
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Clearing price distributions in call auctions

Derksen, M.; Kleijn, B.; de Vilder, R.
DOI
10.1080/14697688.2020.1744699
Publication date
2020
Document Version
Final published version
Published in
Quantitative Finance
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Derksen, M., Kleijn, B., & de Vilder, R. (2020). Clearing price distributions in call auctions.
Quantitative Finance, 20(9), 1475-1493. https://doi.org/10.1080/14697688.2020.1744699

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Nov 2022

https://doi.org/10.1080/14697688.2020.1744699
https://dare.uva.nl/personal/pure/en/publications/clearing-price-distributions-in-call-auctions(65afe844-1cc3-4525-9ff6-0331ce4c0979).html
https://doi.org/10.1080/14697688.2020.1744699


Quantitative Finance, 2020
Vol. 20, No. 9, 1475–1493, https://doi.org/10.1080/14697688.2020.1744699

Clearing price distributions in call auctions
M. DERKSEN*†‡, B. KLEIJN‡ and R. DE VILDER†‡

†Deep Blue Capital N.V., Amsterdam, Netherlands
‡Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, Netherlands

(Received 17 April 2019; accepted 13 March 2020; published online 20 April 2020 )

We propose a model for price formation in financial markets based on the clearing of a standard call
auction with random orders, and verify its validity for prediction of the daily closing price distribu-
tion statistically. The model considers random buy and sell orders, placed employing demand- and
supply-side valuation distributions; an equilibrium equation then leads to a distribution for clearing
price and transacted volume. Bid and ask volumes are left as free parameters, permitting possi-
bly heavy-tailed or very skewed order flow conditions. In highly liquid auctions, the clearing price
distribution converges to an asymptotically normal central limit, with mean and variance in terms
of supply/demand-valuation distributions and order flow imbalance. By means of simulations, we
illustrate the influence of variations in order flow and valuation distributions on price/volume, not-
ing a distinction between high- and low-volume auction price variance. To verify the validity of the
model statistically, we predict a year’s worth of daily closing price distributions for five constituents
of the Eurostoxx 50 index; Kolmogorov–Smirnov statistics and QQ-plots demonstrate with ample
statistical significance that the model predicts closing price distributions accurately, and compares
favourably with alternative methods of prediction.

Keywords: Call auction; Clearing price; Stochastic model; Price formation; Price impact; Closing
price prediction

1. Introduction

In modern financial markets most securities are traded in con-
tinuous double auctions. During the trading day a sell/buy
order for a price lower/higher than or equal to the best bid/ask
price is immediately executed against the limit order book on
the bid/ask side. If a sell/buy-order has a price higher/lower
than the best bid/ask, it is added to the limit order book
on the ask/bid side. To start and stop trading and determine
daily opening and closing prices, standard call auctions are
conducted for most securities. In these opening and closing
auctions buy and sell orders are collected over a set interval
in time, after which a clearing price X is determined to clear
the maximal executable volume (Euronext 2019), transacting
all against the price X.

A large part of the market microstructure literature focusses
on detailed modelling of continuous double auctions and
the limit order book. There are essentially two different
lines of work: equilibrium models in which order arrival is
governed by decisions of individual agents trying to maxi-
mize utility (see e.g. Parlour 1998, Foucault 1999, Goettler
et al. 2005, Rosu 2009, Bressan and Facchi 2013, Bressan
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and Wei 2016) and stochastic limit order book models in
which order arrival is completely stochastic (see e.g. Luck-
ock 2003, Smith et al. 2003, Cont et al. 2010, Abergel and
Jedidi 2013, Cont and De Larrard 2013, Muni Toke 2015b,
among many others). Some extensive studies of empirical
properties of the limit order book can be found in Biais
et al. (1995), Challet and Stinchcombe (2001), Bouchaud
et al. (2002), Potters and Bouchaud (2003). The standard call
auction has received less attention: Mendelson (1982) models
a call auction in which all orders have size one and are uni-
formly distributed over some price interval, while buy and sell
orders arrive c.f. a homogeneous Poisson process. The dis-
tribution of transacted volume is derived, together with the
clearing price expectation. Technically, this paper is related to
the work of Muni Toke (2015a), who gives the full solution
of Mendelson’s call auction model, deriving distributions for
transacted volume, and lower/upper clearing prices, as well as
asymptotic distributions in very liquid call auctions.

At the conceptual level, our approach is related to the sem-
inal paper by Smith et al. (2003), who consider a statistical
model for continuous double auctions assuming i.i.d. ran-
dom order flow, modelled through independent, homogeneous
Poisson processes for market orders, limit orders and can-
cellations with random order-prices from a single, uniform
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valuation distribution. Simulations, dimensional analysis and
mean-field approximations then lead to predictions for price
volatility, market depth, price-impact function, bid-ask spread
and probability/time to fill a limit order.

In this paper we propose a model for price formation in
financial markets with a bid/ask equilibrium equation at its
core, that sets the clearing price such as to lead to maxi-
mal transacted volume, based on fixed numbers NA, NB of
unit-sized sell and buy orders forming i.i.d. samples from
distinct valuation distributions FA and FB. Due to the random-
ness in the orders, the equilibrium gives rise to a distribution
for X |NA, NB, the clearing price conditional on NA, NB. The
shape of the valuation distributions FA, FB and the distribu-
tion of the pair (NA, NB) remain unspecified; while the former
models order density, the latter permits great freedom of
modelling order flow conditions, including auctions in which
extreme or skewed liquidity-conditions disturb equilibria and
distort clearing prices. We derive closed-form expressions
for distributions of clearing prices, jointly with transacted
volumes.

Such mechanisms have direct application in the modelling
of opening and closing auctions as demonstrated with data
from intraday transactions to predict closing price distri-
butions of several constituents of the Eurostoxx 50 index
(roughly speaking, this index consists of the 50 main Euro-
zone companies) in section 6. Extending the argument more
informally, we argue that the model applies also in continu-
ous trading: if buy/sell orders are accrued over a period of
time (and liquidity providers trade with a more-or-less neutral
combined inventory) then, at the aggregate level, the detailed
process of trading during the period can be interpreted as
market-clearing at a price X with a distribution that depends
on valuation distributions FA, FB and the distribution of the
pair (NA, NB) that reflects order flow conditions during the
interval. If liquidity providers do not trade neutrally, or if we
take a limit order book into account, the equilibrium between
newly accrued buy and sell orders is perturbed by so-called
excess liquidity, which can be taken into account in full gen-
erality and lies at the heart of many interesting properties
associated with real-world phenomena.

The remainder of this article is structured as follows. In
section 2, the model is introduced, probability distributions
for clearing price and volume are derived and several pro-
posals for the order flow distributions are made. In section 3,
we consider auctions in which the number of incoming orders
is very large. Asymptotically the clearing price has a normal
distribution, which implies that if we approximate contin-
uous trading by a periodically cleared market, the result-
ing discrete price process follows a Brownian path. This
is roughly in support of general pricing models based on
the efficient market hypothesis, with mean and variance of
the return distribution expressed in terms of the distribu-
tions of supply, demand and order flow. In section 4 we
explore how changing supply and demand distributions affect
the joint distribution of clearing price and transacted vol-
ume, leading to a distinction between two different types
of auction price variance; one occurring when transacted
volumes are high, the other one when these are low. In
section 5 we study the model’s perspective on the price impact
of market orders. Remarkably, the model reproduces the

concave price impact functions observed empirically (Has-
brouck 1991, Lillo et al. 2003, Donier and Bonart 2015)
and explained theoretically (Smith et al. 2003, Donier
et al. 2015, Benzaquen and Bouchaud 2018). In section 6
the model is applied to estimate the distribution of the clear-
ing price of a closing auction, based on the day’s transaction
data. For 5 (randomly selected) constituents of the Eurostoxx
50 index, it is shown that the model predicts the probabil-
ity distribution of the closing price with precision, through
assessment of QQ-plots and Kolmogorov–Smirnov statistics.
For comparison, a more crude alternative method of esti-
mation is assessed on the same basis. It is shown that the
market clearing model provides significantly better estimates
for clearing price distributions than this more straightforward
method. Most important results are summarized in the con-
cluding section 7. Proofs of the theoretical results of sections 2
and 3 as well as notation and conventions are collected in
appendix 1.

2. Stochastic market clearing

In this section, we introduce the model and derive expres-
sions for the distributions of central quantities in the clearing
process.

2.1. Supply/demand equilibrium

Let us consider a standard call auction for a given asset. In
the auction, buy and sell orders are matched to transact at
a clearing price X, determined in such a way that the total
transacted volume is maximal. Suppose that NA sell orders are
submitted, as well as NB buy orders and that every order has
equal size (set to one). We assume that participants on both
sides of the market formulate their orders independently of
each other, according to certain valuation distributions. That
is, we model the ask prices as an i.i.d. sample (A1, . . . ANA)

from a supply (or ask) distribution FA and the bid prices as an
i.i.d. sample (B1, . . . , BNB) from a demand (or bid) distribu-
tion FB. The interpretation of FA is as follows: the probability
that a randomly selected seller is willing to sell the asset for an
ask price A ≤ x, is given by FA(x), for all x ∈ R. Similarly, if
we randomly select a buyer, the probability that he is willing
to buy the asset for a bid price B ≤ x is given by FB(x). For
reasons of technical feasibility, it is assumed that buyers and
sellers formulate their quotes independently, i.e. bid- and ask-
samples are independent i.i.d. samples.† Denote by FB and FA

the empirical distribution functions associated with the bid-
and ask-samples (B1, . . . , BNB) and (A1, . . . , ANA), that is,

FB(x) = 1

NB

NB∑
j=1

1{Bj≤x}, FA(x) = 1

NA

NA∑
i=1

1{Ai≤x}.

† Of course these independence assumptions are not realistic: espe-
cially when prices fluctuate a lot, it is likely that market participants
on both sides of the market react on each other’s decisions and
hence their quotes are far from independent. However, we argue that,
despite these simplifying assumptions, the model can still be inter-
preted as a reasonable description of price formation in auctions, as
is confirmed by the results in section 6.
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For every x ∈ R, denote the number of submitted sell orders
with a price less than or equal to x by DA(x) and the number of
submitted buy orders with a price greater than x by DB(x). As
discussed above, the clearing price X is obtained by maximiz-
ing the total transacted volume. In terms of the above defined
quantities, that implies X is defined as a solution of the market
clearing equation DA(X ) = DB(X ), or,

NAFA(X ) = NB
(
1 − FB(X )

)
, (1)

which expresses that the transacted volume is maximized at
(any) price X where the supply curve DA and the demand
curve DB intersect. Consider the following definition.

Definition 2.1 For a given sell order sample (A1, . . . ANA)

from FA and a buy order sample (B1, . . . , BNB) from FB, the
corresponding clearing price X is defined by

X = inf{x ∈ R : DA(x) ≥ DB(x)}.
Remark 2.2 It should be noted that there are issues of exis-
tence and uniqueness of solutions to (1). Firstly, when the bid-
and ask-samples are such that,

B1 ≤ . . . ≤ BNB < A1 ≤ · · · ≤ ANA

there is no solution where DA and DB intersect. Secondly,
it is possible that there is an interval [X , X̄ ] of possible

clearing prices for which DA = DB, ruining uniqueness. Both
issues are addressed in Definition 2.1, much in the same way
quantiles of a distribution are defined (see figure 1 for an
illustration).

In subsequent subsections, closed-form expressions are
provided for the probability distributions (conditional, given
(NA, NB)) of several important market quantities, like clearing
price X and transacted volume V.

While this stochastic model of price formation is based on
the mechanism of a call auction, the clearing price also has an
interpretation for continuous trading. To appreciate the rela-
tion, the process of continuous bidding and transacting (with
matching of orders as an instantaneous but momentary form
of clearing) should be viewed in an aggregated form over
an interval of time I. During any such interval the numbers
of buyers and sellers must still be equal, and that is exactly
what equation (1) expresses. Then, at the aggregate level, the
detailed, step-by-step process of trading during the interval
may be modelled equivalently (or in close approximation)
as market clearing at a clearing price X associated with the
interval I.

For both the auction and the continuous trading interpreta-
tions, the following applies: if FA, FB and the distribution of
(NA, NB) are chosen in an appropriate way, the clearing price
X can be interpreted as a true, underlying price for the asset,

Figure 1. Three possible examples of the supply curve DA(·) (the increasing (red) step function) and the demand curve DB(·) (the decreasing
(blue) step function). Left upper panel: a situation in which there is no unique point of intersection, note the position of X at the left of the
interval where DA = DB. Right upper panel: a situation in which there is a unique intersection point, but DA(X ) > DB(X ). Lower panel: A
situation in which no transactions are possible, note the position of X at the highest placed buy order. Note also the position of the transacted
volume (V ) after clearing (this quantity is defined later on).
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associated not with any specific point in time but with the
whole interval I (to relate such an interval-price to timed mar-
ket prices, one may think of X loosely as the price at a time
T randomly sampled from I). To justify the fixed distributions
FA, FB and the independence assumptions on the order sam-
ples, I must not be too long due to possible non-stationarity
but long enough statistically, aggregating a sufficiently large
numbers of orders. Furthermore, the stochastic behaviour of
FA and FB (that is, the randomness these quantities repre-
sent) must reflect the uncertainty in the incoming orders on
the respective sides of the market during the time interval I
with some accuracy. Similarly the distribution chosen for liq-
uidity (NA, NB) must reflect the uncertainty in actual market
liquidity conditions during the interval I. If these conditions
are met, the model will provide an accurate reflection of the
stochastic aspects of market clearing, and thereby, of price
formation.

In the setting of continuous trading, it makes sense to mea-
sure time in terms of market events rather than physical time,
in particular regarding the interval I. Combining with the
interpretation of X as a true, underlying price for the interval
I, we can fix N = NA + NB and interpret the resulting clearing
price X as a true, underlying asset price associated with the
interval spanned by the next N orders.

The unrestricted freedom in the choices for FA, FB and
the distribution of (NA, NB) enables use of empirical fits for
these distributions from previous intervals. It is also pos-
sible to make definite, default choices for these quantities:
for instance, choosing independent Poisson distributions for
NA and NB would correspond to the assumption of Poisson
order flow, which is omnipresent in the literature (see, among
many others, Smith et al. 2003, Cont et al. 2010, Abergel and
Jedidi 2013, Cont and De Larrard 2013, Muni Toke 2015b
for examples in context of continuous double auctions and
Mendelson 1982, Muni Toke 2015a for examples in the
standard call auction). In section 2.4 we consider further pos-
sible choices for the distribution of (NA, NB) and the model
properties implied.

2.2. Distribution of clearing price and volume

In this subsection we derive the probability distributions
of price and price-volume, resulting from the equilibrium
equation (1), without and with a limit order book. We concen-
trate on the marginal distribution of the clearing price X only
first, given by the following theorem (proved in the appendix).

Theorem 2.3 (Clearing price distribution) The distribution
of the clearing price X, conditional on NA and NB, is given
by,

P(X ≤ x|NA, NB)

=
NA∑

k=0

NB∧k∑
l=0

(
NA

k

)
FA(x)k(1 − FA(x))NA−k

×
(

NB

l

)
(1 − FB(x))lFB(x)NB−l.

However, it is also possible to derive the joint distribution
of clearing price and transacted volume, which is defined next.

Definition 2.4 The transacted volume V corresponding to
the clearing price X, is defined by V = DA(X ).

Remark 2.5 The quantity V = DA(X ) should be interpreted
as the maximal number of orders that can be matched in clear-
ing. In the context of a call auction, it is the total volume that
is transacted. If FA and FB are continuous distributions, there
is almost surely a unique point where DA and DB intersect,
hence V = DA(X ) = DB(X ). In the case of a discrete price-
axis it is possible that DA(X ) > DB(X ), which means that
the volume DA(X ) is not completely matched (see the upper
right panel of figure 1). As a convention, we neglect such dis-
cretization effects and continue with Definition 2.4 (compare
with the resolution to the ambiguity for X, as an infimum, see
Remark 2.2).

In the next theorem (proved in the appendix), an explicit
expression for the joint distribution of X and V is provided.
It is assumed that the price-axis X is a discrete set, X :=
{x0, x0 + δ, . . .}, where δ is the ticksize.

Theorem 2.6 (Joint clearing price/transacted volume
distribution)

The joint distribution of clearing price X and transacted
volume V, conditional on NA and NB, is given by,

P(X ≤ x, V ≤ v|NA, NB)

=
v∑

u=0

u∑
k=0

k∑
l=0

[(
NB

l

)(
NA

k, u − k, NA − u

)

× (1 − FB(x))lFB(x)NB−lFA(x)k(FA(x + δ)

− FA(x))u−k(1 − FA(x + δ))NA−u

]

+
∑

y∈X ,y≤x

NA∑
u=v+1

u∑
k=0

k∑
l=0

[(
NB

l

)(
NA

k, u − k, NA − u

)

× (1 − FB(y))lFB(y)NB−l

× FA(y)k(FA(y + δ) − FA(y))u−k(1 − FA(y + δ))NA−u

]

−
∑
y≤x

NB∑
l=0

NA∑
k=l∨v+1

(
NA

k

)
FA(y)k(1 − FA(y))NA−k

×
(

NB

l

)
FB(y)NB−l(1 − FB(y))l. (2)

2.3. Excess liquidity

There are several variations possible on the definition of the
clearing price X as given above: to start with, during contin-
uous trading, exchanges often offer an open limit order book,
which contains all visible limit orders on ask-side and bid-
side. Denote by LA(x) the total volume on the ask-side of the
limit order book for a price less than or equal to x. Similarly,
denote by LB(x) the total volume on the bid-side of the limit
order book for a price above x. Then Definition 2.1 of the
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clearing price X is adapted to,

X = inf{x ∈ R : DA(x) + LA(x) ≥ DB(x) + LB(x)},

corresponding to an adapted market clearing equation that
takes the limit order book into account:

NAFA(X ) + LA(X ) = NB
(
1 − FB(X )

) + LB(X ), (3)

Note that x �→ LA(x) and x �→ LB(x) are non-stochastic quan-
tities and that for any x, either LA(x) or LB(x) is equal to zero
(as, otherwise, the book could be cleared further by matching
the overlapping orders).

To generalize, we include excess liquidity as any sort of
liquidity that plays a role in the clearing process, but does not
originate from the quoting process as described by FA and FB.
As such, we view excess liquidity as an external influence.

Definition 2.7 If the clearing price X is defined by the
equation,

NAFA(X ) = NB
(
1 − FB(X )

) + �(X ), (4)

where � : X → Z is a right-continuous, non-increasing func-
tion, then � is called the excess liquidity.

Excess liquidity takes the market out of the ‘pure’ equilib-
rium given by DA(X ) = DB(X ). For example, inclusion of the
limit order book is possible through �(x) = LB(x) − LA(x).
Positive values of �(x) correspond to an excess demand and
negative values of �(x) mean an excess supply. Another
example of excess liquidity is the arrival of a market order.
A sell market order of size ω ∈ N corresponds to the constant
function � = −ω1X , while a buy market order is described
by the function � = ω1X . Similarly, a buy limit order with
limit price b can be described by � = ω1[x0,b] and a sell limit
order with limit price a by � = −ω1[a,∞).

Lemma A.1 can be re-derived with excess liquidity, in order
to obtain the equivalence X ≤ x ⇔ DA(x) ≥ DB(x) + �(x).
Exactly like in the proof of Theorem 2.3, this leads to the
distribution of the clearing price, conditional on NA and NB,
as stated in the next proposition.

Proposition 2.8 (Clearing price distribution in case of
excess liquidity) When excess liquidity x �→ �(x) plays a role,
the clearing price distribution conditional on NA, NB, is given
by

P(X ≤ x|NA, NB)

=
NA∑

k=0

U(k,x)∑
l=0

(
NA

k

)
FA(x)k(1 − FA(x))NA−k

×
(

NB

l

)
(1 − FB(x))lFB(x)NB−l,

where U(k, x) = (k − �(x)) ∧ NB.

Note that the limit order book makes an appearance only in
the summation bound, leaving the binomial character of the
equilibrium distribution intact.

2.4. Order flow distributions

All the distributions derived in the previous subsections, are
conditional on the pair (NA, NB). In this subsection we dis-
cuss some possibilities for the distribution of (NA, NB) (the
so-called order flow distribution) and their consequences
for clearing price distributions. The common assumption in
the (early) literature is what is called Poisson order flow:
for continuous double auctions (Smith et al. 2003, Cont
et al. 2010, Abergel and Jedidi 2013, Cont and De Lar-
rard 2013, Muni Toke 2015b) and call auctions (Mendel-
son 1982, Muni Toke 2015a), Poisson order flow follows from
assumed independent Poisson processes for the arrival of buy
and sell orders. Here, we would take,

(NA, NB) ∼ Pois(μAT) × Pois(μBT),

for Poisson rates μA, μB and a given interval duration T to
achieve the same.

However, in this setting it makes sense to consider more
general models for order flow. Assume again that we consider
an interval in which N new orders arrive. Fix NA + NB =: N ∈
N and leave the distribution of NA open for choice. A rea-
sonable choice would be to choose NA according to binomial
order flow, i.e.

NA ∼ Bin(N , p),

for some p ∈ (0, 1) representing order flow imbalance. Tak-
ing,

(NA, NB) ∼ Pois(μA) × Pois(μB),

is equivalent to,

N = NA + NB ∼ Pois(μA + μB), NA|N ∼ Bin(N , p),

for p = μA/(μA + μB).
Both Poisson and binomial proposals express the convic-

tion that order flow imbalance α := NA/N does not display
great stochastic fluctuation and lies close to its expecta-
tion p, especially for greater values of N due to the cen-
tral limit theorem. This makes it difficult to capture market
phenomena that are due to fat tails in the order flow dis-
tribution, to describe more extreme, yet common market
conditions. Hence our third proposal: we consider beta order
flow imbalance,

NA = αN , α ∼ Beta(β1, β2).

Choice of the parameters β1, β2 permits great modelling free-
dom. For instance, if we expect the order flow on the bid- and
ask-side to be roughly balanced, it is appropriate to set β1 =
β2. If we expect the market to be out of balance (e.g. while
trending), we may choose β1 > β2 when we expect more sup-
ply than demand, and vice versa. Perhaps most interesting is
the scale of the betas: if β1, β2 < 1 we induce the fat tails
not seen in Poisson or binomial order flow, while β1, β2 � 1
will lower the variance and bring α close to its expectation
β1/(β1 + β2).

To shed more light on the influence of the order flow dis-
tribution on the clearing price distribution, we consider a
simple example. To focus on order flow, we make the trivial
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Figure 2. Clearing price density fX , for FA = FB = �10,0.1 and various balanced (left panel) and unbalanced (right panel) choices for the
order flow distribution. The solid black line is the density for Poisson order flow, while the dashed blue line and the dashed green line
correspond to beta order flow imbalance, for fixed N = 100.

choices for the other parameters: FA(·) = FB(·) = �μ,σ (·) for
μ = 10 and σ = 0.1. To appreciate the effects of order flow
on clearing price distributions, consider figure 2, the proba-
bility density fX of the clearing price is plotted for various
balanced (left panel) and unbalanced (right panel) choices of
the order flow distribution. As expected, fX centres around
10 in all balanced cases and around a lower location for the
unbalanced cases. It is seen that Poisson order flow leaves lit-
tle room for variation in the values of NA and NB, causing
the density to peak relatively sharply. By contrast, beta order
flow imbalance leads to more liquidity-driven uncertainty in
the clearing price.

3. The high-liquidity limit

In this section, we provide the asymptotic clearing price dis-
tribution in limit of infinite liquidity. To be more precise,
denote N = NA + NB, let NA = αN , NB = (1 − α)N for some
constant 0 < α < 1 we refer to as order flow imbalance and
consider the limit N → ∞. We take a continuous price-axis
X = [x0, ∞) and assume that the distribution functions FA

and FB are strictly increasing, describing measures that are
absolutely continuous with respect to the Lebesgue measure,
with densities denoted fA and fB. Let X denote a solution
to NAFA(X ) = NB(1 − FB(X )) + �(X ), with possibly non-
zero excess liquidity �. Denote by xE the real equilibrium
price which is the (non-random) price uniquely defined by the
equilibrium equation,

αFA(xE) = (1 − α)(1 − FB(xE)). (5)

According to the following theorem (the proof of which can
be found in the appendix), the clearing price X is in the limit
distributed according to a normal distribution centred on xE

with variance that depends on fA and fB.

Theorem 3.1 (High-liquidity clearing price distribution) Let
X be the clearing price in case of possible excess liquidity �.
Assume that FA and FB are strictly increasing and absolutely
continuous with respect to the Lebesgue measure with densi-
ties fA and fB. Additionally, assume that excess liquidity scales

with N as �(·) = √
ND(·), for some continuous and bounded

function D : X → R. Then, as N → ∞,

√
N(X − xE)

w.−→ N(μ(xE), σ 2(xE)), (6)

where the asymptotic mean and standard deviation are given
by,

μ(xE) = D(xE)

αfA(xE) + (1 − α)fB(xE)
,

σ(xE) = τ(xE)

αfA(xE) + (1 − α)fB(xE)
,

for

τ 2(xE) = αFA(xE)
(
1 − FA(xE)

)
+ (1 − α)FB(xE)

(
1 − FB(xE)

)
,

and xE is the real equilibrium price.

Consider a standard call auction in which the number of
orders collected is very large. The clearing price distribu-
tion is then closely concentrated around xE and has a width
proportional to 1/

√
N . So the model confirms the intuition

that large auctions lead to accurate price discovery and adds
that this accuracy is inversely proportional to the square root
of the number of orders. Non-zero excess liquidity of order√

N biases X away from xE, however, this bias is also pro-
portional to 1/

√
N . So the model says that in highly liquid

auctions or markets, external influence in the form of excess
liquidity � must be of order larger than

√
N to force (the dis-

tribution of) the clearing price away from the real equilibrium
price xE. Furthermore, the shift caused by the excess liquidity
is inversely proportional to a convex combination of fA and
fB, hence price impact will be larger if the density of orders
around the equilibrium price is low.

Next consider the case of continuous trading of a stock in
an interval, during which supply and demand are described
by the distributions FA and FB, and by order flow imbalance
α ∈ (0, 1). Assume that the number of incoming orders dur-
ing the interval is very large, so that the limit of Theorem 3.1
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forms a good approximation for the clearing price distribu-
tion. In the absence of excess liquidity, the distribution of the
clearing price associated with the interval is a sharply peaked
normal distribution centred at the real equilibrium price. If
we repeat this argument for consecutive intervals (possibly
with changing FA, FB and α) and approximate continuous
trading by a periodically cleared market, the price process
becomes a discrete Brownian path (possibly trending if we
add excess liquidity). In many stochastic models for pricing,
this type of stochastic process is postulated; by contrast, here,
the Brownian path emerges from the central limit (in the form
of Donsker’s theorem, see the proof of Theorem 3.1) and the
parameters of this Brownian path have an interpretation in
terms of supply, demand and order flow imbalance.

As argued after Definition 2.7, the model invites the inter-
pretation of the limit book as excess liquidity, in a market
made around the equilibrium price xE of many new orders.
Think, for instance, of a situation where new orders origi-
nate from liquidity providers primarily; if the location of their
equilibrium price distribution undergoes a small but quick
jump (for example because of a sudden change in the price
of a hedging index future), the result of Theorem 3.1 suggests
that the limit book obstructs immediate market correction: if
we consider a limit book of order greater than N1/2 over an
interval of order N orders, the location of the clearing price
distribution is expected to differ from the liquidity providers’
new xE on scales larger than N−1/2. To re-phrase that slightly
and more crudely, the model suggests that a limit book offer-
ing total liquidity of order L stabilizes the market price versus
fluctuations in valuation distributions or order flow imbalance,
if those fluctuations vary quickly enough to neutralize over
a duration of order L2 (where time is measured in volume
offered).†

Finally, note that the variance in (6) is not only dependent
on τ 2(xE) in the way one might expect, but like the loca-
tion in (6), it is inverse proportional to a liquidity-weighted
convex combination of fA and fB, evaluated at the real equilib-
rium price. So the volatility of the Brownian path (as well as
the influence of excess liquidity) goes down in ranges where
orders are concentrated and goes up in ranges where orders are
sparse. Consequently, the Brownian path has long occupation
times in ranges where orders are dense.

Remark 3.2 Muni Toke (2015a) derives a normal asymptotic
distribution of the clearing price in a similar setting, under
the assumption of Poisson order flow (i.e. N ∼ Pois(λT),
where λT → ∞, NA ∼ Bin(N , α)) and FA = FB = F. The
Poisson order flow with λT → ∞ represents a fixed ran-
domization of the deterministic N → ∞ discussed here.
However in the proof he firstly considers (in our notation)
fixed N and NA = αN and finds an asymptotic normal dis-
tribution for X, with mean F−1(1 − α) and standard devia-
tion

√
α(1 − α)f (F−1(1 − α))−1. Setting FA = FB = F and

D = 0 in our result, the solution to (5) is xE = F−1(1 − α),
τ 2(xE) = α(1 − α) and σ(xE) = √

α(1 − α)f (xE)−1.

† Note that these
√

N scales originate from the central limit (more
specifically, Donsker’s theorem) and that is it a topic of further
research to verify these exact scales empirically.

4. Supply-demand distributions, price and volume

In Theorem 2.6 we derived the joint distribution of the clear-
ing price X and the corresponding transacted volume V,
given supply and demand distributions FA, FB and volumes
NA, NB. In this subsection we explore the dependence of
the distribution of (X , V ) on FA and FB. We shall fix NA

and NB as equal constants (NA = NB = 50 in the examples
below). It is also recalled that the distribution for (X , V ) was
derived in a setting with a discrete price axis X with tick-
size δ > 0 (below, we take δ = 0.01); normal distributions are
discretized accordingly.

4.1. Varying consensus between bid- and ask-side

The supply and demand valuation distributions FA, FB express
a difference of opinion concerning the valuation of the asset.
We first consider how shifts of locations for FA, FB influence
the joint distribution of clearing price and volume.

We consider three different choices of the supply and
demand distributions, denoted FA, FB, F̄A, F̄B and F̃A, F̃B:

FA = �10.1,0.1, FB = �9.9,0.1,

F̄A = �10.05,0.1, F̄B = �9.95,0.1,

F̃A = F̃B = �10,0.1. (7)

The first case represents a relatively large difference between
the locations of supply and demand distributions, while the
second case represents a small difference, and the third com-
plete consensus. In all three cases, the real equilibrium price
is xE = 10, however, as can be seen from the left panel of
figure 3,

FA(xE) < F̄A(xE) < F̃A(xE). (8)

Figure 4 shows the distributions of price-volume in these
three cases and suggests the following, intuitively reason-
able mechanism: as the locations of supply and demand
distributions diverge, marginally the transacted volume drops,
while the width of the price marginal increases. Note that
the location on the price-axis does not change, as all three
(X , V )-distributions are centred around xE = 10. Referring
to Theorem 3.1, the result reflects the ordering expressed
by (8): in the high-liquidity limit, X lies close to xE and
V = NAFA(X ) (respectively, V̄ = NAF̄A(X ), Ṽ = NAF̃A(X ))
lies close to NAFA(xE) (respectively, NAF̄A(xE), NAF̃A(xE)).
Similar arguments regarding the ordering of densities (see
also the right panel of figure 3),

fA(xE) + fB(xE) < f̄A(xE) + f̄B(xE) < f̃A(xE) + f̃B(xE),

provide an asymptotic explanation for the observed increase
in price uncertainty (c.f. the denominator of the variance
in (A7); the numerator is bounded and plays no role here).
To re-phrase and summarize: when consensus between bid-
and ask-sides increases, transacted volume increases and price
uncertainty decreases.
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Figure 3. Left panel: distribution functions of supply/demand. Solid lines FA, FB; dashed lines F̄A, F̄B; dashed-dotted lines F̃A, F̃B. Right
panel: sums of densities of supply/demand. Solid line fA + fB; dashed line f̄A + f̄B; dashed-dotted line f̃A + f̃B.

Figure 4. The influence of consensus between bid- and ask-side of the market on the distribution of (X , V ). Note: as the locations of
supply and demand distributions diverge, transacted volume drops, while price uncertainty increases. (a) Density for (X , V ) with valuation
distributions F̄A = �10.05,0.1, F̄B = �9.95,0.1. (b) Density for (X , V ) with valuation distributions F̃A = F̃B = �10,0.1.

4.2. Increased uncertainty among market participants

Here we investigate the influence of valuation uncertainty
among market participants on the distribution of clearing price
and transacted volume: we consider three different choices of

the supply and demand distributions, denoted FA, FB, F̄A, F̄B,
F̃A, F̃B,

FA = �10.1,0.1, FB = �9.9,0.1,
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F̄A = �10.1,0.2, F̄B = �9.9,0.2,

F̃A = �10.1,0.3, F̃B = �9.9,0.3. (9)

The locations of supply and demand distributions are main-
tained, while their variances are increased, reflecting growing
uncertainty in valuation among individual market partici-
pants. Again, in all three cases, the real equilibrium price
is xE = 10 and (8) continues to hold (see the left panel of
figure 5).

Panels (b), (c) and (d) of figure 6 show the distributions of
price-volume in these three cases and suggests the following,
reasonable-sounding (but incomplete, see below) rule: as the
variance of the valuation distributions increases, marginally
both transacted volume and price uncertainty increase. Note
that the location on the price-axis does not change, as all three
(X , V )-distributions have marginals centred around xE = 10.
The asymptotic argument for the observed ordering V < V̄ <

Ṽ continues to hold. Note in the right panel of figure 5,
however, that with locations and variances as chosen,

fA(xE) + fB(xE) > f̄A(xE) + f̄B(xE) > f̃A(xE) + f̃B(xE),

so that asymptotic variance of the clearing price increases
when valuations become more widely spread (referring again
to the variance in (6)).

But this explains only half of the mechanism that the model
ascribes to the relation between valuation uncertainty and auc-
tion price variance. To appreciate the other half, consider a
fourth different pair FA, FB of supply and demand distribu-
tions that reflects less valuation uncertainty among market
participants, defined by

FA = �10.1,0.075, FB = �9.9,0.075.

As can be seen from the right panel of figure 5, this choice of
valuation distributions satisfies

f
A
(xE) + f

B
(xE) < fA(xE) + fB(xE),

which implies that the asymptotic variance of the clearing
price also increases when we lower the variance of the val-
uation distributions. This is also confirmed by panel (a) of

figure 6, where the distribution of price-volume for FA, FB
is shown. To explain this observed inversion, consider FA and
FB that are two normal distributions of equal variance σ 2 >

0, located at μ1, μ2 ∈ R. Reasoning again asymptotically,
the denominator of the expression for the variance in (A7)
equals,

fA(xE) + fB(xE) =
√

2

π

1

σ
exp

(
−1

2

(μ1 − μ2)
2

σ 2

)
. (10)

As a function of σ , (10) has a maximum at σ = 1
2 |μ1 − μ2|

(see figure 7 for an example), which means that asymptotic
variance of the clearing price is minimal at said level of
valuation uncertainty σ . When σ rises above 1

2 |μ1 − μ2|,
as in figure 6, panels (c) and (d), auction price variance
increases; perhaps somewhat surprisingly, when σ decreases
below 1

2 |μ1 − μ2|, as in figure 6 panel (a), auction price vari-
ance also increases. The heuristic reason for this inversion
is as follows: when consensus between the bid- and ask-side
of market is very low (large |μ1 − μ2|) and valuation uncer-
tainty among market participants is minimal (small σ ), orders
around xE are very scarce, so that clearing prices are based
on small numbers of matchable orders, therefore displaying
high variance; as the uncertainty in order prices on both sides
increases, more orders appear around xE, lowering the vari-
ance of the clearing price. The added valuation uncertainty
‘unlocks’ an otherwise illiquid market, in which buyers and
sellers rarely cross. So in a market with illiquidity-driven price
movements, raised valuation uncertainty aids accurate price
discovery.

Combination with the previous subsection invites the fol-
lowing, intuitively reasonable conclusion: observation of
high levels of price variance can be driven by illiquid-
ity or by valuation uncertainty among market participants;
observation of the price and its fluctuations alone does
not distinguish between those cases. To differentiate one
must involve transacted volume, which is moderate when
price variance is minimal, low in illiquid markets and
high in markets with valuation uncertainty-driven price
variance.

Figure 5. Left panel: distribution functions of supply/demand. Solid lines FA, FB; dashed lines F̄A, F̄B; dashed-dotted lines F̃A, F̃B. Right
panel: sums of densities of supply/demand. Solid line fA + fB; dashed line f̄A + f̄B; dashed-dotted line f̃A + f̃B; dotted line f

A
+ f

B
.
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Figure 6. The influence of valuation uncertainty among market participants on the distribution of (X , V ). (a) Density for (X , V ) with val-
uation distributions FA = �10.1,0.075, FB = �9.9,0.075. (b) Density for (X , V ) with valuation distributions FA = �10.1,0.1, FB = �9.9,0.1.
(c) Density for (X , V ) with valuation distributions F̄A = �10.1,0.2, F̄B = �9.9,0.2. (d) Density for (X , V ) with valuation distributions
F̃A = �10.1,0.3, F̃B = �9.9,0.3.

Figure 7. fA(xE) + fB(xE) as a function of σ , for fA = φμ1,σ ,
fB = φμ2,σ , where μ1 = 10.1, μ2 = 9.9 and xE = 10.
Note this function attains its maximum at σ = 1

2 |μ1 − μ2| = 0.1,
implying that the asymptotic clearing price variance of equation (A7)
attains its minimum at this σ .

5. Impact of market orders

In Definition 2.7 the clearing price in the presence of excess
liquidity � is defined and its distribution is provided in Propo-
sition 2.8. Modelling the arrival of market orders as excess
liquidity, this subsection compares clearing prices with and
without market orders. Differences between clearing price
distributions form the model’s perspective on the price impact
of market orders, a subject that has received quite some
attention in the literature (see e.g. Hasbrouck 1991, Lillo
et al. 2003, Smith et al. 2003, Donier and Bonart 2015, Donier
et al. 2015, Benzaquen and Bouchaud 2018, and references
therein).

Consider again the case that FA = FB = �μ,σ , for μ = 10,
σ = 0.1 and (NA, NB) ∼ Pois(50)2. Departing from the case
that this market is in equilibrium, next suppose that a market
order of size |ω| arrives: as in equation (4), we add an excess
liquidity term to model this, in the form of constant functions
�(x) = ω, where ω > 0 corresponds to a buy order and ω < 0
represents a sell order. In figure 8 the resulting clearing price
distributions are plotted for various ω. The common definition
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Figure 8. Clearing price densities, when market orders of
sizes |ω| are placed (negative ω for sell orders, positive for
buy orders). The supply and demand distributions are equal
and normal, FA = FB = �μ,σ , for μ = 10, σ = 0.1, while
(NA, NB) ∼ Pois(50)2. Note that orders of size |ω| = 2 do not signif-
icantly influence the price distribution, but orders of sizes |ω| = 10
or 20 shift the clearing price distribution noticeably.

of the price impact function δp(ω) is the size of the shift in
market price when a market order of size ω arrives. Empiri-
cal studies (see e.g. Hasbrouck 1991, Lillo et al. 2003, Donier
and Bonart 2015, among many others) have shown that, in
the situation of a continuous double auction, the price impact
function is concave, and certain models confirm this concav-
ity (see e.g. the seminal paper by Smith et al. (2003), or more
recent work in this area (Donier et al. 2015, Benzaquen and
Bouchaud 2018)). To consider the matter in our model, we
define the price impact function δp(ω) as the shift in expec-
tation of X when a buy market order of size ω > 0 arrives.
Figure 9 shows price impact functions for various supply
and demand distributions that display the expected concav-
ity. Furthermore, the picture shows that price impact becomes
less concave as supply and demand distributions are shifted
together, with the case FA = FB almost linear. This difference
is explained by the number of orders that can be expected
around EX . In the case FA = FB, EX lies around xE = 10 and

Figure 9. Price impact δp as a function of the size ω of the market
order, for various supply and demand distributions FA, FB. In all
cases N = 100, NA = αN , α ∼ Beta(2, 2).

all orders lie around 10. In cases where the locations of FA and
FB differ, EX lies between them, while buy orders concentrate
around a lower price and sell orders around a higher one. In
that situation fewer orders lie around EX and consequently the
clearing price is impacted more significantly in such regions;
by contrast, in regions where orders are more concentrated,
the clearing price is less easily moved. Comparing with Smith
et al. (2003), their model produces an almost linear price
impact function for a situation in which there is a large accu-
mulation of orders near the market price and a very concave
price impact function with lower levels of accumulation near
the market price.

6. Prediction of the closing price distribution

For a quantitative model, a convincing statistical demonstra-
tion of applicability is ultimately the only possible proof
of relevance. Below we perform this statistical exploration:
we consider the statistical quality of the model’s clearing
price distributions in daily closing auctions for five (ran-
domly selected) Eurostoxx 50 index constituents with the
Kolmogorov–Smirnov goodness-of-fit test, and find that they
explain the randomness in observed closing prices well. More
specifically, we use a day’s transactions to estimate clearing
price distributions for daily closing auctions of five shares
over the course of the trading year 2017. We assume that we
have observed the market until 5 pm and then want to pre-
dict the closing price distribution.† To assess performance,
we keep track of the estimated clearing price distribution
functions, evaluated in the realized closing prices: if the esti-
mates are accurate (and approximately independent), these
probabilities form an approximate i.i.d. sample from the uni-
form distribution on [0, 1]. The match is assessed graphically,
through QQ-plots, and tested with the Kolmogorov–Smirnov
statistic. As a simple benchmark, the results are compared
with results from a log-normal model.

6.1. Estimation of the closing price distribution

To obtain the daily estimator for the clearing price distribu-
tion, we first need estimators for the supply- and demand-
distributions FA and FB. As we want to predict the closing
price distribution FX before the start of the closing auction,
it is not an option to use quote data from the closing auction
itself. Instead, intra-day transaction data is used: throughout
the trading day, all transactions are recorded in a book that
aggregates total volume traded for any price tick in the daily
price range. In fact, two such books are kept, distinguished
by the side of the market that initiated the trade. Half an

† The choice of the prediction time of 5 pm is not completely arbi-
trary. We have found empirically that around 90% of the closing
prices falls within a range of 30bps of the last mid-price, and that
the closing price is generally very close to the last mid-price. Hence,
there is not much to predict when we wait until the closing auction
starts, as the last mid-price is then more informative than our pre-
diction. Of course we could start prediction already before 5 pm, but
then the quality of the estimators will get worse, as less transaction
data is observed.
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Figure 10. Estimation of the closing price distribution, based on daily transaction data. Left panel: ING stock price during a trading day
in 2017. Right panel: the estimated distribution of the closing price X, where the distributions of supply and demand are taken to be the
empirical estimators of FA and FB (based on the data until 5 pm) and where N = 100, NA = αN , α ∼ Beta(0.75, 0.75).

hour before market close these books are normalized and con-
verted into histogram-like estimators for the densities fA and
fB. Expressed cumulatively, this leads to ‘empirical distribu-
tions functions’ F̂A(·) and F̂B(·) that serve as estimators for
FA and FB. Essentially we use a volume-weighted version of
the day’s transacted orders to estimate market participants’
valuations. This leads to reasonable estimators, based on the
idea that the intra-day valuations of market participants will
be reflected in their valuations in the closing auction.

For any choice of NA, NB, these daily estimators can be used
to estimate the distribution for X |NA, NB, that day’s clearing
price given order flow NA, NB. Because F̂A(·) and F̂B(·) are
supported on the range of prices visited that day, the clearing
price distribution is supported on that range too. This causes
a disadvantage of the proposed equilibrium model: regardless
of the order flow, the model does not predict anything outside
the daily price range and the estimator should be viewed as a
‘windowed’ or conditioned device, relevant only conditional
on auction prices that fall inside the daily price range. To
model order flow, we convolute with an order flow marginal in
which N is fixed and NA = αN , with α distributed according
to a Beta-distribution. Because we have no reason to assume
asymmetry, only the scale β > 0 in α ∼ Beta(β, β) varies. To
not exclude the possibility of fairly extreme, one-sided order
flow (where NA � NB or vice versa with high probability),
we keep β < 1 (this is empirically verified, see Remark 6.2
below).

Definition 6.1 The daily estimated clearing price distribu-
tion is the distribution F̂X that results from Theorem 2.3 with
empirical supply and demand FA = F̂A, FB = F̂B, convoluted
with the order flow distribution.

In all examples below, we choose N = 100 and β = 0.75
and note that these choices appear to work well for the five
Eurostoxx 50 index constituents considered below.

Remark 6.2 It is important to note that the model is robust
with respect to these choices. The choice of N is not very
important: at first sight N has a very clear interpretation as
the number of orders in the auction, however it should be
noted that the size of orders is not modelled, hence chang-
ing N could also be interpreted as changing the order size.
As long as N is taken sufficiently large to allow for enough

diversification in the orders (already for N > 50) the choice
of N does not really affect the result, as the large liquidity
limit starts to do its work. † These claims are supported by
figure A.1. The choice of β has more influence on the results,
as it determines how many mass is shifted into the tails of the
distribution. But still, the model is robust with respect to small
variations in β, which is expressed by figure A.2. Estimation
of the parameter β is also interesting: one can take the n previ-
ous closing auctions of the stock and compute the ratio NA

NA+NB
,

i.e. the total volume of all sell orders in the closing auction,
divided by the total volume of all orders. ‡ Then one obtains
a sample of n order flow imbalances, which can be treated as
an i.i.d. sample to find the parameter of the Beta-distribution,
by computing moment estimators. We did this analysis for
three of the five Eurostoxx 50 index constituents considered
below. § For Airbus SE we found β̂ = 0.8057, for Engie SA
we found β̂ = 0.8219 and for Anheuser Busch Inbev NV we
found β̂ = 0.6988, empirically justifying the observation that
β should be picked around 0.75.

As an example, consider figure 10, an (arbitrarily selected)
day’s trading in ING stocks and the estimate of the closing
price distribution F̂X (based on FA, FB that are estimated from
daily transaction data until 5 pm). Note the inhomogeneity of
the estimated density. The following statistical analysis shows
that this detailed shape with peak and troughs is informative
for the realized closing price, meaning that the closing price is
more likely to be realized on prices where the estimated den-
sity is higher, which is nicely illustrated in the above example

† There is also an easy way to estimate N : around 28% of the daily
total transacted volume is transacted in the closing auction (in 2017,
nowadays it is more), so one could take the total transacted volume
until 5 pm and turn this into an estimator for N using this ratio.
However, figure A.1 shows that this analysis is not worthwhile, as
a different choice of N does not impact the results.
‡ In fact, the order book contains a lot of irrelevant volume far from
the eventual closing price. This volume does not contribute to the
determination of the closing price and should not be counted in the
estimation. Instead, we only counted orders within ten levels of the
closing price.
§ One needs full order book data to do the estimation, which is pro-
vided for the stocks traded on Euronext, but not for the German
stocks Bayer AG and Deutsche Telekom AG.
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by the closing price that realizes on one of the peaks in the
estimated density.

6.2. Kolmogorov–Smirnov goodness-of-fit test

To assess performance, we predict closing price distributions
for the circa 250 trading days in 2017. Because the model
only concerns the daily trading range, we do not include those
trading days on which the stock’s closing price lay outside
the daily trading range. Typically, trading on such days is
highly momentum-driven and is not well-represented by equi-
librium models, at least, on daily or shorter time-scales. After
removing the days where the price closed outside the daily
trading range, this leads to samples of 200–230 trading days
for the selected five stocks. As the valuation distributions FA,
FB differ from day to day, there is no straightforward way to
assess the accuracy of the sample of estimated clearing price
distributions F̂X . For that, we need a standard, distribution-
free argument based on the observation that if X ∼ FX , then
FX (X ) ∼ U[0, 1]: if F̂X approximates FX well on any trad-
ing day, F̂X (X ) has a distribution approximating U[0, 1]. In
our statistical experiment we have a sequence of predic-
tions F̂i for closing prices Xi (assumed independent) with
true marginal closing price distributions Fi (which are pos-
sibly very different as the day i varies). If the estimators F̂i

approximate the Fi well, the resulting sequence of probabili-
ties ξ̂i = F̂i(Xi) is distributed approximately as an i.i.d. sample
from the uniform distribution on [0, 1]. Below, this degree
of approximation is assessed graphically through QQ-plots
and tested with statistical significance using the Kolmogorov–
Smirnov(KS) statistic. This statistical assessment is not just a
technically convenient choice, what is assessed in this way is
highly relevant to daily market practice: good QQ-plots and
KS-statistics indicate that clearing price distribution estima-
tors provide an accurate picture of the relation between quoted
price and probability of execution in the auction (conditional
on a closing price inside the price range seen during the day).
For example, from a trader’s perspective, the quantiles of the
estimated clearing price distribution could give rise to a trad-
ing strategy that goes long/short when the market price lies in
the low/high quantiles half an hour before the market closes.
From an investor’s point of view, the pth percentile of the
clearing price distribution answers the question at which price
to quote in the auction to be for p% sure that the order gets
transacted.

To have a simple benchmark for comparison we also con-
sider an alternative: we include a benchmark model that
assumes that the daily log-return is normally distributed, with
mean and variance estimated by (volume-weighted) average
and variance of log-prices of transactions during the day. The
resulting estimated closing price distribution F̃i is truncated
to that day’s trading range. This leads to samples of 200–
230 probabilities ξ̃i = F̃i(Xi), subject to the same requirement
of similarity to an i.i.d. sample from the U[0, 1]-distribution.
The two samples ξ̂i (resulting from the market clearing model)
and ξ̃i (resulting from the log-normal model) are assessed for
uniformity by QQ-plots in figure 11.

Table 1 reports the associated KS-statistics and p-values.
(Note that the KS-test does not fall within the standard

Figure 11. QQ-plots of the samples of probabilities that the clearing
price is lower than the realized closing price (vertical axis) against
theoretical U[0, 1]-quantiles(horizontal axis), for the market clear-
ing model and the log-normal model, for 5 Eurostoxx 50 index
constituents.

Neyman–Pearson framework of statistical testing, basically
because one seeks to confirm the null-hypothesis. This
changes the usual interpretation of p-values: if a model has a
low p-value in this context, the hypothesis that it is correct is
rejected based on the data with high statistical significance. By
contrast, a model with a high p-value requires a high degree
of relaxation of significance criteria before the correctness
hypothesis is rejected based on the data.) The model of log-
normal daily returns proves wholly inadequate as an explana-
tion of the randomness observed in actual closing prices: only
in the example of Deutsche Telekom is it possible to argue that
(truncated) log-normal distributions for the daily returns form
a prediction that is informative about closing prices at the
distributional, predictive level. Furthermore, figure 11 shows
that the log-normal model underestimates the tail of the clos-
ing price distributions in all five examples. By contrast, the
QQ-plots for the market clearing model show a very decent
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Table 1. Kolmogorov–Smirnov statistics and correspond-
ing p-values for the samples of probabilities ξ̂i (result-
ing from the clearing model) and ξ̃i (resulting from
the log-normal model) for five (randomly selected) con-

stituents of the Eurostoxx 50 index.

Stock Model KS-statistic p-value

1. Engie SA Market clearing 0.0392 0.905
Log-normal 0.147 2.04*10−4

2. Airbus SE Market clearing 0.0320 0.988
Log-normal 0.164 3.76*10−5

3. Bayer AG Market clearing 0.0326 0.983
Log-normal 0.139 6.96*10−4

4. Anheuser Busch
Inbev NV

Market clearing 0.104 0.0198
Log-normal 0.175 4.61*10−6

5. Deutsche
Telekom AG

Market clearing 0.0304 0.989
Log-normal 0.0837 0.0969

match for uniformity, indicating that the model is a good
representation of the randomness in observed closing prices.
Estimated clearing price distributions provide an accurate pic-
ture of the relation between quoted price and probability of
execution (conditional on an auction price that falls within
the daily trading range). This is confirmed by associated KS-
statistics and their p-values in table 1: four out of five samples
show exceptionally straight lines in their QQ-plots, confirmed
by the exceptionally high p-values in table 1. The exception
(recall, these five stocks have been selected randomly from
the Eurostoxx 50 index) is the Anheuser Busch Inbev NV
stock, with a KS-statistic that indicates evidence (p = 0.0198)
to reject the null-hypothesis and visual inspection through
the QQ-plot reveals underestimation of the up-side tail. One
could wonder how the market clearing model performs if the
extreme beta distribution for order flow imbalance is replaced
by Poisson order flow (this essentially corresponds to the call
auction model of Muni Toke (2015a)). To investigate this
option, we performed exactly the same analysis using the
estimated clearing price distribution (as in Definition 6.1) to
obtain a sample of probabilities, but now with Poisson order
flow: (NA, NB) ∼ Pois(50) × Pois(50). Figure 12 shows the
corresponding QQ-plot for one of the stocks (Airbus SE), sim-
ilar results are obtained for the other stocks. The Poisson order
flow, expressing the conviction that the orderflow imbalance
α does not display great stochastic fluctuation around α = 1

2 ,
leads to a clearing price distribution that extremely under-
estimates the tails (even worse than the log-normal model).
It turns out that the extreme order flow distributions are
necessary to capture the tails of closing price distributions,
underlining the limitations of Poisson order flow.

We conclude that the detailed shape of estimated clearing
price distributions from the market clearing model (with peaks
and troughs as in the right panel of figure 10) is informative
for the relation between the price of an order and the corre-
sponding execution probability, while uni-modal shapes like
those of the log-normal distribution are not. Furthermore, we
conclude that Poisson order flow does not display enough
stochastic fluctuation to capture the tails of the observed
randomness in closing prices, emphasizing the relevance of
extreme order flow distributions.

Figure 12. QQ-plot of the sample of probabilities that the clearing
price is lower than the realized closing price, for Airbus SE (vertical
axis), against theoretical U[0, 1]-quantiles(horizontal axis), for the
market clearing model with (NA, NB) ∼ Pois(50) × Pois(50).

7. Conclusions

In this article we propose a model for auction price distribu-
tions in standard call auctions based on a balance between
two samples of random orders. The model assumes i.i.d. sam-
ples of buy- and sell-orders, placed following demand- and
supply-side valuation distributions. An equilibrium equation
(fixing the clearing price by requiring that the number of buy-
ers equals the number of sellers) then leads to a distribution
for clearing price and transacted volume. Bid- and ask-side
volumes are left as free parameters (order flow); a choice for
the distribution of these parameters (possibly heavy-tailed or
very skewed) leads to distributions for clearing prices and
transacted volumes, with or without a limit order book.

In the highly liquid auctions of section 3, the clearing
price distribution converges to a normal central limit, with
mean and variance in terms of supply/demand-valuation dis-
tributions and order flow imbalance. Most importantly, the
variance of the limiting normal distribution at real equilib-
rium price x is inversely proportional to the density of orders
around x. The interpretation is in regions on the price axis
where price variance is suppressed due to density of orders.

In section 2.4, we consider the influence of order flow on
clearing price distributions. Restriction to models involving
Poisson or binomial assumptions concerning the amount of
liquidity on offer is hard to justify. As confirmed empiri-
cally in section 6, extreme or skewed order flow conditions
are equally important. Section 4 explores the influence of
valuation distributions with some illustrative simulations:
for example, bringing valuation distributions closer together
increases transacted volume and decreases price variance.
Closer inspection of the price/volume distribution reveals that
there are two fundamentally different types of price variance,
one driven by illiquidity and the other by valuation uncer-
tainty among market participants. To differentiate, one must
involve transacted volume, which is moderate when auction
price variance is minimal, low in illiquid markets and high in
markets with valuation uncertainty-driven price variance.
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In section 5, we analyse the model’s description of mar-
ket impact. Remarkably, the model produces a concave price
impact function, especially when the valuation distributions
are widely separated, reflecting a market in which the con-
sensus is low. This is in line with empirical results (Has-
brouck 1991, Lillo et al. 2003, Donier and Bonart 2015) and
with the theoretical results of Smith et al. (2003).

To statistically verify the validity of the model and esti-
mates of the daily closing price distributions in section 6,
we predict a year’s worth of daily closing-price distributions
for five constituents of the Eurostoxx 50 index; Kolmogorov–
Smirnov statistics and QQ-plots demonstrate with ample sta-
tistical significance that the model predicts closing price dis-
tributions accurately, and compares favourably with a simpler,
log-normal, alternative method of prediction. We conclude
that the model’s predicted clearing price distributions explain
the observed randomness in closing prices well, confirming
that the proposed model provides a proper description of price
formation in call auctions.
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Appendix 1. Notation and proofs

A.1. Notation and conventions

We denote the multinomial coefficient for n ≥ 3 by(
n

k1, . . . , kn

)
:= n!

k1! . . . kn!
.

The binomial distribution with parameters n and p is denoted
Bin(n, p), the Poisson distribution with parameter λ is denoted by
Pois(λ), the uniform distribution on [0, 1] is denoted by U[0, 1] and
the normal distribution with mean μ and variance σ 2 is denoted
by N(μ, σ 2) with cumulative distribution function �μ,σ (·). Conver-

gence in distribution is denoted
w.−→ . Let X ⊂ R be the price-axis

which can be either discrete or continuous. The lowest possible price
is denoted by x0 := infX . The valuation distributions for supply and
demand prices, denoted FA and FB, are assumed to be distributions
on the price-axis.

A.2. Proofs

The expressions we derive for price and price-volume distributions
hinge on the following two lemmas, which convert finding a solution
to equation (1) into a question involving binomial distributions.

Lemma A.1 For any x ∈ R, we have the equivalence: X ≤ x ⇔
DA(x) ≥ DB(x).

Proof The left implication follows immediately from the definition
of X, so suppose X ≤ x. Note that x �→ DA(x) is non-decreasing and
x �→ DB(X ) is non-increasing. So the set {y ∈ R : DA(y) ≥ DB(y)}
is of the form (a, ∞) or [a, ∞), for some a ∈ R. Through their
definitions, DA and DB are right-continuous, so we can write,

DA(a) = lim
z↓a

DA(z) ≥ lim
z↓a

DB(z) = DB(a).

Therefore {y ∈ R : DA(y) ≥ DB(y)} = [a, ∞), which implies that
a = inf{y ∈ R : DA(y) ≥ DB(y)} ≤ x. Hence x ∈ [a, ∞) = {y ∈ R :
DA(y) ≥ DB(y)}, which proves the result. �

The independence assumption for (A1, . . . , ANA) and (B1, . . . ,
BNB) directly implies the content of the following lemma.

https://www.euronext.com/en/regulation/harmonised-rules
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Lemma A.2 For every x ∈ X , (DA(x), DB(x)) is a pair of indepen-
dent, binomially distributed random variables,

(DA(x), DB(x)) ∼ Bin(NA, FA(x)) × Bin(NB, 1 − FB(x)). (A1)

These two lemmas imply the following explicit expression for the
clearing price distribution in terms of the distributions of supply and
demand, FA and FB, conditional on NA and NB.

Theorem 2.3 (Clearing price distribution) The distribution of the
clearing price X, conditional on NA and NB, is given by,

P(X ≤ x|NA, NB)

=
NA∑

k=0

NB∧k∑
l=0

(
NA

k

)
FA(x)k(1 − FA(x))NA−k

×
(

NB

l

)
(1 − FB(x))lFB(x)NB−l .

Proof From Lemma A.1 and the independence of DA(x) and DB(x)
it follows that,

P(X ≤ x) = P(DA(x) ≥ DB(x))

=
NA∑

k=0

P(DB(x) ≤ k|DA(x) = k)P(DA(x) = k)

=
NA∑

k=0

NB∧k∑
l=0

P(DB(x) = l)P(DA(x) = k),

where conditioning on NA, NB has been omitted for ease of notation.
The result follows from Lemma A.2. �

Similarly, we derive the joint distribution of (X , V ) from
equation (1). Recall that the price-axis X is a discrete set, X :=
{x0, x0 + δ, . . .}, for some δ > 0.

Theorem 2.4 (Joint clearing price/transacted volume distribution)
The joint distribution of clearing price X and transacted volume V,
conditional on NA and NB, is given by,

P(X ≤ x, V ≤ v|NA, NB)

=
v∑

u=0

u∑
k=0

k∑
l=0

[(
NB

l

)(
NA

k, u − k, NA − u

)
(1 − FB(x))lFB(x)NB−l

× FA(x)k(FA(x + δ) − FA(x))u−k(1 − FA(x + δ))NA−u
]

+
∑

y∈X ,y≤x

NA∑
u=v+1

u∑
k=0

k∑
l=0

[(
NB

l

)(
NA

k, u − k, NA − u

)

× (1 − FB(y))lFB(y)NB−l

× FA(y)k(FA(y + δ) − FA(y))u−k(1 − FA(y + δ))NA−u
]

−
∑
y≤x

NB∑
l=0

NA∑
k=l∨v+1

(
NA

k

)
FA(y)k(1 − FA(y))NA−k

×
(

NB

l

)
FB(y)NB−l(1 − FB(y))l. (2)

Proof In order to characterize the transacted volume V in a simi-
lar sense as the clearing price in Lemma A.1, define the generalized
inverses D

−1
A and D

−1
B of DA and DB by

D
−1
A (v) := F

−1
A (v/NA) = inf{x ≥ 0 : DA(x) ≥ v},

D
−1
B (v) := F

−1
B (1 − v/NB) = inf{x ≥ 0 : DB(x) ≤ v},

where F
−1
A , F

−1
B are the generalized inverses of the empirical cumu-

lative distribution functions FA, FB (for a distribution function F,
its generalized inverse is defined as F−1(p) = inf{x ∈ R : F(x) ≥ p},
for p ∈ [0, 1], (see e.g. Van der Vaart 1998, Chapter 21)). For a given
distribution function F, its generalized inverse satisfies

F−1(p) ≤ x ⇔ p ≤ F(x),

which implies

D
−1
A (v) ≤ x ⇔ v ≤ DA(x), D

−1
B (v) ≤ x ⇔ v ≥ DB(x). (A2)

It follows from equation (A2) that V is characterized by the following
equivalences.

V ≤ v ⇔ DA(X ) < v + 1 ⇔ X < D
−1
A (v + 1)

⇔ X ≤ D
−1
A (v + 1) − δ, (A3)

which leads to

X ≤ x, V ≤ v ⇔ X ≤ min(x, D−1
A (v + 1) − δ).

So we can write

P(X ≤ x, V ≤ v) = P(X ≤ min(x, D−1
A (v + 1) − δ))

= P(X ≤ x, D−1
A (v + 1) − δ > x)

+ P(X ≤ D
−1
A (v + 1) − δ, D−1

A (v + 1) − δ ≤ x)

= P(X ≤ x, D−1
A (v + 1) > x + δ)+

×
∑

y∈X ,y≤x

P(X ≤ y, D−1
A (v + 1) = y + δ).

(A4)

Here, and in remainder of the proof, we have omitted the condition-
ing on NA, NB in the notation, for convenience. We start with the first
term in this expression. From Lemma A.1 and (A2) it follows that

P(X ≤ x, D−1
A (v + 1) > x + δ) = P(DA(x) ≥ DB(x),

× DA(x + δ) < v + 1)

=
v∑

u=0

P(DA(x) ≥ DB(x),

× DA(x + δ) = u),

where, by independence of the bid- and ask-samples,

P(DA(x) ≥ DB(x), DA(x + δ) = u)

=
u∑

k=0

P(DB(x) ≤ k)P(DA(x) = k, DA(x + δ) = u)

=
u∑

k=0

k∑
l=0

[(
NB

l

)
(1 − FB(x))lFB(x)NB−l

× NA!

k!(u − k)!(NA − u)!
FA(x)k

× (FA(x + δ) − FA(x))u−k(1 − FA(x + δ))NA−u
]

,

(A5)

which gives the first term of the solution in equation (2).
Now we turn to the second term in equation (A4), for which we

write ∑
y∈X ,y≤x

P(X ≤ y, D−1
A (v + 1) = y + δ)
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=
∑

y∈X ,y≤x

P(X ≤ y, D−1
A (v + 1) ≤ y + δ)

−
∑

y∈X ,y≤x

P(X ≤ y, D−1
A (v + 1) ≤ y)

=
∑

y∈X ,y≤x

P(DA(y) ≥ DB(y), DA(y + δ) ≥ v + 1)

−
∑

y∈X ,y≤x

P(DA(y) ≥ DB(y), DA(y) ≥ v + 1), (A6)

where the last line follows by Lemma A.1 and equation (A2). The
first term of this expression equals∑

y∈X ,y≤x

P(DA(y) ≥ DB(y), DA(y + δ) ≥ v + 1)

=
∑

y∈X ,y≤x

NA∑
u=v+1

P(DA(y) ≥ DB(y), DA(y + δ) = u)

and its expression follows from equation (A5), by substituting y for
x. This gives the second term of the solution in equation (2). Finally,
consider the second term in equation (A6), which equals∑

y∈X ,y≤x

P(DA(y) ≥ DB(y), DA(y) ≥ v + 1)

=
∑

y∈X ,y≤x

NB∑
l=0

P(DA(y) ≥ max(l, v + 1))P(DB(y) = l),

by independence of the bid- and ask-samples. Using the binomial
distributions of DA(y) and DB(y) once more, we see that this equals
the last term in the solution of equation (2), which concludes the
proof. �

Theorem 2.5 (High-liquidity clearing price distribution) Let X be
the clearing price in case of possible excess liquidity �. Assume that
FA and FB are strictly increasing and absolutely continuous with
respect to the Lebesgue measure with densities fA and fB. Addition-
ally, assume that excess liquidity scales with N as �(·) = √

ND(·),
for some continuous and bounded function D : X → R. Then, as
N → ∞,

√
N(X − xE)

w.−→ N(μ(xE), σ 2(xE)), (6)

where the asymptotic mean and standard deviation are given by,

μ(xE) = D(xE)

αfA(xE) + (1 − α)fB(xE)
,

σ(xE) = τ(xE)

αfA(xE) + (1 − α)fB(xE)
,

for

τ 2(xE) = αFA(xE)
(
1 − FA(xE)

) + (1 − α)FB(xE)
(
1 − FB(xE)

)
,

and xE is the real equilibrium price.

Proof The assumption that FA and FB are continuous implies that
the steps of DA and DB all have size 1, almost surely. So we have,
almost surely,

NAFA(X ) = NB(1 − FB(X )) + �(X ).

Combination with (5) yields,

NA(FA(X ) − FA(xE)) = −NB(FB(X ) − FB(xE)) + �(X ),

which, after introduction of FA(X ) and FB(X ), reads,√
NA

NB
(FA(X ) − FA(X )) +

√
NA

NB
(FA(X ) − FA(xE))

= −
√

NB

NA
(FB(X ) − FB(X )) −

√
NB

NA
(FB(X ) − FB(xE)) (21)

+ �(X )√
NANB

. (A8)

Now denote

ZA,NA(x) =
√

NA(FA(x) − FA(x)),

ZB,NB(x) =
√

NB(FB(x) − FB(x)).

By Donsker’s theorem (see e.g. Van der Vaart 1998, Theorem 19.3)
and independence of the bid- and ask-samples, it holds that

(ZA,NA(x), ZB,NB(x))
w.−→ N

(
0, FA(x)(1 − FA(x))

)
× N

(
0, FB(x)(1 − FB(x))

)
,

as NA, NB → ∞, uniformly over x ∈ R (and hence for every random
X ). Using NA = αN , NB = (1 − α)N and D(x) = �(x)/

√
N , we can

rewrite (A8) as follows,

√
α

1 − α
(FA(X ) − FA(xE)) +

√
1 − α

α
(FB(X ) − FB(xE))

= − 1√
N(1 − α)

ZA,NA(X ) − 1√
αN

ZB,NB(X ) + D(X )√
N(1 − α)α

.

Hence, we obtain the following weak limit,

√
N

τ(X )

(
α(FA(X ) − FA(xE)) + (1 − α)(FB(X ) − FB(xE))

)

− D(X )

τ (X )

w.−→ N(0, 1), (A9)

where the asymptotic variance τ 2(X ) is given by,

τ 2(X ) = α FA(X )(1 − FA(X )) + (1 − α)FB(X )(1 − FB(X )).

With the help of the distribution function FR, defined by the convex
combination,

FR(·) = α FA(·) + (1 − α)FB(·),

we rewrite equation (A9) as follows,

1

τ(X )

(√
N(FR(X ) − FR(xE)) − D(X )

) w.−→ N(0, 1).

Since 0 < τ(X ) < 1 and D is bounded, we conclude that FR(X ) con-
verges to FR(xE) in probability. The assumptions on FA and FB
ensure that FR has a Lebesgue density fR and that FR is invert-
ible with continuous inverse F−1

R : [0, 1] → R, so it follows that X
converges to xE in probability. By continuity it follows that τ(X )
converges in probability to τ(xE) and D(X ) to D(xE). By Slutsky’s
Lemma (see e.g. Van der Vaart 1998, Lemma 2.8), we arrive at,

√
N(FR(X ) − FR(xE))

w.−→ N(D(xE), τ 2(xE)).
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Figure A.1. How the choice of N affects the results of section 6, for the case of Deutsche Telekom AG (similar effects are observed
for the other stocks). It is seen that the choice of N does not really impact the results, as long as N is sufficiently large (N > 50). (a)
N = 100, β = 0.75. (b) N = 500, β = 0.75.

The Delta-method (see e.g. Van der Vaart 1998, Theorem 3.1) then
leads to,

√
N(X − xE)

w.−→ (F−1
R )′(FR(xE))N(D(xE), τ 2(xE)),

where, according to the inverse function theorem,

(F−1
R )′(FR(xE)) = 1

fR(xE)
.

�
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Figure A.2. How the choice of β affects the results reported in section 6, for the case of Deutsche Telekom AG (similar effects are
observed for the other stocks). It is seen that the results are robust with respect to the choice of β ∈ (0.65, 0.85). (a) N = 100, β = 0.65.
(b) N = 100, β = 0.7. (c) N = 100, β = 0.75. (d) N = 100, β = 0.8. (e) N = 100, β = 0.85.
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