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Learning curves can be employed to

study changes in productivity as a result

of ‘‘learning-by-doing’’ in a wide range

of applications, from investment cost

reductions in technology to output vol-

ume increases and error occurrence im-

provements in professional services.1,2

Here, we focus on the role of learning

in energy technology development. In

the learning curve literature, the empir-

ically observed historical experience

with a technology, for instance, in terms

of costs, is typically plotted against a

metric of diffusion, often cumulative

installed capacity (CIC).3–5 The learning

rate (LR) expresses the steepness of the

slope of a learning curve and is usually

defined as the percentage change in

costs for each doubling in CIC of a tech-

nology. Once a learning curve has been

determined on the basis of data from

the past, it can be used to project the

costs of a technology into the future,

as it continues to diffuse at a certain

pace.6,7 The value of the LR has a large

effect on the achievable reduction in

costs. To illustrate this, consider an en-

ergy technology that grows from 1 MW

to 1 TW of CIC (i.e., approximately 20

doublings), an expansion common for

successful technologies in the energy

sector. At 1 TW of CIC, the (so-called

marginal) cost to install an additional

MW of capacity for a technology

‘‘learning’’ with an LR of 4% is 38 times

higher than for one with an LR of 20%.

The total cumulative level of invest-

ments required to deploy the first TW

of installations differs 25-fold between

these two cases.

Applying the Learning Curve

Methodology to Nascent

Technologies

An adequately constructed and statisti-

cally meaningful learning curve of a
Joule 4, 96
technology should be based on empir-

ical data that span at least multiple dou-

blings of CIC and ideally cover a couple

orders of magnitude of increase in

CIC.8 It is therefore difficult to apply

traditional learning curve analysis to

nascent technologies: their dataset for

costs and capacities remains insuffi-

cient since these technologies are in

an early stage of deployment. Particu-

larly these innovative technologies,

however, draw the attention of the en-

ergy transition and climate change

research community. Multiple drivers

may exist for technology cost reduc-

tions.9 The extent to which varying

combinations and contributions of

various cost reduction drivers explain

observed differences in LRs between

existing technologies is not fully under-

stood.10,11 These constitute additional

reasons for why it is not trivial to use

learning curve analysis for new technol-

ogies. This raises the question whether

certain known physical characteristics

of an innovative technology may never-

theless be indicative for the possible

level of its future LR. Ex ante inferences

on the potential value of the LR could

provide insights into the prospective

learning process and thus be used for

decision making in early-stage technol-

ogy development.
Learning and Unit Size

Dahlgren et al., for example, review the

traditional focus on economies of scale

of individual power generation facilities

by distinguishing between cost reduc-

tions achieved by scaling up in unit-

size versus those achieved by scaling

up in numbers.12 Technology that is

mass-produced at a smaller unit size

has a higher technology turnover in

the sense that inventions, moderniza-

tions, novelties, and optimizations can

more easily be introduced. Such tech-

nology also more readily allows for pre-

mature scrapping of unfavorable de-

signs. Hence, mass-production allows

for quick implementation of innovation
7–974, May 20, 2020 ª 2020 Elsevier Inc. 967
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Table 1. Overview of LR Statistics for Three Energy Technology Categories

Technology Category No. of Technologies Min/Max Mean (95% CL) Median

Energy Demand 18 6%/39% 20% (G5%) 20%

Energy Storage 11 �2%/30% 14% (G5%) 15%

Energy Supply 12 3%/23% 10% (G4%) 12%

Total 41 �2%/39% 16% (G3%) 14%
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and thereby faster learning. Dahlgren

et al. propose that capital cost reduc-

tions realized through faster learning

of mass-produced small-size technol-

ogy generally match those achieved

by scaling up in size of individual

units.12 Moreover, smaller unit size

technologies can still benefit from

economies of scale, for example, asso-

ciated with the magnitude of the fac-

tories in which they are manufactured

(for instance, for batteries, fuel cells,

or PV modules) and with the size of

combined functional units like that of

entire solar or wind energy parks. In

addition, Dahlgren et al. argue that la-

bor cost reductions, the largest contrib-

utor to cost decreases arising from

scaling up in unit size, have recently

become less important as a result of

the availability of low-cost automation

technologies.12 They also point out

that the higher locational, operational,

and financial flexibility of smaller unit-

size technologies can further reduce in-

vestment and operating costs. In all,

and quite against common wisdom, in

order to reduce technology costs, it

may be profitable to go small rather

than to go big. Do empirical ob-

servations reveal a trend that small

technologies have a larger capacity to

learn than large technologies, and

thereby achieve deeper and faster

cost reductions?
Energy Technology Learning Rate

Inventory

We revisit the work by Dahlgren et al. by

analyzing data from the peer-reviewed

literature on LRs reported for a broad

set of different energy technologies. A

full list of LRs, including confidence inter-

vals where available, as well as references

to theoriginal sources, isprovided inData
968 Joule 4, 967–974, May 20, 2020
S1. We disaggregate the resulting LR in-

ventory into threedistinct technology cat-

egories: energydemand,energy storage,

and energy supply. Energy demand tech-

nologies include a wide range of home

appliances, vehicles for transport, and

heating mechanisms. Energy storage op-

tions consist of different types of batte-

ries, electrolysers, fuel cells, and pumped

hydro-electric systems. Our energy sup-

ply category exists of several renewable

energy technologies, nuclear electricity

generation facilities, and fossil-fuel-based

power plants. For some technologies,

multiple LRs are found in the literature.

In such cases, we take either the mean

LR or use the LR that was computed using

the longest time period (see Supple-

mental Information). Table 1 summarizes

the statistical properties of our LR inven-

tory. Each LR is expressed as a range,

that is, a mean (and median) specified

with min and max values as well as a con-

fidence interval. LRs range between a low

(negative) value of �2% for pumped

hydro-electric storage and a high value

of 39% for central air conditioners. Table

1 shows that, onaverage,energydemand

technologies exhibit the highest LR fol-

lowed by, respectively, energy storage

and supply technologies (see Figure S1

for the distribution of LRs within the three

categories). All technology categories

show large differences between the

lowest and highest LR.
Higher Observed Learning Rates

for Smaller Unit Size

We estimate the individual unit size in

MW for 41 technologies. For technolo-

gies where multiple units generally form

a larger single functional facility, like

coal-fired power plants, we take the ca-

pacity of a typical individual generation

chain or entity instead of the sum of
several of them. To simplify our analysis,

we henceforth only plot the mean value

of the LR for each technology and do

not consider its corresponding confi-

dence interval, as demonstrated in Fig-

ure 1. Our meta-analysis enables us to

plot the LR of eachof the 41 technologies

versus their unit size. The relationship is

fitted to a logarithmic function plotted

on lin-log axes and indicates a downward

trend, where each order of magnitude

decrease in unit size corresponds to an

increase of the LR by 1.5%. According

to the fit, technologies with small unit

size (<10 kW) on average seem to learn

faster (LR> 17%) than thosewithmedium

size (10 kW to 100MW; 11% < LR < 17%)

and large size (>100 MW; LR < 11%). En-

ergy demand technologies are charac-

terized by the highest LR and smallest

unit size, accounting for 8 out of 10 tech-

nologies with an LR higher than 20%. The

other two technologies with LRs

exceeding 20% are lithium-ion batteries

used in electronic devices (LR of 30%)

and solar photovoltaic panels (LR of

23%), which have substantially smaller

unit sizes than other energy storage and

supply technologies, respectively. The

two technologies that display the lowest

LR—hydro-electric electricity generation

(1%) and pumped hydro-electric storage

(�2%)—are characterized by the largest

unit size.

By analyzing the LRs of 41 energy tech-

nologies, we find that the LR correlates

negatively with unit size. The statistical

accuracy of the fit, however, is relatively

low (indicated by an R2 of 0.22). Smaller

mass-produced technologies indeed

may learn faster than their larger

custom-built counterparts. The differ-

ence in LR of at least 6% points between

technologies with either a small or large

unit size would—over the course of the

deployment phase—exert a major ef-

fect on their respective costs. For

instance, the final cost of a technology

growing from 1 MW to 1 TW learning

at LR = 11%would bemore than 4 times

higher than a technology learning at

LR = 17% would be, and the cumulative



Figure 1. LRs for 41 Energy Technologies

The logarithmic fit shows a negative relation between unit size and observed LR. The logarithmic

parameter (a = �0.68, R2 = 0.22) translates into a 1.5% decrease in LR for each order of magnitude

increase in unit size.
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investment required to reach 1 TW

would be more than 3 times larger. We

find little or no relation between CIC

(in GW) and LR (see Figure S2 as well

as Figure S3). These findings support

the view that increased attention must

be paid to the factors that influence

the potential for cost reductions of

emerging technologies. Scaling up by

numbers (by down-scaling unit size)

may lead to significant cost benefits

over scaling up by unit size thanks to

faster learning. The development of

small unit sizes can also result in earlier

adoption because of lower investment

risks, for instance, in decentralized

applications.
Discussion

Figure 1 shows that a relation might exist

between the unit size of energy technolo-

gies and their observed LR. Several sour-

ces of possible objections, however, can

be made against this conjecture, which

deserve detailed scrutiny. We here list a
number of factors that may complicate

the drawing of robust conclusions from

comparative LR value analysis, which we

discuss in more detail and put in the

context of the literature on this subject

matter in the Supplementary Information

available online as addendum to this

Commentary. First, substantial variation

exists across the methodologies and as-

sumptions used to calculate LRs, as a

result of which it may difficult to directly

compare LRs determined for different

technologies. Second, onemay question

the pertinence of analyzing the effect of

unit size on LRs across different technol-

ogy categories for other reasons, as

demonstrated when logarithmic curves

are fitted to unit size and LR data of

distinct technology categories separately

(see Figures S4–S6). Third, it remains

sometimes unclear what underlying fac-

tors contribute to the overall reduction

in technology costs upon which most

LRs reported in the literature are based.

Finally, the potential for learning-by-do-
ing as capturedby reductions in costs dif-

fers substantially across technologies at

different stages of maturity.
Conclusions

In our analysis, we show that for energy-

related technologies, unit size might be

related to the magnitude of empirically

observed cost reductions, as expressed

by learning curves. We thus argue that

technology developers may need to

pay attention up front to the size of en-

ergyproductionunits in thedesignphase

if mankind wants to accelerate the en-

ergy transition for climate change control

purposes. In our discussion, we point to a

variety of issues that raise the question of

whether a comparison of learning rates

between technologies can be rightfully

made. These issues must be resolved

by future research and detailed desk

studies before reliable conclusions

can be made with regards to attempts

to use physical characteristics of technol-

ogies to make an inference on their

observed—or, in the case of nascent

technologies, expected—learning rate.

Follow-up work could also involve

regressionanalysis for individual technol-

ogies to test the effects of unit size and

economies of scale, as other publications

have reported on.10,12,13 Improving our

understanding of the possible relation

between the unit size of a technology

and its learning rate may have a large

impact on the feasibility and affordability

of stringent climate change mitigation.

With the necessity to achieve the goals

of the Paris Agreement and the ensuing

imminence of a fundamental transforma-

tion of our global energy system, there is

ample reason to take learning curve

analysis out of its recent lull and revisit

the possible relevance of unit size in

choosing and designing existing res-

pectively new low-carbon energy

technologies.
SUPPLEMENTAL INFORMATION

Supplemental Information can be

found online at https://doi.org/10.
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Metal halide perovskite photovoltaic

(PV) devices offer promising perfor-

mance and unique applications, with

demonstrated power conversion effi-

ciencies that exceed 20%, stable opera-

tion over thousands of hours, and

compatibility with flexible substrates.1

However, the highest-performing

perovskite materials for PV applications

contain lead, which is regulated world-

wide as a hazardous material.2–4

As several companies and research labs

are considering the possibility of large-

scale deployment of lead-based perov-

skite PV modules,1 the topic of regula-

tory compliance is now critical but has

been largely overlooked. Here, we pre-

sent a preliminary evaluation of lead

halide perovskite (LHP) PVs according

to the European Union (EU) Restriction

of Hazardous Substances (RoHS) Direc-

tive2 and United States Resource Con-

servation and Recovery Act (RCRA)

lead regulations.3 The RoHS Directive

and RCRA both aim to reduce the risk

of harm caused by hazardous materials

and are legal regulatory frameworks

that all commercial PVs are subject to

(i.e., Si and CdTe). By characterizing

the lead concentration and lead leach-

ing behavior of perovskite films on glass

and flexible substrates using RoHS

Directive and RCRA mandated proto-

cols, we find that some of the key ad-

vantages of lead-based perovskites as

a solar technology, specifically their po-

tential for high specific power (W g-1) as

well as lightweight and portable appli-

cations, are at odds with the regulatory

frameworks currently in place due to in-

ternational processing of waste on a
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