although scientific investigations have focused on the effects of sleep de-
privation and circadian time, little is known about how natural daily fluctuations in alertness in the regular awake state affect
cognitive control. Here we combined a conflict task in the auditory domain with EEG neurodynamics to test how neural and
behavioral markers of conflict processing are affected by fluctuations in alertness. Using a novel computational method, we
segregated alert and drowsy trials from two testing sessions and observed that, although participants (both sexes) were gener-
ally sluggish, the typical conflict effect reflected in slower responses to conflicting information compared with nonconflicting
information, as well as the moderating effect of previous conflict (conflict adaptation), were still intact. However, the typical
neural markers of cognitive control—local midfrontal theta-band power changes—that participants show during full alertness
were no longer noticeable when alertness decreased. Instead, when drowsy, we found an increase in long-range information
sharing (connectivity) between brain regions in the same frequency band. These results show the resilience of the human cog-
nitive control system when affected by internal fluctuations of alertness and suggest that there are neural compensatory
mechanisms at play in response to physiological pressure during diminished alertness.

Key words: alertness; conflict adaptation; conflict effect; information sharing; reconfiguration; theta oscillations

Significance Statement

The normal variability in alertness we experience in daily tasks is rarely taken into account in cognitive neuroscience. Here
we studied neurobehavioral dynamics of cognitive control with decreasing alertness. We used the classic Simon task where
participants hear the word “left” or “right” in the right or left ear, eliciting slower responses when the word and the side are
incongruent—the conflict effect. Participants performed the task both while fully awake and while getting drowsy, allowing
for the characterization of alertness modulating cognitive control. The changes in the neural signatures of conflict from local
theta oscillations to a long-distance distributed theta network suggest a reconfiguration of the underlying neural processes
subserving cognitive control when affected by alertness fluctuations.

Introduction
Cognitive control is the capacity for making quick adjustments
to cognitive processes to optimally solve the task at hand. One
proposed mechanism involves allocating attention to task-rele-
vant information and ignoring nonrelevant, sometimes conflic-
tive, information (Desimone and Duncan, 1995; Miller and
Cohen, 2001; Egner and Hirsch, 2005). The ability to deal with
conflicting information is often studied using “conflict tasks,”
which typically induce response (or stimulus) conflict by trigger-
ing an automatic response that has to be overcome to decide cor-
rectly (e.g., Stroop/Simon tasks). For example, when a Dutch
person drives in England, they must override the automatic
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tendency to turn right on a roundabout and go left instead.
Experiencing these types of conflict has been shown to increase
the level of cognitive control on the next occasion, when encoun-
tering a similar conflicting situation. This process—termed con-
flict adaptation—seems necessary to smooth future decisions
and avoid further mistakes (Gratton et al., 1992). Here we com-
bine a behavioral conflict task with electroencephalography
(EEG) to study the modulatory effect of arousal fluctuations on
decision-making in the face of conflict.

Alertness, as an arousal component, is controlled at various
levels in the mammalian brain, including the pons and mid-
brain, upper brainstem, and thalamus as well as cortical inter-
actions (Bekinschtein et al., 2009). Arousal is dependent on
circadian factors and sleep pressure (Borbély et al., 2016) and
in turn affects the efficiency of cognitive processes. How levels
of wakefulness modulate attentional processes and cognitive
control is commonly studied in sleep deprivation and circadian
cycle studies, but less often during normal waking fluctuations
(Goupil and Bekinschtein, 2012). Both sleep deprivation and
drops in circadian time lead to cognitive performance decre-
ments (Tucker et al., 2010; Ratcliff and Van Dongen, 2011;
Gunzelmann et al., 2012), but, surprisingly, the performance
modulation imposed by changes in wakefulness on complex
tasks appears to be less severe than their effects on simple tasks
(Harrison et al., 2000). Specifically, studies focusing on (cogni-
tive/response) conflict have failed to indicate increased interfer-
ence effects with sleep deprivation and circadian time (Sagaspe
et al., 2006; Cain et al., 2011; Bratzke et al., 2012), but consis-
tently show overall slower responses during increased sleepi-
ness or lower arousal. However, Gevers et al. (2015) recently
uncovered an interesting dissociation: although conflict effects
on the current trial did not seem to change after a night of sleep
deprivation, across-trial conflict adaptation effects did. These
results nicely converge with studies on the relationship between
conflict awareness and conflict processing, as conflict detection
seems much less dependent on conflict experience than conflict
adaptation (van Gaal et al., 2010; Jiang et al., 2015), suggesting
that conflict detection is more automatic—less effortful—than
conflict adaptation.

Fluctuations in cognitive control are shown to be associated
with changes in activity patterns in the medial frontal cortex
(MFC) and the dorsolateral prefrontal cortex (Robbins, 1996;
Swick et al., 2011; Gläscher et al., 2012; Cai et al., 2016). In EEG
recordings, conflict-related processes are often measured by
quantifying the power of theta-band neural oscillations (4–8Hz;
Luu et al., 2004; Trujillo and Allen, 2007; Cohen et al., 2008;
Cavanagh et al., 2010; Nigbur et al., 2012; Cohen and van Gaal,
2014). In combination with a recently validated method to auto-
matically detect drowsiness periods from EEG (Jagannathan et
al., 2018), we here use conflictive information to map behavioral
and neural markers of cognitive control as they get modulated by
ongoing fluctuations in arousal.

Materials and Methods
Participants. Thirty-three healthy human participants (18 females; age
range, 18–30 years; mean age, = 23.1 years; SD=2.8), recruited from the
University of Cambridge (Cambridge, UK), participated in this experi-
ment for monetary compensation. All participants had normal or cor-
rected-to-normal vision and had no history of head injury or physical
and mental illness. This study was approved by the local ethics commit-
tee of the University of Cambridge, and written informed consent was
obtained from all participants after explanation of the experimental
protocol.

Experimental task. Participants performed an auditory version of the
Stroop task (Stroop, 1935). Recorded samples of a native speaker saying
“left” or “right” were presented to participants’ left or right ear through
ear buds, resulting in four types of stimuli (i.e., left in left ear, left in right
ear, right in right ear, right in left ear). Stimuli were congruent when the
word meaning corresponded to its physical location (e.g., left in left ear)
and incongruent otherwise (e.g., left in right ear). All four types of stim-
uli were presented equally often, but in a random order. Participants
were asked to report the location depicted by the voice (i.e., word mean-
ing; the words left or right), while ignoring its physical location (i.e., left
or right ear) by pressing one of two buttons on a response box (Figure
1A). There was no practice block and no feedback on performance
throughout the task. The time between a response and the following
stimulus varied randomly between 2 and 2.5 s. The interstimulus interval
was fixed to 2 s in the absence of a response within that time frame. As a
result, the interstimulus interval could vary from 2 s (response absent) to
4.49 s (maximum response latency of 1.991 maximum response stimu-
lus interval of 2.5).

Procedure. Participants were instructed to get a normal night’s rest
on the night previous to testing. Testing started between 9:00 A.M. and
5:00P.M. and lasted;3 h. Upon arrival at the testing room, participants
were seated in a comfortable adjustable chair in an electrically shielded
room. Participants were fitted with an electrolyte 129-channel cap
(Electrical Geodesics) after receiving the task instructions and subse-
quently signing the informed consent. Task instructions were to respond
as fast and accurately as possible, to keep bodily movements to a mini-
mum and to keep the eyes closed throughout the experiment.
Participants were asked to report their answers with their thumbs (i.e.,
left thumb for the word left and vice versa) on two buttons of a four-but-
ton response box that rested on their lap or abdomen. In the first part of
the session, participants were instructed to stay awake with their eyes
closed while performing the task. The back of the chair was set up
straight and the lights in the room were on. This part of the experiment
lasted for 500 trials and lasted for;25min. Right afterward, the task was
performed while participants were allowed to fall asleep. The chair was
reclined to a comfortable position, the lights were turned off and partici-
pants were offered a pillow and blanket (Figure 1B). Participants were
told that the experimenter would wake them up by making a sound (i.e.,
knocking on the desk or wall) if they missed five consecutive trials. This
procedure prevents participants from taking extended naps during the
session as it takes only one responsive trial (following an unresponsive
one) to restart the count. In this way, a session can accumulate several
unresponsive trials in the absence of extended unresponsive periods.
This part of the experiment lasted for 2000 trials and lasted for ;1.5 h.
At the end of the session, participants were seated upright and the EEG
cap was removed. Stimuli were presented using PsychToolbox software
on a Macintosh computer, and data were acquired using NetStation soft-
ware (Electrical Geodesics) on another Macintosh computer.

For each individual session (awake and “drowsy”), we performed an
automatic alertness classification to subselect the awake trials of the
awake session, and the drowsy trials of the drowsy session (see below).
As a result of the automatic classification, 93% of the trials from the
awake session were classified as awake and were selected for further anal-
yses while discarding the rest (average across 33 participants). Similarly,
for the drowsy condition, 62% of the trials were classified as drowsy and
were selected for further analyses while discarding the rest.

Wakefulness classification. The automatic classification of alertness
levels involved classifying periods of the experimental session into awake
and drowsy. The pretrial period (�1500 to 0ms) before each tone was
used to classify the corresponding trial as awake or drowsy. Pretrial
epochs were analyzed using the micromeasures algorithm (Jagannathan
et al., 2018), and each trial was classified as “alert,” drowsy (mild), or
drowsy (severe).

The micromeasures algorithm computes predictor variance and co-
herence features on the pretrial period, and subsequently classifies trials
as alert and drowsy using support vector machine (SVM). Predictor var-
iance is computed in the occipital electrodes (O1, Oz, O2) in different
frequency bands (band 1: 2–4Hz; band 2: 8–10Hz, band 3: 10–12Hz;
band 4: 2–6Hz), and coherence is computed across selected electrodes
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in the occipital (O1, Oz, O2), frontal (F7, F8, Fz), central (C3, C4;), and
temporal (T7, T8, TP8, FT10, TP10) regions in the following bands:
delta: 1–4Hz; alpha: 7–12Hz; sigma: 12–16Hz; and gamma: 16–30Hz.
Intuitively, while predictor variance captures the variance in the signal
explained by different frequency bands, coherence captures the spectral
correlation across electrodes by frequency band. Later on, SVM uses
these features for alertness classification, where pretrials containing
100% and .50% of alpha oscillations are classified as awake, and trials
containing 50% of alpha oscillations, EEG flattening, and ripples are clas-
sified as drowsy mild. Finally, further detectors are used to further sub-
classify them into drowsy severe (vertex waves, k-complex, and
spindles).

To select true alert trials from the “awake” condition, we used only
trials from the alert blocks and removed all those marked as “drowsy”
(Fig. 1C, purple). Similarly, “drowsy (mild)” and “drowsy (severe)” from
the drowsy blocks were selected as true drowsy trials during the drowsy

condition (Fig. 1C, green). The periods where the trials were classified as
drowsy (mild) and drowsy (severe) corresponded to a higher degree of
misses (time-out responses), further confirming, behaviorally, the low
alertness of these sections of the drowsy session. The total number of tri-
als across the 33 participants was 26,045 for the awake and 33,306 for the
drowsy conditions.

Rationale for conflict effect and conflict adaptation effect analyses.
Although the proportion of missed trials because of unresponsiveness
was higher for the drowsy condition (42.80%) than for the awake condi-
tion (13.85%; t(32) = �9.75; p, 0.001), the available number of trials
for further analyses was comparable between conditions [overall number
of trials accumulated across subjects; awake: 22,398 trials (median
between participants: 698; range: 524–954); drowsy: 19,051 trials (me-
dian between participants: 923; range: 790–1278)]. However, the situa-
tion changed for the conflict adaptation analysis. The fact that conflict
adaptation is evaluated over sequences of two consecutive responded

Figure 1. Experimental paradigm and alertness level classification. A, Schematic representation of the experimental design. Participants were instructed to report the semantics (left or right)
of an auditory stimulus via a button press with their left or right hand, respectively, and to ignore the spatial location at which the auditory stimulus was presented. Sound content of the audi-
tory stimuli could be congruent or incongruent with its location of presentation (50% congruent/incongruent trials). B, Schematic representation of the experimental sessions. In the awake ses-
sion, participants were instructed to stay awake with their eyes closed while performing the task with the back of the chair set up straight and the lights on. Immediately after, in the drowsy
session, the task was performed while participants were allowed to fall asleep with their chair reclined to a comfortable position and the lights off. C, Automatic classification of alertness levels.
For each session (awake and drowsy), pretrial periods (�1500 to 0 ms) were used for defining awake (purple) and drowsy (green) trials. Pretrials containing 100% and.50% of alpha oscilla-
tions were classified as awake. Similarly, pretrials containing ,50% of alpha oscillations, EEG flattening, ripples, and other graphic elements were classified as drowsy (see Materials and
Methods for details). Thus, only the trials classified as awake from the awake session and those classified as drowsy from the drowsy session were subselected for further analyses. D, Top,
Automatic classification of alertness during a drowsy session (representative participant, occipital electrode). The frequency profile depicts changes in the power level in different bands during
the pretrial period, and the bars on top represent pretrials classified as awake (purple) or drowsy (green). Bottom, The variability in the reaction times (bottom) closely follows the changes in
the frequency profile (top) from alpha (higher RT variability in green) to theta (lower RT variability in purple) obtained using the pretrial information.
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trials (e.g., an incongruent trial preceded by a congruent one) brought as
a consequence a greater reduction in the number of trials in the drowsy
state (12,008 of 19,051 trials, 46.38% reduction) compared with awake
trials (20,138 of 22,398 trials, 10.09% reduction). Therefore, for the con-
flict effect analyses in reaction time (RT) and theta power, the repeated-
measures (RM) ANOVA incorporated only two factors to maximize the
number of trials (and therefore statistical power) within conditions and
to balance the proportion of trials between conditions (alertness: awake
vs drowsy; and congruency: congruent vs incongruent). In contrast, for
the conflict adaptation analyses (RT and theta power), three factors were
considered for the RM ANOVA: alertness (awake vs drowsy), previous
trial congruency (congruent vs incongruent), and current trial congru-
ency (congruent vs incongruent).

Behavioral data analysis. The first trial of every block, incorrect or
missed trials, trials following incorrect responses, and trials with an
RT,200ms were excluded from behavioral analyses. Conflict on trial n
has been found to cause increased error rates (ERs) and prolonged
RTs, compared with when no conflict is present. This current trial
effect of conflict can be modulated by previously experienced conflict
on trial n-1, a phenomenon called conflict adaptation. To investigate
whether current trial conflict effects and the modulation thereof by
previous conflict were present, we performed RM ANOVA on ERs
and RTs among alertness (awake, drowsy), current trial congruency
(congruent, incongruent), and previous trial congruency (congruent,
incongruent). Additional post hoc RM ANOVA, awake and drowsy
conditions were performed separately. In the case of null findings, we
applied a Bayesian repeated-measures ANOVA with similar factors to
verify whether there is actual support of the null hypothesis. We also
performed such Bayesian ANOVAs for any null findings in our EEG
data.

EEG recordings and preprocessing. EEG signals were recorded with
128-channel HydroCel Sensors using a GES300 Electrical Geodesic am-
plifier at a sampling rate of 500 Hz using the NetStation software.
During recording and analyses, the average of electrodes was used as the
reference electrode. Two bipolar derivations were designed to monitor
vertical and horizontal ocular movements. Following Chennu et al.
(2014), data from 93 channels over the scalp surface were retained for
further analysis. Channels on the neck, cheeks, and forehead, which
reflected more movement-related noise than signal, were excluded.
Continuous EEG data was epoched from �1500 to 2000 ms around
stimulus onset. Eye movement contamination (blinks were rare as
eyes were closed, and vertical and horizontal saccades or slow move-
ments were also infrequent), muscle artifacts (i.e. cardiac and neck
movements) were removed from the data before further processing
using an independent component analysis (Delorme and Makeig, 2004).
All conditions yielded at least 96% of artifact-free trials. Trials that con-
tained voltage fluctuations exceeding6200 mV and transients exceeding
6100 mV were removed. No low-pass or high-pass filtering was per-
formed during the preprocessing stage. The EEGLAB MATLAB toolbox
was for each individual session adopted as it can significantly affect clas-
sification scores during multivoxel pattern analysis (MVPA; van Driel et
al., 2019). Thus, we applied a function designed for rejecting abnormal
slow-frequency trends mainly caused by artifactual eye-related currents.
To detect such drifts, we used a detrending function implemented in
EEGLAB that fits the data to a straight line and marks the trial for rejec-
tion if the slope exceeds a given threshold. The slope is expressed in
microvolts over the whole epoch (50, for instance, would correspond to
an epoch in which the straight-line fit value might be 0 mV at the begin-
ning of the trial and 50 mV at the end). The minimal fit between the
EEG data and a line of minimal slope is determined using a standard R2

measure.
EEG time–frequency analysis. Epochs were grouped based on current

and previous trial congruency, creating four trial conditions. Then, EEG
traces were decomposed into time–frequency (T–F) charts from 2 to
30Hz in 15 linearly spaced steps (2Hz/bin). The power spectrum of the
EEG signal (as obtained by the fast Fourier transform) was multiplied by
the power spectra of complex Morlet wavelets ðei2ˆ tf e�t2=ð2§ 2Þ) with
logarithmically spaced cycle sizes ranging from 3 to 12. The inverse
Fourier transform was then used to acquire the complex signal, which

was converted to frequency band-specific power by squaring the
result of the convolution of the complex and real parts of the signal
(real z tð Þ½ �2 1 imag z tð Þ½ �2). The resulting time–frequency data were
then averaged per subject and trial type. Finally, time–frequency
traces were transformed to decibels and normalized to a baseline of
�400 to �100ms before stimulus onset, according to the following

equation: dB ¼ 10 p log10
power
baseline

(Cohen and van Gaal, 2014).

We tested the hypothesis that midfrontal theta power would increase
following the presentation of conflicting stimuli according to previous
literature (Nigbur et al., 2012; Cohen and Ridderinkhof, 2013; Pastötter
et al., 2013; Cohen and van Gaal, 2014). Therefore, we selected electrodes
in a frontocentral spatial region of interest (ROI) to run our analyses
(see Fig. 3). To find a time–frequency ROI for subsequent analyses in
the spectral and information theory domain, data from within the spatial
ROI were averaged across the awake and drowsy experimental sessions
for congruent and incongruent trials, separately. Next, current trial con-
flict (I–C) was calculated for all participants.

To test for significant time–frequency ROI in which overall conflict
was present (see Fig. 3A), a cluster-based nonparametric statistical test
implemented in FieldTrip (Maris and Oostenveld, 2007) was used.
In brief, time–frequency charts (�200 to 1200ms) were compared in
pairs of experimental conditions (incongruent vs congruent). For each
such pairwise comparison, epochs in each condition were averaged sub-
jectwise. These averages were passed to the analysis procedure of
FieldTrip, the details of which have been described previously (Maris
and Oostenveld, 2007). In short, this procedure compared correspond-
ing temporal points in the subjectwise averages using independent sam-
ples t tests for between-subject comparisons. Although this step was
parametric, FieldTrip uses a nonparametric clustering method to address
the multiple-comparisons problem. The t values of adjacent temporal
points whose p values were,0.05 were clustered together by summating
their t values, and the largest such cluster was retained. This whole pro-
cedure (i.e., calculation of t values at each temporal point followed by
clustering of adjacent t values) was then repeated 1000 times, with
recombination and randomized resampling of the subjectwise averages
before each repetition. This Monte Carlo method generated a nonpara-
metric estimate of the p value representing the statistical significance of
the originally identified cluster. The cluster-level t value was calculated
as the sum of the individual t values at the points within the cluster.

Then, time–frequency power was extracted from this ROI for each
participant and was used as input for RM ANOVAs between alertness
(awake, drowsy) and congruency (congruent, incongruent) for the con-
flict effect analysis. Subsequently, separate RM ANOVA were performed
on the same ROI data for post hoc inspection of significant effects for
conflict adaptation among alertness (awake, drowsy), previous trial con-
gruency (congruent, incongruent), and current trial congruency (con-
gruent, incongruent). Finally, separate RM ANOVAs for the awake and
drowsy conditions were performed on the same ROI data for post hoc
inspection of significant effects for conflict adaptation (current trial con-
gruency vs previous trial congruency).

EEG source reconstruction. To visualize the brain origins of the uni-
variate conflict effect, cortical sources of subjectwise averaged time–fre-
quency charts within the theta-band ROI (see Fig. 3) were reconstructed
using Brainstorm (Tadel et al., 2011). The forward model was calculated
using the OpenMEEG Boundary Element Method (Gramfort et al.,
2010) on the cortical surface of a template MNI brain (colin27) with 1
mm resolution. The inverse model was constrained using weighted min-
imum-norm estimation (Baillet et al., 2001) to calculate source activa-
tion. To plot cortical maps, grand-averaged activation values were
baseline corrected by z-scoring the baseline period (�400 to �100ms
window) to each time point, and spatially smoothed with a 5 mm kernel.
This procedure was applied separately for the overall, awake, and drowsy
conflict effects.

EEG multivariate spectral decoding. In addition to the univariate
approach, a multivariate spectral decoding model was applied on the
time–frequency data. This was done both because of the higher sensitiv-
ity of multivariate analyses, and well as to inspect whether and to what
extent different stimulus features (i.e., location and sound content) were
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processed in awake and drowsy conditions. The ADAM toolbox was
used on raw EEG data, which was transformed to time–frequency using
default methods but with similar settings epochs:�200 to 1200ms, 2–30
Hz (Fahrenfort et al., 2018). As unbalanced designs (i.e., asymmetrical
trial counts between conditions) can have a number of unintended or bi-
ased effects on the conclusions that can be drawn from the analysis, we
performed a balanced decoding between conditions per state of alertness
(see Fig. 3). Balancing the number of trials between conditions has been
shown to convey clear performance benefits for linear discriminant anal-
ysis (LDA) and area under the curve (AUC), which are the classification
algorithm and default performance metric that ADAM uses.

Trials were classified according to current trial stimulus content (i.e.,
sound location and sound content), resulting in four trial types. Note
that this is different from the univariate analyses, where trials were classi-
fied according to current and previous trial conflict. As decoding algo-
rithms are known to be time consuming, data were resampled to 64Hz.
Next, a backward decoding algorithm, using stimulus location, stimulus
sound contents, or congruency as stimulus class, was applied according
to a 10-fold cross-validation scheme. An LDA was used to discriminate
between stimulus classes (e.g., left vs right ear bud location) after which
classification accuracy was computed as the AUC, a measure derived
from signal detection theory. AUC scores were tested per time point
with double-sided t tests across participants against a 50% chance level.
These t tests were corrected for multiple comparisons over time, using
cluster-based permutation tests (p, 0.05, 1000 iterations). This proce-
dure yields time clusters of significant above-chance classifier accuracy,
indicative of information processing. Note that this procedure yields
results that should be interpreted as fixed effects (Allefeld et al., 2016),
but is nonetheless standard in the scientific community.

Information sharing analysis: weighted symbolic mutual information.
To quantify the information sharing between electrodes, we computed the
weighted symbolic mutual information (wSMI; King et al., 2013; Sitt et al.,
2014; Imperatori et al., 2019). It assesses the extent to which the two sig-
nals present joint nonrandom fluctuations, suggesting that they share in-
formation. wSMI has the following three main advantages: (1) it allows for
a rapid and robust estimation of the entropies of the signals; (2) it provides
an efficient way to detect nonlinear coupling; and (3) it discards the spuri-
ous correlations between signals arising from common sources, favoring
nontrivial pairs of symbols. For each trial, wSMI is calculated between
each pair of electrodes after the transformation of the EEG signals into the
sequence of discrete symbols defined by the ordering of k time samples
separated by a temporal separation t . The symbolic transformation
depends on a fixed symbol size (k=3; i.e., three samples represent a sym-
bol) and a variable t between samples (temporal distance between sam-
ples), which determines the frequency range in which wSMI is estimated.
In our case, we chose t = 32 to specifically isolate wSMI in theta band.
The frequency specificity f of wSMI is related to k and t as follows:

f ¼ 1000=ðt p kÞ:

As per the above formula, with a kernel size k of 3, t values of 32ms
hence produced a sensitivity to frequencies ,10Hz with and spanning the
theta band (;4–9Hz). Control results were obtained with t value of 24ms
(alpha band:;10–14Hz) and t value of 16ms (beta band:;14–20Hz).

wSMI was estimated for each pair of transformed EEG signals by cal-
culating the joint probability of each pair of symbols. The joint probabil-
ity matrix was multiplied by binary weights to reduce spurious
correlations between signals. The weights were set to zero for pairs of
identical symbols, which could be elicited by a unique common source,
and for opposite symbols, which could reflect the two sides of a single
electric dipole. wSMI is calculated using the following formula:

wSMI X;Yð Þ ¼ 1
logðk!Þ

X
x2X

X
y2Y

w x; yð Þp x; yð Þlog pðx; yÞ
p xð ÞpðyÞ

 !
;

where x and y are all symbols present in signals X and Y, respectively, w
(x,y) is the weight matrix, and p(x,y) is the joint probability of co-occur-
rence of symbol x in signal X and symbol y in signal Y. Finally, p(x) and

p(y) are the probabilities of those symbols in each signal and K! is the
number of symbols used to normalize the mutual information by the
maximal entropy of the signal. The time window in which theta-band
and alpha-band (control) wSMI was calculated was determined based on
the significant time window seen in the spectral contrast of Figure 3A
(380–660ms). Similarly, beta-band wSMI (control) was determined
based on the spectral time window seen in Figure 3A (580–728ms).

Statistics. Statistical analyses were performed using MATLAB
(2016a), Jamovi (version 0.8.1.6; open source; https://www.jamovi.org),
and JASP (version 0.8.4) statistical software. When reported, BF01 refers
to the Bayes factor in favor of the null hypothesis.

Results
While fully awake as well as while becoming drowsy, participants
performed an auditory Simon task where they heard the words
left or right, from either the left or right side in space. Participants
were instructed to respond according to the meaning of the sound
(e.g., left requires a left-hand response; Fig. 1A). We hypothesized
an increase in reaction times to all stimuli—a typical marker of
drowsiness—but expected that conflict detection mechanisms
would remain relatively preserved (in behavior and theta oscilla-
tions), similar to studies showing preserved processing of conflict-
ing information at reduced levels of stimulus awareness (van Gaal
et al., 2010; Jiang et al., 2015, 2018). We expected the sharpest
decline in performance and conflict processing when focusing on
across-trial conflict adaptation mechanisms (Jiang et al., 2015),
but less so for the current trial conflict effect.

Behavioral results
Conflict effect in reaction times
First, we analyzed the RTs with the factor alertness conditions
(awake, drowsy) and trial congruency (congruent, incongruent).
An RM ANOVA revealed a main effect of alertness (F(1,32) =
92.96; p, 0.001; h 2

p = 0.744), reflecting a slowing of RT during
drowsy state compared with awake state. Further, a main effect
of congruency (F(1,32) = 51.93; p, 0.001; h 2

p = 0.619) was
observed, manifested as slower RTs for incongruent trials com-
pared with congruent trials (“the conflict effect”). The conflict
effect was positive for the majority of the participants (30 of 33
participants). Interestingly, no reliable interaction between alert-
ness and congruency was observed (F(1,32) = 0.542; p= 0.468; h 2

p
= 0.017; BF01 = 4.199). Next, we focused on the effects for the
awake and drowsy conditions separately. Within the awake con-
dition, RTs were slower for incongruent trials compared with
congruent trials (main effect of congruency: F(1,32) = 59.16;
p, 0.001; h 2

p = 0.649) and the effects were positive for the ma-
jority of the participants (30 of 33 participants). A similar conflict
effect was observed when participants were drowsy (F(1,32) =
9.642; p=0.004; h 2

p = 0.232) with a positive effect for the major-
ity of the participants (26 of 33 participants).

Conflict adaptation effect in reaction times
In the next analysis, we focused on the conflict adaptation effect,
as indicated by a smaller conflict effect when the current trial
was preceded by an incongruent trial compared when it was pre-
ceded by a congruent one. An RM ANOVA performed on con-
flict adaptation across alertness levels revealed a conflict
adaptation effect (interaction previous � current trial congru-
ency: F(1,32) = 29.885; p, 0.001; h 2

p = 0.483; Fig. 2C). The con-
flict adaptation effect was positive for the majority of the
participants in the awake conditions (26 of 33 participants; F(1,32)
= 9.642; p=0.004; h 2

p = 0.232; Fig. 2A, middle) and drowsy con-
ditions (26 of 33 participants; F(1,32) = 7.318; p= 0.011; h 2

p =
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0.186; Fig. 2D). Furthermore, no reliable interaction between
conflict adaptation and alertness was observed (F(1,32) = 0.683;
p=0.415; h 2

p = 0.021; BF01 = 4.199).

Error rates
This version of the Simon tasks is well tuned to test for conflict
effect in reaction times and less for error rates; however, an RM
ANOVA performed on error rates and alertness conditions (alert-
ness � conflict � conflict adaptation) revealed that participants
made more errors during drowsy conditions than during awake
conditions (main effect of alertness: F(1,32) = 18.29; p, 0.001; h 2

p
= 0.364). However, conflict effects (F(1,32) = 2.357; p=0.135; h 2

p =
0.06; BF01 = 1.24) and conflict adaptation effects (F(1,32) = 0.862;
p=0.360; h 2

p = 0.364; BF01 = 4.14) on error rates were not reliable,
nor was the interaction between conflict adaptation and alertness
(F(1,32) = 3.177; p=0.084; h 2

p = 0.09; BF01 = 2.35). Finally, when
the analyses were performed separately by alertness conditions,
the awake state showed a conflict effect (F(1,32) = 24.152; p, 0.001;
h 2

p = 0.43) and conflict adaptation (F(1,32) = 8.567; p=0.006; h 2
p =

0.211), but the drowsy condition did not (conflict: F(1,32) = 1.41;
p=0.243; h 2

p = 0.042; BF01 = 5.149; conflict adaptation: F(1,32) =
1.88; p=0.180; h 2

p = 0.055; BF01 = 13.685).
Overall, we observed that although participants were gener-

ally slower and made more errors during the drowsy condition,
the conflict effect reflected in slower responses to conflicting in-
formation compared with nonconflicting information was still
present, as well as the moderating effect of previous trial conflict
observed in the conflict adaptation effect.

Midfrontal theta-band oscillations and source reconstruction
Upon establishing that conflict and conflict adaptation effects are
present in both awake and drowsy states, we proceed to test

whether medial frontal (MF) conflict detection processes, typically
reflected in short-lived oscillatory dynamics in the theta band
(Nigbur et al., 2012; Cohen and Donner, 2013; Cohen and van
Gaal, 2014; Jiang et al., 2015), were present during awake and
drowsy states as well. To determine the time–frequency cluster for
assessing conflict and conflict adaptation effects, we first analyzed
the overall conflict effect, regardless of alertness condition or pre-
vious trial congruency (I–C, averaged over awake and drowsy ses-
sions; Fig. 3A). Replicating previous studies (Nigbur et al., 2012;
Jiang et al., 2015), current trial conflict induced increased theta-
band power at MF electrodes (cluster: p=0.028; frequency range:
4–8 Hz; time range: 250–625 ms; Fig. 3A, encircled region in
black, solid line). The area within this T–F cluster was used for fol-
low-up analyses. Next, we tested whether these conflict-related
theta-band dynamics in this cluster were modulated by alertness
and previous trial congruency, which was indeed the case.

Conflict effect in midfrontal theta power
First, we evaluated the conflict effect between awake and drowsy
trials (I–C) regardless of previous trial congruency. An RM
ANOVA revealed a reliable main effect of alertness (F(1,32) =
36.09; p, 0.001, h 2

p = 0.53), congruency (F(1,32) = 6.80; p=0.014,
h 2

p = 0.18), and an interaction between congruency and alert-
ness (F(1,32) = 4.63; p = 0.014; h 2

p = 0.13; Fig. 3C), showing a
stronger MF–theta conflict effect in the awake state compared
with the drowsy state. Post hoc effects showed higher MF theta for
incongruent than congruent trials only in the awake state (awake:
t(32) = 2.456; p=0.034; drowsy: t(32) = 0.305; p=0.761; Tukey’s test
corrected for multiple comparisons) (Figure 3C).

Conflict adaptation effect in theta power
We next evaluated the conflict adaptation effect between awake
and drowsy conditions. The extent of conflict-related MF theta-

Figure 2. Behavioral results in awake and drowsy conditions. A, B, Overall reaction times for the awake (A) and drowsy (B) conditions. C, D, Individual conflict (C) and conflict adaptation
effects (D) for the awake and drowsy conditions in reaction times. I: incongruent trials, C: congruent trials.
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power was modulated by previous trial congruency (conflict ad-
aptation: F(1,32) = 5.70; p= 0.023; h 2

p = 0.151); however, no inter-
action between conflict adaptation and alertness was found
(F(1,32) = 0.68; p=0.415; h 2

p = 0.021; BF01 = 3.21). Finally, as an
exploratory analysis, we evaluated the conflict adaptation effect
by unpacking the results for awake and drowsy conditions sepa-
rately. In the awake condition, we observed significant conflict
adaption in MF theta-band power (F(1,32) = 8.47; p= 0.007; h 2

p =
0.209), but not in the drowsy state (F(1,32) = 2.19; p=0.148;
h 2

p = 0.064; BF01 = 3.84).
To visualize the sources of the conflict-related MF theta oscil-

lations observed at the scalp level, we performed source recon-
struction analyses, across all conditions (Fig. 3A), for the awake
and drowsy conflict effects separately (Fig. 3B). In line with sev-
eral fMRI and animal studies performed on awake participants,
the conflict-related theta-band signal seems to show hubs in the
medial frontal and the dorsolateral prefrontal cortex (Van Veen
et al., 2001; Botvinick et al., 2004; Ullsperger et al., 2014), but to a
lesser extent in the drowsy condition (Fig. 3B).

In addition to the MF theta cluster and in agreement with
previous reports (van Gaal et al., 2010; Jiang et al., 2015), an
overall conflict effect was observed in the alpha-beta band (clus-
ter: p=0.008; frequency range: 13–29 Hz; time range: 580–728
ms; Fig. 3A, encircled region in black, dashed line). When trials
were split, these results were reliable for the conflict effect in the
awake condition (F(1,32) = 8.41; p= 0.007; h 2

p = 0.208) but not for
conflict adaptation (F(1,32) = 3.24, p= 0.081; h 2

p = 0.092, BF01 =
2.021), nor for the drowsy condition in general (conflict effect:

F(1,32) = 0.05; p=0.488; h 2
p = 0.002, BF01 = 5.252; conflict adapta-

tion: F(1,32) = 0.94; p=0.339; h 2
p = 0.039, BF01 = 52.135).

Relationship between alertness and executive function
We reasoned that testing for differences in congruency before
and after stimulus presentation would be helpful to disentangle
whether the observed effects are (mainly) related to fluctuations
in alertness or potential fluctuations in executive functioning. As
a way of disentangling alertness from executive functioning, we
directly contrasted the theta-power differences between the pre-
trial period used for the alertness classification (�1500 to 0ms
prestimulus) and the poststimulus window where conflict was
observed (250 to 625ms). An RM ANOVA with the factors time
window and congruency (congruent, incongruent) was per-
formed on the theta-band frequency (frequency range: 4–9 Hz;
Fig. 1A, cluster). A significant interaction between window and
congruency was observed (F(1,32) = 16.919; p, 0.001, h 2

p =
0.346), indicating that the poststimulus theta-band conflict effect
was stronger than the prestimulus effect. Further, while post hoc
analyses confirmed the already reported difference in congru-
ency in the poststimulus window (t(32) = 2.83; p= 0.026), no dif-
ference between incongruent and congruent trials was observed
in the pretrial window (t(32) = �1.45; p=0.154; Tukey’s test cor-
rect for multiple comparisons). Not enough evidence for a con-
flict effect in the pretrial window supports the idea that
fluctuations in theta power may index the following two (par-
tially) separate processes: prestimulus theta may mainly reflect
fluctuations in alertness levels, whereas poststimulus theta may

Figure 3. Univariate spectral analysis and sources of midfrontal theta-band oscillations in the awake and drowsy conditions. A–C, Conflict effects in terms of time–frequency dynamics across
alertness conditions (A), and for the awake versus drowsy states (B), calculated over medial-frontal electrodes (C). A, The black delineated box is the theta-band time–frequency ROI where
overall conflict (I–C) was significant over conditions (cluster-based corrected; see Materials and Methods). Insets show topographical distribution and sources of oscillatory power within this T-F
ROI. Black dots represent the midfrontal EEG electrodes selected for obtaining the conflict-related theta-band power. A source-reconstruction analysis was performed on this time–frequency
ROI (z score) for the overall conflict (A) and for awake and drowsy states (B). Activations are depicted on unsmoothed brains; as reconstructed sources were observed only on the surface of the
cortex. Sources are for visualization purposes (no statistical testing performed). C–E, Group-level (C) and individual conflict and individual conflict (D) and conflict adaptation effects (E) for the
awake and drowsy conditions in decibels (average ROI power incongruent – average ROI power congruent). Error bars represent standard error of the mean (S.E.M).
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signal executive functioning (specifically conflict processing
here).

Multivariate spectral decoding
The hypothesis-driven analysis for the neural signatures focused
on the MF theta band revealed clear conflict detection and con-
flict adaptation processes for the wake state, but not reliably for
the drowsy state. The change of wakefulness in the transition to
sleep comes with large changes in neural reconfiguration that
might explain this loss of specificity of the neural markers. To
determine whether a more spatially or temporally extended pat-
tern of neural activity might be underlying the behavioral conflict
effect in the drowsy condition observed in behavior, we per-
formed a spectral MVPA (or “spectral decoding”), accounting
for possible changes in space, time, and frequency of the conflict-
related neural signatures. Spectral decoding allows one to obtain
a measure for the difference between stimuli without having to a
priori specify at which electrodes or frequency bands this differ-
ence emerges, while at the same time picking up subtle differen-
ces that might not have been noticed had such an a priori
electrode selection been made (Fahrenfort et al., 2018). To do so,
we trained classifiers to do the following: (1) distinguish between
congruent and incongruent trials; (2) distinguish spatial process-
ing in trials where the auditory stimulus was presented from the
left versus the right earbud (i.e., stimulus location); and (3) dif-
ferentiate trials where the presented auditory stimulus was left
versus right (i.e., stimulus content). Above-chance classification
accuracies imply that relevant information about the decoded
stimulus feature is present in the neural data, meaning that some
processing of that feature occurred (Hebart and Baker, 2018).

Consistent with the univariate approach for analyzing congru-
ency, multivariate decoding showed that information about stimu-
lus congruency was reliably represented in neural data in the
awake state (Fig. 4A), but not in the drowsy state (Fig. 4B;
p, 0.05, cluster corrected; frequency range: 2–9Hz; peak fre-
quency: 6Hz; time range: 376–810ms). Assessment of the qualita-
tive difference in the theta-band decoding (4–9Hz) performance
between awake and drowsy states [i.e., an interaction effect: awake
AUC values (I–C) minus drowsy AUC values (I–C)]. The cluster-
based permutation test showed a reliable temporal cluster of
increased classifier accuracy for the awake versus the drowsy con-
dition (p, 0.05, cluster corrected) in the 680–810ms time range
(Fig. 4A, right). These results are consistent with the interaction
effect observed in the univariate analysis performed on the ROI
midfrontal theta (Fig. 3C).

Although the previous analysis revealed that conflict could
only be decoded from neural data in the awake state, interest-
ingly, the sound identity and location of the auditory stimuli
could be decoded from neural data for both the awake (identity:
p, 0.001, cluster corrected; time range: 240–1200ms; location:
p, 0.05, cluster corrected; time-range: 120–920ms) and drowsy
states (identity: p, 0.05, cluster corrected; time range: 250–
1200ms; location: p, 0.05, cluster corrected; time range: 88–
300ms; Fig. 4A,C). Both content and location showed above-chance
decoding patterns in the theta band as well as other frequency
bands—depending on the contrast—in both awake and drowsy
states (Fig. 4). This highlights the capacity of the brain to process
the semantic and spatial components of the task in parallel
under internal modulatory stress (lower arousal). However, the
above-chance decoding of the individual features forming con-
flict (location and semantic), but the lack of decoding of conflict
itself (congruency), suggest that decreased alertness impacts the

capacity of the MFC conflict monitoring system to integrate the
semantic and location information required to form conflict.

Summarizing, the above-chance performance of the classifiers
for low-level stimulus features suggests that location and sound
identity were still processed, even during a decreased level of alert-
ness; however, no reliable decoding was found for conflict effects.

Distributed theta-band information sharing
The fact that a multivariate method analyzing the pattern across
time, space, and frequency did not capture a neural signature of
conflict observed behaviorally suggests a more drastic reconfigu-
ration of the neural processes underlying conflict detection dur-
ing drowsiness. We reasoned that the neural signatures of
conflict may involve changes in connectivity in a wide network
of brain regions instead of relatively local power changes. Thus,
we hypothesized that a neural metric specifically indexing dis-
tributed neural information integration (wSMI; King et al., 2013;
Sitt et al., 2014; Imperatori et al., 2019; Canales-Johnson et al.,
2020) could in principle capture the conflict effect during drows-
iness. wSMI has been shown to capture network reconfiguration
both in healthy (Imperatori et al., 2019) and pathologic (King et
al., 2013; Sitt et al., 2014) states of alertness. Importantly, due to
its sensitivity to highly nonlinear coupling (Imperatori et al.,
2019), wSMI has been useful for tracking the neural information
dynamics underlying perceptual content formation (Canales-
Johnson et al., 2020). Thus, we performed this analysis as a possi-
ble post hoc hypothesis for the reconfiguration of the underlying
networks supporting cognitive control. The wSMI can be calcu-
lated at different timescales, which can be implemented by the
variable t (see Materials and Methods). Here we used a t of
32ms (;4–9Hz), and therefore the wSMI measure captures
nonlinear information integration in the theta-band domain.
The time window for theta-band wSMI was calculated on the sig-
nificant time window observed in the spectral contrast of Figure
3A (380–660ms). An RM ANOVA revealed a reliable main
effect of alertness (F(1,32) = 56.10; p, 0.001, h 2

p = 0.637), which
is in line with previous results showing increased wSMI in states
associated with high levels, versus low levels, of arousal and con-
sciousness (King et al., 2013; Sitt et al., 2014; Imperatori et al.,
2019). More interestingly, we also observed an interaction
between congruency and alertness for long-distance wSMI in the
theta band (F(1,32) = 5.50; p= 0.025; h 2

p = 0.182; Fig. 5A). Post hoc
tests showed higher wSMI for incongruent than congruent trials
only in the drowsy state (drowsy: t(32) = 2.456; p=0.034; awake:
t(32) = 0.305; p= 0.761; Tukey’s test corrected for multiple com-
parisons). Individual differences in theta-band wSMI for each
participant in the awake (right) and drowsy (left) conditions are
shown in Figure 5B.

To further control for potential wSMI effects in other fre-
quency ranges traditionally associated with cognitive control, we
computed alpha-band wSMI (t of 24ms; ;10–14Hz; 380–
660ms) and beta-band wSMI [t of 16ms; ;15–20Hz; Fig. 3A;
same time window as beta power effect (580–728ms)]. In the
case of the alpha-band wSMI, a main effect of alertness (F(1,32) =
89.86; p, 0.001; h 2

p = 0.377), but no main effect of congruency
(F(1,32) = 0.02; p=0.874) or interaction between alertness and
congruency (F(1,32) = 0.618; p= 0.437) was observed. Similarly, a
main effect of alertness (F(1,32) = 52.51; p, 0.001; h 2

p = 0.221)
but no main effect of congruency (F(1,32) = 1.08; p= 0.307) or
interaction (F(1,32) = 2.48; p= 0.125) was observed for the beta-
band wSMI. These results further confirm the specificity of
theta-band wSMI in the neural reconfiguration of cognitive con-
trol during diminished alertness.
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Brain–behavior relationships
We further investigated, in an exploratory manner, the statistical
dependencies among information integration in the theta band,
information sharing (wSMI), and the strength of the behavioral

conflict effect. Separate multiple regressions were performed on
the awake and drowsy states, using as regressors the MF theta-
power ROI differences (I–C) and the distributed theta-wSMI dif-
ferences (I–C; Fig. 5C). The conflict effect (RT difference: I–C)

Figure 4. Multivariate spectral decoding of stimuli components in the awake and drowsy conditions. Classifier accuracies are depicted across time–frequency charts (2–30 Hz) for the awake
and drowsy conditions separately, and for the difference between awake and drowsy conditions in the theta band. Classifier accuracy was thresholded (cluster-based correction, p, 0.05), and
significant clusters are outlined with a solid black line. In the difference plots on the right, significant differences from chance are highlighted by a black solid line at the bottom of the figures.
The dotted lines in the left and middle panels reflect the frequency band used for statistical testing between awake and drowsy states (right-most panels). A, Classifier accuracies for stimulus
congruency (“conflict”). Information about congruency was only present in the awake condition. B, Classifier accuracies for stimulus location (“location”). Location of the auditory stimulus could
be decoded in both conditions, meaning that information about this stimulus feature is present in both awake and drowsy neural frequency signals. C, Classifier accuracies for stimulus sound
identities (“content”). Sound identities of the auditory stimulus could be decoded in both alertness conditions. Differences between awake and drowsy conditions were observed for stimulus
congruency and identity but not for stimulus location. Grey shaded contours in AUC difference plots represent standard error of the mean (S.E.M)
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was used as the predicted variable. In the drowsy condition
model (R2 = 0.20; F(2,30) = 3.68; p= 0.037), distributed theta-
wSMI predicted the conflict effect in RT (b = �0.39; p= 0.028),
while MF theta was not a reliable predictor (b = 0.14; p= 0.665).
On the other hand, in the awake condition model (R2 = 0.02;
F(2,30) = 0.321; p = 0.728; p= 0.613), none of the regressors pre-
dicted the conflict effect significantly (MF theta: b = 0.12;
p=0.514; distributed theta-wSMI: b = 0.09; p= 0.609). This rela-
tionship was also described in terms of a simple Pearson’s corre-
lation, showing a significant correlation between RT difference
and wSMI difference for the drowsy (r = �0.42; p=0.015) but
not for the awake condition (r=0.08; p= 0.65; Fig. 5D). These
results show that the distributed information, but possibly not
the local spectral power in the same neural signal (theta band),
underlies the behavioral conflict effect observed in the drowsy
state.

Discussion
In this article, we describe the impact of changes in our arousal
state during conflict detection and conflict adaptation processes
during normal waking fluctuations. We found the expected be-
havioral manifestations of decreased alertness, namely higher
group variability in RTs and slower RTs when people were
drowsy compared with actively awake (Lal and Craig, 2001;
Huang et al., 2009; Goupil and Bekinschtein, 2012; Bareham et
al., 2014; Comsa et al., 2019). Further, we observed reliable con-
flict effects with decreased alertness. However, contrary to recent
observations (Gevers et al., 2015), we observed conflict adapta-
tion even in the drowsy state, despite participants’ decreased
alertness (Fig. 2). The effects of conflict (current trial) and

conflict adaptation (trial-by-trial) were reliably independent of
the states of alertness (Fig. 2, individual participant’s data), sug-
gesting a spared capacity to resolve conflict arising from the
incongruity between the meaning and the side of the world
where the word was presented. These arousal modulations on
the capacity of executive control have been found in fatigued
participants and after sleep deprivation (Gevers et al., 2015), but
others showed only slower reaction times and no Stroop effects
(Sagaspe et al., 2006; Cain et al., 2011; Bratzke et al., 2012).
However, we show here that normal fluctuations of arousal in
well rested participants yield no strong detrimental effects in the
resolution of conflict. In short, humans still experience conflict
while mildly drowsy, and, even if they react slower, they respond
to incongruity in a manner similar to that when fully awake and
attentive.

Although conflict processing was relatively maintained in be-
havioral terms, its neural signatures changed. The principles of
neural reorganization are a much debated topic in neuroscience
(Dahmen and King, 2007; Shine et al., 2019), but there is agree-
ment in the flexibility of the brain networks to maintain or pre-
serve psychological function in the face of insult, and/or internal
or external modulatory factors (Siuda-Krzywicka et al., 2016;
Singh et al., 2018). Here we found a dissociation between the be-
havioral and neural markers of conflict and conflict adaptation
effect with the change in alertness. The classic conflict-induced
theta-band power changes were no longer reliable during low
alertness while the slower RT for incongruent trials remained.
Furthermore, multivariate whole-brain analyses showed conver-
gent results with the univariate approach. These findings suggest
that the changes exerted by the diminished alertness elicited a

Figure 5. Long-distance theta-band information sharing during conflict in awake and drowsy conditions. A, Long-distance wSMI in the theta band during the conflict effect. Each arc repre-
sents a functional connection between a pair of electrodes, and the height of the arc represents the value of the wSMI difference for that pair (incongruent � congruent; awake condition in
green and drowsy condition in magenta). Error bars represent standard error of the mean (S.E.M). Theta-band wSMI was calculated between each midfrontal ROI electrode (shown in Fig. 3)
and every other electrode outside the ROI. wSMI values within the midfrontal ROI were discarded from the analyses since we aimed at evaluated information integration between distant elec-
trode pairs. B, Individual differences in theta-band wSMI for each participant in the awake (right) and drowsy (left) conditions. C, Beta coefficients for two separate multiple regressions using
RT difference (I–C) as the predicted variable and theta power difference (I–C) and wSMI difference (I–C) as regressors. D, Pearson’s correlation for awake and drowsy conditions between RT dif-
ferences and wSMI differences. Error bars represent standard error of the mean (S.E.M).
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reconfiguration of the brain networks putatively responsible for
the neural resolution of the conflict, resulting in the disappear-
ance of the theta power difference in the conflict contrast and the
rise of a more distributed network in the same frequency band,
as evidenced by the increased information shared in theta
connectivity.

The networks implicated in cognitive control are not only
supported by correlations with brain activity, but also by causal
interventions. In rodents, a dissociation has been proposed
between prefrontal cortices in the causal support of control func-
tions in which the dorsomedial prefrontal cortex seems to be
implicated in memory for motor responses. This includes
response selection and the temporal processing of information,
whereas ventral regions of the medial prefrontal cortex seem
implicated in interrelated “supervisory” attentional functions,
including attention to stimulus features and task contingencies (or
action–outcome rules), attentional set shifting, and behavioral
flexibility (Dalley et al., 2004). In humans, causal evidence is sparse
because of a scarcity of patients with specific (frontal) lesions.
However, the impairment of simple cognitive control and trial-by-
trial influence is shown in a small but well structured study in
which dorsal anterior cingulate cortex damage disrupted the abil-
ity to make an adaptive choice between actions (but not stimuli)
following a win on the previous trial. Moreover, orbitofrontal
damage similarly disrupted choices between stimuli, but not
actions (Camille et al., 2011). Furthermore, in a large (n=344)
correlational study Gläscher et al. (2012) found that impairments
in cognitive control (response inhibition, conflict monitoring, and
switching) was associated with dorsolateral prefrontal cortex and
anterior cingulate cortex lesions. These medial prefrontal areas
that have been proposed as the origin of the theta-power modula-
tion in conflict tasks are thus causally implicated in cognitive con-
trol and lend further support for the search of other correlates that
would capture the conflict effect during an arousal challenge. Our
results show the involvement of the medial prefrontal cortex and,
to a lesser degree, the lateral prefrontal cortex in the classic conflict
Simon task, in agreement with the literature. However, we
observed a more distributed network supporting the resolution of
conflict, when internal resources lose efficiency as a consequence
of a drowsy state (Comsa et al., 2019).

Another framework to interpret our results is provided by the
taxonomy of attention by Posner (2008). The framework pro-
poses the following three brain networks that contribute to atten-
tion: alerting, orienting, and executive control. In our project, we
assess the interplay among the alerting network, achieving and
maintaining a state of high sensitivity to stimuli, and executive
control, the mechanisms for resolving conflict. Under this frame-
work, the fluctuations in alertness induced by the different task
settings in our experiment (awake vs drowsy session) pertain to
the maintenance of optimal vigilance, and we study how
decreases in alertness impact the system dedicated to conflict re-
solution. Other studies have looked at the interaction between
the alerting system and executive attentional systems and found
either no interacting effects or limited interaction between sys-
tems (Fan et al., 2002; Fossella et al., 2002) in healthy partici-
pants. However, in patients, the modulation of the alerting
network improved cognitive control (Robertson et al., 1995;
Sturm et al., 2006). We interpret our findings as an indication
that fluctuations in the alerting network impact the cognitive
control network. and the neural reconfiguration that we have
observed is a reflection of neural resilience and of compensatory
mechanisms that the human brain instantiates when high levels
of performance have to be maintained when challenged by
arousal changes.

The cognitive processes leading up to conflict experience
involve the extraction of meaning (left or right) and location
from where the stimulus came from. Thus, if the two factors are
congruent (left coming from the left side of space), conflict is
supposed to be absent and the participant responses fast, but
when the word comes from the other side of the space (left pre-
sented in the right side of the space) conflict arises and the
responses slow down, reflecting further processes necessary to
resolve conflict. We hypothesized that the specific perceptual
and semantic components of location and content, respectively,
would be decodable in the spectral domain as the participants
responded correctly to the stimuli. Both content and location
showed above-chance decoding patterns in the theta band as
well as other frequency bands—depending on the contrast—in
both awake and drowsy states (Fig. 4). This highlights the
capacity of the brain to process the semantic and spatial compo-
nents of the task in parallel under internal modulatory stress
(lower arousal). To capture the integration between these two
components by cognitive control networks, we looked for decod-
ability of conflict in the spectral domain (stimulus congruency).
The patterns showed the expected theta-band power difference
(restricted to theta) only in the alert state, the lack of decodable
patterns in the frequency space further suggested that the neural
signatures of the conflict resolution would be found somewhere
else, pointing to connectivity as a possible candidate.

Since we knew that there is strong evidence that neural
markers of conflict can be found in brain signals, we decided to
turn to information sharing under three premises. First, a neural
measure of information sharing could in principle capture
directly the information integration between stimulus content
and stimulus location necessary for generating the conflict effect
in our task. Second, the dynamic nature of neural information
integration (Imperatori et al., 2019; Canales-Johnson et al., 2020)
may be able to capture the reconfiguration of neural networks
during the transition from an alert to a drowsy state of mind.
Finally, as the reorganization of networks could be reflected in
the need for larger information capacity of the brain when chal-
lenged (by drowsiness), the measure chosen can be conceptually
framed as deriving from a computational principle. Although cort-
ical reorganization with age and after insult have been extensively
studied, the cognitive flexibility, or “cognitive fragmentation,”
resulted from an internally generated change—drowsiness—has
hardly been captured (Goupil and Bekinschtein, 2012).

We would also like to note that by manipulating alertness lev-
els (by having an awake and a drowsy session), we cannot fully
rule out that other cognitive functions may potentially fluctuate
alongside. For example, it may be that arousal fluctuations par-
tially go hand in hand with fluctuations in sustained attention
(Foucher et al., 2004) and/or levels of proactive control (i.e., the
sustained and anticipatory maintenance of goal-relevant infor-
mation; Braver, 2012). We have aimed to isolate alertness fluctu-
ations as accurately as possible by using an algorithm that
separates awake from drowsy trials that has previously been vali-
dated in different domains (Jagannathan et al., 2018) and by
focusing on physiological measures (e.g., alpha power, the pres-
ence of ripples, vertex sharp waves) that are firmly rooted in a
long history of work on alertness (arousal) fluctuations (Hori,
1985; Goupil and Bekinschtein, 2012). Further, we have pro-
vided support for the idea that changes in theta power can
reflect changes in multiple processes, because control analy-
ses revealed that theta power indexes separate processes
before (i.e., alertness levels) and after (i.e., cognitive control)
stimulus presentation. In future work, it would, however, be
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valuable to further isolate unique influences of fluctuations
in alertness, (sustained) attention, and proactive control on
(reactive) cognitive control processes, such as conflict detec-
tion/resolution (Braver, 2012).

These methods of tackling the system during transitions
could be conceptually regarded as causal if the processes at play
(wakefulness and cognitive control) are viewed as partially inde-
pendent. The case of drowsiness as a causal mode in cognitive
neuroscience may prove to be very useful in the exploration of
how cognition is fragmented or remains resilient under (reversi-
ble) perturbations of wakefulness (Bareham et al., 2014; Kouider
et al., 2014; Comsa et al., 2019). However, it cannot be regarded
as causal in the sense of perturbing the system externally as
transcranial magnetic stimulation, transcranial direct currents,
or pharmacology would do, since wakefulness is naturally occur-
ring and intimately interrelated with cognitive processes.

One possible explanation for the call for wider networks to
resolve conflict during drowsiness would be the need for involve-
ment of extended neural resources to solve the same task, as seen
previously in older adults when they are matched in performance
to younger adults (Reuter-Lorenz and Cappell, 2008; Spreng et
al., 2017). Convergent evidence is drawn from cognitive control
studies, where the frontoparietal control networks are further
recruited with higher cognitive load (Liang et al., 2016; Fransson
et al., 2018), tasks possibly reflecting the higher need for neural
resources. In other words, the brain’s capacity for plasticity
allows for the expansion of conflict networks in cases where
another element in the system (e.g., drowsiness) draws resources
away (internal challenge) from the neural systems typically
underlying cognitive control.

In conclusion, we have shown that, although participants were
generally sluggish, the conflict effect reflected behaviorally in slower
responses to conflicting information compared with nonconflicting
information was still intact during a drowsy state of alertness. The
changes in the neural signatures of conflict from local theta oscilla-
tions (awake condition) to a long-distance distributed theta network
(drowsy condition) suggest a relative reconfiguration of the under-
lying neural processes subserving cognitive control when the system
is affected by lower levels of alertness.
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