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Article

Testing the Within-State Distribution in Mixture
Models for Responses and Response Times

Renske E. Kuijpers

Cito, Netherlands Institute for Educational Measurement

Ingmar Visser

Dylan Molenaar

University of Amsterdam

Mixture models have been developed to enable detection of within-subject

differences in responses and response times to psychometric test items. To

enable mixture modeling of both responses and response times, a distributional

assumption is needed for the within-state response time distribution. Since

violations of the assumed response time distribution may bias the modeling

results, choosing an appropriate within-state distribution is important. How-

ever, testing this distributional assumption is challenging as the latent within-

state response time distribution is by definition different from the observed

distribution. Therefore, existing tests on the observed distribution cannot be

used. In this article, we propose statistical tests on the within-state response

time distribution in a mixture modeling framework for responses and response

times. We investigate the viability of the newly proposed tests in a simulation

study, and we apply the test to a real data set.

Keywords: mixture models; response times; response time distribution; item response

theory

1. Introduction

Recently, research interest has grown in modeling response times next to the

item responses in order to investigate individual differences in ability and speed.

Focusing on the item response times in addition to the item responses has facili-

tated various aspects of psychological testing including, for instance, item selec-

tion in computerized adaptive testing (van der Linden et al., 1999; Veldkamp,

2016), test design (van der Linden, 2007), and item calibration (T. Wang &

Hanson, 2005). In addition, response times have been shown useful in detecting

item preknowledge (McLeod et al., 2003), aberrant response patterns (Marianti

et al., 2014; van der Linden & Guo, 2008; C. Wang, Xu, Shang, & Kuncel, 2018),
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and individual differences in the use of solution strategies. For instance, van der

Maas and Jansen (2003) showed that response times can give detailed informa-

tion on the type and duration of different solution strategies children use to solve

a balance scale task. Suitable models to enable these inferences concerning

individual differences in responses and response times include the model by

Roskam (1987) and more recently the hierarchical model by van der Linden

(2007, 2009), which was elaborated by Molenaar et al. (2015a).

Besides these applications of response times to individual differences research,

response times have been used to facilitate the study of within-subject differences

in solution strategies or psychological processes that underlie the responses to

psychometric tests and questionnaires. For instance, response times have been

used to identify fast guessing (e.g., Schnipke & Scrams, 1997) and within-

subject differences in solution strategies (e.g., Molenaar et al., 2016). Other appli-

cations include the study of within-subject differences in motivation (Wise &

Kong, 2005) and faking on personality test items (Holden & Kroner, 1992).

To facilitate the detection of within-subject differences in responses and

response times, various approaches based on mixture modeling have been pro-

posed. For instance, the earliest contribution by Schnipke and Scrams (1997)

focused on a two-state within-subject mixture model for the response times only.

Here, one state represented rapid-guessing behavior of examinees and the other

state modeled the responses of examinees who actually tried to solve the item

(i.e., a regular response process). The model by Schnipke and Scrams did not

include a latent speed variable but can be seen as one of the first models within

this framework. In their model, the mean and variance of the response times are

estimated freely for each item in the regular process state, while in the rapid-

guessing state, a common mean and variance parameter is assumed to underly the

items. On the basis of this model, C. Wang and Xu (2015) and C. Wang, Xu and

Shang (2018) proposed a mixture model in which separate measurement models

are proposed for modeling the responses and response times in the slower

response state, whereas for the faster guessing state, only a guessing parameter

is estimated for the responses, and a mean and variance parameter is estimated

for the response times. Molenaar et al. (2016) generalized this approach by

proposing a mixture model that specifies a measurement model for the responses

and a measurement model for the response times separately in each state.

Inspired by the aforementioned models, the hierarchical mixture modeling

approach (Molenaar et al., 2016; Schnipke & Scrams, 1997; C. Wang & Xu,

2015; C. Wang, Xu, & Shang, 2018; C. Wang, Xu, Shang, & Kuncel, 2018) that

we focus on in this article is a mixture extension of the hierarchical model by van

der Linden (2007, 2009) to allow for within-subject differences in ability and

speed. In the van der Linden model, between-subject differences in ability level

are captured by means of a continuous random latent ability variable yp, which

underlies the item responses of respondent p ¼ 1; : : : ;N to item i ¼ 1; : : : ; J .
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Individual differences with respect to the speed with which the responses to the

test items are given are modeled by a continuous random latent speed variable tp,

which underlies the response times. In contrast to the van der Linden model,

which assumes speed and ability to be constant within subjects, the hierarchical

mixture modeling approach allows speed and ability to differ within subjects.

Therefore, an item-specific latent class variable Cpi is assumed to underlie the

response and the response time of person p to item i. Although the latent class

variable Cpi can have K states in principle, it is commonly assumed to have two

states, K ¼ 2: In one state, the item properties of the faster responses are modeled

and in the other state the item properties of the slower responses are modeled.

Each respondent is allowed to switch between the slow and fast response state

from item to item, such that within-subject differences are captured by the latent

class variables.

To enable mixture modeling of both the responses and response times, a

distributional assumption is needed for the within-state response time distribu-

tion. Correct specification of this distribution is important as it has been shown

that violations of the assumed response time distribution may bias modeling

results for mixture models in general (Vermunt, 2011), for growth mixture mod-

els (Bauer & Curran, 2003), and for the hierarchical mixture modeling frame-

work for responses and response times as discussed above (Molenaar et al.,

2018). More specifically, Molenaar et al. (2018) showed that if the observed

response time distribution differs from the assumed distribution, within-state

parameter estimates and information criteria like Akaike’s Information Criterion

(AIC; Akaike, 1974), the Bayesian Information Criterion (BIC; Schwarz, 1978),

and the consistent AIC (CAIC; Bozdogan, 1987) will be biased, and spurious

states will be detected even if there are no states underlying the data. Thus,

specifying an appropriate within-state response time distribution is important.

In practice, however, it is commonly unknown which type of distribution would

fit the within-state response times best. Often, statistically convenient distribu-

tions are chosen, for example, the log-normal, the exponential, or the chi-square

distribution. These distributions are considered convenient as respectively the

logarithmic, the reciprocal, and the square root transformation will result in

normally distributed response times. Once a distribution is chosen, this assumed

distribution should ideally be tested to ensure that the mixture modeling results

are valid. However, testing this distributional assumption is challenging as the

within-state distribution is by definition different from the observed distribution

since the latter is aggregated over states. That is, if the within-state log-

transformed response time distribution is normal, the observed log-response time

distribution will be skewed (assuming that the two states differ in their expected

log-response time and their log-response time variance). As a result, it is not clear

whether skewness in the observed log-transformed distribution reflects a mixture

of two states or a misspecification of the response time distribution (Molenaar
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et al., 2018). Therefore, traditional statistical tests (e.g., the Shapiro–Wilk test

[SW test], 1965) on the observed response time distribution cannot be used.

In this article, we propose statistical tests on the within-state response time

distribution in the hierarchical mixture modeling framework for responses and

response times. Specifically, we propose tests on normality of the transformed

response time distribution using the SW test (Shapiro & Wilk, 1965; see also

Royston, 1982a, 1982b, 1992) and the Kolmogorov–Smirnov test (KS test; Kol-

mogorov, 1933; Smirnov, 1948). Although the SW test and the KS test are well-

established methods to test a hypothesized distribution to hold for an observed

variable, the innovative aspect of the present study is that we apply these tests to

investigate a hypothesized distribution to hold for the latent within-state distri-

bution of the hierarchical mixture modeling framework for responses and

response times. We focus on the log-transformation for the response times,

making our approach a test on log-normality. We prefer to focus on log-

normality as this is the most commonly used assumption in mixture modeling

of response times. However, the proposed methodology can readily be used to

test for other distributions by using a different response time transformation. That

is, one can consider for instance the square root transformation to test for a chi-

square distribution and the reciprocal transformation to test for an exponential

distribution. In addition, for the KS test, it is straightforward to accommodate any

other distribution (e.g., the Weibull, ex-Gaussian, or Wald distribution) as long

as its cumulative distribution function exists and can be evaluated.

The proposed normality tests can be used for various types of (response time)

mixture models; however, in this study, we apply the tests to the Markov-

dependent item states model and the independent item states model (Molenaar

et al., 2016). This article is organized as follows: First, we discuss the hierarch-

ical mixture modeling approach with log-response times. Next, we present the

normality tests for the within-state response time distribution. We then present a

simulation study to investigate the performance of the different normality tests.

In addition, we illustrate the use of the tests by means of a real data application,

and we end with a general discussion.

2. The Hierarchical Mixture Modeling Approach

In the hierarchical mixture modeling approach (Molenaar et al., 2016;

Schnipke & Scrams, 1997; C. Wang & Xu, 2015; C. Wang, Xu, & Shang,

2018), an item-specific latent class variable Cpi is assumed to underlie the

response Xpi and the response time Tpi of person p to item i. The levels of this

latent class variable are referred to as item states. The item states for respondent

p on the items of a test can be collected in vector cp ¼ ½Cp1;Cp2; : : : ;CpJ �. In

addition, the item responses are collected in vector xp ¼ ½Xp1;Xp2; : : : ;XpJ �, and

the log-transformed response times are collected in vector tp ¼ ½Tp1;

Tp2; : : : ;TpJ �.
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Although the latent class variable Cpi can have multiple states in principle, it is

commonly assumed to have two states: a state capturing the measurement prop-

erties of the slower responses and a state capturing the measurement properties of

the faster responses. The slower state, with a larger expected response time, is

denoted by Cpi ¼ 0, the faster state by Cpi ¼ 1. As discussed above, the response

times are assumed to follow a log-normal distribution in each state, such that the

log-response times follow a normal distribution (e.g., C. Wang & Xu, 2015). In

addition, the item responses and the log-response times are assumed to be inde-

pendent conditional on the overall latent ability yp and the overall speed tp within

the states cp.

In order to separate the effects of the item, the person and the latent class

variable Cpi, a measurement model for the responses and a measurement model

for the response times, is specified. Various models can be considered for mod-

eling the responses, like the Rasch model (Loeys et al., 2014), the graded

response model (e.g., Molenaar et al., 2015b; Ranger & Ortner, 2011), the

two-parameter logistic model (e.g., Molenaar et al., 2015a, 2015b; Ranger &

Ortner, 2012), or the three-parameter model (e.g., van der Linden, 2007). Here,

we specify a two-parameter logistic model to model the item responses, that is

Pðxpjyp; cpÞ ¼
YN
i¼1

oðaki � yp þ bkiÞxpi � o �½aki � yp þ bki�
� �1�xpi ; ð1Þ

where oð:Þ denotes the logistic function, and aki and bki denote the discrimina-

tion and easiness parameters for item i and state k. Note that the item response

parameters are allowed to differ across states; however, they are treated as fixed

parameters within each state.

Although other models have been proposed as well, a normal one-factor model

is commonly assumed for modeling the log-response times (van der Linden,

2007). Here, we thus assume the log-response times to follow a conditional

multivariate normal distribution. As follows, f ðtpjtp; yp; cpÞ models a person’s

response times, given their ability, latent states, and overall speed by means of

f ðtpjtp; yp; cpÞ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

ei

p � exp � 1

2

ðTpi � mpiÞ2

s2
ei

 !
; ð2Þ

with

mpi ¼ EðTpijtp; yp; cpÞ ¼ vi � dCpi � tp; d > 0; ð3Þ

where s2
ei is the residual log-response time variance, vi is the time intensity

parameter, and d denotes the difference in expected speed between the slower

and faster state. Here, the constraint d > 0 ensures that Cpi ¼ 1 corresponds to

the faster state, which is the state with the smaller response times.

Next, by assuming a bivariate normal distribution for the latent ability vari-

able yp and the latent speed variable tp, the general log marginal likelihood of
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item response vector xp and the log-response time vector tp, given the model

parameter vector �, is given by

‘ðxp; tp; �Þ ¼ ln

ZZ
�1

XK�1

Cp1

XK�1

Cp2

. . .
XK�1

CpJ

Pðxpjyp; cpÞ � f ðtpjtp; yp; cpÞPðcpÞ � gðyp; tpÞdydt;

ð4Þ

where gð:Þ denotes the bivariate normal density function. PðcpÞ denotes the state

probabilities for a set of items, which, for each particular item, models the

probability that the response of person p to item i belongs to a given state. As

follows, PðcpÞ ¼ PðCp1Þ;PðCp2Þ; : : : ;PðCpJ Þ
� �

. Pðxpjyp; cpÞ thus models the

probability of obtaining a particular response pattern, given a person’s ability

and their latent states cp for the different items, and f ðtpjtp; yp; cpÞ models a

person’s response times.

In the hierarchical mixture modeling framework, the item-specific latent class

variables are commonly assumed to be independent from item to item. However,

in practice, these latent class variables may be dependent, for instance, if a

respondent guesses on one item, they may be more likely to guess on the next

item. To account for such a possible dependency between the latent class

variables in the hierarchical mixture framework, Molenaar et al. (2016) also

considered a model with a time homogenous first-order Markov-structure on the

item-specific latent class variables. As a result, in this model, PðCpiÞ, the state a

person is in regarding a certain item, depends on the state of the previous item.

That is, the state probability PðCpiÞ is decomposed as follows:

PðCpiÞ ¼ PðCp1Þ � PðCpijCpði�1ÞÞ; ð5Þ

where PðCp1Þ is referred to as the initial state probability and PðCpijCpði�1ÞÞ is the

so-called transition probability. Since the number of states in our model equals

two, there are two initial state probabilities. In addition, as the Markov depen-

dency is assumed to be time homogenous, the transition probabilities are

assumed equal for all subsequent items, resulting in four transition probabilities.

In model estimation, only one initial state probability and two transition prob-

abilities have to be estimated as the others follow from these estimates (see

Figure 1 for a graphical representation of the model).

3. Normality Tests

In the model discussed above, the log-response times within each state are

assumed to follow a normal distribution. To test this assumption, we use the SW

test and the KS test. Specifically, we propose the following procedure: First, the

hierarchical mixture model is fit to the responses and response times. Next, the

resulting posterior state probabilities are obtained for each response which in turn

are used to draw posterior state assignments to state 0 or 1 for each person’s
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response to each item. Then the normality tests are conducted on either (1) the

response times in state 0 and state 1 according to the posterior state assignment or

(2) on the response times weighted by the posterior state probabilities.

The rationale for the above procedure is that if the within-state log-response

time distribution is correctly specified, the resulting posterior state probabilities

and posterior state assignments are correct. As a result, the SW and KS test

statistics will follow their theoretical distribution under the null hypothesis of

normality. However, if the within-state log-response time distribution is incor-

rectly specified, the resulting posterior state probabilities and posterior state

assignments are wrong, and the SW and KS test statistics will not follow their

null distributions. Below we discuss the SW and KS tests and apply them to the

mixture modeling framework.

3.1. SW Test

The SW test, also called the W test for normality, tests the null hypothesis that

an observed variable comes from a normally distributed population. Since the

original test as proposed by Shapiro and Wilk (1965) could not be used for

sample sizes larger than 50, Royston (1982b, 1992) extended it to sample sizes

up to 2,000. Then, suppose that x1 < x2 < :::: < xN is an ordered sample of size

N on which the normality test is carried out. The W statistic, as calculated for an

item i ¼ 1; : : : ; J , is defined as

Wi ¼

X
apxp

� �2

X
xp � x
� �2

; ð6Þ

FIGURE 1. Markov-dependent item states model.
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where a ¼ a1; a2 ; :::; aN are the normalized best linear unbiased coefficients, and

p ¼ 1; . . . ;N . Vector a is defined by

a ¼ ðmTV�1V�1mÞ�
1

2mTV�1; ð7Þ

where m ¼ m1; : : : ;mN is a vector of expected values of standard normal order

statistics, and V is the corresponding covariance matrix. Note that vector a is

antisymmetric, that is, aN ¼ �a1, and for odd N, aðN=2Þþ1 ¼ 0 (Royston, 1992).

More details on the calculation of the Wi statistic can be found in the Appendix.

3.2. KS Test

The KS test is a nonparametric goodness of fit test, which measures the

distance between an empirical distribution function of a sample and a hypothe-

sized cumulative distribution function (the one-sample KS test) or which com-

pares the distribution functions of two samples (the two-sample KS test). Here,

we will focus on the one-sample KS test for testing the within-state response time

distribution of item i for normality, which is defined by

DNi ¼ sup
x

jFN ðxÞ � FðxÞj; ð8Þ

where FN ðxÞ is the empirical distribution function, and FðxÞ the reference dis-

tribution. In this article, we assume a normal distribution for the log-response

times; however, other distributions like the Wald distribution can be used as a

reference distribution as well. Therefore, the KS test can not only be used to test

the within-state response time distribution for normality but can be used to test

for all kinds of distributions. As Monahan (2011) noted, the Kolmogorov–Smir-

nov statistic is distribution free for continuous random variables. As a result, the

distribution function is evaluated at the observations, and then sorted, such that

DNi ¼ max
p

p=N � FðXðpÞÞ;FðXðpÞÞ � ðp� 1Þ=N
	 


; ð9Þ

where Xp denotes the response time of respondent p on item i, with

p ¼ 1; : : : ;N ; and Xð1Þ � : : : � XðpÞ � : : : � XðNÞ denote the ordered

response times of a sample of respondents. The accompanying p value for the

statistic needs to be bootstrapped, since the resulting sampling distribution is

unknown, and therefore, the mean and standard deviation are unknown and thus

must be estimated from the data when testing for normality (Lilliefors, 1967).1

When testing for other types of distributions, estimating only the mean and

standard deviation might not be sufficient, and additional parameters might need

to be estimated (e.g., a skewness parameter).

Since the posterior state probabilities differ for each respondent on each item

they are taken into account by including them as weights in the KS test, Equation

9 needs to be modified to account for the weighted response times (Monahan,

2011). The empirical distribution function can be estimated by
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FN ðxÞ ¼ 1

N

XN

p¼1

PðCpijxp; tpÞIðXp � xÞ
�

1

N

XN

p¼1

PðCpijxp; tpÞ ð10Þ

where PðCpijxp; tpÞ are the posterior state probabilities, and IðXp � xÞ is an

indicator function, which equals 1 if Xp � x and 0 otherwise. Then, the Xp must

be sorted together with the corresponding posterior state probabilities, the incre-

ments can be computed by

Fk ¼
Xk

p¼1

PðCpijxp; tpÞ
�XN

p¼1

PðCpijxp; tpÞ: ð11Þ

As follows, FN ðxÞ ¼ Fk for Xk�1 < x � Xk , which can be calculated by estimat-

ing quantiles for the underlying normal distribution, weighted by the posterior

state probabilities, that correspond to N ordered probabilities. Using Fk from

Equation 11, the Kolmogorov–Smirnov statistic for item i modifies to

DNi ¼ sup
x

jFN ðxÞ � FðxÞj ¼ max
k

Fk � FðXðkÞÞ;FðXðkÞÞ � Fk�1

	 

: ð12Þ

Like in the unweighted case, the p value of DNi needs to be bootstrapped, since

the mean and standard deviation of the log-response time distribution are esti-

mated from the data (Lilliefors, 1967).

4. Simulation Study

4.1. Method

In the simulation study, we compared the performance of the unweighted SW

test, the unweighted KS test, and the weighted KS test. Data are simulated

according to nine different scenarios, mostly based on Molenaar et al. (2018)

who found biased modeling results of the hierarchical mixture model in the case

of nonnormality. The first three scenarios concern Markov mixture models that

include Markov-dependent item states, the next three scenarios concern mixture

models with independent item states, and the final three scenarios are generated

according to a baseline model that does not include item states (i.e., a static

model without mixtures). The scenarios differ in the distribution that is used for

the log-response times, which is a normal, a truncated, or a skewed distribution.

The responses are modeled using the two-parameter logistic model, with item

parameters aki and bki, which denote the discrimination and easiness of an item i

in state k, respectively. For each scenario, we conducted 50 replications with 20

items, the sample size was equal to 500 or 1,000.

The three Markov mixture model scenarios are the following:

Normal Markov mixture: In this scenario, we use the Markov-dependent item states

model with normal log-response times to simulate the data. We use d ¼ :1. That

is, the expected log-response times differ by 0:1 between the fast and slow state.
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The item parameters for the two different states are set as follows: the discrim-

ination parameters are set to a0i ¼ 1:5 for State 0 (slow state) and to a1i ¼ 1 for

State 1 (fast state). We set the easiness parameters to increasing, equally spaced

values: for the slower state, b0i is between �2 and 0, for the faster state b1i is

between 0 and 2. The response time parameters for all items i are chosen as

vi ¼ 2, and the residual response time variances as s2
ei ¼ 0:13. Furthermore,

s2
t ¼ 0:13 and s2

yt ¼ 0:14, so that the correlation between yp and tp equals

0.4. Finally, the initial state probability, PðCp1 ¼ 1Þ, is fixed to 0.5, and the

transition probabilities, PðCpi ¼ 1jCpði�1Þ ¼ 0Þ and PðCpi ¼ 0jCpði�1Þ ¼ 1Þ, are

fixed to :231, which corresponds to mildly instable states according to Bacci

et al. (2014).

Truncated Markov mixture: In this scenario, the data are generated using the same

parameter values as in the normal Markov mixture scenario above. However,

now we use a right-truncated normal distribution for the log-response times, with

truncation at lnð12Þ such that the response times are cut off at 12 seconds. This

scenario mirrors data from time-pressured tests, where respondents only have a

limited amount of time to answer the items.

Skewed mixture: Here, the data are generated using the same parameter values as in

the normal Markov mixture scenario. However, the normally distributed log-

response times are transformed using a Box–Cox transformation (Box & Cox,

1964). In general, the transformation is used to transform skewed variables in

such a way that they are closer to a normal distribution. Here, we use the

transformation the other way around, so that we transform the normally distrib-

uted log-response times into skewed variables using the Box–Cox transforma-

tion. That is, we transform the normally distributed log-response times using

lnðTpiÞ0 ¼ ðllnðTpiÞ þ 1Þl with l ¼ :3.

Figure 2 shows the resulting log-response time distribution of an arbitrary item

from an example run of the three different Markov mixture model scenarios.

Note that in the truncated scenario, the log-response times are negatively skewed,

while in the skewed scenario, the log-response times are positively skewed.

In the three independent mixture scenarios, we used the same parameter values

and setup as for the Markov mixture scenarios above; however, the item states are

assumed to be independent, that is, the Markov structure is omitted (i.e., PðCpi ¼
1jCpði�1Þ ¼ 0Þ ¼ PðCpi ¼ 1Þ and PðCpi ¼ 0jCpði�1Þ ¼ 1Þ ¼ PðCpi ¼ 0Þ). Next,

for the three baseline scenarios, the data do not include item states, and a baseline

model (i.e., the traditional hierarchical model without mixtures by van der Lin-

den, 2007) is used to generate the data. Like the mixture models, the scenarios

differ in the distribution used for the log-response times, which again are either a

normal, a truncated or a skewed distribution:

Normal baseline: In this scenario, the log-response times are normally distributed.

The item parameters are as follows: The discrimination parameters for all items

are set to ai ¼ 1, the easiness parameters bi are set to increasing, equally spaced
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values between �2 and 2. The response time parameters vi, s2
ei, s

2
t , and s2

yt are

set to the same values as in the normal mixture model scenario.

Truncated baseline: Here, the data are generated using the same parameter values as

in the normal baseline scenario. Like in the truncated mixture model scenario, we
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FIGURE 2. Example run for a random item for normal, truncated, and skewed mixture

model scenarios.
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use a right-truncated normal distribution for the log-response times, with trunca-

tion at lnð12Þ, such that the response times are cut off at 12 seconds.

Skewed baseline: Here, the data are generated using the same parameter values as in

the normal baseline scenario. However, like the skewed mixture model scenario,

the normally distributed log-response times are transformed using a reverse

Box–Cox transformation (Box & Cox, 1964), with the same value for l.

5. Results

For the truncated scenarios, convergence problems occurred in 17 replications

(4 in the truncated Markov mixture, 9 in the truncated independent mixture, and 4

in the truncated baseline scenario). In the results below, those replications are

excluded. Tables 1, 2, and 3 contain the results for the normal, truncated, and

skewed scenarios, respectively. Specifically, the tables depict the proportion of

items for which the null hypothesis of normality is rejected at a .05 level of

significance, averaged over all items within a state. That is, a proportion of .900

for a given state indicates that—averaged over the replications—the normality

hypothesis is rejected for 90% of all items within that state.

First, for the normal scenarios in Table 1, these proportions indicate the Type I

error rate of our approach. Ideally, these rates are close to the level of signifi-

cance for the tests to be viable. As can be seen from the table, for the Markov

mixture, the independent mixture, and the baseline scenarios, the results are

similar. That is, the SW test, and the unweighted KS test have acceptable Type

I error rates. In addition, the weighted KS test is associated with an inflated Type

I error rate.

For the truncated and skewed scenarios, the mean proportion of normality

rejections reflects the power to detect within-state departures from normality.

Here, we used Cohen’s (1988, p. 56) rule of thumb, considering a power coeffi-

cient of .80 or higher to be acceptable. As can be seen from Tables 2 and 3, the

TABLE 1.

Mean Number of Times That the Normality Hypothesis Is Rejected Over All Items Within a

State for the Normal Scenarios

N

SW Test KS Unweighted KS Weighted

State 0 State 1 State 0 State 1 State 0 State 1

500 Markov mixture .054 .057 .048 .055 .093 .122

Independent mixture .047 .049 .050 .044 .102 .105

Baseline model .051 .054 .044 .046 .081 .127

1,000 Markov mixture .045 .050 .063 .065 .091 .092

Independent mixture .048 .057 .052 .044 .072 .089

Baseline model .054 .045 .053 .043 .075 .093
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results indicate that generally the power is acceptable in one state and substan-

tially smaller in the other state. In the truncated scenario, State 0 is associated

with larger power, while in the skewed scenario, State 1 is associated with larger

power as compared to State 0. This can be explained from Table 4 which contains

the average initial state parameter estimates for State 1, together with the transi-

tion parameters in the different scenarios (i.e., the table reflects the proportions of

persons in the different states). As can be seen from the mean initial state para-

meter estimates for State 1, in the truncated scenario, State 0 (slower state; larger

log-response times) is the larger state, and in the skewed scenario, State 1 (faster

state; smaller log-response times) is the larger state. This is due to the log-

response times being positively skewed in the skewed scenario and negatively

skewed in the truncated scenario (as mentioned above). As a result, due to these

larger sample sizes in State 0 for the truncated scenarios and State 1 for the

skewed scenarios, power differs between the two states. That is, when fitting a

TABLE 2.

Mean Number of Times That the Normality Hypothesis Is Rejected Over All Items Within a

State for the Truncated Scenarios

N

SW Test KS Unweighted KS Weighted

State 0 State 1 State 0 State 1 State 0 State 1

500 Markov mixture 1.000 .163 0.999 .110 0.998 .157

Independent mixture 1.000 .159 1.000 .107 0.999 .169

Baseline model 1.000 .194 1.000 .122 1.000 .163

1,000 Markov mixture 1.000 .252 1.000 .175 1.000 .211

Independent mixture 1.000 .279 1.000 .180 1.000 .212

Baseline model 1.000 .315 1.000 .209 1.000 .232

TABLE 3.

Mean Number of Times That the Normality Hypothesis Is Rejected Over All Items Within a

State for the Skewed Scenarios

N

SW Test KS Unweighted KS Weighted

State 0 State 1 State 0 State 1 State 0 State 1

500 Markov mixture .191 0.935 .144 .631 .239 .681

Independent mixture .165 0.952 .098 .662 .212 .706

Baseline model .143 0.946 .079 .658 .191 .687

1,000 Markov mixture .256 0.998 .150 .911 .254 .913

Independent mixture .255 1.000 .140 .922 .267 .918

Baseline model .246 0.996 .160 .917 .271 .925
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normal mixture to nonnormal data, the nonnormality is best detected in the

largest state. Furthermore, even though class sizes are comparable, power tends

to be larger in the larger state of the truncated scenarios when compared to the

larger state of the skewed scenarios. This is due to the fact that the truncated

distribution departs more from normality than the skewed distribution (see Fig-

ure 2). In general, the power of the KS tests (weighted and unweighted) is smaller

as compared to the SW test. We return to this point in the discussion. Further-

more, the weighted KS test has slightly more power as compared to the

unweighted KS test (but is also associated with an increased Type I error rate,

see above).

5.1. Conclusion

Taken together the above, Type I error rate and the power of the proposed tests

seem acceptable for the SW test and the unweighted KS test with more power for

the SW test. The weighted KS test is associated with an inflated Type I error rate.

TABLE 4.

Mean Estimates (SD) of the Initial State Probabilities and the Transition Probabilities

Initial State Transition 0–1 Transition 1–0

Normal scenarios

N ¼ 500 Markov mixture .454 (.169) .242 (.149) .209 (.169)

Independent mixture .462 (.137) .467 (.169) .491 (.163)

Baseline .463 (.197) .385 (.277) .405 (.260)

N ¼ 1,000 Markov mixture .418 (.154) .202 (.045) .200 (.054)

Independent mixture .492 (.135) .474 (.132) .477 (.132)

Baseline .461 (.157) .325 (.237) .414 (.260)

Truncated scenarios

N ¼ 500 Markov mixture .144 (.050) .196 (.017) .703 (.023)

Independent mixture .145 (.052) .198 (.017) .719 (.034)

Baseline .219 (.050) .191 (.018) .735 (.028)

N ¼ 1,000 Markov mixture .150 (.034) .193 (.012) .704 (.018)

Independent mixture .147 (.038) .199 (.014) .721 (.023)

Baseline .213 (.041) .186 (.013) .724 (.018)

Skewed scenarios

N ¼ 500 Markov mixture .793 (.266) .788 (.167) .091 (.030)

Independent mixture .865 (.181) .828 (.028) .096 (.015)

Baseline .845 (.218) .845 (.036) .087 (.014)

N ¼ 1,000 Markov mixture .856 (.182) .804 (.085) .091 (.018)

Independent mixture .893 (.056) .815 (.115) .091 (.014)

Baseline .827 (.234) .820 (.110) .097 (.044)

Kuijpers et al.

361



There are no important differences between the Markov mixtures, independent

mixtures, and baseline model. It turns out that, generally, violations of normality

are only detected in one of the states. We note that of course the power of our

approach depends on the severity of the normality violations (this is why the

power seems somewhat larger in the truncated scenario as compared to the

skewed scenario: the data in the truncated scenario is heavier skewed). In that

sense, we consider our simulation study as a prove of principle (i.e., given the

effect size we have chosen, we demonstrated that the approach is viable).

Our results indicate that nonnormality is detected if the data contain nonnor-

mal mixtures (i.e., the Markov mixture and independent mixture scenarios) or if

the data are nonnormal without mixtures (i.e., the baseline scenarios). In practice,

where one does not know the data generating model, a significant normality test

thus indicates that (1) the data follow a mixture model with a nonnormal within-

state distribution or (2) the data are nonnormal but do not contain mixtures. For

the present purposes, the distinction between (1) and (2) is not of importance as

the implications are the same: In both cases, there is no mixture of normal

distributions in the data, so the results of a normal (Markov-)mixture model

should not be trusted. If our proposed tests are insignificant in both states, it can

safely be concluded that (1) the data follow a mixture model with a normal

within-state distribution or (2) the data are normal without mixtures (i.e., the

baseline scenario’s). As in both cases, the (within-state) data are normal, (1) and

(2) can be distinguished by comparing the baseline model and the mixture mod-

els using common information criteria (e.g., BIC and CAIC) as demonstrated by

Molenaar et al. (2018). Therefore, we propose the procedure summarized in the

flow chart in Figure 3. That is, first, the fit of a normal (Markov-)mixture model

is compared to that of a normal baseline model. If the baseline model fits better, it

can be concluded that the transformed response times are normally distributed

and that there is no mixture of normal distributions underlying the data. If the

mixture model fits better, one can consult the statistics proposed in this article. If

these statistics are insignificant in both states, it can be concluded that there is a

true mixture of normal distributions underlying the response time data, and the

results of the mixture model can be validly interpreted. However, if the proposed

statistics are significant, it can be concluded that there is no mixture of normal

distributions underlying the data, and the results of the normal (Markov-)mixture

model cannot be trusted.

6. Application

The within-state normality tests are illustrated by means of a real-data appli-

cation. The data consist of the responses and response times of 389 psychology

freshman of the University of Amsterdam to 28 items of the knowledge subtest of

the Dutch version of the Intelligence Structure Test (Amthauer et al., 2001). The

knowledge subtest measures essential types of knowledge, which people acquire
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in schools, higher education and other educational institutions, as well as daily

life knowledge acquired from within their culture (Hogrefe Ltd., 2016). The

items in the subtest cover a broad range of topics, like economics, geography,

mathematics, history, art and culture, natural sciences, and daily life facts (de

Vries, 2017). The items are dichotomously scored, with 0 indicating a false

response and 1 indicating a correct response. Looking more closely at the

response time distributions, Figures 4 and 5 show for a selection of items that

they are not normally distributed. The observed response time distributions seem

skewed, and the question is whether this nonnormality can be explained by a

mixture of a fast and a slow state or whether there is an alternative explanation.

In the paper by Molenaar et al. (2016) mixture models with various types of

Markov dependencies are fitted to the data and are shown to fit better than a

baseline model without item states. However, as the modeling results of a fitting

mixture model with a Markov dependency are only interpretable if the assumed

normal distribution for the log-response times holds, we test this assumption

using the proposed methodology.

FIGURE 3. A flowchart of the proposed procedure using the Shapiro–Wilk or Kolmo-

gorov–Smirnov statistics.
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Using a significance level of a ¼ :05, Table 5 shows that especially in State 1,

the fast state, the continuous response times for most of the 28 items do not

follow a normal distribution. Furthermore, all three tests indicate that for State 0,

the slow state, the response times for the majority of the items are normally
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FIGURE 4. Item score distributions for items 1–4.
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distributed. However, since normality does not hold for the majority of the items

in State 1, the parameter estimates are biased and states detected in the data can

be spurious. Therefore, we cannot use a mixture model with a Markov depen-

dency to interpret the responses and response times, and we need to fit an

alternative model in order to explain the data.
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7. Discussion

If the within-state response time distribution in the hierarchical mixture mod-

eling framework is misspecified, parameter estimates and model fit indices will

be biased and spurious states can be detected in the data as a result. Therefore, in

this article, we proposed statistical tests for normality of the within-state log-

response time distribution.

In a simulation study, we found that violations of nonnormality can success-

fully be detected using our tests based on the SW and KS tests. Most importantly,

our test has demonstrated an acceptable Type I error rate, which indicates that our

test can be used to successfully identify situations where normality holds, and

where model fit indices like BIC and CAIC can successfully be used to test

between models that include and do not include normal mixtures. If normality

is violated, it cannot be concluded whether the violations of normality are due to

within-state nonnormality or due to observed nonnormality. However, in such

cases, normal mixture modeling should not be adopted anyway, and our test is

shown to be a good indicator for such situations.

We also found that the weighted and unweighted KS tests had a slightly

increased Type I error rate. In addition, the SW test was associated with larger

power as compared to the KS tests. This is line with for instance Razali and Wah

(2011), Stephens (1974), and Yap and Sim (2011) who all noted that the KS test in

general tends to have smaller power than the SW test. In addition, Shapiro et al.

(1968) furthermore showed that in the case of misspecifying the parameters of the

hypothesized null distribution, the power and Type I error can be influenced. Type

I error rates at the 5% significance level can increase to 61% for a sample size of

50, and the effect becomes more pronounced when sample size increases. Mon-

ahan (2011) on the other hand noted that since the KS tests are less powerful, it

should not be used in small samples but could be used in larger samples. Although

the SW test thus seems preferable over the KS test in the present study, the KS test

is more flexible as it can be used to test any assumed distribution, where the SW

test can only be used on distributions that can be transformed to a normal one.

As noted above, if in practice, normality is rejected, it is advisable to not

interpret the modeling results since they are unreliable. An alternative in that case

TABLE 5.

Number of Nonnormal Items Within Each State

State 0 State 1

SW test 8 26

KS unweighted 4 27

KS weighted 5 26

Note. SW ¼ Shapiro–Wilk; KS ¼ Kolmogorov–Smirnov.
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may be to categorize the response times and use a model for categorical variables

as is shown in the application. As Molenaar et al. (2018) showed, such an

approach hardly produces parameter bias and false positives with respect to states

underlying the data. Furthermore, the approach is comparable to the parametric

within-subject mixture modeling approach regarding power. A second solution

would be to use a nonparametric or semi-parameter alternative for modeling the

responses and response times. However, such an approach is yet to be developed.

The semi-parametric models by C. Wang, Fan, et al. (2013) and C. Wang, Chang,

and Douglas (2013) can possibly provide a point of departure.

In this article, we have assumed a Markov structure for the dependency

between the states. However, the present approach to test for normality is equally

amenable to mixture models without Markov structure (e.g., the model by C.

Wang & Xu, 2015). In the simulation study, we did not find any important

differences between the scenario’s in which the data included a Markov structure

and scenario’s in which the data did not included a Markov structure. However, if

the Markov dependency becomes stronger (i.e., higher transition probabilities),

power for a Markov model may be larger.

Another aspect of the present approach is that of the fit of the mixture model

under consideration. That is, we tested for normality by assuming a certain

mixture model (in this case, a Markov-dependent item states model). We showed

that minor departures from normality can be detected if the model is otherwise

correctly specified. If the initial mixture model is misspecified, false positives

may arise. The severity of this inflation will depend on the size of the misfit. We

therefore think that, first, in practice, were—hopefully—a researcher has a well

(theoretically) motivated model that is not severely misspecified, the conse-

quences will not be large. Second, the consequences of this inflation do not have

serious consequences as also discussed with respect to the baseline model above.

That is, if the tests proposed in the present article are significant, the conclusion

should be that the results of the mixture model cannot be trusted.

The normality tests presented in this article are all tests for univariate normal-

ity. Testing normality thus needs to be conducted on an item-by-item basis, so in

practice, a correction for multiple testing is appropriate (e.g., a Bonferroni or

Bonferroni–Holm correction). A focus of future research may be the develop-

ment of an overall test for multivariate normality, which considers all items at

once. Then, the present univariate tests can be used as post hoc tests to investigate

whether individual items are responsible for violations of the assumed

distribution.

Appendix

Even though m and V in vector a can be computed using various algorithms

(see Royston, 1982a, 1982b; also see Davies & Stephens, 1978; Shea &

Kuijpers et al.

367



Scallan, 1988), Royston (1992, also see Verrill & Johnson, 1988) offers a

close approximation for vector a which is based on the Weisberg and

Bingham (1975) statistic
P

bpxp

� �2
=
P

xp � x
� �2

, where bp ¼ ð ~mT ~mÞ�
1
2 ~mp,

~mp ¼ F�1fðp� 3=8Þ=ðN þ 1=4Þg, and F is the normal cumulative distribution

function. Only for the first two components, and the last two since a is antisym-

metric, b differs from a. The value for the last two (and first two) components

from a can, for 4 � N � 1; 000, be approximated by

~aN ¼ bN þ 0:221157y� 0:147981y2 � 2:071190y3 þ 4:434685y4 � 2:706056y5;

ðA1Þ

~aN�1 ¼ bN�1 þ 0:042981y� 0:293762y2 � 1:752461y3 þ 5:682633y4 � 3:582663y5;

ðA2Þ

where y ¼ N�
1
2. The remaining ap are approximated by

~ap ¼ f
�1

2 ~mp; ðA3Þ

for p ¼ 2; : : : ;N � 1 when N � 5 and p ¼ 3; : : : ;N � 2 when N > 5. In Equa-

tion A3, the ~mp are normalized by using

f ¼ ð ~mT ~m� 2 ~m2
N Þ=ð1� 2~a2

N Þ if N � 5; ðA4Þ

¼ ð ~mT ~m� 2 ~m2
N � 2 ~m2

N�1Þ=ð1� 2~a2
N � 2~a2

N�1Þ if N > 5: ðA5Þ

After calculation of the approximated a, the Wi statistic can be computed

using Equation 6. Royston (1992) showed that small values of Wi indicated

nonnormality, therefore, Wi needs to be normalized. For 4 � N � 11, the trans-

formed Wi (denoted by w), the mean m and standard deviation s are defined by

w ¼ �ln; g� lnð1�WiÞ½ �;

g ¼ �2:273þ 0:459N ;

m ¼ 0:5440� 0:39978N þ 0:025054N 2 � 0:0006714N 3;

s ¼ expð1:3822� 0:77857N þ 0:062767N 2 � 0:0020322N 3Þ:

For 12 � N � 2,000, they equal

w ¼ lnð1�WiÞ;

x ¼ lnN ;

m ¼ �1:5861� 0:31082x� 0:083751x2 þ 0:0038915x3;

s ¼ expð�0:4803� 0:082676xþ 0:0030302x2Þ:
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As follows, the p value of Wi can be found by using z ¼ ðw� mÞ=s, which

corresponds to the upper tail of Nð0; 1Þ if z > 0 and to the lower tail if z < 0.
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Note

1. In the bootstrap procedure, we obtained the p value of the Kolmogorov–

Smirnov (KS) statistic (KSdata) by randomly drawing 100 normal variables,

standardizing these, and calculating the KS statistics (KSsampling). The p value

is than obtained by calculating the proportion of samples in which the

KSsample exceeds KSdata.
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