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OPTIMAL RATE ESTIMATION OF THE MIXING DISTRIBUTION IN

POISSON MIXTURE MODELS VIA LAPLACE INVERSION

CHRIS A. J. KLAASSEN1 AND ROBERT M. MNATSAKANOV2

Dedicated to Estate Khmaladze on the occasion of his 75th birthday

Abstract. Consistent estimators of the mixing distribution in Poisson mixture models are con-
structed for both the right censored and the uncensored case. The estimators are based on a kind

of Laplace inversion via factorial moments. The rate of convergence of the mean integrated squared

error of these estimators is (logn/ log logn)2. It is also shown that there do not exist estimators for
which this rate is better.

1. Introduction

Consider independent and identically distributed random variables X,X1, X2, . . . , Xn with discrete
distribution

p(x) = P (X = x) =

∞∫
0

e−λ
λx

x!
dG(λ), x = 0, 1, . . . . (1.1)

In this Poisson mixture model we shall study nonparametric estimation of the unknown mixing distri-
bution G. This estimation problem is discussed by H. Robbins in [12] (pages 162–163) who suggests to
estimate the distribution p of the observations and to solve (1.1) for G with p replaced by its estimate.
We apply this approach and solve (1.1) via a kind of Laplace inversion as in Section 4 of [11]. We will
investigate the rate of convergence of our estimators as measured by their mean integrated squared
error, both in the censored and in the uncensored case. We will also prove this rate to be optimal.

Papers [6] and [8] define multinomial models with a large number of rare events, introduce the con-
cept of a structural function, and discuss its estimation. For polynomial distributions and occupancy
problems with a large number of rare events, asymptotic results for the relevant statistics are obtained
in [9] and [7], respectively. In [14], the kernel type estimators of the structural distribution function
in the multinomial scheme of [6] and [8] are studied via Poissonization.

Approximating the binomial marginals of such multinomial models by Poisson distributions, one
arrives at the Poisson mixture model with the distribution function G as a structural function.

2. Construction of the Inverse Transformation

Consider the inhomogeneous Fredholm equation of the first kind (cf. [3])

KG = p, (2.1)

where the probability mass function p(x), x = 0, 1, . . . , denotes the Poisson mixture distribution from
(1.1). Our construction of estimators of the unknown mixing distribution G is based on a particular
type of Laplace inversion as in [2] (Section VII.6, formulae (6.1)–(6.4)). For (2.1) it can be written as
follows:

(K−1
α KG)(z) = (K−1

α p)(z) =

bαzc∑
k=0

αk

k!

∞∑
j=k

(−α)j−k

(j − k)!

∞∑
x=j

x!

(x− j)!
p(x), (2.2)

where byc denotes the integer part of y.
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Lemma 2.1. Assume
∫∞

0
eβλdG(λ) < ∞ for all β ∈ R. As α tends to infinity, K−1

α from (2.2)
represents inversion of K from (2.1) in the weak sense, i.e.,

K−1
α KG

w→G, as α→∞.

Moreover, the transformation K−1
α can be written as

(K−1
α KG)(z) = (K−1

α p)(z) =

∞∑
x=0

bαzc∧x∑
k=0

(
x

k

)
αk(1− α)x−k p(x). (2.3)

Proof. The factorial moments of the Poisson distribution are powers of its parameter. Consequently,
Fubini’s theorem (actually Tonelli’s theorem) implies

∞∑
x=j

x!

(x− j)!
p(x) =

∞∫
0

∞∑
x=j

x!

(x− j)!
e−λ

λx

x!
dG(λ) =

∞∫
0

λjdG(λ), j = 0, 1, . . . . (2.4)

Note that retrieving G from these moments is called the moment problem. Subsequently, as the
Laplace transform

∫∞
0
eβλdG(λ) of G is finite for all β ∈ R, Fubini’s theorem yields

∞∑
j=k

(−α)j−k

(j − k)!

∞∫
0

λjdG(λ) =

∞∫
0

∞∑
j=k

(−αλ)j−k

(j − k)!
λkdG(λ) =

∞∫
0

e−αλλkdG(λ). (2.5)

From (2.2), (2.4) and (2.5) it follows, again by Tonelli’s theorem, that

(K−1
α KG)(z) =

∑
0≤k≤αz

αk

k!

∞∫
0

e−αλλkdG(λ) =

∞∫
0

∑
0≤k≤αz

e−αλ
(αλ)k

k!
dG(λ).

Chebyshev’s inequality for a Poisson random variable Z with parameter αλ yields
P (|Z − αλ| ≥ α|z − λ|) ≤ λ/(α(z − λ)2). Hence we obtain∣∣∣∣ ∑

0≤k≤αz

e−αλ
(αλ)k

k!
− 1[αλ≤αz]

∣∣∣∣ ≤ ( λ

α(z − λ)2

)
∧ 1.

Consequently, at any point of continuity z of G we have

(K−1
α KG)(z)→

∞∫
0

1[λ≤z]dG(λ) = G(z),

as α→∞; cf. formula (6.1) from Section VII.6 of [2].
Furthermore, from (2.4) and (2.5) with −α replaced by α it follows that Fubini’s theorem may be

applied to

∞∑
j=k

(−α)j−k

(j − k)!

∞∑
x=j

x!

(x− j)!
p(x) =

∞∑
x=k

x∑
j=k

(
x− k
j − k

)
(−α)j−k

x!

(x− k)!
p(x)

=

∞∑
x=k

(1− α)
x−k x!

(x− k)!
p(x),

which implies

(K−1
α p)(z) =

bαzc∑
k=0

∞∑
x=k

(
x

k

)
αk(1− α)x−k p(x). (2.6)
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For α > 1, Tonelli’s theorem yields

bαzc∑
k=0

∞∑
x=k

(
x

k

)
αk(α− 1)x−k p(x) =

∞∑
x=0

bαzc∧x∑
k=0

(
x

k

)
αk(α− 1)x−k p(x)

≤
∞∑
x=0

(2α− 1)x p(x) =

∞∑
x=0

(2α− 1)x
∞∫

0

e−λ
(λ)x

x!
dG(λ)

=

∞∫
0

e−λ
∞∑
x=0

((2α− 1)λ)x

x!
dG(λ) =

∞∫
0

e2(α−1)λdG(λ). (2.7)

By the finiteness of the Laplace transform of G the right hand side of (2.7) is finite. Consequently,
Fubini’s theorem can be applied to (2.6), which yields (2.3). �

Estimating the probability mass function KG = p from the observations and applying (2.3), we
can see by Lemma 2.1 that we might obtain consistent estimators of the mixing distribution G. This
is verified for the case of i.i.d. uncensored random variables in Section 3, and under random right
censoring in Section 4.

We remark here that the estimator of the so-called structural distribution function for a multinomial
random variable discussed in Section 4 of [11] is also based on inversion (2.3) with p replaced by an
appropriate empirical version of p.

3. Uncensored Data

Let X,X1, . . . , Xn be i.i.d. random variables with the Poisson mixture distribution p as in (1.1);
cf. (2.1). Replacing the marginal distribution p(x) = P (X = x) in (2.3) by the corresponding empirical
version

p̂n(x) =
1

n

n∑
i=1

1[Xi=x], (3.1)

restricting the sum over x in (2.3) to x ≤ Kn, and taking α = αn > 1 dependent on n, we obtain the

estimator Ĝn of G with

Ĝn(z) =

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αkn(1− αn)x−k p̂n(x), z ≥ 0. (3.2)

In view of Lemma 2.1 and (2.3), the estimator Ĝn should be consistent for appropriately chosen αn
and Kn that tend to infinity when n does. Under reasonable assumptions on the class of mixing
distribution functions G it is consistent indeed.

Theorem 3.1. Let C,D and L be positive constants. Let G(D) = 1 hold and let G have a density
g that is bounded by C and is Lipschitz continuous with the Lipschitz constant L. Then the mean
integrated squared error of Ĝn with Kn ≥ 2αnDe

2 and αn ≥ 1 satisfies

E

∞∫
0

(
Ĝn(z)−G(z)

)2

dG(z) ≤ 1

n
(2αn)2Kn + 2

(C + 1
2L(D + 2))2

α2
n

+ 2e−2Kn . (3.3)

Furthermore,

E

∞∫
0

(
Ĝn(z)−G(z)

)2

dG(z) = O

((
log log n

log n

)2
)

(3.4)

holds as n→∞, when αn and Kn are chosen as

αn =
log n

γ log log n
, Kn =

⌈
log n

κ log log n

⌉
(3.5)

with the constants γ and κ satisfying γ ≥ 2De2κ, κ > 2.
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Our proof of this theorem is based on the representation of Ĝn as an average, to wit

Ĝn(z) =
1

n

n∑
i=1

Bn(z,Xi) (3.6)

with

Bn(z, x) =

bαnzc∧x∑
k=0

(
x

k

)
αn

k (1− αn)
x−k

1[x≤Kn]. (3.7)

Subsequently, both the variance and the bias part of the mean integrated squared error are studied
in Appendix A.

4. Randomly Right Censored Data

Suppose now that X,X1, . . . , Xn are i.i.d. random variables with distribution p(x) = P (X = x)
given by (1.1) and that Y, Y1, . . . , Yn are i.i.d. nonnegative random variables distributed according to
some distribution function H. Assume that the X’s and Y ’s are independent and that one observes
Zi = min(Xi, Yi) and ∆i = 1[Xi≤Yi] only. We are interested in estimation of the unknown mixing
distribution function G in this random censoring model.

It is known that the distribution of the Xi’s can be estimated at the same
√
n rate as in the

uncensored case, provided the right censoring is not too strict (cf. [4]). Therefore, it should be possible
to estimate the mixing distribution under right censoring at the same rate as without censoring. Our
results here confirm this heuristic.

First consider the case where the censoring distribution function H is known. Observe

P (Zi = x,∆i = 1) = P (Xi = x,Xi ≤ Yi)
=P (Xi = x)(1−H(x−)) = p(x)(1−H(x−)), x = 0, 1, . . . . (4.1)

Consequently, using the observations Zi and ∆i, we can estimate p(x) by the following empirical
expression:

p̃n(x) =
1

1−H(x−)

1

n

n∑
i=1

1[Zi=x,∆i=1] (4.2)

for those x for which 1 − H(x−) is positive. In analogy to (3.1), (3.2) and (3.6) we construct our
estimator of the unknown mixing distribution function G as follows. For αn > 1 and Kn a positive
integer, we define

G̃n(z) =

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αkn(1− αn)x−k p̃n(x)

=
1

n

n∑
i=1

∆i

1−H(Zi−)

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αkn(1− αn)x−k 1[Zi=x]

=
1

n

n∑
i=1

∆i

1−H(Zi−)

bαnzc∧Zi∑
k=0

(
Zi
k

)
αkn(1− αn)Zi−k 1[Zi≤Kn]. (4.3)

Note that this estimator has the form

G̃n(z) =
1

n

n∑
i=1

∆i

1−H(Zi−)
Bn(z, Zi) =

1

n

n∑
i=1

∆i

1−H(Xi−)
Bn(z,Xi), (4.4)

where again Bn(z, x) is defined by (3.7).
Studying (4.3), we see that if the censoring random variables Yi have bounded support, then for

αnz and Kn large our estimator reduces to

G̃n(z) =
1

n

n∑
i=1

∆i

(1−H(Xi−))
,
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which by the Law of Large Numbers converges to 1. Consequently, it is crucial for the consistency of
our estimator that the right-hand tail of H be not too thin. In fact, no estimator can behave properly
if H has bounded support [0, τ ], say, as in this case it is possible to estimate p(x) consistently only for
x = 0, 1, . . . , bτc. However, the mixing distribution G is not identifiable from the bτc+ 1 equations

p(x) =

∞∫
0

e−λ
λx

x!
dG(λ), x = 0, 1, . . . , bτc. (4.5)

Actually, in Section 5, we construct mixing densities g and gn such that they differ, but yield the
same values of p(x) in (4.5) for x = 0, 1, . . . ,m−5, where m may be chosen arbitrarily large (see (5.5)
up to but not including (5.9)). Because of this unidentifiability phenomenon we will assume that the
right-hand tail of the censoring distribution H does not decrease too fast. More precisely, we will
assume condition (1.1) from [4].

Assumption 4.1. There exists a finite constant M with

∞∑
x=0

1

P (Y ≥ x)
p(x) =

∞∑
x=0

1

1−H(x−)
p(x) ≤M. (4.6)

As G̃n and Ĝn are similar averages (cf. (3.6), (4.3) and (4.4)), we can establish the consistency

of G̃n along the lines of the proof of Theorem 3.1 as given in Appendix A. In the censored case, G̃n
attains the same rate as Ĝn in the uncensored case.

Theorem 4.1. Let the conditions of Theorem 3.1 be satisfied and let αn and Kn be chosen as in
(3.5). If the censoring distribution H is known and fulfills Assumption 4.1, then the mean integrated

squared error of G̃n is of the order (log log n/ log n)2 as n→∞. More precisely,

E

∞∫
0

(
G̃n(z)−G(z)

)2

dG(z) ≤ 1

n
(2αn)2KnM + 2

(C + 1
2L(D + 2))2

α2
n

+ 2e−2Kn (4.7)

holds.

Proof. First, we estimate the variance of G̃n(z) under Assumption 4.1 (see (A.4)) as follows:

var G̃n(z) =
1

n
var

(
∆1

1−H(Z1−)
Bn(z, Z1)

)
≤ 1

n
E

(
B2
n(z,X)

(1−H(X−))2
E(1[X≤Y ] | X)

)
≤ 1

n
E

(
(2αn)2Kn

(1−H(X−))

)
≤ 1

n
(2αn)2KnM. (4.8)

Furthermore, the bias of G̃n equals

E

(
1

1−H(X−)
Bn(z,X)E(1[X≤Y ] | X)

)
−G(z) = E

[
Bn(z,X)

]
−G(z),

which in view of (A.6) is the same expression as in (A.7). Together with (A.1), (A.2), (4.8) and (A.11)
this yields (4.7) and hence the Theorem. �

Next, we consider the case where the survival function S = 1 − H of the censoring variable Y is
unknown, but is known to be continuous. Observe that the estimator Ĝn for the non-censored case
(cf. (3.6)) can de written as Ĝn(z) =

∫
Bn(z, x)dF̂n(x) with F̂n the empirical distribution function

of X. So it is natural in the censored case to consider G̃KM
n (z) =

∫
Bn(z, x)dF̃n(x) with F̃n the

Kaplan-Meier estimator of the distribution function of X. However, we have not been able to study
the asymptotic performance of the mean integrated squared error of this estimator of G.

Therefore, we construct another estimator. It is based on the technique of sample splitting as
in [10]. To explain the idea, we assume for the time being that we have an extra sample (∆̃, Z̃) =

((∆̃1, Z̃1), . . . , (∆̃n, Z̃n)) available of size n, that is, independent of and identically distributed to
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((∆1, Z1), . . . , (∆n, Zn)). The product-limit or Kaplan-Meier estimator S̃n of the survival function S
based on this extra sample is defined as

S̃n(x) =


1, 0 ≤ x ≤ Z̃(1),∏k−1
i=1 ( n−i

n−i+1 )1−∆̃(i) , Z̃(k−1) < x ≤ Z̃(k), k = 2, . . . , n,

0, Z̃(n) < x,

where Z̃(i) and ∆̃(i) denote the ordered Z̃i’s and corresponding ∆̃i’s. Note that S̃n is well defined, as

there are no ties among the Z̃(i)’s for which the ∆̃(i)’s vanish in view of the continuity of H.
We define δn and redefine Kn as follows:

δn = n
1

2κ0
− 1

2
√

log n, Kn =

⌈
log n

κ log log n

⌉
, κ > κ0 > 0. (4.9)

Replacing in (4.2), (4.3) and (4.4) the survival function S = 1−H by its estimator S̃n with δn added
to it, we obtain our estimator

G̃∗n(z) =
1

n

n∑
i=1

∆i

S̃n(Zi−) + δn
Bn(z, Zi) =

1

n

n∑
i=1

∆i

S̃n(Xi−) + δn
Bn(z,Xi),

which is based on the original sample together with the extra one.
Following the proof of Theorem 4.1, we estimate the variance of G̃∗n(z) as follows:

var
(
G̃∗n(z)

∣∣∣∆̃, Z̃ ) =
1

n
var

(
∆1

S̃n(X1−) + δn
Bn(z,X1)

∣∣∣∆̃, Z̃)

≤ 1

n
E

 B2
n(z,X)(

S̃n(X−) + δn

)2E(1[X≤Y ] | X)
∣∣∣∆̃, Z̃


≤ 1

n
E

 S(X−)(2αn)2Kn(
S̃n(X−) + δn

)2

∣∣∣∆̃, Z̃
 ≤ 1

n
E

 S(X−)(2αn)2Kn(
S(X−)[1− D̃n] + δn

)2

∣∣∣∆̃, Z̃
 , (4.10)

where D̃n is defined as

D̃n = sup
0≤y≤Kn

∣∣∣∣∣ S̃n(y)− S(y)

S(y)

∣∣∣∣∣ .
From (B.3) in Appendix B we know that for large n

−S(X−)D̃n + δn ≥ 0 almost surely

holds, which combined with (4.10) and Assumption 4.1 yields

var
(
G̃∗n(z)

∣∣∣∆̃, Z̃ ) ≤ 1

n
E

(
(2αn)2Kn

S(X−)

)
≤ 1

n
(2αn)2KnM, a.s. (4.11)

Note that for 0 ≤ x ≤ Kn and large n formula (B.3) implies S̃n(x−) + δn ∈ [S(x−), S(x−) + 2δn]
a.s. and hence

1− S(x−)

S̃n(x−) + δn
∈
[
0,

2δn
S(x−)

]
a.s.

By (A.4) and Assumption 4.1, this implies that conditionally on the extra sample the bias of our
estimator satisfies∣∣∣EBn(z,X)− E

(
G̃∗n(z) | ∆̃, Z̃

)∣∣∣ ≤ E (∣∣∣∣[1− S(X−)

S̃n(X−) + δn

]
Bn(z,X)

∣∣∣∣ | ∆̃, Z̃)
≤ 2δn(2αn)KnE

(
1

S(X−)

)
≤ 2δn(2αn)KnM a.s.
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Together with (A.11) this means (see also (4.9))

∞∫
0

[
E
(
G̃∗n(z) | ∆̃, Z̃

)
−G(z)

]2
dG(z)

≤ 4
log n

n1−1/κ0
(2αn)2KnM2 + 4

(C + 1
2L(D + 2))2

α2
n

+ 4e−2Kn , a.s.,

which in combination with (4.11) results in

E

∞∫
0

(
G̃∗n(z)−G(z)

)2

dG(z)

≤ 1

n
(2αn)2KnM + 4

log n

n1−1/κ0
(2αn)2KnM2 + 4

(C + 1
2L(D + 2))2

α2
n

+ 4e−2Kn .

With αn and Kn defined as in (3.5) and (4.9), where the constants γ and κ satisfy γ ≥ 2De2κ,
κ > κ0 = 3, we obtain (

log n

log log n

)2

E

∞∫
0

(
G̃∗n(z)−G(z)

)2

dG(z) = O(1),

as n tends to infinity.
However, G̃∗n is based on 2n observations, as it is based on the original and the extra samples. But, if

one has a sample of n observations available, the rate log n/(log log n) can still be obtained by splitting
the sample into two subsamples of about the same size and applying the natural modification of our
construction in order to get an estimate of G. Here, the first subsample plays the role of the original
sample in our construction and the second subsample the role of the extra sample. Interchanging the
roles of the two subsamples one gets another estimate of G and it makes sense to average these two
estimates to obtain G̃∗∗n (cf. [13], Section 2 of [10], or page 396 of [1]). In summary,

Theorem 4.2. Fix positive constants C,D,L, and β with CD ≥ 1. Consider the class of mixing
distributions G that have support contained in [0, D] and have a density bounded by C that is Lipschitz
continuous with Lipschitz constant L. For the class of censoring distributions H that are continuous
and fulfill Assumption 4.1, there exists an estimator G̃∗∗n of G based on (∆1, Z1), . . . , (∆n, Zn), for
which the mean integrated squared error is of the order (log log n/ log n)2.

5. Lower Bound to the Mean Integrated Squared Error

Information in the data about the mixing distribution G in the right censored case equals at most
the information in the uncensored case. Therefore, the optimal lower bound to the mean integrated
squared error for estimators of G in the censored case should have a convergence rate at most as large
as the rate in the uncensored case. As we have seen in the preceding Section, our estimators for these
two cases attain the same convergence rate (log n/ log log n)2. In this Section we shall prove that the
convergence rate equals at most this rate (log n/ log log n)2 in the uncensored case, and hence in the
censored case. Thus we have shown that our estimators attain the optimal rate and that our bound
on the rate is also optimal, in both the uncensored and censored cases.

We study the minimax risk and note that it is bounded from below by a Bayes risk. Namely, we
have

inf
Ĝn

sup
G
EG

∞∫
0

(
Ĝn(λ;X)−G(λ)

)2

dG(λ)

= inf
Ĝn

sup
α,G0,Gn

{
αEG0

∞∫
0

(
Ĝn(λ;X)−G0(λ)

)2

dG0(λ)



182 C. A. J. KLAASSEN AND R. M. MNATSAKANOV

+ (1− α)EGn

∞∫
0

(
Ĝn(λ;X)−Gn(λ)

)2

dGn(λ)

}

≥ sup
α,G0,Gn

inf
Ĝn

{
αEG0

∞∫
0

(
Ĝn(λ;X)−G0(λ)

)2

g0(λ)dλ

+ (1− α)EGn

∞∫
0

(
Ĝn(λ;X)−Gn(λ)

)2

gn(λ)dλ

}
, (5.1)

where the G’s are supposed to have densities g with respect to the Lebesgue measure. We introduce
the notation

pn0(x) = pn0(x1, . . . , xn) =

n∏
i=1

( ∞∫
0

e−λ
λxi

xi!
g0(λ)dλ

)
(5.2)

and similarly for pnn(x). Now the right-hand side of (5.1) can be written as

sup
α,g0,gn

inf
Ĝn

∑
x

∞∫
0

{
α
(
Ĝn(λ;x)−G0(λ)

)2

pn0(x)g0(λ)

+(1− α)
(
Ĝn(λ;x)−Gn(λ)

)2

pnn(x)gn(λ)

}
dλ

and this infimum is attained by

Ĝn(λ;x) =
G0(λ)αpn0(x)g0(λ) +Gn(λ)(1− α)pnn(x)gn(λ)

αpn0(x)g0(λ) + (1− α)pnn(x)gn(λ)
,

which results into

sup
α,g0,gn

∞∫
0

(G0(λ)−Gn(λ))
2
∑
x

α(1− α)pn0(x)pnn(x)g0(λ)gn(λ)

αpn0(x)g0(λ) + (1− α)pnn(x)gn(λ)
dλ . (5.3)

For positive reals s and t we have st/(s+ t) ≥ 1
2 (s ∧ t). Consequently, the right-hand side of (5.3) is

bounded from below by

sup
α,g0,gn

1

2

∞∫
0

(G0(λ)−Gn(λ))
2
∑
x

{(αpn0(x)g0(λ)) ∧ ((1− α)pnn(x)gn(λ))} dλ ,

which for α = 1
2 and combined with (5.1) through (5.3) results in

inf
Ĝn

sup
G
EG

∞∫
0

(
Ĝn(λ;X)−G(λ)

)2

dG(λ)

≥ sup
g0,gn

1

4

∞∫
0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ
∑
x

pn0(x) ∧ pnn(x) . (5.4)

In order to come close to this supremum one has to choose g0 and gn in such a way that pn0 and pnn
are close together and that simultaneously G0 and Gn are as different as possible. We shall choose g0

and gn with the help of the orthogonal system of Chebyshev polynomials Cm on [−1, 1], m = 0, 1, . . . .
They are defined as

Cm(z) = cos(m arccos z), −1 ≤ z ≤ 1,

and are orthogonal with respect to the weight function 1/
√

1− z2, −1 < z < 1. Now we choose

g0(λ) = 1(0,1)(λ), λ > 0,
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Hn(λ) =

λ∫
0

hn(µ)g0(µ)dµ = [λ(1− λ)]
3/2

eλCm(2λ− 1), (5.5)

gn(λ) = g0(λ)(1 + anhn(λ)),

where m = mn depends on n in an appropriate way to be determined below. By differentiation, for
0 < λ < 1, we obtain

hn(λ) = 1
2

√
λ(1− λ)(3−4λ− 2λ2)eλCm(2λ− 1)

−mλ(1− λ)eλ sin(m arccos(2λ− 1)),

which we may bound by

|hn(λ)| < 1
4e(m+ 3). (5.6)

In view of
1∫

0

hn(λ)g0(λ)dλ = Hn(1) = 0,

equations (5.5) and (5.6) imply that gn is a proper density provided

|an| ≤
4

e(m+ 3)
(5.7)

holds. With (5.5) in mind, by partial integration, we compute

∞∫
0

e−λ
λxi

xi!
hn(λ)g0(λ)dλ =

[
e−λ

λxi

xi!
Hn(λ)

]1

0

−
1∫

0

e−λ
λxi−1

xi!
(xi − λ)Hn(λ)dλ

=

1∫
0

λxi−1

xi!
(λ− xi)

2λ2(1− λ)2√
1− (2λ− 1)2

Cm(2λ− 1)dλ

=

1∫
−1

(1 + z)xi−1

2xi+4xi!
(z + 1− 2xi)

(1− z2)2

√
1− z2

Cm(z)dz. (5.8)

As the Chebyshev polynomial of degree m is orthogonal with respect to the weight function 1/
√

1− z2,
−1 < z < 1, to all polynomials of degree at most m− 1, the integrals in (5.8) vanish for xi ≤ m− 5.
Hence,

pnn(x) = pn0(x) (5.9)

holds (cf. (5.2)), unless at least one of the xi’s equals m − 4 or more. Actually, the probability qn
that Xi equals at least m− 4, may be bounded both under g0 and gn via

qn = P (Xi ≥ m− 4) =

1∫
0

∞∑
k=m−4

e−λ
λk

k!
dλ ≤

1∫
0

λm−4

(m− 4)!
dλ =

1

(m− 3)!
. (5.10)

Let Zn be the random variable denoting the number of Xi that equal at least m − 4. Note that Zn
has a binomial distribution with parameters n and qn.

Combining (5.6) and (5.10), we arrive at∑
x

pn0(x) ∧ pnn(x) ≥ Eg0

((
1− an sup

0<λ<1
|hn(λ)|

)Zn
)

=

(
1− qnan sup

0<λ<1
|hn(λ)|

)n
≥
(

1− ean(m+ 3)

4(m− 3)!

)n
, (5.11)
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which converges to 1/
√
e by the choice

an =
2(m− 3)!

en(m+ 3)
. (5.12)

For the time being we assume that

n = (m− 3)! (5.13)

holds. By Stirling’s formula this means

lim
m→∞

(m− 3) log log n

log n
= 1. (5.14)

Note that these choices of n, m and an satisfy (5.7). Some computation shows that all together the
above choices imply

∞∫
0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ =

∞∫
0

a2
nH

2
n(λ) (g0(λ) ∧ gn(λ)) dλ

≥ 1
2a

2
n

1∫
0

λ3(1− λ)3e2λ cos2(m arccos(2λ− 1))dλ

= 2−8a2
n

π∫
0

[(1 + cosα)(1− cosα)]
3
e1+cosα cos2(mα) sinαdα

≥ 2−8a2
n

π∫
0

sin7 α cos2(mα) dα ≥ 2−23/2a2
n

3π/4∫
π/4

cos2(mα) dα. (5.15)

Because this last integral converges to π/4 as m tends to infinity, the relations (5.15), (5.12), (5.13),
and (5.14) imply

lim inf
n=(m−3)!,m→∞

(
log n

log log n

)2
∞∫

0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ ≥ 2−15/2πe2 > 0.

Together with (5.11), this yields

lim inf
n=(m−3)!,m→∞

(
log n

log log n

)2
∞∫

0

(G0(λ)−Gn(λ))
2

(g0(λ) ∧ gn(λ)) dλ

∑
x

pn0(x) ∧ pnn(x) ≥ 2−15/2πe3/2 > 0. (5.16)

If ñ satisfies n = (m− 3)! ≤ ñ < (m− 2)!, then 1 ≤ ñ/n < m− 2 holds and hence

1 ≤ log ñ

log n
< 1 +

log(m− 2)

log n
→ 1, as m→∞. (5.17)

Combining (5.4), (5.16) and (5.17), we obtain the following lower bound.

Theorem 5.1. Let X1, . . . , Xn be i.i.d. random variables with the Poisson mixture distribution (1.1)
from the class of mixing distributions G that have density bounded by C ∈ [2,∞) and have G(D) = 1

for some D ∈ [1,∞). With Ĝn an estimator of G based on X1, . . . , Xn the minimax value of the mean

integrated squared error of Ĝn in estimating G does not tend to 0 faster than (log log n/ log n)2 as n
tends to infinity, more precisely,

lim inf
n→∞

(
log n

log log n

)2

inf
Ĝn

sup
G
EG

∞∫
0

(
Ĝn(λ;X)−G(λ)

)2

dG(λ) > 0.
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Appendix A. Proof of Theorem 3.1

The proof in this Appendix of Theorem 3.1 will be based on (3.6) with (3.7). In view of

E

∞∫
0

(
Ĝn(z)−G(z)

)2

dG(z) =

∞∫
0

E
(
Ĝn(z)−G(z)

)2

dG(z), (A.1)

we first fix z, study

E
(
Ĝn(z)−G(z)

)2

= var Ĝn(z) +
(
EĜn(z)−G(z)

)2

(A.2)

and note that

var Ĝn(z) =
1

n
var Bn(z,X). (A.3)

As Bn(z, x) from (3.7) satisfies

|Bn(z, x)| ≤
x∑
k=0

(
x

k

)
αkn |1− αn|

x−k
1[x≤Kn] ≤ (2αn)Kn , (A.4)

we have

var Bn(z,X) ≤ E
(
B2
n(z,X)

)
≤ (2αn)2Kn . (A.5)

The study of the bias is more involved. We choose the random variable Λ with a distribution
function G in such a way that the conditional distribution of X given Λ is Poisson (Λ); so

P (X = x | Λ = λ) = e−λ
λx

x!
, x = 0, 1, . . . .

By Taylor’s theorem (or partial integration),

ex =

K∑
k=0

xk

k!
+

x∫
0

(x− y)K

K!
eydy

holds. Consequently, we have

E (Bn(z,X) |Λ = λ) =

Kn∑
x=0

bαnzc∧x∑
k=0

(
x

k

)
αn

k (1− αn)
x−k

e−λ
λx

x!

=

bαnzc∧Kn∑
k=0

e−λ
(αnλ)k

k!

Kn∑
x=k

1

(x− k)!
((1− αn)λ)

x−k

=

bαnzc∧Kn∑
k=0

e−αnλ
(αnλ)k

k!

−
bαnzc∧Kn∑

k=0

e−λ
(αnλ)k

k!

(1−αn)λ∫
0

((1− αn)λ− y)Kn−k

(Kn − k)!
ey dy

= P (Uαnλ ≤ αnz ∧Kn)−Rn(z, λ) (A.6)

with Uµ, distributed as Poisson(µ). In view of G(D) = 1, only z that are at most D, are relevant and

for such z we have αnz < Kn. Hence, the bias of Ĝn equals

EĜn(z)−G(z) =

∞∫
0

(
P (Uαnλ ≤ αnz)− 1[λ≤z]

)
dG(λ)−

∞∫
0

Rn(z, λ)dG(λ). (A.7)

First, we note

|Rn(z, λ)| ≤
bαnzc∑
k=0

e−λ
(αnλ)k

k!

((αn − 1)λ)Kn−k

(Kn − k)!
≤ e−λ (αnλ)Kn

Kn!

bαnzc∑
k=0

(
Kn

k

)
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≤ e−λ (2αnλ)Kn

Kn!
≤ e−λ√

2πKn

(
2αnλe

Kn

)Kn

≤ e−Kn , (A.8)

where the second to last inequality stems from Stirling’s formula.
Furthermore, we note

G(0) = 0, lim
λ→∞

P (Uαnλ ≤ αnz) = 0

and
∂

∂λ
P (Uαnλ ≤ αnz) = −αne−αnλ

(αnλ)bαnzc

bαnzc!
.

Consequently, partial integration yields
∞∫

0

P (Uαnλ ≤ αnz) dG(λ) =

∞∫
0

G(λ)αne
−αnλ

(αnλ)bαnzc

bαnzc!
dλ = EG(Λn), (A.9)

where Λn has a gamma distribution with shape parameter bαnzc+ 1 and rate parameter αn. Hence
we have

EΛn − z =
1 + bαnzc − αnz

αn
∈ (0, 1/αn], var(Λn) =

bαnzc+ 1

α2
n

,

E(Λn − z)2 =
bαnzc+ 1

α2
n

+

(
1 + bαnzc − αnz

αn

)2

≤ z + 2

αn
.

As G has a density g that is Lipschitz continuous with Lipschitz constant L, we have

|G(λ)−G(z)− (λ− z)g(z)| =
∣∣∣∣
λ∫
z

(g(y)− g(z)) dy

∣∣∣∣ ≤ 1
2L(λ− z)2. (A.10)

Equations (A.9) through (A.10) yield∣∣∣∣
∞∫

0

(
P (Uαnλ ≤ αnz)− 1[λ≤z]

)
dG(λ)

∣∣∣∣ ≤ g(z) + 1
2L(z + 2)

αn
,

which together with (A.7) and (A.8) shows that the bias of Ĝn(z) satisfies(
EĜn(z)−G(z)

)2

= (EBn(z,X)−G(z))
2

≤ 2
(g(z) + 1

2L(z + 2))2

α2
n

+ 2e−2Kn ≤ 2
(C + 1

2L(D + 2))2

α2
n

+ 2e−2Kn , z ≤ D. (A.11)

Together with (A.1)–(A.3) and (A.5) this yields (3.3) and consequently (3.4) when αn is chosen as
in (3.5). We have chosen κ > 2 because the first term at the right hand side of (3.3) is of the order
n−1+2/κ.

Appendix B. Kaplan–Meier

In Section 4, we have used the Kaplan-Meier estimator S̃n of the survival function S of the censoring
distribution H. In this appendix we study the consistency of S̃n by applying Theorem 7 of [5]. We
choose their dn to be equal to log n/(δ log log n) and their Tn to our Kn. Their εn is related to Kn via

εn = 8P (X ∧ Y > Kn). (B.1)

As
∑
x≥Kn+1 e

−λλx/x! is decreasing in λ for λ ≤ Kn + 1, the support of G is contained in [0, D], and
Kn + 1 > D holds for n large, we have for such n

P (X > Kn) =

∞∫
0

∞∑
x=Kn+1

e−λ
λx

x!
dG(λ) ≥ C

1/C∫
0

∞∑
x=Kn+1

e−λ
λx

x!
dλ
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≥
∞∑

x=Kn+1

e−1/C (1/C)x

x!
≥ e−1/C (1/C)Kn+1

(Kn + 1)!
. (B.2)

From (B.1), (B.2) and Assumption 4.1, we derive

εn ≥ 8e−1/C (1/C)Kn+1

(Kn + 1)!
β−Kn .

With Kn as in (4.9), some computation with the help of Stirling’s formula shows

εn ≥ exp (−(log n)/κ(1 + o(1))) ,

which in view of κ > κ0 implies that for sufficiently large n

ε2n ≥ n−1/κ0

holds. Now, formula (4.16) from Theorem 7 of [5] shows that almost surely√
n1−1/κ0

log n
D̃n =

√
n1−1/κ0

log n
sup

0≤y≤Kn

∣∣∣∣∣ S̃n(y)− S(y)

S(y)

∣∣∣∣∣→ 0 (B.3)

holds as n tends to infinity.
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